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Abstract

This paper is concerned with synthetic agents in-
teracting with virtual environments, called ani-
mated creatures. The animated creatures are ar-
ticulated graphical figures that are equipped with
a set of primitive behavioral patterns. These pat-
terns qualitatively specify which body modules
will move concurrently, hence forming a motion
group, and which group will move prior to an-
other. The parameterization of these patterns is
carried out by the creatures given certain exter-
nal stimuli. The key to such behavioral adapta-
tion lies in an embedded evolution strategy based
selection mechanism. Two examples will be given
where this selection mechanism enables a bipedal
creature and a six-legged creature to dynamically
search for the exact positions as well as dura-
tion of body joints as constrained by the quali-
tatively defined gait patterns. The acquired new
stimulus-response pairs are recorded and inserted
into a behavioral conditioning network which can
be reused and refined during future movements.

Introduction

Modern computer graphics technology has enjoyed
rapid development in recent years, and hence has
attracted researchers and practitioners to explore a
wide spectrum of applications, ranging from computer-
aided graphical designs to artificial life and virtual-
reality (Maes 1995). This paper is concerned with the
animation-based entertainment use of computer graph-
ics, and in particular, it describes our present research
work on creating articulated creatures, i.e., animated
robots that can adapt to their virtual environments,
and learn new behaviors to attain some specific goals.
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These goals may be given in terms of high-level be-
havioral commands composed of expressions that indi-
cate the situated actions of the creatures in response to
both global task constraints and local conditions, such
as walking through a terrain without collision.

Many researchers have investigated the problem of
articulated creature (or figure) generation. Among
them, Ching and Badler (Ching & Badler 1992) have
studied the issue of generating realistic motions by
treating it as a robot global motion planning problem
in which a configuration-space collision-free path plan-
ning algorithm can be applied. Vasilonikolidakis and
Clapworthy (Vasilonikolidakis & Clapworthy 1991)
have used an inverse Lagrangian dynamics algorithm
to compute inertial motions based on carefully studied
gait determinants. Loizidou and Clapworthy (Loizidou
& Clapworthy 1993) have explored the use of dynamic
analysis in the manipulation and control of articu-
lated figures by using a hybrid direct-inverse dynamics
method. Their work applied the findings from physio-
logical and photographical studies to decide gait deter-
minants, as well as those from legged robot research to
account for ground reaction forces. Considering the is-
sue of computational complexity, Arai (Arai 1993) has
proposed to use partial dynamics only for some spe-
cific parts of the body such as legs and arms. Green
and Halliday (Green & Halliday 1996) have developed
a system in which both geometrical and behavioral de-
scriptions of an object are allowed.

As may be noted, all the above mentioned studies
have, to some extent, shared one thing in common;
namely, the realistic motion is achieved by solving ei-
ther complete or partial kinematic and dynamic equa-
tions. Two questions that remain are (1) how a real-
istic movement can be most efficiently generated, and
(2) how the articulated figure will select an appropriate
behavior in response to not only the given goal but also
some unpredictable conditions in its environment. This
issue is particularly relevant if we are to develop syn-
thetic agents that can “survive”, autonomously, and
acquire previously undefined behaviors in their virtual
environments. It would be impossible to write com-
plete animation code for each single agent that we cre-
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ate.

In this paper, we address this issue by building and
investigating animated creatures with embedded be-
havioral adaptation and emergence mechanisms. In
order to limit our scope, here we shall not focus on the
precise dynamics of the creature once a behavior has
been either emerged or selected.

Partially related to our work are some of the previ-
ous studies on behavior selection and emergence. For
example, Maes (Maes 1991) has developed a selection
mechanism that emerges an action by spreading acti-
vation energy over a behavior network. In our current
implementation, the reflexes of a creature are linked
among each other in the form of stimulus-response
pairs, somewhat similar to Maes’ predecessor and suc-
cessor links. In relation to search based behavior se-
lection, Auslander et al (Auslander et al. 1995) have
developed a system that contains banked stimulus-
response controllers dynamically selected through an
optimization algorithm. However, unlike our quali-
tatively bounded search space, their search space is
composed of all the possible motion controllers. As re-
ported, such a search can be a very slow process espe-
cially when 3D animation is concerned. Furthermore,
Ventrella (Ventrella 1994) has studied the possibility
of emerging the structure and locomotion behaviors of
an animate using genetic algorithms (Goldberg 1989)
(Holland 1975), his system used a model of specifi-
cally tailored qualitative forward dynamics to gener-
ate gravitational, inertial, momentum, frictional, and
dampening effects. Sims (Sims 1994) has developed a
system in which both the animated 3D creaturess bod-
ies (i.e., morphology) and their neural control systems
(i.e., virtual “brains) were genetically evolved and/or
co-evolved. His system can produce realistic dynamics
simulations of gravity, collisions, and friction.

