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Abstract

Homotopy Type Theory is a new field of mathematics based on the surprising and elegant corre-
spondence between Martin-Lofs constructive type theory and abstract homotopy theory. We have
a powerful interplay between these disciplines - we can use geometric intuition to formulate new
concepts in type theory and, conversely, use type-theoretic machinery to verify and often simplify
existing mathematical proofs. A crucial ingredient in this new system are higher inductive types,
which allow us to represent objects such as spheres, tori, pushouts, and quotients. We investigate a
variant of higher inductive types whose computational behavior is determined up to a higher path.
We show that in this setting, higher inductive types are characterized by the universal property of
being a homotopy-initial algebra.
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1 Introduction
Homotopy Type Theory (HoTT) has recently generated significant interest among type theorists
and mathematicians alike. It uncovers deep connections between Martin-Löf’s dependent type the-
ory ([14, 15]) and the fields of abstract homotopy theory, higher categories, and algebraic topology
([3, 4, 5, 6, 7, 10, 12, 21, 22, 23, 24]). Insights from homotopy theory are used to add new con-
cepts to the type theory, such as the representation of various geometric objects as higher inductive
types. Conversely, type theory is used to formalize and verify existing mathematical proofs using
proof assistants such as Coq [19] and Agda [16]. Moreover, type-theoretic insights often help us
discover novel proofs of known results which are simpler than their homotopy-theoretic versions:
the calculation of πn(Sn) ([11, 9]); the Freudenthal Suspension Theorem [20]; the Blakers-Massey
Theorem [20], etc.

As a formal system, HoTT [20] is a generalization of intensional Martin-Löf Type Theory
with two features motivated by abstract homotopy theory: Voevodsky’s univalence axiom ([7, 23])
and higher-inductive types ([13, 17]). The slogan in HoTT is that types are topological spaces,
terms are points, and proofs of identity are paths between points. The structure of an identity
type in HoTT is thus far more complex than just being the “least reflexive relation”, despite the
definition of IdA(M,N) as an inductive type with a single constructor reflA(M) : IdA(M,M). It is
a beautiful, and perhaps surprising, fact that not only does this richer theory admit an interpretation
into homotopy theory ([3], [7]) but that many fundamental concepts and results from mathematics
arise naturally as constructions and theorems of HoTT.

For example, the unit circle S1 is defined as a higher inductive type with a fixed point base
and a loop loop based at base. It comes with a recursion principle which says that to construct a
function f : S1 → X , it suffices to supply a point x : X and a loop based at x. The value f(base)
then computes to x. Such definitional computation rules are convenient to work with but also pose
a number of problems. For instance, an alternative encoding of the circle as a higher inductive type
S1
a specifies two fixed points south, north and two paths from north to south, called east and west.

The recursion principle then says that in order to construct a function f : S1
a → X , it suffices to

supply two points x, y : X and two paths between them. The values f(north) and f(south) the
compute to x and y respectively.

We have a natural way of relating these two representations: in one direction, map base to
north and loop to east; in the other direction, map both north and south to base and map east to
loop and west to the identity path at base. Unfortunately, the circles S1, S1

a related this way do
not satisfy the same definitional equalities, which poses a compatibility issue. Yet more severe
problem arises with the propositional truncation ||A|| (also known as a bracket or squash type, see
[1]). The job of the truncated type ||A|| is to provide evidence thatA is inhabited without giving up
the particular witness term a : A. However, [8] shows that under some conditions, the inhabitant a
can be recovered. A definitional computation rule is again the culprit.

In this paper we thus consider higher inductive types endowed with propositional computation
rules: in the case of S1 such a rule would state that there is a path between f(base) and x : X .
Types in this setting tend to keep many of the desirable properties; for instance, it can be shown that
the main result of [11], that the fundamental group of the circle is the group of integers, carries over
to the case when both the circle and the integer types have propositional computational behavior. In
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addition, we can now show that higher inductive types are characterized by the universal property
of being a homotopy-initial algebra. This notion was first introduced in [2], where an analogous
result was established for the “ordinary” inductive type of well-founded trees (Martin-Löf’s W-
types). In the higher-dimensional setting, an algebra is a type X together with a number of finitary
operations f, g, h . . ., which are allowed to act not only on X but also on any higher identity type
overX . An algebra homomorphism has to preserve all operations up to a higher homotopy. Finally,
an algebra X is homotopy-initial if the type of homomorphisms from X to any other algebra Y is
contractible.

Our main theorem is stated for a class of higher inductive types which we call W-suspensions;
they generalize the types S1, S1

a, and others by allowing any number of fixed points and any number
of paths between any two of these points. We show that the induction principle for W-suspensions
is equivalent to the recursion principle plus a certain uniqueness condition, which in turn is shown
to be equivalent to homotopy-initiality. This extends the main result of [2] for “ordinary” inductive
types to the important, and much more difficult, higher-dimensional case.

2 Basic Homotopy Type Theory
The core of HoTT is a dependent type theory with

• dependent pair types Σx:AB(x) and dependent function types Πx:AB(x) (with the non-
dependent versions A×B and A→ B). To stay consistent with the presentation in [20], we
assume definitional η-conversion for functions but do not assume it for pairs.

• a cumulative hierarchy of universes U0 : U1 : U2 : . . . in the style of Russell.

• intensional identity types IdA(M,N), also denoted by M =A N . We have the usual forma-
tion and introduction rules; the elimination and computation rules are recalled below:

E : Πx,y:AIdA(x, y)→ Ui d : Πx:AE(x, x, reflA(x))

JE,d : Πx,y:AΠp:IdA(M,N)E(x, y, p)

E : Πx,y:AIdA(x, y)→ Ui d : Πx:AE(x, x, reflA(x)) M : A

JE,d(M,M, reflA(M)) ≡ d(M) : E(M,M, reflA(M))

These rules are, of course, applicable in any context Γ; we follow the standard convention of
omitting it. If the type IdA(M,N) is inhabited, we call M and N propositionally equal. If
we do not care about the specific equality witness, we often simply say that M =A N or if
the type A is clear, M = N . A term p : M =A N will be often called a path and the process
of applying the identity elimination rule will be referred to as path induction. Definitional
equality between M,N : A will be denoted as M ≡ N : A.

We emphasize that apart from the aforementioned identity rules, univalence, and higher inductive
types there are no other rules governing the behavior of identity types - in particular, we assert
neither any form of Streicher’s K-rule [18] nor the identity reflection rule.
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The rest of this section describes the univalence axiom and some key properties of identity
types; higher inductive types are discussed in Section. 3. For a thorough exposition of homotopy
type theory we refer the reader to [20].

2.1 Groupoid laws
Proofs of identity behave much like paths in topological spaces: they can be reversed, concate-
nated, mapped along functions, etc. Below we summarize a few of these properties:

• For any path p : x =A y there is a path p−1 : y =A x, and we have reflA(x)−1 ≡ reflA(x).

• For any paths p : x =A y and q : y =A z there is a path p � q : x =A z, and we have
reflA(x) � reflA(x) ≡ reflA(x).

• Associativity of composition: for any paths p : x =A y, q : y =A z, and r : y =A u we have
(p � q) � r = p � (q � r).

• We have reflA(x) � p = p and p � reflA(y) = p for any p : x =A y.

• We have p � p−1 = reflA(x), p−1 � p = reflA(y), and (p−1)
−1

= p, (p � q)−1
= q−1 � p−1 for

any p : x =A y, q : y =A z.

• For any type family P : A → Ui and path p : x =A y there are functions pP∗ : P (x) →
P (y) and p∗P : P (y) → P (x), called the covariant transport and contravariant transport,
respectively. We furthermore have reflA(x)P∗ ≡ reflA(x)∗P ≡ idP (x).

• We have (p−1)
P
∗ = p∗P , (p−1)

∗
P = pP∗ and (p � q)P∗ = qP∗ ◦ pP∗ , (p � q)∗P = p∗P ◦ q∗P for any

family P : A→ Ui and paths p : x =A y, q : y =A z.

• For any function f : A→ B and path p : x =A y, there is a path apf (p) : f(x) =B f(y) and
we have apf (reflA(x)) ≡ reflB(f(x)).

• We have apf (p
−1) = apf (p)

−1 and apf (p � q) = apf (p) � apf (q) for any f : A → B and
p : x =A y, q : y =A z.

• We have apg◦f (p) = apg(apf (p)) for any f : A→ B, g : B → C and p : x =A y.

• For a dependent function f : Πx:AB(x) and path p : x =A y, there are paths dapf (p) :

pB∗ (f(x)) =B(y) f(y) and dapf (p) : p∗B(f(y)) =B(x) f(x). We also have dapf (reflA(x)) ≡
dapf (reflA(x)) ≡ reflB(x)(f(x)).

• All constructs respect propositional equality.
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2.2 Homotopies between functions
A homotopy between two functions f, g is a “natural transformation” between f and g:

Definition 1. For f, g : Πx:AB(x), we define the type

f ∼ g := Πa:A(f(a) =B(a) g(a))

and call it the type of homotopies between f and g.

Proposition 2. For any f, g : A → B, α : f ∼ g, and path p : x =A y, the diagram on the left
commutes:

=

f(x) f(y)

g(x) g(y)

apf (p)

α(x) α(y)

apg(p)

=

pB∗ (f(x)) f(y)

pB∗ (g(x)) g(y)

dapf (p)

appB∗ (α(x)) α(y)

dapg(p)

This property will be referred to as the naturality of α. We likewise have a dependent version of
naturality when f, g : Πx:AB(x), which is shown on the right.

Of course, there is also a contravariant version of dependent naturality, which we will not need.

2.3 Truncation levels
In general, the structure of paths on a type A can be highly nontrivial - we can have many distinct
0-cells x, y, . . . : A; there can be many distinct 1-cells p, q, . . . : x =A y; there can be many distinct
2-cells γ, δ, . . . : p =x=Ay q; ad infinitum. The hierarchy of truncation levels describes those types
which are, informally speaking, trivial beyond a certain dimension: a type A of truncation level n
can be characterized by the property that all m-cells for m > n with the same source and target
are equal. From this intuitive description we can see that the hierarchy is cumulative.

It is customary to also speak of truncation levels−2 and−1, called contractible types and mere
propositions respectively:

Definition 3. A type A : Ui is called contractible if there exists a point a : A such that any other
point x : A is equal to a:

iscontr(A) := Σa:AΠx:A(a =A x)

A type A : Ui is called a mere proposition if all its inhabitants are equal:

isprop(A) := Πx,y:A(x =A y)

Thus, a contractible type can be seen as having exactly one inhabitant, up to equality; a mere
proposition can be seen as having at most one inhabitant, up to equality. Clearly:

Proposition 4. If A is contractible then A is a mere proposition.
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The existence of a path between any two points implies more than just path-connectedness:

Proposition 5. If A is a mere proposition, then x =A y is contractible for any x, y : A.

