
A Calculus for Relaxed Memory

Karl Crary Michael J. Sullivan

Carnegie Mellon University

Abstract

We propose a new approach to programming multi-core,
relaxed-memory architectures in imperative, portable pro-
gramming languages. Our memory model is based on ex-
plicit, programmer-specified requirements for order of exe-
cution and the visibility of writes. The compiler then realizes
those requirements in the most efficient manner it can. This
is in contrast to existing memory models, which—if they
allow programmer control over synchronization at all—are
based on inferring the execution and visibility consequences
of synchronization operations or annotations in the code.

We formalize our memory model in a core calculus called
RMC. Outside of the programmer’s specified requirements,
RMC is designed to be strictly more relaxed than existing
architectures. It employs an aggressively nondeterministic
semantics for expressions, in which actions can be executed
in nearly any order, and a store semantics that generalizes
Sarkar, et al.’s and Alglave, et al.’s models of the Power
architecture. We establish several results for RMC, includ-
ing sequential consistency for two programming disciplines,
and an appropriate notion of type safety. All our results are
formalized in Coq.

1 Introduction

Modern multi-core computer architectures employ relaxed
memory models, interfaces to memory that are considerably
weaker than the conventional model of sequential consis-
tency [15]. In a sequentially consistent setting, an execution
is consistent with some interleaving of the individual mem-
ory operations. Thus, the programmer may assume that (a)
all threads have a common view of memory that agrees on
the order in which memory operations are performed, and
(b) that commonly-agreed order respects program-order in
regard to operations issued by the same thread.

Relaxed memory architectures provide no such common
view of memory. Although most do enforce a globally agreed
order on writes to individual locations, the order does not
extend to multiple locations. Indeed, on some architectures
(notably Power [13] and ARM [11]) it is more useful to
start from a view of memory as simply a pool of available
writes [19, 5] (and then impose structure), than it is to start
from memory as a mapping of locations to values and then
try to weaken it.

Moreover, modern architectures also execute instructions
out of order. While most do out-of-order execution in a
fashion that is undetectable to single-threaded programs, on
some important relaxed-memory architectures (e.g., Power
and ARM again) it is possible for multi-threaded programs
to expose out-of-order execution.

As illustrated by Adve and Gharachorloo [1] and oth-
ers [2, 19], these are two distinct phenomena. Relaxed
memory behaviors cannot always be reduced to just one or
the other. This point is often not clearly understood by
programmers, or even by authors of documentation, which
sometimes give rules governing when reads and writes might
be reordered, without specifying the “order” in question.

Relaxed memory architectures can be challenging to pro-
gram. Single-threaded code, and also concurrent code free
of data races (in which accesses to shared variables are pro-
tected by mutexes), usually require no special effort, but
implementing lock-free data structures, or implementing the
mutexes themselves can be very delicate indeed.

In the past the problem was made particularly challeng-
ing by the lack of clear specifications of the memory models.
Recent work has addressed this difficulty for some important
architectures [20, 19, 4, 3, 5], but for portable, imperative
programming languages the memory models are either in-
sufficiently expressive or quite complex:

In Java [16] and C/C++ [10, 8, 7] the memory model is
divided into two parts: a simple mechanism for data-race-
free programming, and a less simple one for lock-free data
structures and for low-level implementation of synchroniza-
tion utilities. Like much of the work on architecture mod-
els, our primary concern in this paper is the second aspect;
our approach to data-race-free programs—discussed in Sec-
tion 9—is conventional.

Java’s volatile variables and C/C++’s atomic vari-
ables need not be used within a mutex, and thus are suitable
for lock-free data structures and synchronization implemen-
tation. Java’s volatiles are guaranteed to be sequentially
consistent; this provides a convenient programming model,
but it also imposes a cost which can be undesirable in par-
ticularly performance-critical code. C/C++’s atomics are
more flexible. The programmer annotates each operation on
an atomic with a “memory order” that indirectly dictates
the semantics of the operation, which may be as strong as
sequentially consistent or may be weaker.

Some of the rules governing C/C++ memory orders are
quite complicated. Consider the example below (for illus-
trative purposes only, the details will not be important in
the sequel) which has the standard “message passing” idiom
at its core:

Wx0 Wx1
co

Wy2
[release]

Wx3

co

Rx?

 hb, vse

Wy4

 co

Ry4
[acquire]

sw

rf

The unlabelled edges are the program order. The dashed
red edges are witness relations1 derived directly from the

trace: Ry4 reads from (
rf→) Wy4. The coherence order (

co→,
the global ordering among writes to the same location) on
x is Wx0, Wx1, Wx3, and on y is Wy2, Wy4. From these
edges2 the rules of C/C++ define a plethora of derived edges
(shown in dotted blue):

Since Wy2 is marked with “release” order, it is consid-
ered a release action and forms the head of a release sequence
(not shown, to avoid cluttering the diagram) that also in-
cludes Wy4. Since Ry4 is marked with “acquire” order and
reads from Wy2’s release sequence, Wy2 synchronizes-with
Ry4. (Wy4 does not synchronize with Ry4 because Wy4
has relaxed order and thus is not a release action.) Conse-
quently, Wx1 happens-before Rx?. Thus Wx1 is a visible side
effect to Rx? (because there is no other write to x that in-
tervenes by happens-before), and its visible sequence of side
effects (not shown) consists of itself and Wx3. An atomic
read must come from its visible sequence of side effects, so
Rx? must read from either Wx1 or Wx3, not Wx0.

