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ABSTRACT 
Network flow is an excellent approach to finding min-cuts be- 

cause of the celebrated max-flow min-cut theorem. However, for 
a long time, it was perceived as computationally expensive and 
deemed impractical for circuit partitioning. Only until recently, 
FBB [l] successfully applied network flow to two-way balanced 
partitioning and for the first time demonstrated that network 
fow was a viable approach to circuit partitioning. In this paper, 
we present FBB-MW, which is an extension of FBB, to solve 
the problem of multi-way partitioning with area and pin con- 
straints. Experimental results show that FBB-MW outperforms 
the FM-based MW-part program in the TAPIR package[lO]. 

1. INTRODUCTION 

Circuit partitioning is crucial in VLSI system design. Multi- 
way partitioning is becoming very important with the ever 
increasing system size. A target device such as an FPGA 
usually has an upper bound for both area and I/O pins. 
For multiple-FPGA system design, the objective for circuit 
partitioning is to minimize the total number of crossing nets 
while satisfying area and pin constraints. Traditional multi- 
way partitioning algorithms which only minimize the total 
cut nets are no longer applicable, and hence recently several 
algorithms [3,4,5,6,7,8] have been proposed for multi-way 
partitioning with area and pin constraints. 

Network flow is an excellent approach to finding min- 
cuts because of the celebrated max-flow min-cut theorem 
[9]. However, for a long time, it was perceived as computa- 
tionally expensive and deemed impractical for circuit par- 
titioning. Only until recently, FBB [l] successfully applied 
network flow to two-way balanced partitioning and for the 
first time demonstrated that network flow was a viable ap- 
proach to circuit partitioning. Later, [2] improved FBB by 
introducing node-selection heuristics based on linear place- 
ment of the nodes. 

In this paper we present FBB-MW, which is an extension 
of FBB, to solve the problem of multi-way partitioning with 
area and pin constraints. We first give an improvement of 
FBB by finding the “most desirable” min-cut during ev- 
ery iteration of FBB. This is based on the observation that 
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Figure 1. Using FBB for balanced bipartition 

there are usually many min-cuts after a maximum-flow com- 
putation. Using the “most desirable” min-cut reduces the 
number of iterations in FBB which would in turn reduce 
total runtime and final cut-size. In FBB-MW, we apply 
the techniques in FBB and its improvements to multi-way 
partitioning. While FBB only minimizes the number of cut 
nets without taking into consideration of the total number 
of pins for each partitioned component, in order to satisfy 
the area and pin limits, we must consider both the primary 
I/O nodes and the interconnecting nets which will occupy 
the I/O pins. By a suitable network modeling of the I/O 
nodes, we can minimize the total number of pins for one 
component by maximum flow computation. Experimen- 
tal results show that FBB-MW outperforms the FM-based 
MW-part program in the TAPIR package [lo]. 

2. IMPROVEMENT OF FBB 

2.1. Overview of FBB 
Network flow based partitioning method was once over- 
looked to be a practical partitioning method because of its 
relatively high complexity. Recently, [l] proposed the FBB 
algorithm for flow based balanced circuit bipartitioning. By 
proper net-modeling and employing incremental flow com- 
putation, FBB not only yields better partitioning results, 
but also is efficient in computation time. [2] further im- 
proved FBB by introducing node selection heuristics based 
on linear placement of the nodes. 
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Figure 2. There are multiple min-cuts in the flow network 
partitioning the network into subsets of difierent area. 

FBB applies an efficient max-flow min-cut heuristic to 
repeatedly cut the network to meet the area limit. The 
repeated max-flow min-cut process was implemented effi- 
ciently by using incremental flow computation. It is not 
necessary to do the max-flow computation from scratch in 
each iteration, only additional flow is added to saturate the 
bridging edges from iteration to iteration. It was proved in 
[1] that the repeated cut process takes the same asymptotic 
time complexity as that of one max-flow computation. 

Figure 1 shows an example of using FBB for balanced 
bipartition. For simplicity, the net modeling is not shown 
in the figure. In each iteration, max-flow is computed and 
a min-cut is found. Then all the nodes in the smaller side 
of the min-cut are condensed to form one seed node and a 
new node is collapsed to this seed node, so that more flows 
can be pushed through the network. This process goes on 
until a balanced partition is found. 