Thus, contractible types are in a sense the “nicest” possible: any two points are equal up to a
1-cell, which itself is unique up to a 2-cell, which itself is unique up to a 3-cell, and so on. Mere
propositions are the “nicest” ones after contractible spaces. We can now easily show:

Corollary 6. For any A, iscontr(A) and isprop(A) are mere propositions.

2.4 Equivalences
A crucial concept in HoTT is that of an equivalence between types. Intuitively, we want to think
of two types A,B as equivalent if there exists a bijection between them, i.e., a function f : A→ B
such that the preimage of any single point b : B under f is again a single point. Phrasing this in
the language of HoTT:

Definition 7. We define the homotopy fiber of a function f : A→ B at b : B by

hfiberf (b) := Σa:A(f(a) =B b)

Definition 8. A function f : A → B is called an equivalence if all its homotopy fibers are con-
tractible:

iseq(f) := Πb:B iscontr(hfiberf (b))

We define
(A ' B) := Σf :A→B iseq(f)

and call A and B equivalent if the above type is inhabited.

Unsurprisingly, we can prove thatA andB are equivalent by constructing functions going back
and forth, which compose to identity on both sides1; this is also a necessary condition.

Proposition 9. Two types A and B are equivalent if and only if there exist functions f : A → B
and g : B → A such that g ◦ f ∼ idA and f ◦ g ∼ idB.

We will refer to such functions f and g as forming a quasi-equivalence. From this we can
easily show:

Proposition 10. Equivalence of types is an equivalence relation.

We call A and B logically equivalent if there are functions f : A→ B, g : B → A. Clearly, if
both types are mere propositions then logical equivalence implies A ' B. For example:

Corollary 11. For any A, iscontr(A) ' (A× isprop(A)).

1Although the type of such functions itself is not equivalent to A ' B, see Chpt. 4 of [20].
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2.5 Structure of path types
Let us first consider the product type A × B. We would like for two pairs c, d : A × B to
be (propositionally) equal precisely when their first and second projections are equal. By path
induction we can easily construct a function

=E×c,d : (c = d)→ (fst(c) = fst(d))× (snd(c) = snd(d))

We can show:

Proposition 12. The map =E×c,d is an equivalence for any c, d : A×B.

We have a similar correspondence for dependent pairs; however, the second projections of
c, d : Σx:AB(x) now lie in different fibers of B and we employ (covariant) transport. By path
induction we can define

=EΣ
c,d : (c = d)→ Σ(p:fst(c)=fst(d))(p

B
∗ (snd(c)) = snd(d))

Proposition 13. The map =EΣ
c,d is an equivalence for any c, d : Σx:AB(x).

We also have an analogous correspondence using a contravariant transport.
We would like for two types A,B : Ui to be equal precisely when they are equivalent. As

before, we can easily obtain a function

=E'A,B : (A = B)→ (A ' B)

The univalence axiom now states that this map is an equivalence:

Axiom 1 (Univalence). The map =E'A,B is an equivalence for any A,B : Ui.

It follows from univalence that equivalent types are equal and hence they satisfy the same
properties:

Proposition 14. For any type family P : Ui → Uj , and types A,B : Ui with A ' B, we have that
P (A) ' P (B). Thus in particular, P (A) is inhabited precisely when P (B) is.

Finally, two functions f, g : Πx:AB(x) should be equal precisely when there exists a homotopy
between them. Constructing a map

=EΠ
f,g : (f = g)→ (f ∼ g)

is easy. Showing that this map is an equivalence (or even constructing a map in the opposite
direction) is much harder, and is in fact among the chief consequences of univalence:

Proposition 15. The map =EΠ
f,g is an equivalence for any f, g : Πx:AB(x).

Proof. See Chpt. 4.9 of [20].
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3 Higher Inductive Types
An inductive type X can be understood as being freely generated by a collection of constructors:
in the familiar case of natural numbers, we have the two constructors for zero and successor. The
property of being freely generated can be stated as an induction principle: in order to show that a
property P : N → Ui holds for all n : N, it suffices to show that it holds for zero and is preserved
by the successor operation. As a special case, we get the recursion principle: in order to define a
map f : N→ C, is suffices to determine its value at zero and its behavior with respect to successor.

Higher inductive types generalize ordinary inductive types by allowing constructors involving
path spaces of X rather than just X itself, as the next example shows.

3.1 The circle
The unit circle S1, denoted by S : U0, can be represented as an inductive type with two constructors
[11]:

base : S
loop : base =S base

pictured as

base

loop

This in particular means that we have further paths, such as loop−1 � loop � loop � reflS(base) (which
is equal to loop).

We can reason about the circle using the principle of circle recursion, also called simple elim-
ination for S, which tells us that in order to construct a function out of S into a type C, it suffices
to supply a point c : C and a loop s : c =C c.

C : Ui c : C s : c =C c

recSC,c,s : S→ C

Furthermore, the recursor has the expected behavior on the 0-cell constructor base (we omit the
premises):

recSC,c,s(base) ≡ c : C

We also have a computation rule for the 1-cell constructor loop:

aprecSC,c,s
(loop) =IdC(c,c) s
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This rule type-checks by virtue of the previous one. We note that in order to record the effect of the
recursor on the path loop, we use the “action-on-paths” construct ap. Since this is a derived notion
rather than a primitive one, we state the rule as a propositional rather than definitional equality.

We also have the more general principle of circle induction, also called dependent elimination
for S, which subsumes recursion. Instead of a type C : Ui we now have a type family E : S→ Ui.
Where previously we required a c : C, we now need a point e : E(base). Finally, an obvious
generalization of needing a loop s : c =C c would be to ask for a loop d : e =E(base) e. However,
this would be incorrect: once we have our desired inductor of type Πx:SE(x), its effect on loop is
not a loop at e in the fiber E(base) but a path from loopE∗ (e) to e in E(base) (or its contravariant
version). The induction principle thus takes the following form:

E : S→ Ui e : E(base) d : loopE∗ (e) =E(base) e

indS
E,e,d : Πx:SE(x)

We have the associated computation rules:

indS
E,e,d(base) ≡ e : E(base)

dapindS
E,e,d

(loop) =IdE(base)(loopE∗ (e),e) d

3.2 The circle, round two
We could have alternatively represented the circle as an inductive type Sa : U0 with four construc-
tors:

north : Sa
south : Sa

east : north =Sa south

west : north =Sa south

pictured as

north

south

east west

The corresponding induction principle is

E : Sa → Ui
u : E(north) v : E(south) µ : eastE∗ (u) =E(south) v ν : westE∗ (u) =E(south) v

indSa
E,u,v,µ,ν : Πx:SaE(x)
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with the associated computation rules

indSa
E,u,v,µ,ν(north) ≡ u : E(north)

indSa
E,u,v,µ,ν(south) ≡ v : E(south)

and

dapindSa
E,u,v,µ,ν

(east) = µ

dapindSa
E,u,v,µ,ν

(west) = ν

As expected, the two circle types are equivalent:

Proposition 16. We have S ' Sa.

Proof sketch. From left to right, map base to north and loop to east�west−1. From right to left, map
both north and south to base, east to loop, and west to reflS(base). Using the respective induction
principles, show that these two mappings compose to identity on both sides and apply Prop. 9.

3.3 Computation laws, revisited
Prop. 16 together with univalence imply that the types S and Sa are equal and hence satisfy the
same properties (see Prop. 14). We would thus expect the induction principle for S to carry over to
Sa, and vice versa. Indeed, with a little effort we can show the former:

Proposition 17. The type Sa satisfies the induction and computation laws for S, with north acting
as the constructor base and east � west−1 acting as the constructor loop.

In the other direction, though, we hit a snag - the only obvious choice we have is to define both
points north and south to be base, one of the paths west and east to be loop, and the other one the
identity path at base. This, however, does not give us the desired induction principle: unless the
two given points u : E(base) and v : E(base) happen to be definitionally equal, we will not be
able to map base to both of them, as required by the computation rules.

This poses more than just a conceptual problem - in mathematics, we often have several pos-
sible definitions of a given notion, all of which are interchangeable from the point of view of a
“user”. Having two definitions of a circle which are not (known to be) interchangeable, however,
can be problematic: any theorem we establish about or by appealing to Sa might no longer hold
(or even type-check!) when using S instead.

This provides some motivation for considering inductive types with propositional computation
rules instead. In the case of S, the propositional equality at the 0-cell level is witnessed by a path
βE,e,d:

βE,e,d : indS
E,e,d(base) =E(base) e

The computation rule at the 1-cell level now states that we have the following commuting diagram:
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=

loopE∗ (indS
E,e,d(base)) indS

E,e,d(base)

loopE∗ (e) e

dapindS
E,e,d

(loop)

aploopE∗
(βE,e,d) βE,e,d

d

Similarly, in the case of Sa we have paths γE,u,v,µ,ν and δE,u,v,µ,ν witnessing the 0-cell propositional
equalities:

γE,u,v,µ,ν : indSa
E,u,v,µ,ν(north) =E(north) u

δE,u,v,µ,ν : indSa
E,u,v,µ,ν(south) =E(south) v

The computation rule for the constructor east takes the form of the following commuting diagram:

=

eastE∗ (indSa
E,u,v,µ,ν(north)) indSa

E,u,v,µ,ν(south)

eastE∗ (u) v

dapindSa
E,u,v,µ,ν

(east)

apeastE∗
(γE,u,v,µ,ν) δE,u,v,µ,ν

µ

There is an analogous commuting diagram for the constructor west.
It is not too hard to show that Prop. 16 still holds when the computation laws are propositional:

Proposition 18. In the setting of inductive types with propositional computation laws, we have
S ' Sa.

At this point it is convenient to establish some terminology.

3.4 Algebras
Given a type C : Ui with a point c : C and path s : c =C c, we can pack the type together with all
the operators into a single structure called an S-algebra; we can similarly define an Sa-algebra:

Definition 19. We define the type of S-algebras on a universe Ui as

S-algUi := ΣC:UiΣc:C(c = c)

Definition 20. We define the type of Sa-algebras on a universe Ui as

Sa-algUi := ΣC:UiΣa,b:C(a = b)× (a = b)

10



Proposition 21. We have maps

S-to-Sa-algUi : S-algUi → Sa-algUi

Sa-to-S-algUi : Sa-algUi → S-algUi

which form a quasi-equivalence; thus S-algUi ' Sa-algUi .