The Animated Creatures

The animated creatures to be presented in this pa-
per can be characterized as follows: They are goal-
attaining creatures capable of dynamically adjusting
their behaviors in reaction to their environment. Two
kinds of information will be made available for the crea-
tures at all time; namely, (1) a set of isolated primitive
behavioral patterns in terms how various body mod-
ules can move concurrently and what kind of tempo-
ral ordering they may have, and (2) the aim of their
movement (or the commanded goal) and the sensory
feedback about their surrounding environments. An
evolution strategy based optimum seeking mechanism
(Schwefel 1995) will be embedded inside the creatures
that governs the behavioral adaptation and learning.
The objectives are, by way of evolution, the creatures
can find the precise body coordination strategies per-
taining to a selected specific behavioral pattern, and
furthermore, gradually emerge a more complex be-
havior through the chaining of basic stimulus-response
pairs.
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Organization of the Paper

This paper is organized as follows: Section 2 provides
an overview of the creatures’ evolution strategy as used
in their behavioral adaptation and learning. Section 3
provides two creature examples as produced by our
implemented system. Section 4 provides some further
details on the implemented system. Finally, section 5
concludes the paper and points out some issues for fu-
ture investigation.

Evolution Strategy Based Behavioral
Adaptation in Creatures

Given a high-level behavioral command, an animated
creature will first select a primitive behavioral pattern
from a user-defined library!. This pattern provides in-
formation about the synchronized motions about dif-
ferent modules of the creature, but not the exact mo-
tion parameters such as initial positions, velocities, and
final positions. In order to take into account both
the immediate environment constraints as sensed by
the creature using its virtual proximity sensors, and
the aim/goal of its movement as implied in the high-
level command, the creature undertakes a moment of
behavioral adaptation based on an embedded evolu-
tion strategy, i.e., parameterization of the chosen be-
havioral pattern. The adaptation step will result in
a series of internal configuration changes in the crea-
ture. This series is regarded as the optimal response
by the creature, as conditioned by the original stimu-
lus. As soon as it finishs executing such a conditioned
response, the creature may again face some new local
constraints and/or updated goals. Hence, the above
process repeats itself.

It should be pointed out that all the conditioned
pairs of stimulus-response as found during the adapta-
tion will be recorded (i.e., learned) by the creature into
its behavioral conditioning network, which would allow
for future instant reflexes and/or refinement, should
same stimuli are revisited.

Figure 1 presents a schematic diagram that outlines
the creature’s mechanism for behavioral adaptation
and learning. In what follows, we shall provide some
details on the implementation of this mechanism.

Primitive Behavioral Patterns

A primitive behavior has no goals and objectives. It is
simply a primitive coordinated motion template.

Definition 1. A primitive behavioral pattern is de-
fined as a tuple: < C,S; >, where C = {C} and config-
tiration C =< 6,,02,...,0, > denotes a set of grouped
body modules that are considered to undertake synchro-
nized motions. S, = [C},Cy,...,Cy] denote a sequence
of temporally ordered configurations.

!The selection of a primitive behavioral template could
also be made adaptive.
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Figure 1: An animated goal-attaining creature adapts to
its virtual environment based on primitive behavioral pat-
terns and evolution strategies.

It should be mentioned that a primitive behavioral
description is qualitative in nature which only gives
the valid ranges of the joint angles rather than exact
values.

Evolution Strategy

To search a particular configuration given a certain
stimulus in the environment, the animated creature
will undergo an evolution strategy based search pro-
cess to find a set of values that would best suit the re-
quirements. Here, the stimulus is termed in a broader
sense in that it encompasses not only goal specification,
such as “move straight and turn left once an obstacle
is encountered”, but at the same time also the local
surrounding information, such as sensory data based
perception.

The evolution strategy based optimum search tech-
nique applied in this work was inspired by the earlier
work of Schwefel (Schwefel 1995). More specifically,

the evolution strategy can be expressed as follows:

c’i“ = Ck+ ME0,0)
02“ = C§+M§(0,a)
: . (1)
Cktl = Ck+ M(0,0)

where C**! and CF are the creature’s current configu-
ration (offspring) and previous configuration (parent),
respectively. M* denotes a mutation term, which can
be interpreted as the sum of many individual events
and hence is implemented in our system to satisfy a
Gaussian probability distribution with zero mean and

o standard deviation (Schwefel 1995):

P
p(M*) = p(my,ma, -, mp) = [ [ p(mi)

1=1

A (U)o

where &; and o; correspond to the mean and standard
deviation of the distribution, respectively.