On the other hand, if Wy4 had “release” order, then
Wy4 (not Wy2) would synchronize-with Ry4, which would
mean that Wx3 happens-before Rx?, so Wx3 (not Wx1)
would be a visible side effect to Rx?. The visible sequence
of side effects would contain only Wx3, so Rx? could read
only from Wx3.

This is just a simple example; the required reasoning can
be much more complex. Indeed, the key C/C++ notion of
happens-before is intentionally not transitive (!), to enable
certain optimizations on architectures like Power and ARM
when using the “consume” memory order.

1.1 The RMC Memory Model

We propose a different model for low-level programming on
relaxed memory architectures. Rather than have the pro-
grammer specify annotations that indirectly determine the
relations governing which writes can satisfy which reads, we
allow the programmer to specify the key relations directly.
It is then the compiler’s job to generate code to realize them.

1in the terminology of Batty, et al. [7]
2C/C++ refers to program order as “sequenced before” and to

the coherence order as “modification order”. We use our terms to
maintain consistent terminology throughout the paper.

Wx0 Wx1
co

Wy2

Wx3

 co

Wy4

 vo

co

Ry4
rf

Rx?

 xo

As before, the solid black edges are given by the program,
and the dashed red edges are witness relations derived from
the trace. The unlabelled edges are again program order.

In addition, the program specifies visibility-order (
vo→) and

execution-order (
xo→) edges. In this example, to bring about

the same outcome as the C/C++ example, the program-
mer indicates that Wx1 is visibility-ordered before Wy4,
and that Ry4 is execution-ordered before Rx?. The visi-
bility specification means that any thread that can see Wy4
must also see Wx1, and the execution specification means
that Rx? must occur after Ry4. Thus, Rx? can see Wy4
(since Rx? takes place after its thread reads from Wy4),
so it must also see Wx1, and consequently it cannot read
from the overwritten Wx0. A programmer who wanted to
exclude Wx1 as well would indicate that Wx3 is visibility-
ordered before Wy4.

In this paper we present RMC (for Relaxed Memory Cal-
culus), a core calculus for imperative computing with re-
laxed memory that realizes this memory model. RMC is in-
tended to admit all the strange (to a sequentially consistent
eye) executions permitted by relaxed memory architectures.
Thus, an RMC program can be implemented on such archi-
tectures with no synchronization overhead beyond what is
explicitly specified by the programmer.

Importantly, we do not attempt to capture the precise
behavior of any architecture. On the contrary, RMC is
specifically intended to be strictly more relaxed (in other
words, even more perverse) than any existing architecture.
This is for two reasons: First, because we find it more el-
egant to do so. Second, because we hope that by doing
so, we can future-proof RMC against further innovations by
computer architects.

Thus, RMC makes only five assumptions regarding the
architecture:

1. Single-threaded computations (meaning single-
threaded programs, and also the critical sections of
properly synchronized programs) respect sequential
consistency.

2. There exists a strict partial order (called coherence or-
der) on all writes to the same location, and it is re-
spected by reads.

3. The message passing idiom (illustrated above, and dis-
cussed in more detail in Section 7) works.

2

4. There exists a push mechanism (this corresponds to
Power’s sync, ARM’s dmb, and x86’s mfence).

5. There exists a mechanism for atomic read-write opera-
tions (also known as atomic test-and-set).

Some older architectures might not satisfy 3, 4, or 5, but
the importance of those assumptions is now well-understood
and we expect that future architectures will. An architec-
ture might also provide some atomic read-modify-write op-
erations; RMC accounts for such, but does not require them.
Alglave, et al. [5], another architecture-independent formal-
ism, proposes axioms similar in spirit to these assumptions.
We compare them to ours in Section 10.

We take as our reference points the (broadly similar)
Power and ARM architectures, and the x86 architecture,
because they enjoy rigorous, usable specifications [19, 5, 20].
We focus on the former because in all cases relevant to this
paper, the complexities of Power and ARM subsume those
of x86.

Like Sarkar, et al.’s model for Power [19], and Sewell, et
al.’s model for x86 [20], our calculus is based on an opera-
tional semantics, not an axiomatic semantics. Nevertheless,
one aspect of our system does give it some axiomatic fla-
vor. Our rules for carrying out storage actions require that
the coherence order remain acyclic (assumption 2, above),
but to afford maximum flexibility, we do not impose any
particular protocol to ensure this. Thus, when reasoning
about code, this requirement functions much like an axiom.
Alglave, et al.’s intermediate machine [5] has a somewhat
similar flavor.

The paper makes several contributions:

• We show how to program relaxed-memory architectures
using programmer-specified visibility- and execution-
order edges.

• We give an elegant calculus capturing out-of-order and
speculative execution.

• We give an aggressively relaxed model of memory. It
accounts for the write-forwarding behavior of Power
and ARM, and a “leapfrogging write” behavior on
ARM, in addition to other possible phenomena not yet
observed or even implemented.

• We prove three main theorems:

– A type safety result (including a novel adaptation
of progress to nondeterministic execution).

– A sequential-consistency theorem showing that
sequential consistency can be obtained by inter-
leaving instructions with memory barriers. This
theorem generalizes a theorem of Batty, et al. [6]
for the more permissive semantics of RMC, and
also streamlines the proof.