Proof. Define the maps by

(C, c, s) 7→ (C, c, c, s, reflC(c))

(C, a, b, p, q) 7→ (C, a, p � q−1)

For any such algebra, the satisfaction of the principle of dependent elimination into a universe
Uj is now a property internal to the type theory:

Notation 22. Define a predicate on the type S-algUi by

has-S-indUj(C, c, s) := ΠE:C→UjΠe:E(c)Πd:sE∗ (e)=eΣf :ΠxE(x)Σβ:f(c)=e(dapf (s) � β = apsE∗ (β) � d)

Notation 23. Define a predicate on the type Sa-algUi by

has-Sa-indUj(C, a, b, p, q) := ΠE:C→UjΠu:E(a)Πv:E(b)Πµ:pE∗ (u)=vΠν:qE∗ (u)=v

Σf :ΠxE(x)Σγ:f(a)=uΣδ:f(b)=v(dapf (p) � δ = appE∗ (γ) � µ) × (dapf (q) � δ = apqE∗ (γ) � ν)

We can now show that the two induction principles are indeed equivalent:

Proposition 24. For any X : S-algUi and Y : Sa-algUi ,

has-S-indUj(X )→ has-Sa-indUj(S-to-Sa-algUi(X ))

has-Sa-indUj(Y)→ has-S-indUj(Sa-to-S-algUi(Y))

Corollary 25. The type S satisfies the induction and propositional computation laws for Sa, with
base, base, loop, reflS(base) acting as the constructors north, south, east, west respectively.

Corollary 26. The type Sa satisfies the induction and propositional computation laws for S, with
north, east � west−1 acting as the constructors base, loop respectively.

Finally, we point out that if a given algebra admits the principle of dependent elimination into
a universe Uj , it does so in a unique way:

Proposition 27. The types has-S-indUj(X ) and has-Sa-indUj(Y) are mere propositions for any
X : S-algUi and Y : Sa-algUi .

This follows from Props. 43, 44, and Thm. 50 in Section 4.
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3.5 Propositional truncation
Another example of a higher inductive type is the propositional truncation ||A|| : Ui of a type
A : Ui, investigated in [1] in an extensional setting under the name of bracket types. Intuitively,
||A|| represents the “squashing” of A which makes all the elements in A equal. The need for
propositional truncation arises when we wish to hide information: we want to indicate that A is
inhabited without having to give the actual witness a : A. For instance, let P : A→ Uj be a family
of a mere propositions. Having a b : Σx:AP (x) is very different from having a b : ||Σx:AP (x)||; in
the former case, we can directly construct a point in A for which P holds, namely fst(b). In the
latter case, we only know P must hold for some point in A but we do not have a generic way of
accessing it.

Specifically, we define ||A|| as the higher inductive type generated by a constructor | · |, which
projects a given element of A down to ||A||, and a truncation constructor, which states that ||A|| is
indeed a mere proposition2:

| · | : A→ ||A||
sq : Πx,y:||A||(x =||A|| y)

As usual, the recursion principle states that given a structure of the same form, we have a
function out of ||A|| which preserves the constructors:

C : Uj c : A→ C s : Πx,y:C(x =C y)

rec
||A||
C,c,s : ||A|| → C

where for each a : A and k, l : ||A|| we have

rec
||A||
C,c,s(|a|) ≡ c(a) : C

ap
rec
||A||
C,c,s

(sq(k, l)) = s(rec
||A||
C,c,s(k), rec

||A||
C,c,s(l))

We note that we are only able to eliminate into types which are themselves mere propositions. This
together with Prop. 5 implies that the second computation law always holds.

To state the induction principle, we need to suitably generalize the last hypothesis. As before,
we note that once the desired map f : Πx:||A||E(x) is constructed, it will give us a path from
sq(k, l)E∗ (f(k)) to f(l) in E(l) for any k, l : ||A||. Hence, E should already come equipped with
such a family of paths - except, of course, we have no way of referring to f(k) and f(l) before f is
constructed. Thus, we simply require that such a path exists for any points u : E(k) and v : E(l):

E : ||A|| → Uj e : Πa:AE(|a|) d : Πx,y:||A||Πu:E(x)Πv:E(y)(sq(x, y)E∗ (u) =E(y) v)

ind
||A||
E,e,d : Πx:||A||E(x)

For each a : A and k, l : ||A||, we have the computation rules

ind
||A||
E,e,d(|a|) ≡ e(a) : E(|a|)

dap
ind
||A||
E,e,d

(sq(k, l)) = d(k, l, ind
||A||
E,e,d(k), ind

||A||
E,e,d(l))

2Hence the name propositional truncation; see Chpt. 6 of [20] for other kinds of truncation.
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The second rule again turns out to always hold, as we will see shortly; however, we first note
that this definition of ||A|| has its share of problems. For instance, as the type N of natural numbers
is inhabited, it follows that ||N|| = 1. It is not obvious, however, how to turn 1 itself into a
truncation of N, since the first computation law ought to hold definitionally. More disturbing yet is
the observation by N. Kraus in [8] that there exists a map f such that f ◦ | · | ≡ idN; this is another
surprising side effect of definitional computation law for | · |.

Both issues can be avoided by using propositional computation rules instead, i.e., we have

Πa:A(rec
||A||
C,c,s(|a|) =C c(a))

Πa:A(ind
||A||
E,e,d(|a|) =E(|a|) e(a))

3.6 Algebra homomorphisms
We can again pack all the operators into a single structure:

Definition 28. Define the type of ||A||-algebras on a universe Uj as

||A||-algUj := ΣC:Uj(A→ C)× isprop(A)

We can also talk about homomorphisms between two ||A||-algebras, which are mappings that
preserve all operators:

Definition 29. For X : ||A||-algUj and Y : ||A||-algUk , define the type of homomorphisms from X
to Y by

||A||-hom (C, c, s) (D, d, r) := Σf :C→D(Πa:A(f(c a) = d a))× Πk,l:C(apf (s k l) = r(f k, f l))

The recursion principle into Uk can thus be expressed as:

Notation 30. For X : ||A||-algUj , define

has-||A||-recUk(X ) := ΠY:||A||-algUk
||A||-hom X Y

We also have a dependent version of these concepts:

Definition 31. Define the type of fibered ||A||-algebras on a universe Uk over X : ||A||-algUj by

||A||-fib-algUk (C, c, s) := ΣE:C→Uk(Πx:AE(c x))× Πx,y:CΠu:E(x)Πv:E(y)(s(x, y)E∗ (u) = v)

Definition 32. For X : ||A||-algUj and Y : ||A||-fib-algUk X , define the type of fibered homomor-
phisms from X to Y by

||A||-fib-hom (C, c, s) (E, e, d) := Σf :Πx:CE(x)

(Πa:A(f(c a) = e a))× Πk,l:C(dapf (s k l) = d(f k, f l))

The induction principle into Uk can thus be expressed as:

13



Notation 33. For X : ||A||-algUj , define

has-||A||-indUk(X ) := Π(Y:||A||-fib-algUk
X )||A||-fib-hom X Y

We now observe that the complicated last expression in the definition of fibered algebras can
be replaced by saying that E is a family of mere propositions:

Proposition 34. Define the type of fibered ||A||-algebras on a universe Uk over X : ||A||-algUj
alternatively by

||A||-fib-alg′Uk (C, c, s) := ΣE:C→Uk(Πx:AE(c x))× Πx:C isprop(E(x))

Then for any X , ||A||-fib-algUk X ' ||A||-fib-alg′Uk X .

By Props. 5 and 34, the induction and recursion principles now take a particularly simple form,
as implied by:

Proposition 35. Given any algebras X : ||A||-algUj , Y : ||A||-algUk , Z : ||A||-fib-algUk X , we
have

||A||-hom X Y ' fst(X )→ fst(Y)

||A||-fib-hom X Z ' Πx:fst(X )fst(Z)(x)

Corollary 36. For anyX : ||A||-algUj and Uk, the types has-||A||-recUk(X ) and has-||A||-indUk(X )
are mere propositions.

Finally, we can show that induction and recursion for ||A|| are in fact equivalent. We note that
since universe levels are cumulative, the technical restriction that k ≥ j does not pose a problem.

Proposition 37. For any X : ||A||-algUj and Uk with k ≥ j, we have

has-||A||-recUk(X ) ' has-||A||-indUk(X )

Proof. The direction from right to left is obvious. For the other direction, let the algebras (C, c, s) :
||A||-algUj and (E, e, d) : ||A||-fib-algUk (C, c, s) be given. The total space Σx:CE(c) : Uk is
a mere proposition, we can thus apply recursion with the term λx:A(c x, e x) to get a function
u : ||A|| → Σx:CE(c). We have a homotopy α : fst◦u ∼ idC as C is a mere proposition. Applying
second projection and transporting gives us a function λx:||A||α(x)E∗ (snd(u x)).

4 Homotopy-Initial Algebras
Here we develop an equivalent characterization of higher inductive types as homotopy-initial
(“h-initial”) algebras [2]. We will work with a slightly larger class of HITs, which we call W-
suspensions. Informally, a W-suspension is generated by any number of points and any number of
paths (cells) between any two generating points. Formally, given types B,C : Ui, a type family
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A : B → Ui, and functions f, g : B → C, the W-suspension Wf,g
A : Ui is the higher inductive type

generated by the constructors

pt : C → Wf,g
A

cl : Πb:BA(b)→ pt(f b) =Wf,g
A

pt(g b)

Thus,C can be thought of as the index type for points,B as the index type for the different endpoint
configurations, f and g as determining the start- and endpoints of a particular configuration, and
A(b) as the index type for the different paths between the two points specified by b.

We can encode the circle S by taking C,B := 1, A := λ :11, and f, g := λ :1?. The circle Sa
arises when we take C := 2, B := 1, A := λ :12, f := λ :1>, g := λ :1⊥. Other types which can
be represented in this form include the interval type and suspensions (Chpt. 6 of [20]), hence in
particular all the higher spheres Sn.