The evolution strategy works as follows: Given a cer-
tain external stimulus, the creature forms a cost func-
tion F to evaluate whether its current configuration
meets the requirements as induced from the stimulus.
If not, the creature’s mutation mechanism generates
an offspring configuration which can replace the par-
ent (i.e., old configuration) if and only if F satisfies the
following:

F(CK1,CE+L, .. CEY < F(C},C5,...,Cq) (4)

If the above is not satisfied, the offspring configuration
will not be selected. While responding to a particular
stimulus, a series of configurations C may be generated
and parameterized based on the triggered behavioral
pattern.

Unlike genetic algorithms, the evolution strategies
operate on floating point vectors, directly, with a dy-
namically changing reproduction rate. And further-
more, the relative order of selection and recombination

(2)

p(my) =

~ procedures is different between evolution strategies and
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genetic algorithms. Michalewica (Michalewicz 1992)
has presented a more detailed comparison between evo-
lution strategies and genetic algorithms.

Control of Mutation Steps

Back et al (Back, Hoffmeister, & Schwefel 1991) have
proven that with the above-mentioned evolution strat-
egy, a global optimum can always be found with prob-
ability one for sufficiently long search time, that is,
P{limy 0 F(C¥*) = Fopt} = 1. Furthermore, Rechen-
berg (Rechenberg 1973) has proposed a so-called “é—
success rule”, which states that from time to time dur-
ing the evolution strategy based optimum seeking, the
ratio ¢ of successful mutations to all mutations should

be %. If the ratio is greater than %, increase the vari-

ance, if it is less than %, decrease the variance.

In our present implementation, the animated crea-
ture adjusts its mutation steps using a more precise for-
mulation of the “é success rule”, which was originally
provided by Schwefel (Schwefel 1995). This rule can be
stated as follows: For every n mutations, the creature
checks how many successes have occurred over the pre-
ceding 10n mutations. If the number of successes is less
than 2n, it multiplies the step sizes by a factor of 0.85;
divides them by 0.85 if more than 2n successes have
occurred. This mechanism of changing mutation steps
can reasonably maintain the found local optima and



hence prevent the search from becoming completely
random?.

Behavioral Chaining

Once a complete response, as expressed in terms of
a series of configuration changes, has been selected, a
stimulus-response behavioral pair will be inserted into
a behavioral conditioning network where each arc con-
nects a pair of stimulus and response, i.e., S; ~ R;.
At the end of one response, if a new stimulus is present
(e.g., when the previous stimulus-response pair has re-
sulted in either inefficient or unstable configurations
with respect to the new local environment), the crea-
ture will continue to select a corresponding response
either from the conditioning network or through the
evolution strategy based search. In such a case, be-
havioral chaining would become possible. This may be
best illustrated in the following diagram:

S, ~ R
4
Se ~ R, (5)

Y

where “J” implies that a specific response has led to a
new stimulus.

Such a behavioral chaining technique allows for the
emergence of compler behaviors on the basis of the
primitive simpler ones. A similar idea of using local
primitive behaviors has been proposed before in the
context of learning high-level global control strategies
for collective robot tasks (Mataric 1992).

Examples of Animated Adaptive
Creatures

This section presents two examples of animated crea-
tures incorporating the above-mentioned behavioral
adaptation mechanism. In both examples, the crea-
tures are provided with a series of primitive behavioral
patterns. The stimuli are recognized by the creatures
at run-time, taking into account (1) the aim of the
movement, (2) the current sensory inputs about their
immediate geometric environments, and (3) the bal-
ance constraints that bound the relative movements
among the legs.

Bipedal Movements

Our first example is concerned with an animated crea-
ture in a virtual staircase environment, as shown in
Figure 2. The primitive template available for this
creature is bipedal gait. The creature is commanded
to walk straight without any further instruction on

? Another mechanism for achieving this balanced muta-
tion has been proposed by Harvey (Harvey 1992), which is
called Species Adaptation Genetic Algorithms (SAGA).
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Figure 2: An animated bipedal creature commanded to
walk straight forward in a virtual staircase environment.

Figure 3: An illustration of the coupled joints in a bipedal
creature whose exact values are to be searched with respect
to both the balance constraints and the movement plan.

how to move up and down the staircases, and is re-
quired to figure out itself the appropriate configura-
tions for different bipedal movements while trying to
keep its entire body in good balance.

Figure 3 shows the articulated joints of the bipedal
creature. One example of the balance constraints in
this case would be to maintain point C’ as the centroid
of A'B' as closely as possible by selecting the coupled
leg joint angles, a1y, @12, a21, and azz, and the body
orientation angle, as;, within their respective ranges.
This constraint can be written as follows:

I%A’B’ AT < € (6)

where ¢ denotes a small positive error bound. A’B’
and A’'C’ are determined by the joint angles as in the



(8)

(b)

The animated creature performs a se-
quence of bipedal movements. Its behaviors at the
local environments as well as their transitions, such
as walking on_flat_sur face = stepping_downwards =
walking_on_flat_sur face, must be autonomously evolved.