– A second sequential-consistency theorem show-
ing that data-race-free executions enjoy sequen-
tial consistency. This theorem adapts a standard
result to RMC.

All the results of the paper are formalized in Coq. The
formalization may be found at:

www.cs.cmu.edu/~crary/papers/2014/rmc.tgz

2 Tagging

RMC’s main tool for coping with relaxed memory is user-
specified edges indicating visibility order (anyone who sees
the latter action can see the former) and execution order
(the former action must be executed before the latter). It is
easy enough to indicate required orderings between opera-
tions by drawing edges on an execution trace, but, of course,
execution traces are not programs. How are specified orders
rendered in source code?

We do this by using tags to identify operations, and
including a declaration form to express required edges be-
tween tags. This is illustrated in the following piece of code,
which implements the middle thread of the example from
Section 1.1 in an extension of C using the RMC memory
model:

VEDGE(before, after);
L(before, x = 1);
y = 2;
x = 3;
L(after, y = 4);

Here, the write x = 1 (i.e., Wx1) is tagged before,
and the write y = 4 (i.e., Wy4) is tagged after. The dec-
laration “VEDGE(before, after)” indicates that a visibility
edge exists between operations tagged before and after. If
we wanted to make Wx3 also visibility ordered before Wy4,
we could declare additional tags and edges, or just add the
before tag to x = 3.

Visibility order implies execution order, because it makes
little sense to say that i should be visible to anyone who can
see i′, if i′ can be seen before i even takes place. We can get
execution order alone using the XEDGE keyword.

Tagging creates edges only between operations in pro-
gram order. Thus, we cannot require an operation to exe-
cute before an earlier operation.

This is particularly important when tags appear within
loops:

VEDGE(before, after);
for (i = 0; i < 2; i++) {

L(after, x = i);
L(before, y = i + 10);

}

Here, the visibility edge reaches from each y-assignment
to the x-assignment in the next iteration of the loop:

Wx0 Wy10 Wx1
vo

Wy11

We do not generate nonsensical edges upstream from
Wy10 to Wx0, or from Wy11 to Wx1.

Also observe that tags generate edges between all oper-
ations with appropriate tags, not only the nearest ones. For
example, reversing the tags in the previous code to obtain:

VEDGE(before, after);
for (i = 0; i < 2; i++) {

L(before, x = i);
L(after, y = i + 10);

}

generates:

3

Wx0 Wy10
vo

Wy11

vo

Wx1
vo

Note the long edge from Wx0 to Wy11. This long edge is
desired, as we will see in an example in Section 5.

It is also sometimes useful to impose visibility and exe-
cution order more broadly than can be done with individ-
ual edges. For example, the code to enter a mutex needs
to be execution-ordered before everything in the following
critical section, and the code to exit a mutex needs to be
visibility-ordered after everything in the preceding critical
section. Drawing individual edges between the operations
of the mutex and the critical section would be tedious, and
would break the mutex abstraction. Instead, RMC allows
the programmer to draw edges between an operation and
all its program-order predecessors or successors using the
special quasi-tags pre and post.

3 Visibility

The model recognizes five kinds of actions: reads, writes,
read-writes, pushes (see below), and no-ops. Although the
primary interest of the visibility order is writes, it can also be
useful to impose visibility among other actions. One reason
is that visibility order is transitive, so edges can create new
paths even when inconsequential in isolation. For instance,

if i1
vo→ i2

vo→ i3, the transitive edge i1
vo→+ i3 might be

important even if i1
vo→ i2 were unimportant in its own right.

(This is the only use for no-ops.)
More substantially, consider the following trace. (In this

and subsequent traces, all locations are initialized to zero.
These writes are omitted from the diagrams to reduce clut-

ter.) The Wx1
rf→ Rx1 edge induces visibility order between

Wx1 and Rx1. Thus, Wx1 is visibility-ordered before Wy2
by transitivity. Consequently, Rx? can see Wx1, so it cannot
read from Wx0.

Wx1 Rx1
rf

Wy2

 vo

Ry2

Rx?

 xorf

Pushes perform a global synchronization, like sync on
Power, dmb on ARM, or mfence on x86. Once a push is
executed, it is visible to all threads. Consider the following
trace, adapted from Boehm and Adve’s [10] read-to-write
causality example.

Wx1 Rx1
rf

Ry0

 xo

Wy1

Rx?

 xo

Rx? can read 0, because nothing forces Wx1 to be vis-
ible to Rx?. Changing the xo edges to vo has no effect,
because visibility-order edges to reads have no more effect
than execution order (except possibly to create other paths
by transitivity, which would not happen here). However,
introducing pushes does change matters:

Wx1 Rx1
rf

push1

 vo

Wy1

push2

 vo

Ry0

 xo

Rx?

 xo

Now Rx? must read 1. Pushes are totally ordered (a
consequence of being globally visible), so either push1 is
visible to push2 or vice versa. If the former, then Wx1
is visible to Rx?. If the latter, then the trace is impossible
because Wy1 is visible to Ry0. This reasoning is generalized
in the Sequential Consistency theorem (Section 9).

For another example of reasoning using pushes, consider:

Wx1

push

 vo

Wy2

 xo

Ry2

rf Wz3

 xo

Rz3

rf

Rx?

 xo

Observe that Wx1 is visibility-ordered before the push,
but has no specified relationship to Wz3, so we do not know
immediately that Wx1 is visible to Rx?. However, Wy2
takes place after the push, and Ry2, Wz3, Rz3 and Rx?
happen later still. Therefore, since pushes are globally visi-
ble, Rx? must see the push, and consequently must see Wx1.