We have the expected recursion principle:

X : Uj p : C → X s : Πb:BA(b)→ p(f b) =X p(g b)

rec
Wf,g
A

X,p,s : Wf,g
A → X

with the computation laws

βA,f,gX,p,s : Πc:C(rec
Wf,g
A

X,p,s(pt(c)) = p(c))

and

=

rec
Wf,g
A

X,p,s(pt(f b)) rec
Wf,g
A

X,p,s(pt(g b))

p(f b) p(g b)

ap
rec

W
f,g
A

X,p,s

(cl(b, a))

βA,f,gX,p,s(f b) βA,f,gX,p,s(g b)

s(b, a)

for each b : B, a : A(b). Similarly, we have the induction principle

E : Wf,g
A → Uj e : Πc:CE(pt(c)) d : Πb:BΠa:A(b)(cl(b, a)E∗ (e(f b)) =E(pt(g b)) e(g b))

ind
Wf,g
A

E,e,d : Πx:Wf,g
A
E(x)

with the computation laws

βA,f,gE,e,d : Πc:C(ind
Wf,g
A

E,e,d(pt(c)) = p(c))

and
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=

cl(b, a)E∗ (ind
Wf,g
A

E,e,d(pt(f b))) ind
Wf,g
A

E,e,d(pt(g b))

cl(b, a)E∗ (p(f b)) p(g b)

dap
ind

W
f,g
A

E,e,d

(cl(b, a))

apcl(b,a)E∗
(βA,f,gE,e,d (f b)) βA,f,gE,e,d (g b)

s(b, a)

for each b : B, a : B(a).
Following the now-familiar pattern, we define W-suspension algebras and homomorphisms:

Definition 38. We define the type of Wf,g
A -algebras on a universe Uj to be

Wf,g
A -algUj := ΣX:UjΣp:C→XΠb:BA(b)→ p(f b) = p(g b)

Definition 39. Define the type of fibered Wf,g
A -algebras on a universe Uk over X : Wf,g

A -algUj by

Wf,g
A -fib-algUk (X, p, s) := ΣE:X→UkΣ(e:Πc:CE(p c))Πb:BΠa:A(b)(s(b, a)E∗ (e(f b)) = e(g b))

Definition 40. For X : Wf,g
A -algUj and Y : Wf,g

A -algUk , define the type of homomorphisms from X
to Y by

Wf,g
A -hom (X, p, s) (Y, q, r) := Σh:X→Y Σβ:Πc:C(h(p(c))=q(c))

Πb:BΠa:A(aph(s(b, a)) � β(g b) = β(f b) � r(b, a))

Definition 41. For X : Wf,g
A -algUj and Y : Wf,g

A -fib-algUk X , define the type of fibered homomor-
phisms from X to Y by

Wf,g
A -fib-hom (X, p, s) (E, e, d) := Σ(h:Πx:XE(x))Σ(β:Πc:C(h(p(c))=e(c)))

Πb:BΠa:A(daph(s(b, a)) � β(g b) = aps(b,a)E∗
(β(f b)) � d(b, a))

Notation 42. For X : Wf,g
A -algUj , define

has-Wf,g
A -recUk(X ) := ΠY:Wf,g

A -algUk
Wf,g
A -hom X Y

has-Wf,g
A -indUk(X ) := Π(Y:Wf,g

A -fib-algUk
X )W

f,g
A -fib-hom X Y

We can now show that our encodings of the circles S and Sa as W-suspensions are indeed
correct:

Proposition 43. Let A := λ :11 and f, g := λ :1?. There are functions S-to-Wf,g
A -algUi and

Wf,g
A -to-S-algUi between S-algUi and Wf,g

A -algUi which comprise a quasi-equivalence. Also,

has-S-indUk(X ) ' has-Wf,g
A -indUk(S-to-Wf,g

A -algUi(X ))

has-Wf,g
A -indUk(Y) ' has-S-indUk(Wf,g

A -to-S-algUi(Y))
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Proof sketch. Define the maps by

(C, c, s) 7→ (C, λ :1c, λ :1λ :1s)

(C, p, s) 7→ (C, p(?), s(? ?))

Proposition 44. Let A := λ :12, f := λ :1>, g := λ :1⊥. There are maps Sa-to-Wf,g
A -algUi and

Wf,g
A -to-Sa-algUi between Sa-algUi and Wf,g

A -algUi which comprise a quasi-equivalence. Also,

has-Sa-indUk(X ) ' has-Wf,g
A -indUk(Sa-to-Wf,g

A -algUi(X ))

has-Wf,g
A -indUk(Y) ' has-Sa-indUk(Wf,g

A -to-Sa-algUi(Y))

Proof sketch. Define the maps by

(C, a, b, p, q) 7→ (C, rec2C,a,b, λ :1rec2rec2C,a,b(>)→rec2C,a,b(⊥), γ � p � δ−1, γ � q � δ−1)

(C, p, s) 7→ (C, p(>), p(⊥), s(?,>), s(?,⊥))

where γ : rec2C,a,b(>) = a and δ : rec2C,a,b(⊥) = b witness the two computation rules for rec2.

4.1 Main theorem
First we define the universal property of homotopy-initiality [2], which translates the notion of
uniqueness into the homotopical setting as contractibility:

Definition 45. We call an algebra X : Wf,g
A -algUj homotopy-initial on the universe Uk if the space

of homomorphisms from X to any other algebra on Uk is contractible:

is-Wf,g
A -hinitUk(X ) := ΠY:Wf,g

A -algUk
iscontr(Wf,g

A -hom X Y)

We now want to show that homotopy-initiality is in fact equivalent to the induction principle.
As an intermediate step, we show that the induction principle can be reduced to the recursion
principle plus a certain uniqueness condition, which we call has-Wf,g

A -rec-uniqUk(X ).
A uniqueness condition is needed since in general, the recursion principle does not fully deter-

mine an inductive type: the recursion principle for the circle, for example, is also satisfied by the
disjoint union of two circles. Additionally, by Cor. 11 we see that the property of X being h-initial
means that for any Y , there exists a homomorphism from X to Y , and furthermore, that any two
such homomorphisms are equal. The existence assertion is precisely the recursion principle; the
equality assertion turns out to be equivalent to our uniqueness condition, which is presented in a
more explicit form.

To phrase the uniqueness condition in a compact way, we introduce some more notation:

Notation 46. Given p : C → X , e : Πc:CE(x), define the type of pointed functions as

PfC,E,p,e := Σ(h:Πx:XE(x))Πc:C(h(p x) = e(x))

Define the type of homotopies between two pointed functions θ, φ : PfC,E,p,e by

(h, γ) ∼ (i, δ) := Σα:h∼iΠc:C(γ(c) = α(p c) � δ(c))
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Of course, any (fibered) homomorphisms µ, ν determine pointed functions; denote by µ ∼ ν
the type of homotopies between these pointed functions.

Notation 47. Given X : Wf,g
A -algUj , Y : Wf,g

A -algUk , µ, ν : Wf,g
A -hom X Y , and b : B, a : A(b),

we define a type family on µ ∼ ν by mapping

Wf,g
A -coh b a (X, p, s) (Y, q, r) (h, γ,Θ) (i, δ,Φ) (α, η)

to the type asserting the commutativity of the following diagram:

=

αp(f b) � api(s(b, a)) aph(s(b, a)) � αp(g b)

(γf(b)
� δ−1

f(b))
� api(s(b, a)) aph(s(b, a)) � (γg(b) � δ

−1
g(b))

γf(b)
� (δ−1

f(b)
� api(s(b, a))) (aph(s(a, b)) � γg(b)) � δ

−1
g(b)

γf(b)
� (r(b, a) � δ−1

g(b)) (γf(b)
� r(b, a)) � δ−1

g(b)

naturality of α

via I4(ηf(b)) via I4(ηg(b))

via I�(Φ(a, b)) via Θ(a, b)

For brevity, we will usually leave out some of the arguments to Wf,g
A -coh as appropriate. The

maps I4 : (u = v �w)→ (v = u �w−1) and I� : (u � v = w � z)→ (w−1 � u = z � v−1) perform the
obvious manipulations of diagrams. It is useful to fix a specific definition: we define I4 by path
induction on w so that for ε : u =x=y (v � refl(y)), the path I4(ε) is definitionally equal to

v v � refl(y) u u � refl(y)
via ε

Similarly, we define I� by path induction on v and w so that for ε : (u � refl(y)) =x=y (refl(x) � z),
the path I�(ε) is definitionally equal to

refl(x) � u u u � refl(y) refl(x) � z z z � refl(y)
ε

There are maps I−1
4 : (v = u �w−1)→ (u = v �w) and I−1

� : (w−1 � u = z � v−1)→ (u � v = w � z)
which form quasi-equivalences with I4 and I� respectively.

Definition 48. Given X : Wf,g
A -algUj , Y : Wf,g

A -algUk and µ, ν : Wf,g
A -hom X Y , define the type of

algebra 2-cells between µ and ν as

Wf,g
A -2 -cell µ ν = Σp:µ∼νΠb:BΠa:A(b)W

f,g
A -coh b a p
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Our uniqueness condition then says that for any algebra Y and homomorphisms µ, ν from X
to Y , there exists an algebra 2-cell between µ and ν:

Notation 49. For X : Wf,g
A -algUj , define

has-Wf,g
A -rec-uniqUk(X ) := ΠY:Wf,g

A -algUk
Π(µ,ν:Wf,g

A -hom X Y)W
f,g
A -2 -cell µ ν

We now come to the main theorem:

Theorem 50. For any algebra X : Wf,g
A -algUj , we have

has-Wf,g
A -indUk(X ) ' has-Wf,g

A -recUk(X )× has-Wf,g
A -rec-uniqUk(X ) ' is-Wf,g

A -hinitUk(X )

for k ≥ j and the three types above are mere propositions.

We point out that the uniqueness condition was not construed in an ad hoc way; rather, it is
systematically derived from the induction principle. We recall that a homomorphism between two
algebras (X, p, s), (Y, q, r) is a triple (h, β,Θ), where h : X → Y is a function between the carrier
types, β specifies the behavior of h on the 0-cells, i.e., the value of h(p(c)), and Θ specifies the
behavior of h on the 1-cells, i.e., the value of aph(s(b, a)). The existence of such a homomorphism
for any (Y, q, r) is of course precisely the recursion principle. Similarly, the uniqueness condition
itself can be viewed as a certain form of induction, albeit a very specific one. We recall that an
algebra 2-cell between (h, γ,Θ) and (i, δ,Φ) is a triple (α, η,Ψ), where α : h ∼ i relates the two
underlying mappings, η relates the path families γ and δ, and Ψ relates the proof families Θ and
Φ with the diagram in Not. 47. The existence of such an algebra 2-cell between any (h, γ,Θ)
and (i, δ,Φ) thus guarantees the existence of a dependent function α : Πx:X(h(x) = i(x)) - the
“inductor”. The behavior of α on the 0-cells, i.e., the value of α(p(c)), is specified by the term η,
which thus serves as the first “computation rule”. Finally, the behavior of α on the 1-cells, i.e., the
value of dapα(s(b, a)), is specified by the family of diagrams Ψ3, which hence serves as the second
“computation rule.”

As a sanity check, we look at the analogue of the main theorem in the case of propositional
truncations. By Prop. 35, homomorphisms between ||A||-algebras are just maps between the car-
rier types, and the elimination principles for ||A|| do not postulate any computation rules. A 2-cell
between homomorphisms h and i is thus just a homotopy α : h ∼ i. The existence of such α is
of course a moot point in the setting of mere propositions and the uniqueness condition reduces to
the unit type 1. Similarly, h-initiality reduces to the recursion principle by virtue of Prop. 11. The
rest follows from Prop. 37.