Figure 4:

following expressions, respectively:

A'B = -[[11 s@n(an) + {12 Sén(au + a12)] (7)
+[l21 sin(a21) + la2 sin{az1 + az3)]
and
A'C' = —[111 sin(au) + U9 sin(au + 012)] (8)

+dsin(az)

Figures 4 and 5 provide a sequence of snapshots
showing how the creature adapts to the local environ-
ment during its forward movements. As can be noted,
several configuration changes are required at each of
the following transitions: walking_on_flat_surface =>
stepping_downwards => walking_on_flat_sur face =
stepping _upwards = walking_on_flat_sur face.

What is interesting to observe from Figures 5(b),
(h), and (i) is that when the creature encounters the
flat surface for the second and third times, it imme-
diately executes its already conditioned reflexes, as
searched from its behavioral conditioning network.
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Figure 5: Continued bipedal movements for transi-
tions walking_on_flat_sur face => stepping_upwards =
walking_on_flat_sur face.

Six-Legged Movements

Figure 6 shows a six-legged creature being placed in
a virtual environment that consists of a door frame
and a sloped surface. The creature is commanded to
move straight ahead and turn right once the environ-
ment boundary is encountered. Such a movement plan
is specified by users through a window interface.
During its movements, the creature is equipped with
several artificial proximity sensors to detect the obsta-
cles and terrain conditions as encountered. These sur-
rounding conditions will become part of the behavioral
adaptation triggers. Generally speaking, this creature
must (1) correctly orient its main body and (2) find
the precise coordinated joint movements, in order to
optimize the following concurrent motion objectives:

e movement toward a virtual goal straight ahead, and
¢ front collision-free movement.

The primitive behavioral pattern used by the creature
in this case is ¢ripod gait.



Figure 6: A six-legged creature commanded to move for-
ward. In the course of its movements, the time duration
and angular joint positions for all legs must be dynamically
adjusted in reaction to the local environments.

(a)

Figure 7: The snapshots of the creature in approaching
the door frame, passing through the door frame, climbing
up the slope, walking on the raised floor, and walking down
the slope.

(b) (c)
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Figure 7 shows a series of snapshots on the crea-
ture’s movements in which both the initial positions
and the durations of the leg joints are changed in
reaction to different surrounding conditions. These
changes are dynamically generated (conditioned) as
a result of the evolution strategy based adaptation
that searches, within the selected qualitative behav-
ioral template, for all the hip joints and the lower
limb joints, the total of which can be as many as
6 x 2(hip angles) + 6 x 1(lower limb angles).

System Details

As far as the definition of primitive behavioral patterns
is concerned, links pertaining to a particular structural
branch can be selected and grouped through a graph-
ical user interface. At the same time, their motion
range and the degree of motion overlap can be con-
jectured and specified. Further to the group defini-
tion, individual groups can also be sequenced to form
a primitive behavioral pattern with or without trigger-
ing conditions.

In the present implementation, an artificial creature
can be commanded through two means: (1) aim of
movements by input devices such as a mouse, and (2)
high-level movement commands. Some of the recog-
nizable commands are concerned with simple move-
ment behaviors, such as move_straight, move_over,
move.under, turn_left, and turn_right, while others
are more complex motion behaviors, such as avoid,
follow, and block.

Concluding Remarks

In this paper, we have described our recent work
on building synthetic autonomous agents (or ani-
mated creatures) that can dynamically select near-
optimal behaviors and incrementally construct condi-
tioned stimulus-response chains. In order to minimize
the computation involved, the embedded mechanism
for behavioral adaptation and learning utilizes a set of
predefined primitive behavioral patterns (e.g., gaits)
dictating qualitatively how various parts alternate in
the course of movements. The actual adaptation of
an agent’s behavior is implemented using an evolution
strategy based optimum seeking technique.

As has been demonstrated in our experiments, the
evolution strategy based selection is well suited to the
addressed problem of behavioral selection and learning
under different external stimuli. This is largely due
to the fact that such a technique directly accepts and
evaluates numerical optimality constraints. Our ex-
perimental results have also shown that the developed
adaptation mechanism is robust and efficient in find-
ing the right motion parameters at run-time. The ac-
quired stimulus-response pairs, or conditioned reflexes,
can readily be retained by the creature and gracefully
integrated into the existing pairs to develop complex
behaviors.



One of the obvious limitations in our present imple-
mentation is the lack of dynamical constraints, such
as the effects of surface friction and inertia. It is our
present research goal to incorporate such constrains
into the objective function of evolution strategy based
parameterization.
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