4 Out-of-order and speculative execution

An RMC expression consists of a monadic sequence of ac-
tions. In a conventional monadic language, an action’s life-
cycle goes through two phases: first, resolve the action’s
arguments (purely), then execute the action (generating ef-
fects). In RMC we add an intermediate phase. Once an ac-
tion’s arguments are resolved, we initiate the action, which
replaces the action by an action identifier. Later, an initi-
ated action can be executed, at which time the identifier is
replaced by the action’s result.

Once an action is initiated, execution may proceed out
of order. The semantics may nondeterministically choose
to execute the action immediately, or it may delay it and
process a later action first.

For example, consider an expression that reads from a
then writes to b. One possible execution executes the write
before the read:

x← R[a] in ←W[b, 12] in retx
7→ x← i1 in ←W[b, 12] in retx
7→ x← i1 in ← i2 in retx
7→ x← i1 in ← ret () in retx (with write effect)
7→ x← i1 in retx
7→ x← ret 10 in retx (with read effect)
7→ ret 10

4

The purpose of the initiation phase is to require the exe-
cution to commit to the arguments of earlier actions before
executing later ones. This is important because program-
order earlier actions often affect the semantics of later ones,
even when the later actions are actually executed first.

Out-of-order execution makes it possible for execution
to proceed out of program order, but not out of dependency
order. For example, suppose the write to b depends on the
value read from a:

x← R[a] in ←W[b, x] in retx
7→ x← i1 in ←W[b, x] in retx
7→ ??

The write to b cannot initiate because its arguments are
not known. However, RMC permits execution to speculate
on the value of unknown quantities. For, example we may
speculate that x will eventually become 10, producing the
execution:

x← i1 in ←W[y, x] in retx
7→ 10← i1 in ←W[y, 10] in ret 10 (NB!)
7→ 10← i1 in ← i2 in ret 10
7→ · · ·
7→ 10← i1 in ret 10
7→ 10← ret 10 in ret 10 (with read effect)
7→ ret 10

Here, the syntax v ← e in e′ is a distinct syntactic form3

from the usual monadic bind (x← e in e′). Unlike the usual
form, it binds no variables, and instead indicates the value
that the bound expression is required to return. Specula-
tion allows us to step from x ← e in e′ to v ← e in [v/x]e′.
Eventually, once the expression has been executed, we can
discharge the speculation, stepping from v ← ret v in e to e.

The combination of out-of-order and speculative execu-
tion allows us to execute the program in nearly any order,
subject only to the constraints imposed by the programmer
and those inherent in the actions themselves.

RMC uses nondeterminism in a variety of ways, but spec-
ulation is the most aggressive. Unlike our other uses (e.g.,
interleaving of threads, out-of-order execution, the choice of
which read satisfies a write), speculation can take execution
down a blind alley. In the above example, we speculated
i1 would return 10. But suppose it did not? Then we find
ourselves in a state like 10 ← ret 11 in ret 10 from which we
can make no further progress.

We do not refer to states like this as “stuck”, since stuck
usually connotes an unsafe state. Instead we call such states
“moot”, since they arise in executions that cannot actually
happen. When reasoning about RMC programs, one may
ignore any executions that become moot.

Although the use of speculation above might seem fan-
ciful at the architectural level, it could very easily arise in
an optimizing compiler, which might be able to determine
statically that R[a] would (or at least could) return 10.

A more common use of speculation by the hardware is
to execute past a branch when the discriminating value is
not yet known. For example:4

3In fact, it is actually a derived form, built from a more primitive
speculation form in Section 6.

4Here, susp suspends an expression (forming a thunk), and force
forces a suspension.

bool enqueue(buffer *buf, char ch)
{

XEDGE(echeck, write);
VEDGE(write, eupdate);

unsigned back = buf->back;
L(echeck, unsigned front = buf->front);

int enqueued = false;
if (ring_increment(back) != front) {

L(write, buf->arr[back] = ch);
L(eupdate,
buf->back = ring_increment(back));

enqueued = true;
}
return enqueued;

}

int dequeue(buffer *buf)
{

XEDGE(dcheck, read);
XEDGE(read, dupdate);

unsigned front = buf->front;
L(dcheck, unsigned back = buf->back);

int ch = -1;
if (front != back) {

L(read, ch = buf->arr[front]);
L(dupdate,
buf->front = ring_increment(front));

}
return ch;

}

Figure 1: A ring-buffer

x← R[a] in force(if x = 0 then susp e else susp e′)
7→ x← i1 in force(if x = 0 then susp e else susp e′)
7→ 10← i1 in force(if 10 = 0 then susp e else susp e′)
7→ 10← i1 in force(susp e′)
7→ 10← i1 in e

′

7→ · · ·

5 An example

As a realistic example of code using the RMC memory
model, consider the code in Figure 1. This code—adapted
from the Linux kernel [12]—implements a ring-buffer, a com-
mon data structure that implements an imperative queue
with a fixed maximum size. The ring-buffer maintains front
and back pointers into an array, and the current contents
of the queue are those that lie between the back and front
pointers (wrapping around if necessary). Elements are in-
serted by advancing the back pointer, and removed by ad-
vancing the front pointer.