Before we proceed to the proof of the main theorem, we consider a dependent version of
the uniqueness condition, has-Wf,g

A -ind-uniqUk(X ), which uses the fibered version of algebras,
homomorphisms, and algebra 2-cells:

3Although the diagram scheme in Not. 47 uses an equivalent formulation that does not explicitly mention the term
dapα(s(b, a)).
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Notation 51. ForX : Wf,g
A -algUj , Y : Wf,g

A -fib-algUk X , homomorphisms µ, ν : Wf,g
A -fib-hom X Y

and b : B, a : A(b), we define a type family on µ ∼ ν by mapping

Wf,g
A -fib-coh b a (X, p, s) (E, e, d) (h, γ,Θ) (i, δ,Φ) (α, η)

to the type asserting the commutativity of the following diagram:

=

aps(b,a)E∗
(αp(f b)) � dapi(s(b, a))

aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a))

(aps(b,a)E∗
(γf(b)) � aps(a,b)E∗ (δf(b))

−1) � dapi(s(b, a))

aps(b,a)E∗
(γf(b)) � (aps(a,b)E∗ (δf(b))

−1 � dapi(s(b, a)))

aps(b,a)E∗
(γf(b)) � (d(b, a) � δ−1

g(b))

daph(s(b, a)) � αp(g b)

daph(s(b, a)) � (γg(b) � δ
−1
g(b))

(daph(s(a, b)) � γg(b)) � δ
−1
g(b)

(aps(b,a)E∗
(γf(b)) � d(b, a)) � δ−1

g(b)

naturality of α

via I4(ηf(b))

via I4(ηg(b))

via I�(Φ(a, b)) via Θ(a, b)

Definition 52. Given X : Wf,g
A -algUj , Y : Wf,g

A -fib-algUk X and µ, ν : Wf,g
A -fib-hom X Y , define

the type of algebra 2-cells between µ and ν as

Wf,g
A -2 -fib-cell µ ν = Σp:µ∼νΠb:BΠa:A(b)W

f,g
A -fib-coh b a p

Notation 53. For X : Wf,g
A -algUj , define

has-Wf,g
A -ind-uniqUk(X ) := Π(Y:Wf,g

A -algUk
X )Π(µ,ν:Wf,g

A -fib-hom X Y)W
f,g
A -2 -fib-cell µ ν

At last, we outline the proof of the main theorem.

Proof outline. The proof consists of the following steps:

1) Show that the induction principle implies the recursion principle, see A.2.

2) Show that the induction principle implies both uniqueness conditions, see A.3.

3) Show that the recursion plus uniqueness principles imply the induction principle, see A.5.
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4) Show that the space of (fibered) 2-cells between two (fibered) homomorphisms µ, ν is equiv-
alent to the path space µ = ν, see A.4.

The last step together with Prop. 11 establishes the equivalence of h-initiality and recursion +
uniqueness. Since the former is a mere proposition by Prop. 6, so is the latter. The first three steps
establish logical equivalence between induction and recursion + uniqueness. It remains to prove
the former is a mere proposition.

It is sufficient to do so under the assumption that the type has-Wf,g
A -indUk X is inhabited. Thus,

the second step tells us that the dependent uniqueness principle holds. By the third step, this means
that for any Y , any two fibered homomorphisms from X to Y are equal. But of course, this implies
that any two inhabitants of has-Wf,g

A -indUk X are equal.

The relationships between the various properties are depicted in the following diagram:

is-Wf,g
A -hinitUk(X )

has-Wf,g
A -indUk(X )

has-Wf,g
A -recUk(X )

has-Wf,g
A -rec-uniqUk(X ) has-Wf,g

A -ind-uniqUk(X )

ΠY isprop(Wf,g
A -hom X Y) ΠY isprop(Wf,g

A -fib-hom X Y)

×

×

Single arrow indicates implication; double line indicates equivalence. The symbol × indicates the
product operator.

5 Conclusion
We have investigated higher inductive types with propositional computational behavior and shown
that they can be equivalently characterized as homotopy-initial algebras. We have stated and proved
this result for propositional truncations and for the so-called W-suspensions, which subsume a
number of other interesting cases - the unit circle S1, the interval type I, all the higher spheres Sn,
and all suspensions. The characterization of these individual types as homotopy-initial algebras
can be easily obtained as a corollary to our main theorem. Furthermore, we can readily apply
the method presented here to obtain an analogous result for set truncations and set quotients. We
conjecture that similar results can be established for other higher inductive types - such as homo-
topy (co)limits, tori, group quotients, or real numbers - following the same methodology. We are
planning to formalize the results presented here in the Coq proof assistant.
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Finally, we remark that the use of propositional computation rules instead of definitional ones
alters the meaning of computation, which can now only be expressed up to a higher homotopy. The
very same issue arises by postulating the univalence axiom itself, as well as any higher-dimensional
constructors such as loop. The precise computational interpretation of HoTT is currently a subject
of intense research.
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A Proof of The Main Theorem

A.1 Preliminaries
We list here a few propositions which will be needed later. We omit the proofs as anyone reason-
ably familiar with HoTT should have no trouble verifying these statements.

Proposition 54. Given paths u, v, w, z : b =X c and p : a =X b, and higher paths α : u = v,
β : v = z, γ : u = w, δ : w = z, the commutativity of the diagram

p � u p � v

p � w p � z

via α

via γ via β

via δ

is equivalent to the commutativity of

u v

w z

α

γ β

δ

Proposition 55. Given paths u : a =X b, v : b =X d, w : a =X c, z : c =X d and higher paths
Φ,Θ : u � v = w � z, the commutativity of the diagram

u

refl(a) � u u � refl(b)

(w � w−1) � u u � (v � v−1)

w � (w−1 � u) (u � v) � v−1

w � (z � v−1) (w � z) � v−1

via I�(Φ) via Θ

is equivalent to the path space Φ = Θ.
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A.2 Induction implies recursion
Fix an algebra (X, p, s) : Wf,g

A -algUj and assume that has-Wf,g
A -indUk(X, p, s) holds. To show that

has-Wf,g
A -recUk(X, p, s) holds, fix any other algebra (Y, q, r) : Wf,g

A -algUk . In order to apply the
induction principle, we need to turn this into a fibered algebra (E, e, d). The first two components
are easy: put E := λ :XY and e := q. For the last component, we note that the transport between
any two fibers of a constant type family is constant. We can thus define d(b, a) to be the path

s(b, a)λ :XY
∗ (q(f b)) q(f b) q(g b)

r(b, a)

The induction principle then gives us a map h : X → Y and a path family β : Πc:C(h(p(c)) = q(c))
such that the following diagram commutes for any b : B, a : B(a):

=

s(b, a)λ :XY
∗ (h(p(f b))) h(p(g b))

s(b, a)λ :XY
∗ (q(f b)) q(f b) q(g b)

daph(s(b, a))

ap
s(b,a)

λ :XY
∗

(β(f b))

r(b, a)

β(g b)

Using path induction we can express daph(s(b, a)) equivalently as the path

s(b, a)λ :XY
∗ (h(p(f b))) h(p(f b)) h(p(g b))

aph(s(b, a))

Thus the outer rectangle in the following diagram commutes:

A B

s(b, a)λ :XY
∗ (h(p(f b))) h(p(f b)) h(p(g b))

s(b, a)λ :XY
∗ (q(f b)) q(f b) q(g b)

aph(s(b, a))

β(f b)ap
s(b,a)

λ :XY
∗

(β(f b))

r(b, a)

β(g b)

Suitable path induction shows that rectangle A commutes; hence rectangle B commutes too and we
are done.
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A.3 Induction implies uniqueness
Fix an algebra (X, p, s) : Wf,g

A -algUj and assume that has-Wf,g
A -indUk(X, p, s) holds. We first show

the dependent case, i.e., that has-Wf,g
A -ind-uniqUk(X, p, s) holds. Fix any fibered algebra (E, e, d) :

Wf,g
A -fib-algUk (X, p, s) and homomorphisms (h, γ,Θ), (i, δ,Φ) : Wf,g

A -fib-hom (X, p, s) (E, e, d).
To construct a homotopy between (h, γ,Θ) and (i, δ,Φ), we first need a homotopy α : h ∼ i.
We can obtain α from the induction principle applied to a suitable fibered algebra of the form
(λx:X(h(x) = i(x)), e′, d′). The term e′ thus must be of the type Πc:C(h(p c) = i(p c)). This is easy
to get since we know how the maps h and i behave on constructors: we put e′(c) := γ(c) � δ(c)−1.
Finally, for b : B, a : A(b), the term d′(b, a) must be a path from s(b, a)λx:X(h(x)=i(x))

∗ (γf(b)
� δ−1

f(b))

to γg(b) � δ−1
g(b). We note that for any u : x =X y and v : h(x) = i(x), the transport uλx:X(h(x)=i(x))

∗ (v)

can be expressed as daph(u)−1 � (apuE∗ (v) � dapi(u)). We can thus define d′(b, a) to be the path

s(b, a)λx:X(h(x)=i(x))
∗ (γf(b)

� δ−1
f(b))

daph(s(b, a))−1 � (aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a)))

daph(s(b, a))−1 � (daph(s(b, a)) � (γg(b) � δ
−1
g(b)))

(daph(s(b, a))−1 � daph(s(b, a))) � (γg(b) � δ
−1
g(b))

refl � (γg(b) � δ
−1
g(b))

γg(b)) � δ
−1
g(b)

viaH

whereH is the lower part of the diagram in Not. 51, i.e., the path
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aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a))

(aps(b,a)E∗
(γf(b)) � aps(b,a)E∗

(δf(b))
−1) � dapi(s(b, a))

aps(b,a)E∗
(γf(b)) � (aps(b,a)E∗

(δf(b))
−1 � dapi(s(b, a)))

aps(b,a)E∗
(γf(b)) � (d(b, a) � δ−1

g(b))

daph(s(b, a)) � (γg(b) � δ
−1
g(b))

(daph(s(b, a)) � γg(b)) � δ
−1
g(b)

(aps(b,a)E∗
(γf(b)) � d(b, a)) � δ−1

g(b)

via I�(Φ(a, b)) via Θ(a, b)

The induction principle then gives us α : h ∼ i as desired; moreover, the first computation rule
gives us a path family η : Πc:C(αp(c) = γc � δ−1

c ). Thus (α, λc:CI
−1
4 (ηc)) : (h, γ,Θ) ∼ (i, δ,Φ). All

that remains to show now is that the following diagram commutes for each b : B, a : B(a):

aps(b,a)E∗
(αp(f b)) � dapi(s(b, a))

aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a))

daph(s(b, a)) � αp(g b)

daph(s(b, a)) � (γg(b) � δ
−1
g(b))

naturality of α

via I4(I−1
4 (ηf(b))) via I4(I−1

4 (ηg(b)))