2.2. Improvement of FBB 
,O.,R.l. Finding the most desirable min-cut 
In each iteration of FBB, after obtaining the max-flow, 

FBB used X, = (~13 an augmenting path from s to u} as 
the min-cut. An augmenting path from u to u is a path 
that more flows can be pushed through it. An important 
observation is that there usually exist more n&-cuts in the 
flow network (as shown in Figure 2). Besides X3, Xt defines 
a min-cut that is closest to the sink where Xt = {u13 an 
augmenting path from u to t) and there may exist more 
min-cuts in between the two. It is easy to show that for 
any min-cut (X, Z), X, E X C (V - Xt). 

One improvement to FBB is that in each iteration after 
the max-flow computation, we try to find the min-cut that 
cuts the network into subsets with area as close to the area 
limit as possible. We observe that when collapsing a node 
to the source (or sink) and then pushing additional flow, 
the min-cut size is monotonically increasing. By first ex- 
ploring the existing min-cuts and finding one closest to the 
area limit, we obtain a subset with a larger area without 
increasing the min-cut size. 

A min-cut partitions a flow network with total area A 
into two parts: X and x, where the source s E X and the 
sink t E r, Let A’ be the area constraint (i.e. i= 0.5A 
for balanced bipartitioning). Let 6 = min(ji-area(X 
IA-area(X for a min-cut (X,x). The value 6 measures 
the deviation of the partition from the specified area limit. 
Among all the min-cuts in the flow network, the one with 
minimum 6 is called the most desirable min-cut, which is a 
min-cut closest to the area limit A. 

In Figure 2, min-cut Cl corresponds to X, and Cs cor- 
responds to Xt. CZ, C’s, Cd are other min-cuts in the flow 
network. If the area limit i=lO, then CZ would be the 
most desirable min-cut. If A=8, then C4 which partitions 
the network into subsets of area 13 and 7 would be a min- 
cut that is closest to the area limit. 

After obtaining max-flow in the network, all the existing 
min-cuts partition the flow network G into non-overlapping 

Figure 3. The min-cut graph H corresponding to the net- 
work in Figure 2. The number inside each node is the total 
area of the subset represented by the node. 

Cl cl 

Figure 4. The set of unidirectional cuts in the min-cut 
graph H 

subsets. We define the min-cut graph H from G as follows: 

1. Each subset separated by the min-cuts in G is repro- 
sented by a node in H. 

2. If all edges from subset s1 to s2 in G are saturated and 
all edges from subset 32 to s1 in G have zero flow, then 
add an edge from node SI to node 92 in H. 

3. Each node s in H is associated with an area which is 
‘equal to the total area of all the nodes in the subset 
represented by s. 

Figure 3 is the corresponding min-cut graph H of the 
network in Figure 2. The five min-cuts in G (Figure 2) 
partition the network into six subsets, each of which is rep- 
resented by a node in H (Figure 3). 

Lemma 1: The min-cut graph H is a directed acyclic 
graph. 

A unidirectional cut of H is defined as a cut that parti- 
tions H into (Y,F), such that all the cut edges are from 
nodes in Y to nodes in y. Note that the set of unidirec- 
tional cuts in Figure 4 corresponds to the set of m&cuts in 
Figure 2. This is true in general and we have the following 
lemma. 

Lemma 2: There is a l-l correspondence between the set 
of all unidirectional cuts in H and the set of all min-cuts 
in G. 

Due to space limitation, the proofs of Lemma 1 and 2 
are omitted here. To find a most desirable m&cut that is 
closest to the area limit, we can first construct the r&-cut 
graph H and then find a unidirectional cut which partitions 
the network into subsets with a desirable area. Since con- 
structing the exact H can be time consuming, we used a 
greedy heuristic DMC to build a min-cut graph and find a 
unidirectional cut with area close to the area constraint. 

1. 

2. 

3. 

4. 

5. 