The ring-buffer permits at most one writer at a time,
and at most one reader at a time, but allows concurrent,
unsynchronized access by a writer and a reader.

Note that the buffer is considered empty, not full, when
the front and back coincide. Thus, the buffer is full—

5

echeck1

write1

xo

write2

xo

dcheck1

eupdate1

vo

read1

echeck2

dupdate1

xo

dcheck2

eupdate2

vo

rf

read2

dupdate2

xo

xo

xo

rf

xo

xo

rf

Figure 2: Impossible ring-buffer trace

and enqueueing fails—when exactly one empty cell remains.
This seemingly minor implementation detail complicates the
analysis of the code in an interesting way.

We wish the ring-buffer to possess two important proper-
ties: (1) the elements dequeued are the same elements that
we enqueued (that is, threads do not read from an array
cell without the pertinent write having propagated to that
thread), and (2) no enqueue overwrites an element that is
still current.

The key lines of code are those tagged echeck, write, and
eupdate (in enqueue), and dcheck, read, and dupdate (in
dequeue). (It is not necessary to use disjoint tag variables in
different functions; we do so only to simplify the exposition.)

For property (1), consider an enqueue-dequeue pair. We

have write
vo→ eupdate

rf→ dcheck
xo→ read. It follows that

write is visible to read.
Property (2) is a bit more complicated. Since a full ring-

buffer has an empty cell, it requires two consecutive en-
queues to risk overwriting a cell. The canonical trace we
wish to prevent appears in Figure 2. In it, read1 reads from
write2, a “later” write that finds room in the buffer only
because of a dequeue operation subsequent to read1. Hence,
a current entry is overwritten.

This problematic trace is impossible, since read1
xo→

dupdate1
rf→ echeck1

xo→ write2
rf→ read1. (Alternatively,

read1
xo→ dupdate2

rf→ echeck2
xo→ write2

rf→ read1.) In

RMC, if i
rf→ i′ then i must be executed earlier than i′ (you

cannot read from a write that hasn’t yet executed), so it
follows that read1 must execute strictly before itself, which
is a contradiction.

Note that this argument relies on echeck1
xo→ write2 (or

read1
xo→ dupdate2). Merely having, say, echeck1

xo→ write1
would be insufficient, since nothing in the code as written

gives us write1
xo→ write2.

Contrasted with C/C++ To implement the ring-buffer in
C/C++, one can mark the eupdate and dupdate operations

echeck1
[acquire]

write1

dcheck1
[acquire]

eupdate1
[release]

read1

echeck2
[acquire]

dupdate1
[release]

write2

dcheck2
[acquire]

eupdate2
[release]

rf

read2

dupdate2
[release]

hb

rf, sw

rf, sw

echeck1
[consume]

write1

dep

dcheck1
[consume]

eupdate1
[release]

read1

echeck2
[consume]

dupdate1
[release]

write2

dep

dcheck2
[consume]

eupdate2
[release]

rf

read2

dupdate2
[release]

dep

hb

rf

dob

dep
rf

dob

Figure 3: Impossible ring-buffer traces in C/C++

as “release”, and the echeck and dcheck operations as “ac-
quire”.

For property (1), in an enqueue-dequeue pair we get
eupdate synchronizes-with dcheck, since eupdate reads
from dcheck. This implies that write happens-before read.5

For property (2), consider the trace in Figure 3. In this
trace, dupdate1 synchronizes-with echeck1 (alternatively,
dupdate2 synchronizes-with echeck2), so read1 happens-
before write2. Thus read1 cannot read from write2.

These correctness arguments for RMC and C/C++ are
broadly similar. In part, this is because the C/C++ ring-
buffer code is fairly simple, without any nontrivial release
sequences or visible sequences of side-effects [7]. And, in
part, this is because the C/C++ implementation uses re-
lease/acquire synchronization instead of release/consume
(which may be cheaper on certain architectures, such as
Power and ARM).

To obtain potentially better performance in C/C++, one
may instead mark echeck and dcheck as “consume” and
introduce spurious data dependencies from echeck to write,
and dcheck to read. This makes the correctness argument
more delicate. For property (1), in an enqueue-dequeue pair
we get (using the former data dependency) that eupdate is
dependency-ordered-before read, which (using the delicate
definition of happens-before) once again ensures that write
happens-before read.

The argument for property (2) is a bit more sub-
tle, because happens-before is not transitive. In the ar-
gument for RMC, and for C/C++ with “acquire”, we

can construct the illegal path using either dupdate1
rf→

echeck1 or dupdate2
rf→ echeck2. In contrast, with “con-

sume” we can only use the latter. We can observe that
dupdate1 is dependency-ordered-before write1, and that
dupdate2 is dependency-ordered-before write2. However,
since happens-before respects program order on the left but

5The latter inference is a bit subtle, since happens-before is not
transitive. It includes program order on the left, but includes it on
the right only after synchronizes-with.