H

The commutativity of the above diagram is equivalent to the commutativity of

aps(b,a)E∗
(αp(f b)) � dapi(s(b, a))

aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a))

daph(s(b, a)) � αp(g b)

daph(s(b, a)) � (γg(b) � δ
−1
g(b))

naturality of α

via ηf(b) via ηg(b)

H

To show this, we use the second computation rule, which tells us that the diagram below commutes
for any b : B, a : B(a):
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=

s(b, a)λx:X(h(x)=i(x))
∗ (αp(f b))

αp(g b)

s(b, a)λx:X(h(x)=i(x))
∗ (γf(b)

� δ−1
f(b))

daph(s(b, a))−1 � (aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a)))

daph(s(b, a))−1 � (daph(s(b, a)) � (γg(b) � δ
−1
g(b)))

(daph(s(b, a))−1 � daph(s(b, a))) � (γg(b) � δ
−1
g(b))

refl � (γg(b) � δ
−1
g(b))

γg(b) � δ
−1
g(b)

via ηf(b)

ηg(b)

dapα(s(b, a))

viaH

We observe that for any u : x =X y, we can express dapα(u) as the path

u
λx:X(h(x)=i(x))
∗ (αx)

daph(u)−1 � (apuE∗ (αx) � dapi(u))

daph(u)−1 � (daph(u) � αy)

(daph(u)−1 � daph(u)) � αy

refl � αy

αy

via naturality of α

Thus, the second computation rule may be expressed as saying that the outer parallellogram in the
diagram below commutes:
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A

B

C

D

E

s(b, a)λx:X(h(x)=i(x))
∗ (αp(f b))

daph(s(b, a))−1 � (aps(b,a)E∗
(αp(f b)) � dapi(s(b, a)))

daph(s(b, a))−1 � (daph(s(b, a)) � αp(g b))

(daph(s(b, a))−1 � daph(s(b, a))) � αp(g b)

refl � αp(g b)

αp(g b)

s(b, a)λx:X(h(x)=i(x))
∗ (γf(b)

� δ−1
f(b))

daph(s(b, a))−1 � (aps(b,a)E∗
(γf(b)

� δ−1
f(b))

� dapi(s(b, a)))

daph(s(b, a))−1 � (daph(s(b, a)) � (γg(b) � δ
−1
g(b)))

(daph(s(b, a))−1 � daph(s(b, a))) � (γg(b) � δ
−1
g(b))

refl � (γg(b) � δ
−1
g(b))

γg(b) � δ
−1
g(b)

via ηf(b)

via ηf(b)

via ηg(b)

via ηg(b)

via ηg(b)

via ηg(b)

via naturality of α

viaH

We can easily show that the parallellograms A, C, D, E commute. Thus B commutes as well. By
Prop. 54 we conclude that the following diagram commutes
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aps(b,a)E∗
(αp(f b)) � dapi(s(b, a)) aps(b,a)E∗

(γf(b)
� δ−1

f(b))
� dapi(s(b, a))

daph(s(b, a)) � αp(g b) daph(s(b, a)) � (γg(b) � δ
−1
g(b))

naturality of α

via ηf(b)

via ηg(b)

H

which is precisely what we wanted to show.

The non-dependent case, i.e., showing has-Wf,g
A -rec-uniqUk(X, p, s), proceeds by an entirely

analogous argument, further simplified by the fact that we no longer need to transport along the
fibers of the codomain type E.

Remark: With some effort, we could obtain the non-dependent case from the result we have
just proved. However, due to the presence of superfluous transports, it is much simpler to establish
the non-dependent result directly, following the same methodology.

A.4 Characterizing the path space of homomorphisms
We first cover the dependent case: for any fibered homomorphisms µ, ν, the path space µ = ν is
equivalent to Wf,g

A -2 -fib-cell µ ν. To show this, fix an algebra (X, p, s) : Wf,g
A -algUj and a fibered

algebra (E, e, d) : Wf,g
A -fib-algUk (X, p, s). A homomorphism from (X, p, s) to (E, e, d) is thus

a triple (h, γ,Θ) as given in Def. 41. In this section, it will be more useful for us to consider
the representation ((h, γ),Θ) instead, i.e., associated to the left rather than to the right. The pair
(h, γ) : PfC,E,p,e then represents a pointed function. For convenience, we also name the type of Θ:
we define a coherence condition on PfC,E,p,e by

Pf-cohs,d(h, γ) := Πb:BΠa:A(b)(daph(s(b, a)) � γ(g b) = aps(b,a)E∗
(β(f b)) � d(b, a))

Homomorphisms from (X, p, s) to (E, e, d) are precisely those pointed maps satisfying the coher-
ence condition:

Wf,g
A -fib-homL (X, p, s) (E, e, d) := Σ(θ:PfC,E,p,e)Pf-cohs,d(θ)

We likewise have the “left-associated” versions of µ ∼ ν, Wf,g
A -fib-coh, and Wf,g

A -2 -fib-cell:

(θ,Θ) ∼L (φ,Φ) := θ ∼ φ

Wf,g
A -fib-cohL b a ((h, γ),Θ) ((i, δ),Φ) p := Wf,g

A -fib-coh b a (h, γ,Θ) (i, δ,Φ) p

Wf,g
A -2 -fib-cellL µ ν := Σ(p:µ∼Lν)Πb:BΠa:A(b)W

f,g
A -fib-cohL b a µ ν p

It now suffices to show that for any homomorphisms µ, ν : Wf,g
A -fib-homL (X, p, s) (E, e, d), we

have (µ = ν) ' Wf,g
A -2 -fib-cellL µ ν. Fix two such homomorphisms (θ,Θ) and (φ,Φ). We have

((θ,Θ) = (φ,Φ)) ' Σ(p:θ=φ)(Θ = p∗Pf-cohs,d
(Φ)) (1)
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It is easy to see that the path space θ = φ is equivalent to the space of homotopies θ ∼ φ: for any
(h, γ) and (i, δ) we have the chain of equivalences

(h, γ) = (i, δ) '
Σ(α:h=i)(γ = α∗λjΠc:C(j(p(c))=e(c))δ) '
Σ(α:h=i)(γ = λ=

c:CEΠ
h,i(α)(p(c)) � δ(c)) '

Σ(α:h=i)Πc:C(γ(c) == EΠ
h,i(α)(p(c)) � δ(c)) '

Σ(α:h∼i)Πc:C(γ(c) = α(p(c)) � δ(c)) ≡
(h, γ) ∼ (i, δ)

Let Pθ,φ : (θ = φ) → (θ ∼ φ) denote the composition of these equivalences. We now show that
for any θ, φ, p : θ = φ, Θ, Φ, we have

(Θ = p∗Pf-cohs,d
(Φ)) ' Πb:BΠa:AWf,g

A -fib-cohL b a (θ,Θ) (φ,Φ) Pθ,φ(p) (?)

We proceed by path induction on p. We thus need to show that for any θ, Θ, Φ, we have

(Θ = Φ) ' Πb:BΠa:AWf,g
A -fib-cohL b a (θ,Θ) (θ,Φ) Pθ,θ(refl(θ))

It suffices to show that for any h, γ, b, a, we have

(Θ(b, a) = Φ(b, a)) ' Wf,g
A -fib-cohL b a ((h, γ),Θ) ((h, γ),Φ) P(h,γ),(h,γ)(refl(h, γ))

It is easy to show that P(h,γ),(h,γ)(refl(h, γ)) = (α, η), where α is the identity homotopy on h and
η assigns to each c : C the path

γ(c) refl � γ(c)

We thus need to show that the path space Θ(b, a) = Φ(b, a) is equivalent to the commutativity of
the following diagram:

refl � daph(s(b, a))

aps(b,a)E∗
(γf(b)

� γ−1
f(b))

� daph(s(b, a))

(aps(b,a)E∗
(γf(b)) � aps(b,a)E∗

(γf(b))
−1) � daph(s(b, a))

aps(b,a)E∗
(γf(b)) � (aps(b,a)E∗

(γf(b))
−1 � daph(s(b, a)))

aps(b,a)E∗
(γf(b)) � (d(b, a) � γ−1

g(b))

daph(s(b, a)) � refl

daph(s(b, a)) � (γg(b) � γ
−1
g(b))

(daph(s(b, a)) � γg(b)) � γ
−1
g(b)

(aps(b,a)E∗
(γf(b)) � d(b, a)) � γ−1

g(b)

naturality of α

via I4(ηf(b))

via I4(ηg(b))

via I�(Φ(a, b)) via Θ(a, b)
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Expressing I4(ηf(b)), I4(ηg(b)), and the naturality of α directly yields the diagram:

daph(s(b, a))

refl � daph(s(b, a))

aps(b,a)E∗
(γf(b)

� γ−1
f(b))

� daph(s(b, a))

(aps(b,a)E∗
(γf(b)) � aps(b,a)E∗

(γf(b))
−1) � daph(s(b, a))

aps(b,a)E∗
(γf(b)) � (aps(b,a)E∗

(γf(b))
−1 � daph(s(b, a)))

aps(b,a)E∗
(γf(b)) � (d(b, a) � γ−1

g(b))

daph(s(b, a)) � refl

daph(s(b, a)) � (γg(b) � γ
−1
g(b))

(daph(s(b, a)) � γg(b)) � γ
−1
g(b)

(aps(b,a)E∗
(γf(b)) � d(b, a)) � γ−1

g(b)

via I�(Φ(a, b)) via Θ(a, b)

After some simplification we get the diagram

daph(s(b, a))

refl � daph(s(b, a))

(aps(b,a)E∗
(γf(b)) � aps(b,a)E∗

(γf(b))
−1) � daph(s(b, a))

aps(b,a)E∗
(γf(b)) � (aps(b,a)E∗

(γf(b))
−1 � daph(s(b, a)))

aps(b,a)E∗
(γf(b)) � (d(b, a) � γ−1

g(b))

daph(s(b, a)) � refl

daph(s(b, a)) � (γg(b) � γ
−1
g(b))

(daph(s(b, a)) � γg(b)) � γ
−1
g(b)

(aps(b,a)E∗
(γf(b)) � d(b, a)) � γ−1

g(b)

via I�(Φ(a, b)) via Θ(a, b)

By Prop. 55, the commutativity of this diagram is equivalent to the path space Φ(b, a) = Θ(b, a),
which is of course equivalent to Θ(b, a) = Φ(b, a). This proves the claim (?).