Procedure DMC: finding a desirable min-cut 
Search from the sink t; 
Xo = (~13 an augmenting path from Y to t}; 
Search from the source s; 
Xl = (~13 an augmenting path from s to v}; 
i= 2; 
Select an unmarked node v incident to Xj(l < j < i); 
Xi = (~13 an augmenting path from u to u and u is unmarked}; 
ici+1; 
If all nodes are marked, then goto step 5; else goto step 3; 
Select k with Et, 
let X = UF=lXi ; 

area 5 A and me~(Ch~ oreo(X;)); 

return X; 
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Case 1: the net modeling of a multi-terminal net 
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Case 2: the net modeling of a two-terminal net 

Figure 5. Net modeling 

Ftom steps 1 to 4 a n&-cut graph is constructed, but it 
is not the exact H as defined above since some nodes in H 
may be merged into one node here. A simple strategy is 
given in step 5 to find a min-cut that has area close to the 
area limit. It can be easily proved that X = U,“,,Xi is a 
unidirectional cut in the min-cut graph and thus a min-cut 
in the flow network. More intelligent strategies can be used 
in step 5 for finding a desirable min-cut by searching the 
min-cut graph. In addition to checking the total area, the 
total number of pins for X = UL,Xi can also be calculated 
and compared with the pin limit. 

When the size of the network is much larger than the area 
limit, we do not need to construct H on the whole network. 
Instead, we can build a partial min-cut graph as follows. In 
step 5, if Ci area exceeds a certain limit, we leave the 
rest of the nodes to be in one subset of the min-cut graph. 

After a max-flow computation on the flow networlc, pro- 
cedure DMC can be used to find a desirable min-cut. Note 
that when the min-cut found does not meet the area limit, 
incremental max-flow computation will be performed again 
and another desirable min-cut is found by procedure DMC. 
With this process going on, the min-cut approaches the area 
limit in each iteration. 

12.2.2. Net Modeling 
To make network flow based method suitable for circuit 

partitioning, [1] gave a net modeling of the hyperedges so 
that by max-flow min-cut computation, the min-cut found 
is the total number of cut nets. Here we make a simplifica- 
tion in the modeling of two-terminal nets. We construct a 
flow network G’ = (V’, N’) from G = (V, N) as follows (see 
Figure 5): 

V’ contains all the nodes in V. 
For a multi-terminal net n = (WI, ~2, . ..uk). add two 
nodes nl, n2 in V’ and add a bridging edge (tal, nz) in 
N’ with capacity 1. For each node u E {u~,uz, . . ..uk} 
incident’on net n, add two edges (u, nl) and (n2, u) in 
N’, with capacity co on these edges. 
For a two-terminal net n = (u, u), add two edges (u, u) 
and (u, u) with each having capacity 1. 

For each node u E V, its corresponding node in V’ has 
the same area as in V. For a node in V’ but not in V, 
assign area as 0. 

Here we distinguish between a two-terminal net and a 
multi-terminal net, so that we do not need to add the ex- 
tra two nodes and the bridging edge for a two-terminal net. 
This can reduce the size of the resulting network and thus 
speed up the ma-flow computation. Our multi-way parti- 
tioning algorithms in Section 3 are based on the above net 

modeling. The following lemma says that the net modeling 
is correct and its proof is similar to the one in [l]. 

Lemma 3: Let (X’, x’) be a min-cut of capaci&C in G_‘, 
and (X,x) be the corresponding cut in G, we haue (X,X) 
is a minimum net cut in G and the number of cut nets is 
equal to C. 

3. MULTI-WAY PARTITIONING 

In this section, we introduce algorithm FBB-MW, an ex- 
tension of FBB to multi-way circuit partitioning with arca 
and pin constraints. Algorithms which only minimizc the 
total number of interconnections will not be useful for solv- 
ing this problem, since they can not guarantee that each 
component can meet the pin limit as the cut nets may be 
distributed unevenly among the components oven if the to- 
tal is minimized. Besides the crossing nets, the primary I/O 
nodes will also occupy the I/O pins and should be taken into 
consideration. Moreover, it is desirable to find a partition 
that uses as few components as possible in order to reduce 
the total cost of the design. In this section, we will first 
give the problem formulation and then present our networlc 
flow based algorithms. 