6

types τ ::= unit | nat | τ ref | τ susp | τ → τ
numbers n ::= 0 | 1 | · · ·
tags T ::= · · ·
locations ` ::= · · ·
identifiers i ::= · · ·
threads p ::= · · ·
terms m ::= x | () | ` | n | ifzm thenm elsem

| susp e | fun x(x:τ):τ.m | mm
values v ::= x | () | ` | n | susp e | fun x(x:τ):τ.m
attributes b ::= vis | exe
labels ϕ ::= t | T |

b
C |

b
B

expr’s e ::= retm | x:τ ← e in e | v = v in e
| R[m] |W[m,m] | RW[m,m]
| RMW[m,x:τ.m] | Push | Nop | i
| forcem | new t b⇒t.e | ϕ# e

execution
states ξ ::= ε | ξ ‖ p : e

tag sig Υ ::= ε | Υ, T
loc’n sig Φ ::= ε | Φ, `:τ
ident sig Ψ ::= ε | Ψ, i:τ@p
contexts Γ ::= ε | Γ, t:tag | Γ, x:τ

Figure 4: Syntax

not (in general) on the right, only the latter suffices to show
read1 happens-before write2.

In RMC, the programmer need not concern him or her-
self with acquire vs. consume. He or she simply specifies
what is needed—such as execution order between echeck
and write—and the compiler synthesizes the most efficient
code it can to implement the specification.

Conversely, RMC also allows the programmer to make
finer distinctions. In C/C++, both eupdate and dupdate
must be marked “release”. This entails the same overhead
for each, tantamount to a visibility order specification in
RMC. But, as we have seen, visibility order is necessary
only in enqueue; dequeue requires merely the less-expensive
execution order.

6 RMC

The syntax of RMC given in Figure 4. Tags (T) and iden-
tifiers (i) range over actual dynamically generated tags and
identifiers; they do not appear in user programs. We do not
discuss the allocation primitives in this paper so memory
locations (`) can appear in RMC programs here, but not in
real RMC-based programs. There are two sorts of variables:
x ranges over values and t ranges over tags.

We make a standard syntactic distinction between pure
terms (m) and effectful expressions (e). The terms are stan-
dard, and most of the expression forms we have discussed
already. The speculation form v = v′ in e indicates that the
values v and v′ are speculated to be identical while evalu-
ating e. The monadic speculation form from Section 4 is
actually a derived form:

v ← e in e′
def
= x← e in (x = v in e′)

The tag allocation form new t
b⇒t′.e generates two new

tags bound to variables t and t′ in the scope e. Those tags

Υ; Φ; Γ ` m : τ

Υ; Φ; ε; Γ ` retm : τ Υ; Φ; (i:τ@p); Γ ` i : τ

Υ; Φ; Ψ; Γ ` e1 : τ1 Υ; Φ; Ψ′; (Γ, x:τ1) ` e2 : τ2 e1 init

Υ; Φ; (Ψ,Ψ′); Γ ` x:τ1 ← e1 in e2 : τ2

Υ; Φ; Ψ; Γ ` e1 : τ1 Υ; Φ; ε; (Γ, x:τ1) ` e2 : τ2

Υ; Φ; Ψ; Γ ` x:τ1 ← e1 in e2 : τ2

Figure 5: Static Semantics (abridged)

express either a visibility or execution edge, as indicated by
the attribute b.6 The labelling form ϕ#e attaches a label to

an expression, which is either a tag or a quasi-tag
b
C and

b
B

(representing pre and post).
Finally, an execution state is an association list, pairing

thread identifiers (p) with the current expression on that
thread.

Static Semantics The static semantics of RMC expressions
is largely standard. Expressions are typechecked relative
to three ambient signatures and a context. The ambient
signatures specify the valid tags, locations, and identifiers,
giving the types for location and identifiers, and the threads
for identifiers. Terms are not passed an identifier signature
because identifiers cannot appear within well-formed terms.
Execution states are not passed a context, because well-
formed execution states must be closed.

The only interesting aspect is in the treatment of the
identifier signature, which we use to ensure that each unex-
ecuted identifier appears exactly once, and that the store’s
view of program order agrees with the code. Thus, on a
given thread, the identifier signature is used like a linear,
ordered context [17], as shown in Figure 5. There are two
rules for bind: Since actions must be initiated in order, iden-
tifiers may appear in the second expression of a bind only
when the first is fully initiated (i.e., all of its actions have
been converted to identifiers). At the top level (details in
Appendix A), the identifier signature lists unexecuted iden-
tifiers in the same order they appear in the store, and the
typing rules for execution states filter out the identifiers for
other threads.

Dynamic Semantics Threads and the store communi-
cate by synchronously agreeing on a transaction. The
empty transaction (∅)—which most thread transitions use—
indicates there is no store effect. The initiation transaction
ϕ1, . . . , ϕn # i = α indicates that the action α is being initi-
ated with labels ϕ1, . . . , ϕn, and is assigned identifier i. The
execution transaction i ↓ v indicates that i has been exe-

cuted and yielded result v. The edge transaction T
b⇒ T ′

indicates that T and T ′ are fresh tags, expressing a b edge.
The key rules of the dynamic semantics of expressions

and execution states appear in Figure 7. The dynamic se-
mantics depends on typing because we want the speculation

6Thus, in RMC, each tag has exactly one partner. From this prim-
itive, the compiler builds up a more flexible mechanism that allows
tags to be used in multiple edges, as in the example of Section 5.