We thus have(
Σ(p:θ=φ)(Θ = p∗Pf-cohs,d

(Φ))
)
' Σ(p:θ=φ)Πb:BΠa:AWf,g

A -fib-cohL b a (θ,Θ) (φ,Φ) Pθ,φ(p)

' Σ(p:θ∼φ)Πb:BΠa:AWf,g
A -fib-cohL b a (θ,Θ) (φ,Φ) p

≡ Wf,g
A -2 -fib-cellL (θ,Θ) (φ,Φ)
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which together with 1 finishes the proof.

The non-dependent case, i.e., showing that (µ = ν) ' Wf,g
A -2 -cell µ ν for any µ, ν, follows by

an entirely analogous argument.

A.5 Recursion plus uniqueness imply induction
Fix (X, p, s) : Wf,g

A -algUj . Assume that has-Wf,g
A -recUk(X, p, s) and has-Wf,g

A -rec-uniqUk(X, p, s)

hold. To show that has-Wf,g
A -indUk(X, p, s) holds, fix any (E, e, d) : Wf,g

A -fib-algUk (X, p, s). In
order to apply the recursion principle, we need to turn this into a non-fibered algebra (Y, q, r). The
first two components are easy: we put Y := Σx:XE(x) and q := λc:C(p(c), e(c)). We note that
since X : Uj , E : X → Uk, and j ≤ k, we indeed have Σx:XE(x) : Uk as needed. Finally, we note
that by Prop. 13 there is a function ΣE=

c,d :
(
Σ(p:fst(c)=fst(d))(p

B
∗ (snd(c)) = snd(d))

)
→ (c = d) for

any c, d, which forms a quasi-equivalence with =EΣ
c,d. We can thus define r(b, a) to be the path

(p(f b), e(f b)) (p(g b), e(g b))
ΣE=(s(b, a), d(b, a))

where the subscripts to ΣE= are omitted. The recursion principle thus gives us a function u : X →
Σx:XE(x). We now want to construct a homotopy α : fst ◦ u ∼ idX . We can obtain α from
the uniqueness principle applied to the algebra (X, p, s) itself and homomorphisms of the form
(fst ◦ u, γ,Θ), (idX , δ,Φ). Finding suitable δ and Φ is easy: we let δ(c) := reflX(p(c)) and Φ(b, a)
to be the path

apidX
(s(b, a)) � refl

apidX
(s(b, a))

s(b, a)

refl � s(b, a)

The path family γ should assign to each c : C a path from fst(u(p(c))) to p(c). The first com-
putation rule for u gives us a path family β : Πc:C(u(p(c)) = (p(c), e(c))). We can thus define
γ(c) := fst(=EΣ(β(c))). Before we define Θ, we make a few general observations that will be
useful later on:

Let l,m, n : Σx:XE(x). Then:

1. For any ε : m = n we have fst(=EΣ(ε)) = apfst(ε).
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2. For any y, z : Σ(p:fst(m)=fst(n))(p
E
∗ (snd(m)) = snd(n)) and ε : y = z, the following diagram

commutes:

=

fst(y)E∗ (snd(m)) fst(z)E∗ (snd(m))

snd(n)

via ε

snd(y) snd(z)

3. For any y : l = m and z : m = n, the following diagram commutes:

=

apfst(y � z)
E
∗ (snd(l))

fst(=EΣ(y � z))
E

∗ (snd(l)) snd(n)

(apfst(y) � apfst(z))
E
∗ (snd(l))

apfst(z)E∗ (apfst(y)E∗ (snd(l)))

apfst(z)E∗ (fst(=EΣ(y))
E

∗ (snd(l)))

apfst(z)E∗ (snd(m))

fst(=EΣ(z))
E

∗ (snd(m))

snd(=EΣ(y � z))

via snd(=EΣ(y))

snd(=EΣ(z))

By the second computation rule for u, the following diagram commutes for each b, a:

(??)

u(p(f b)) u(p(g b))

(p(f b), e(f b)) (p(g b), e(g b))

apu(s(b, a))

β(f(b)) β(g(b))

ΣE=(s(b, a), d(b, a))

We now define Θ(b, a) as the following path:
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apfst◦u(s(b, a)) � fst(=EΣ(βg(b)))

apfst◦u(s(b, a)) � apfst(βg(b))

apfst(apu(s(b, a))) � apfst(βg(b))

apfst(apu(s(b, a)) � βg(b))

apfst(βf(b)
� ΣE=(s(b, a), d(b, a)))

apfst(βf(b)) � apfst(
ΣE=(s(b, a), d(b, a)))

apfst(βf(b)) � fst(=EΣ(ΣE=(s(b, a), d(b, a))))

apfst(βf(b)) � s(b, a)

fst(=EΣ(βf(b))) � s(b, a)

via (??)

The uniqueness rule thus gives us the desired homotopy α : fst ◦ u ∼ idX together with a path
family η : Πc:C

(
fst(=EΣ(βc)) = αp(c) � refl

)
.

We can now define the inductor h(x) := (αx)
E
∗ (snd(ux)). To establish the first computation

rule, we need a path family βD assigning to each c : C a path from (αp(c))
E

∗ (snd(up(c))) to e(c).
This is relatively easy: we let βD(c) be the path

(αp(c))
E

∗ (snd(up(c)))

(αp(c) � refl)
E

∗ (snd(up(c)))

fst(=EΣ(βc))
E

∗ (snd(up(c)))

e(c)

via ηc

snd(=EΣ(βc))
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To establish the second computation rule, we need to show that the following diagram commutes
for each b, a:

s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b)))) (αp(g b))
E

∗ (snd(up(g b)))

s(b, a)E∗ (e(f b)) e(g b)

dapα(−)E∗ (snd(u(−)))(s(b, a))

βD(g b)aps(b,a)E∗
(βD(f b))

d(b, a)

This requires a significant amount of work and will be done in 3 parts. Part I and II simplify each
of the respective paths around the above diagram; part III then shows these paths are equal.

Part I We first simplify the path aps(b,a)E∗
(βD(f b)) � d(b, a). Expanding, we get

s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

s(b, a)E∗ ((αp(f b) � refl)
E

∗ (snd(up(f b))))

s(b, a)E∗ (fst(=EΣ(βf(b)))
E

∗ (snd(up(f b))))

s(b, a)E∗ (e(f b))

e(g b)

via ηf(b)

via snd(=EΣ(βf(b)))

d(b, a)

which can be further expanded to
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

s(b, a)E∗ ((αp(f b) � refl)
E

∗ (snd(up(f b))))

s(b, a)E∗ (fst(=EΣ(βf(b)))
E

∗ (snd(up(f b))))

s(b, a)E∗ (apfst(βf(b))
E

∗ (snd(up(f b))))

s(b, a)E∗ (fst(=EΣ(βf(b)))
E

∗ (snd(up(f b))))

s(b, a)E∗ (e(f b))

e(g b)

via ηf(b)

via snd(=EΣ(βf(b)))

d(b, a)

which is equal to
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

((αp(f b) � refl) � s(b, a))
E

∗ (snd(up(f b)))

(fst(=EΣ(βf(b))) � s(b, a))
E

∗ (snd(up(f b)))

(apfst(βf(b)) � s(b, a))
E

∗ (snd(up(f b)))

s(b, a)E∗ (apfst(βf(b))
E

∗ (snd(up(f b))))

s(b, a)E∗ (fst(=EΣ(βf(b)))
E

∗ (snd(up(f b))))

s(b, a)E∗ (e(f b))

e(g b)

via ηf(b)

via snd(=EΣ(βf(b)))

d(b, a)

By Obs. 2 the following diagram commutes:

=

fst(=EΣ(ΣE=(s(b, a), d(b, a))))
E

∗ e(f b)) s(b, a)E∗ (e(f b))

e(g b)

snd(=EΣ(ΣE=(s(b, a), d(b, a)))) d(b, a)

The above path is thus equal to
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

((αp(f b) � refl) � s(b, a))
E

∗ (snd(up(f b)))

(fst(=EΣ(βf(b))) � s(b, a))
E

∗ (snd(up(f b)))

(apfst(βf(b)) � s(b, a))
E

∗ (snd(up(f b)))

(
apfst(βf(b)) � fst(=EΣ(ΣE=(s(b, a), d(b, a))))

)E
∗ (snd(up(f b)))

(
apfst(βf(b)) � apfst(

ΣE=(s(b, a), d(b, a)))
)E
∗ (snd(up(f b)))

apfst(
ΣE=(s(b, a), d(b, a)))

E

∗ (apfst(βf(b))
E

∗ (snd(up(f b))))

apfst(
ΣE=(s(b, a), d(b, a)))

E

∗ (fst(=EΣ(βf(b)))
E

∗ (snd(up(f b))))

apfst(
ΣE=(s(b, a), d(b, a)))

E

∗ (e(f b))

fst(=EΣ(ΣE=(s(b, a), d(b, a))))
E

∗ (e(f b))

e(g b)

via ηf(b)

via snd(=EΣ(βf(b)))

snd(=EΣ(ΣE=(s(b, a), d(b, a))))

By Obs. 3 this is equal to
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

((αp(f b) � refl) � s(b, a))
E

∗ (snd(up(f b)))

(fst(=EΣ(βf(b))) � s(b, a))
E

∗ (snd(up(f b)))

(apfst(βf(b)) � s(b, a))
E

∗ (snd(up(f b)))

(
apfst(βf(b)) � fst(=EΣ(ΣE=(s(b, a), d(b, a))))

)E
∗ (snd(up(f b)))

(
apfst(βf(b)) � apfst(

ΣE=(s(b, a), d(b, a)))
)E
∗ (snd(up(f b)))

apfst(βf(b)
� ΣE=(s(b, a), d(b, a)))

E

∗ (snd(up(f b)))

fst(=EΣ(βf(b)
� ΣE=(s(b, a), d(b, a))))

E

∗ (snd(up(f b)))

e(g b)

via ηf(b)

snd(=EΣ(βf(b)
� ΣE=(s(b, a), d(b, a))))

Part II We now simplify the path dapα(−)E∗ (snd(u(−)))(s(b, a)) � βD(g b). It is not hard to see that
for any ε : x =X y, the path dapα(−)E∗ (snd(u(−)))(ε) can be expressed explicitly as the path
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εE∗ ((αx)
E
∗ (snd(ux)))

(αx � ε)
E
∗ (snd(ux))

(αx � apidX
(ε))

E

∗ (snd(ux))

(apfst◦u(ε) � αy)
E
∗ (snd(ux))

(apfst(apu(ε)) � αy)
E
∗ (snd(ux))

(αy)
E
∗ (apfst(apu(ε))

E
∗ (snd(ux)))

(αy)
E
∗ (fst(=EΣ(apu(ε)))