3.1. Problem Formulation 
For a circuit G = (V, N), V is a set of nodes with each node 
associated with an area, N is a set of nets where a net is 
a subset of V. Given the upper bound for both the area 
(A) and the number of pins (4, the multi-way partitioning 
problem is to partition V into k non-overlapping subsets_ 
Vi,% ,... Vk, such that (1) V = $xlK; (2) area(K) <A 
for i = 1 , . . . . k and (3) pin(K) 5P for i = 1, . . ..k. with the 
objective of minimizing k and cf=, pin(q). 

Each subset is also called a component. Here area(%) = 
cvEvi area(u) and pin(K) is the total number of pins for 
component Vi. The objective is to minimize the number 
of components and to minimize the total number of pins 
while each component must satisfy the specified area and 
pin constraints. Notice that the total pins for one compo- 
nent is comprised of pins for the interconnecting nets among 
the components and the primary I/OS. 

3.2. Algorithm 1 
One direct extension of FBB to multi-way partitioning is to 
iteratively apply the max-flow min-cut process to find one 
component at a time that meets the area and pin constraint, 
until every node in G’ is assigned to a component. A feasible 
component is a subset of V which satisfy the area and pin 
limit. FC is a heuristic for finding one feasible component 
with area as large as possible. 

1. 
2. 
3. 
4. 

5. 

6. 
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Procedure FC: finding a feasible component. 
Pick a source s and a sink t; F + 4; 
Compute max-flow in the flow network; 
Call procedure DMC to find a desirable min-cut C = (X,X); 
If C 1 P, then return(F); 
else +gn(X,F); +gn(T’, F); 
If XA< area(X) <A then 

return(F); 
else if area(X) <A, then 

collapse nodes in X to s; 
collapse to s a node v E F incident on s; 

else if area(X) >A, then 
collapse nodes in x to t; 
collapse to t a node u E X incident on t; 

got0 step 2; 
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Figure 6. The total pins for component X consist of three 
parts: PI/PO, cut nets to x, cut nets to other components 

In step 2, the max-flow in the flow network is computed. 
Incremental flow computation is employed here, as only ad- 
ditional flow is added to saturate the edges from iteration to 
iteration, Procedure DMC is called in step 3 to find a de- 
sirable min-cut. In step 4, F is used to save the best feasible 
subset that has been found so far. In function assign(X, F), 
if pin(X) < p and area(F) < area(X) 5 6, then assign X 
to F since3 is a larger feasible subset than F. The min-cut 
calculated in step 3 is the number of cut nets between X 
and x, not including the primary I/OS and interconnect- 
ing nets to earlier partitioned components. So in function 
assign(X, F), we have to count the number of these type of 
nodes and add it to the min-cut size to get the total number 
o,f pins. In step 5, if the area of X is within range of XA to 
A (0 < X < 1, i.e. X = SO%), then procedure FC terminates 
and returns F, else nodes are condensed to one seed node. 
Then control goes back to step 2 again to find the next 
desirable min-cut by pushing more flow in the network. 

Similar to the proof in [l], we can show that procedure 
PC takes time O(lV(lEl) for a network G’ = (V, E). Each 
augmenting path computation takes time O&El) and by in- 
cremental flow computation, the total number of augment- 
ing path found is O(lVl). Therefore the time complexity of 
fnding a feasible component is O(jVllEl). 

Algorithm 1 is designed for multi-way partitioning. It re- 
peatedly calls procedure FC to find one feasible component 
at a time. After one component is found, the flow on the 
edges in the rest of the network is reset to zero before flnd- 
ing the next component. The time complexity of algorithm 
1 is O(klVljEl) with L being the number ofpartitioned com- 
ponents. 

3.3. Algorithm 2 
In procedure FC of algorithm 1, after the max-flow compu- 
t&ion in each iteration, the min-cut obtained measures the 
number of cut nets rather than the total number of pins. 
Hence in order to meet the pin constraint, the number of 
I 
( 

OS is counted and added together with the min-cut to get 
t rc total number of pins. The disadvantage is that during 
the max-llow computation, there is little control on how 
many I/OS will be included in X or x. The random dis- 
tribution of these I/OS sometimes results in being unable 
to find a large feasible subset while the min-cut size is still 
relatively small. Therefore it is important to model the I/O 
nodes properly. 