7

actions α ::= R[`] |W[`, v] | RW[`, v]
| Push | Nop

transactions δ ::= ∅ | ~ϕ# i = α | i ↓ v | T b⇒ T
events θ ::= init(i, p) | is(i, α) | label(ϕ, i)

| edge(b, T, T) | exec(i) | rf(i, i)
| co(i, i)

histories H ::= ε | H, θ

Figure 6: Dynamic Semantics, syntax

rule to speculate only well-typed values. Consequently the
dynamic semantics for expressions and execution states de-
pends on a tag and location signature, and (for expressions)
on a context. The evaluation step judgement for expres-
sions indicates the transaction on which that step depends,
and the judgement for execution states indicates both the
transaction and the thread on which the step took place.

In the interest of brevity, we elide the ambient signatures
and context in most of the rules, where they are just ignored
or passed to premises. We also leave out the rules that
just evaluate subterms (except when they are interesting),
and we leave out the dynamic semantics of terms, which is
standard.

The rules for out-of-order execution (third row) are
straightforward. Speculation (fourth row) allows execution
to step from [v/x]e to v = v′ in[v′/x]e, provided v and v′ have
the same type. Note that variables are considered values, so
an important instance is e 7→ (x = v in [v/x]e).

The heart of the system is the bottom row. Once the
subterms of an action are evaluated (and thus it matches the
grammar of actions given in Figure 6), the action initiates,
synchronizing on a transaction ε# i = α, and is replaced by
i. As the transaction bubbles up, it collects any labels that
the action lay within. Once all the actions within a label
have been initiated, the label can be eliminated. Later, the
action executes and is replaced by a return of its value.

Read-modify-writes The semantics deals with read-
modify-write expressions by speculating them into
read-write expressions. Conceptually, the expression
RMW[m1, x:τ.m2] reads location m1 (a τ location), sub-
stitutes the read value for x in m2, and writes m2, all in
one atomic operation. To implement this, the dynamic
semantics first evaluates the location (this is necessary for
type safety7) to obtain RMW[`, x:τ.m2]. Then the semantics
speculates that the read will return some value v, which it
substitutes for x to obtain a read-write expression. That
read-write expression is then wrapped with speculation
scaffolding to ensure that the read-write does in fact
return v:

Υ; Φ; Γ ` v : τ

Υ; Φ; Γ ` RMW[`, x:τ.m2]
∅7→

(x:τ ← RW[`, [v/x]m2] in x = v in ret v)

Thus, while read-writes are actions seen by the store, read-
modify-writes are handled exclusively by the thread seman-
tics. Note that while RMC admits read-modify-write ex-

7If the location diverges, then there might be no actual location
to which values of type τ have been written. Consquently, the type
τ might be empty, so no speculation transition would be possible.

pressions in great generality, we do not assume that lan-
guages using the RMC memory model provide such full gen-
erality; on the contrary, we expect that they will provide a
small set of such operations (e.g. fetch-and-add or compare-
and-swap) supported by the architecture.

The Store RMC’s store is modelled in spirit after the stor-
age subsystem of Sarkar, et al.’s [19] model for Power, with
adaptations made for RMC’s generality. As in Sarkar, et
al., the store is represented, not by a mapping of locations
to values, but by a history of all the events that have taken
place. The syntax of events appears in Figure 6.

Three events pertain to the initiation of actions: init(i, p)
records that i was initiated on thread p, is(i, α) records that
i represents action α, and label(ϕ, i) records that label ϕ is
attached to i. These three events always occur together, but
it is technically convenient to treat them as distinct events.

The event edge(b, T, T ′) records the allocation of two tags
and an edge between them.

Two events pertain to executed actions: exec(i) records
that i is executed, and rf(i, i′) records both that i′ is exe-
cuted and i′ read from i.

The final form, co(i, i′), adds a coherence-order edge from
i to i′. This is not used in the operational semantics, but
it is useful in some proofs to have a way to add extraneous
coherence edges.

Store transitions take the form H
δ@p7−→ H ′, in which the

δ is a transaction that is shared synchronously with a tran-
sition in thread p.

In the store transition rules, we write H(θ) to mean the
event θ appears in H, where θ may contain wildcards (∗)
indicating parts of the event that don’t matter. As usual,
we write →+ and →∗ for the transitive, and the reflexive,
transitive closures of a relation →. We write the composi-

tion of two relations as
x→ y→. We say that → is acyclic if

¬∃x. x→+ x.
We can give three store transitions immediately. An

empty transaction generates no new events. An edge trans-
action simply records the new edge, provided both tags
are distinct and fresh. (We define tagdeclH(T) to mean
H(edge(∗, T, ∗)) ∨ H(edge(∗, ∗, T)).) An initiation transac-
tion records the thread, the action, and any labels that ap-
ply, provided the identifier is fresh.

H
∅@p7−→ H

(None)

T 6= T ′

¬tagdeclH(T) ¬tagdeclH(T ′)

H
T

b⇒T ′@p7−→ H, edge(b, T, T ′)

(Edge)

¬H(init(i, ∗))

H
~ϕ#i=α@p7−→ H, init(i, p), is(i, α), [label(ϕ, i) | ϕ ∈ ~ϕ]

(Init)

The remaining rules require several auxiliary definitions:

• Identifiers are in program order if they are initiated in
order and on the same thread:

i
po→H i′

def
=

∃H1, H2, H3, p. H = H1, init(i, p), H2, init(i
′, p), H3

The operational semantics ensures that this notion of
program order agrees with the actual program, since
(recall) no expression can be executed out-of-order until
any preceding actions are initiated.