E

∗ (snd(ux)))

(αy)
E
∗ (snd(uy))

via naturality of α

via snd(=EΣ(apu(ε)))

The path dapα(−)E∗ (snd(u(−)))(s(b, a)) � βD(g b) is thus equal to
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

(αp(f b) � apidX
(s(b, a)))

E

∗ (snd(up(f b)))

(apfst◦u(s(b, a)) � αp(g b))
E

∗ (snd(up(f b)))

(apfst(apu(s(b, a))) � αp(g b))
E

∗ (snd(up(f b)))

(αp(g b))
E

∗ (apfst(apu(s(b, a)))E∗ (snd(up(f b))))

(αp(g b))
E

∗ (fst(=EΣ(apu(s(b, a))))
E

∗ (snd(up(f b))))

(αp(g b))
E

∗ (snd(up(g b)))

(αp(g b) � refl)
E

∗ (snd(up(g b)))

fst(=EΣ(βg(b)))
E

∗ (snd(up(g b)))

e(g b)

via naturality of α

via snd(=EΣ(apu(s(b, a))))

via ηg(b)

snd(=EΣ(βg(b)))

Expanding further, we get
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

(αp(f b) � apidX
(s(b, a)))

E

∗ (snd(up(f b)))

(apfst◦u(s(b, a)) � αp(g b))
E

∗ (snd(up(f b)))

(apfst(apu(s(b, a))) � αp(g b))
E

∗ (snd(up(f b)))

(αp(g b))
E

∗ (apfst(apu(s(b, a)))E∗ (snd(up(f b))))

(αp(g b))
E

∗ (fst(=EΣ(apu(s(b, a))))
E

∗ (snd(up(f b))))

(αp(g b))
E

∗ (snd(up(g b)))

(αp(g b) � refl)
E

∗ (snd(up(g b)))

fst(=EΣ(βg(b)))
E

∗ (snd(up(g b)))

apfst(βg(b))
E

∗ (snd(up(g b)))

fst(=EΣ(βg(b)))
E

∗ (snd(up(g b)))

e(g b)

via naturality of α

via snd(=EΣ(apu(s(b, a))))

via ηg(b)

snd(=EΣ(βg(b)))

which is equal to

43



s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

(αp(f b) � apidX
(s(b, a)))

E

∗ (snd(up(f b)))

(apfst◦u(s(b, a)) � αp(g b))
E

∗ (snd(up(f b)))

(apfst◦u(s(b, a)) � (αp(g b) � refl))
E

∗ (snd(up(f b)))

(
apfst◦u(s(b, a)) � fst(=EΣ(βg(b)))

)E
∗ (snd(up(f b)))

(
apfst◦u(s(b, a)) � apfst(βg(b))

)E
∗ (snd(up(f b)))

(apfst(apu(s(b, a))) � apfst(βg(b)))
E

∗ (snd(up(f b)))

apfst(βg(b))
E

∗ (apfst(apu(s(b, a)))E∗ (snd(up(f b))))

apfst(βg(b))
E

∗ (fst(=EΣ(apu(s(b, a))))
E

∗ (snd(up(f b))))

apfst(βg(b))
E

∗ (snd(up(g b)))

fst(=EΣ(βg(b)))
E

∗ (snd(up(g b)))

e(g b)

via naturality of α

via ηg(b)

via snd(=EΣ(apu(s(b, a))))

snd(=EΣ(βg(b)))

By Obs. 3 this is equal to
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s(b, a)E∗ ((αp(f b))
E

∗ (snd(up(f b))))

(αp(f b) � s(b, a))
E

∗ (snd(up(f b)))

(αp(f b) � apidX
(s(b, a)))

E

∗ (snd(up(f b)))

(apfst◦u(s(b, a)) � αp(g b))
E

∗ (snd(up(f b)))

(apfst◦u(s(b, a)) � (αp(g b) � refl))
E

∗ (snd(up(f b)))

(
apfst◦u(s(b, a)) � fst(=EΣ(βg(b)))

)E
∗ (snd(up(f b)))

(
apfst◦u(s(b, a)) � apfst(βg(b))

)E
∗ (snd(up(f b)))

(apfst(apu(s(b, a))) � apfst(βg(b)))
E

∗ (snd(up(f b)))

apfst(apu(s(b, a)) � βg(b))
E

∗ (snd(up(f b)))

fst(=EΣ(apu(s(b, a)) � βg(b)))
E

∗ (snd(up(f b)))

e(g b)

via naturality of α

via ηg(b)

snd(=EΣ(apu(s(b, a)) � βg(b)))

Part III By Obs. 3 the following diagram commutes:
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=

fst(=EΣ
(
βf(b)

� ΣE=(s(b, a), d(b, a))
)
)
E

∗ (snd(up(f b)))

fst(=EΣ
(
apu(s(b, a)) � βg(b)

)
)
E

∗ (snd(up(f b)))

e(g b)via (??)

snd(=EΣ
(
βf(b)

� ΣE=(s(b, a), d(b, a))
)
)

snd(=EΣ
(
apu(s(b, a)) � βg(b)

)
)

It thus suffices to show that the following diagram commutes:

(? ? ?)

αp(f b) � s(b, a)

(αp(f b) � refl) � s(b, a)

fst(=EΣ(βf(b))) � s(b, a)

apfst(βf(b)) � s(b, a)

apfst(βf(b)) � fst(=EΣ(ΣE=(s(b, a), d(b, a))))

apfst(βf(b)) � apfst(
ΣE=(s(b, a), d(b, a)))

apfst(βf(b)
� ΣE=(s(b, a), d(b, a)))

fst(=EΣ
(
βf(b)

� ΣE=(s(b, a), d(b, a))
)
)

αp(f b) � apidX
(s(b, a))

apfst◦u(s(b, a)) � αp(g b)

apfst◦u(s(b, a)) � (αp(g b) � refl)

apfst◦u(s(b, a)) � fst(=EΣ(βg(b)))

apfst◦u(s(b, a)) � apfst(βg(b))

apfst(apu(s(b, a))) � apfst(βg(b))

apfst(apu(s(b, a)) � βg(b))

fst(=EΣ
(
apu(s(b, a)) � βg(b)

)
)

via ηf(b)

via naturality of α

via ηg(b)

via (??)

via (??)

The lower rectangle clearly commutes; it thus suffices to show that (? ? ?) commutes.
The coherence condition - the last part of the algebra 2-cell between (fst ◦ u, γ,Θ), (idX , δ,Φ)

obtained from the uniqueness rule - now tells us that the following diagram commutes:
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=

αp(f b) � apidX
(s(b, a)) apfst◦u(s(b, a)) � αp(g b)

(fst(=EΣ(βf(b))) � refl) � apidX
(s(b, a)) apfst◦u(s(b, a)) � (fst(=EΣ(βg(b))) � refl)

fst(=EΣ(βf(b))) � (refl � apidX
(s(b, a))) (apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))) � refl

fst(=EΣ(βg(b))) � (s(b, a) � refl) (fst(=EΣ(βg(b))) � s(b, a)) � refl

naturality of α

via I4(ηf(b)) via I4(ηg(b))

via I�(Φ(a, b)) via Θ(a, b)

After some expansion and simplification we get

=

αp(f b) � apidX
(s(b, a))

(fst(=EΣ(βf(b))) � refl) � apidX
(s(b, a))

fst(=EΣ(βf(b))) � (refl � apidX
(s(b, a)))

fst(=EΣ(βf(b))) � apidX
(s(b, a))

fst(=EΣ(βf(b))) � s(b, a)

fst(=EΣ(βg(b))) � (s(b, a) � refl)

apfst◦u(s(b, a)) � αp(g b)

apfst◦u(s(b, a)) � (fst(=EΣ(βg(b))) � refl)

(apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))) � refl

apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))

fst(=EΣ(βg(b))) � s(b, a)

(fst(=EΣ(βg(b))) � s(b, a)) � refl

naturality of α

via I4(ηf(b)) via I4(ηg(b))

Θ(a, b)

This is equivalent to
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=

αp(f b) � apidX
(s(b, a))

αp(f b) � s(b, a)

(fst(=EΣ(βf(b))) � refl) � s(b, a)

fst(=EΣ(βf(b))) � (refl � s(b, a))

fst(=EΣ(βf(b))) � s(b, a)

fst(=EΣ(βg(b))) � (s(b, a) � refl)

apfst◦u(s(b, a)) � αp(g b)

apfst◦u(s(b, a)) � (fst(=EΣ(βg(b))) � refl)

(apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))) � refl

apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))

fst(=EΣ(βg(b))) � s(b, a)

(fst(=EΣ(βg(b))) � s(b, a)) � refl

naturality of α

via I4(ηf(b))

via I4(ηg(b))

Θ(a, b)

After some cleanup we get

=

αp(f b) � apidX
(s(b, a))

αp(f b) � s(b, a)

(fst(=EΣ(βf(b))) � refl) � s(b, a)

fst(=EΣ(βf(b))) � (refl � s(b, a))

fst(=EΣ(βf(b))) � s(b, a)

apfst◦u(s(b, a)) � αp(g b)

apfst◦u(s(b, a)) � (fst(=EΣ(βg(b))) � refl)

(apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))) � refl

apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))

naturality of α

via I4(ηf(b))

via I4(ηg(b))

Θ(a, b)

Further expansion yields
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=

αp(f b) � apidX
(s(b, a))

αp(f b) � s(b, a)

(αp(f b) � refl) � s(b, a)

fst(=EΣ(βf(b))) � s(b, a)

(fst(=EΣ(βf(b))) � refl) � s(b, a)

fst(=EΣ(βf(b))) � (refl � s(b, a))

fst(=EΣ(βf(b))) � s(b, a)

apfst◦u(s(b, a)) � αp(g b)

apfst◦u(s(b, a)) � (αp(g b) � refl)

apfst◦u(s(b, a)) � fst(=EΣ(βg(b)))

apfst◦u(s(b, a)) � (fst(=EΣ(βg(b))) � refl)

(apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))) � refl

apfst◦u(s(a, b)) � fst(=EΣ(βg(b)))

naturality of α

via I4(ηg(b))

via I4(ηf(b))

Θ(a, b)

A final cleanup yields

=

αp(f b) � apidX
(s(b, a))

αp(f b) � s(b, a)

(αp(f b) � refl) � s(b, a)

fst(=EΣ(βf(b))) � s(b, a)

apfst◦u(s(b, a)) � αp(g b)

apfst◦u(s(b, a)) � (αp(g b) � refl)

apfst◦u(s(b, a)) � fst(=EΣ(βg(b)))

naturality of α

via ηg(b)

Θ(a, b)via ηf(b)

which is precisely the diagram (? ? ?).
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