Before we partition a network G’, it already has some 
I/OS which come from two sources: (1) A primary I/O node; 
(2) A cut net with some nodes in G’ and some nodes in other 
previously partitioned components. We refer to these two 
type of nodes as I/O nodes in G’. When we partition G’ 
into (X,x), the total number of pins for subset X includes 
two parts: the number of cut nets to wand the number of 
I/O nodes. In the discussion below, we use the following 
notations. pin(X) denotes the total number of pins for a 
subset X, net(X,x) is the number of crossing nets from X 

(a) Ifacutttet hasmore than cnenodein G’, then it occupia mepitt. NO& 
nl is added with abridging edge to the sink with capacity 1. Add an edge 
from eachoftheunpatitionedncdc in t&net ton1 withcapacity co . 

Figure 8. Example of a network before and after I/O mod- 
eling 

to x and io(X) is the number of I/OS for subset X. 
As shown in Figure 6, component X has eight pins: three 

cut nets to x and five I/OS (which consist of two primary 
I/OS and three cut nets from a previously partitioned com- 
ponent). We model all the I/O nodes in G’ to construct G” 
as follows: 

All nodes and edges in G’ are in G”. 
For a cut net with more than one node in G’, add a vir- 
tual node nr. Add an edge from each unassigned node 
in the net to nr with capacity co, then add a bridging 
edge from nr to the sink with capacity 1 (Figure 7(a)). 
If a node u is a primary I/O node, then add a bridging 
edge from w to the sink, with capacity 1. For a cut net 
with only one node u in G’, add a bridging edge from 
u to the sink with capacity 1 (Figure 7(b)). 

Figure 8 shows an example of a flow network after I/O 
modeling. With the I/O modeling, we can derive good prop- 
erties as stated in Lemmas 4 and 5. 

Lemma 4: For a min-cut (X,x) in G”, the cut size C 
is equal to the total number of pins for X. 

Proof: For any edge that is cut by the min-cut, it is 
either a cut net or a bridging edge to the sink for I/O mod- 
eling. As the capacity on such an edge is 1, it is counted ex- 
actly once in the m&cut. We have C < net(X,x)+io(X). 
On the other hand, if anet is cut, then s is counted as one in 
the min-cut. If an I/O node is in X, then any bridging edge 
from this node to the sink must b&cut and counted once 
in the rein-cut. Therefore net(X,X) + io(X) 5 C. From 
the above analysis, we have C = net(X,x) + io(X). Since 
pin(X) = net(X,x) + io(X), this leads to C = pin(X). 
Therefore, the mm-cut size C is equal to the total number 
of pins for X. 0 
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Figure 9. Comparison of two min-cuts 

As demonstrated in Figure 8, before the I/O modeling, 
the min-cut size for (X,F) is two. The total pins for X 
should be five because two additional I/O pins are used for 
the two cut nets to other partitioned components and one 
I/O pin is occupied by the primary output node x. After 
the I/O modeling, the min-cut size for (X,r?, is five which 
is equal to the total number of pins for X. 

Lemma 5 compares two r&n-cuts that cut the network 
into different area and validates the benefit of using proce- 
dure DMC to find a desirable min-cut that has a large area 
as close to the area limit as possible. 

Lemma 5: If (Xl,z) and (X2,x2) are two min- 
cuts with the same cut size in G” such that X1 s X2, 

then pin(X1) = pin(Xz), net(Xl,K) 2 net(X2,Z) and 
pin(x) 2 pin(TQ. 

Proof: If (Xl, x,) and (X2, x) are two min-cuts with 
the same cut size, then by Lemma 4, pin(X1) = pin(X2). 
As Xl C X2, so io(Xl) 5 io(X2) and io(x) 1 io(x). 
It is true that pin(X) = net(X,x) + io(X) for X = 
X1,X2, thus net(Xl,x) > net(Xz,xz). tither, we have 
net(Xl,TQ + io(x) 2 net(X2,x) +io(Z), this leads to 
pin(7Q 2 pin(Z). cl 

By Lemma 5, for two min-cuts, the one with a larger 
area is better because it not only has an area closer to the 
area limit, but also results in fewer number of cut nets and 
fewer occupied I/O pins for the rest of the network to be 
partitioned later. Figure 9 shows an example. With X1 C 
X2, the two min-cuts has the same cut size which means 
X1 and X2 has the same number of pins, yet Xl has three -- 
cut nets to x and X2 has only two cut nets to X2. X2 has 
four I/O pins in total and x has six I/O pins. Therefore, 
z has a smaller area and fewer number of pins than x. 

We designed algorithm 2 for multi-way partitioning with 
I/O modeling. Similar to algorithm 1, it iteratively calls 
procedure FC to find one feasible component at a time. 
But procedure FC is modified as follows: after selecting 
the source and sink, G” is constructed from G’ by the I/O 
modeling process. Then max-flow computation is repeat- 
edly applied on G” to find a min-cut until either the area 
or the pin constraint is met. By Lemma 4, the min-cut 
obtained by procedure DMC in each iteration is the total 
number of pins for X with the source s E X. By Lemma 
5, procedure DMC picks a better &-cut which has fewer 
cut nets and occupies fewer I/OS in the rest of the network. 

3.4. Algorithm FBB-MW: the Merging of Algo- 
rithms 1 and 2 

By the net modeling of the I/O nodes, Algorithm 2 tries 
to minimize the total number of pins for each component. 

Yet one shortcoming is that by adding extra bridging cdgcs, 
more flows can be pushed in the network, which tends to 
increase the number of cut nets. To solve this, we designed 
the third algorithm FBB-MW for flow-based multi-way par- 
titioning which is a combination of algorithm 1 and 2, 

Two stages are involved to find one feasible component. 
In the first stage, when the number of I/O nodes are not 
significant for the min-cut, we use algorithm 1 to rcpeat- 
edly cut the network to get min-cuts, which measures the 
number of cut-nets. In the second stage, when the parti- 
tioning result is more sensitive to the distribution of the 
I/O nodes, we switch from algorithm 1 to algorithm 2. The 
feasible subset found by algorithm 1 are condensed to be 
the source node and all the I/O nodes in the network are 
modeled to form G”. Repeated max-flow computation is 
then applied to find min-cut, which is equal to the total 
number of pins for the component. 

As algorithm 1 minimizes the number of cut nets but has 
no control on the distribution of I/O nodes, algorithm 2 is 
further used to control the number of I/O nodes in compo- 
nent X with contains the source of the network. The I/O 
modeling guarantees that the total number of pins is mini- 
mized while satisfying the constraints. Experiments S~IOWS 
that FBB-MW produces better results than algorithm 1 
and algorithm 2, yet FBB-MW does not increase time com- 
plexity. FBB-MW has time complexity O(klVllEl), which 
is the same as algorithm 1 and 2. 

After we obtain the multi-way partitioning with algo- 
rithm FBB-MW, postprocessing is performed to further 
improve the result. We do a pairwise merge to remove 
small components and to reduce the number of components. 
One possible improvement to further reduce the number 
of pins is to first merge two components, then repartition 
the merged subsets into two components, Replication algo- 
rithms can also be applied to further reduce cut nets among 
the components and the total number of pins. 

4. EXPERIMENTAL RESULTS 

We implemented FBB-MW algorithm in C Ianguage on 
IBM RS6000 workstation and tested on the circuits from 
MCNC Partition93 Benchmark. Table 1 shows the size of 
the circuits we used for the experiments. For circuits of dif- 
ferent sizes, we tried different area limit and pin limit. In 
Table 2, we compare our partitioning result in FBB-MW 
with the MW-part of TAPIR package[lO], which employs 
FM based algorithm for multi-way partitioning under pre- 
defined area and pin constraints. Compared with TAPIR, 
FBB-MW gets better results in terms of the number of com- 
ponents, the total number of pins and cut nets. 

As shown in Table 2, FBB-MW results in fewer number of 
components than TAPIR under the same area and pin con- 
straint. For some of the circuits such as C6288, FBB-MW 
only results in two components while TAPIR gets more. 
FBB-MW also results in fewer number of total pins and 
cut nets. For circuit ~38417 under area limit 5000 and pin 
limit 200, FBB-MW results in more number of pins than the 
FM-base method. This is because FBB-MW partitioned the 
circuit into 6 components and the nodes are more densely 
packed, while the FM-based method partitioned it into 9 
components. However, FBB-MW still gets fewer’number of 
cut nets in this case. For most of the other experiments, 
FBB-MW not only yields fewer number of components, but 
also fewer number of pins and cut nets. 

Our efficient implementation of FBB-MW enables it to 
partition large benchmark circuits with reasonable running 
time. For circuits such as C5315, C6288 and C7652, it 
averages 15 to 30 seconds (CPU time) to find a multi-way 
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Table 2. Comparison of the number of components, the total number of pins and cut nets 

I 1 Area I Pin I TAPIR I FBB-MW FBB-MW Imnmv.% --- _-.. 
Circuit Limit Limit # 

----r--.-n- 
camp. 1 #pins 1 #nets 1 #camp. 1 #pms 1 #nets 1 #camp. #pms #nets 

c5315 1500 100 8 I 610 I 138 I 7 I ~84 I 1% I 12.5 4.3 8.7 
~7552 1500 100 5 n -3 1 -tno i 44; 

I 
ii- 

1 
432 55 1 -_ , -.- , _“.” 

~6288 1 1500 1 100 1 4 335 122 2 162 49 1 50 1 51.6 1 59.8 
85378 1 1500 I 100 1 8 663 254 6 567 221 t 25 1 14.48 I 12.9 

L 

615850 1500 100 13 869 
69234 1500 100 7 493 
85378 3000 150 5 592 

915850 3000 150 7 669 
815850 3000 200 6 665 

10 
R 

815850 5000 200 4 1 562 
s13207 5000 200 4 I 562 
635932 5000 200 
638417 5000 200 9 , .-- 
635932 10000 250 5 1 957 
838417 10000 250 4 1 652 

L 
4 
3 
2 

1 ----- I --.- 
1 857 1 287 1 iii ) 1.4 10.6 
1 AA1 1 I.62 1 14 1 10.5 17.6 

“_ ’ en ’ 77.7 90.4 
--- --- 9.7 4.8 

1 582 228 33 12.5 10.2 
1 417 157 25 25.8 26.6 
I 306 75 50 45.6 51.3 

6.9 
I --.- 

1 1 1275 
1 1 

8 1101 306 7 978 1 254 11.2 ;I-.- 
I 

1 1 1 
7fin 280 1 6 RA7 I 344 I 99 I -11 A I 19~ 1 

27n I 2 
-I%?- t 

.,&. a=_ “V -A&.7. &cd.” 

, 553 1 95 1 40 42.2 64.8 
I 558 I 197 I 25 14.4 21.5 

10 40.6 56.9 

--. *_* A 

1 229 1 2 1 132 1 ir 1 0” 1 
I 250 I 5 I fin4 I 2% I 9s I 

1 I 1 I 
838584 1 10000 I 250 I 5 I 960 I 311 I - I ;;; I ;;; I 4 3 

Table 1. Circuits in Partition93 Benchmark 

1 Circuit Name I # of Nodes I # of Nets I # of I/O 

partition with area limit 1500 and pin limit 100. For large 
circuit ~38417 which has 25589 nodes, the running time for 
multi-way partitioning under area limit 10000 and pin limit 
250 is around 10 minutes CPU time. It takes about 20 
minutes CPU time to partition ~38417 under area limit 5000 
and pin limit 200. The observation is that for the same 
circuit, it usually takes a longer running time when the area 
and pin limit becomes smaller. This is because with tighter 
constraints, fewer nodes can be packed in one component 
and therefore more components will be resulted and it takes 
a longer running time. 

5. CONCLUSION 

In this paper, we introduce algorithm FBB-MW, which is 
an extension of FBB[l], to multi-way partitioning with area 
and pin constraints. First, we presented an improvement to 
PBB by finding the most desirable min-cut in order to make 
better utilization of the min-cuts in the network. 

Three network flow based algorithms for multi-way par- 
titioning with area and pin limit are proposed. Algorithm 
1 is a direct extension of FBB to multi-way partitioning. In 
algorithm 2, we give the net modeling of the I/O nodes so 
that the min-cut size is equal to the total number of pins 
for one component. By merging the first two algorithms, 
FBB-MW is a further improvement which produces better 
partitioning results than the FM based method in terms of 
the number of components, total number of pins and cut 
nets. 
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