8

Υ; Φ ` ξ δ@p7−→ ξ′

Υ; Φ; ε ` e δ7→ e′

Υ; Φ ` (ξ ‖ p : e)
δ@p7−→ (ξ ‖ p : e′)

ξ
δ@p′7−→ ξ′

(ξ ‖ p : e)
δ@p′7−→ (ξ′ ‖ p : e)

Υ; Φ; Γ ` e δ7→ e′ e init ϕ# δ

retm init i init

e1 init e2 init

x:τ ← e1 in e2 init
e init

v1 = v2 in e init force(susp e)
∅7→ e new t

b⇒t′.e T
b⇒T ′
7−→ [T, T ′/t, t′]e

e1
δ7→ e′1

(x:τ ← e1 in e2)
δ7→ (x:τ ← e′1 in e2)

e1 init Υ; Φ; (Γ, x:τ) ` e2
δ7→ e′2 x 6∈ FV(δ)

Υ; Φ; Γ ` (x:τ ← e1 in e2)
δ7→ (x:τ ← e1 in e

′
2) (x:τ ← ret v in e)

∅7→ [v/x]e

Υ; Φ; Γ ` v : τ Υ; Φ; Γ ` v′ : τ

Υ; Φ; Γ ` [v/x]e
∅7→ (v = v′ in [v′/x]e)

e
δ7→ e′

v = v′ in e
δ7→ v = v′ in e′ (v = v in e)

∅7→ e

α
ε#i=α7−→ i

e
δ7→ e′

ϕ# e
ϕ#δ7−→ ϕ# e′

e init

ϕ# e
∅7→ e i

i↓v7−→ ret v ϕ# δ =

{
(ϕ, ~ϕ) # i = α if δ = (~ϕ# i = α)
δ otherwise

Figure 7: Dynamic Semantics, threads (abridged)

• An identifer is marked as executed by either an exec or

an rf event: execH(i)
def
= H(exec(i)) ∨H(rf(∗, i)).

• Trace order is the order in which identifiers were ac-

tually executed: i
to→H i′

def
= ∃H1, H2. H = H1, H2 ∧

execH1(i)∧¬execH1(i′). Note that this definition makes
executed identifiers trace-order-earlier than non-yet-
executed identifiers.

• Specified order, which realizes the tagging discipline, is
defined by the rules:

i
po→H i′ H(label(T, i))

H(label(T ′, i′))
H(edge(b, T, T ′))

i
b⇒H i′

i
po→H i′ H(label(

b
C, i′))

i
b⇒H i′

i
po→H i′ H(label(

b
B, i))

i
b⇒H i′

• The key notion of execution order is defined in terms

of specified order: i
xo→H i′

def
= ∃b. i b⇒H i′.

• An identifier is executable if it has not been executed,
and all its execution-order predecessors have been:

executableH(i)
def
= ¬execH(i) ∧ ∀i′. i′ xo→H i ⊃ execH(i′).

• A read action is either a read or a read-write:
readsH(i, `) = H(is(i,R[`])) ∨H(is(i,RW[`, ∗])).

• Similarly, a write action is either a write or a read-write:
writesH(i, `, v) = H(is(i,W[`, v])) ∨H(is(i,RW[`, v])).

• Reads-from: i
rf→H i′

def
= H(rf(i, i′)).

• Identifiers i and i′ are push-ordered if i is a push and is

trace-order-earlier than i′: i
πo→H i′

def
= H(is(i,Push)) ∧

i
to→H i′. Since pushes are globally visible as soon as

they execute, this means that i should be visible to i′.

• The key notion of visibility order is defined as the union
of specified visibility order, reads-from, and push order:

i
vo→H i′

def
= i

vis⇒H i′ ∨ i rf→H i′ ∨ i πo→H i′.

Finally, there is the central notion of coherence order

(written i
co→H i′), a strict partial order on actions that write

to the same location. The coherence order is inferred ex post
from the events that transpire in the store, in a manner that
we discuss in detail in Section 7. For now, the important
property is coherence order must always be acyclic.

Note that our ex post view of coherence order is in con-
trast to the ex ante view taken by Sarkar, et al. [19]. In
our ex post view, coherence order is inferred from events
that have already occurred; in the ex ante view, coherence
edges must already exist (introduced nondeterministically
and asynchronously) in order for events to occur.

With these definitions in hand, we give the remaining
rules:

H(init(i, p)) H(is(i, α)) α = R[`] ∨ α = RW[`, v′]

executableH(i) acyclic(
co→H;rf(iw,i))

writesH(iw, `, v) execH(iw)

H
i↓v@p7−→ H, rf(iw, i)

(Read)

H(init(i, p)) H(is(i, α))
α = W[`, v] ∨ α = Push ∨ α = Nop

executableH(i) acyclic(
co→H;exec(i))

H
i↓()@p7−→ H, exec(i)

(Nonread)

Observe that read actions (reads and read-writes) are
treated the same, and non-read actions (writes, pushes, and
no-ops) are treated the same. However, their presence in
the history can have very different effects on other actions.

Also observe that Read has no explicit premise ensur-
ing that the read returns the “right value,” beyond ensur-
ing that iw writes to the same location i reads from. The
validity of the read is enforced implicitly by the premise

9

Σ
δ@p7−→ Σ′

Σ
∅@p7−→ Σ

∀ϕ ∈ ~ϕ. Υ; ε ` ϕ : label Υ,Φ,Ψ, ε ` α : τ

(Υ,Φ,Ψ)
~ϕ#i=α@p7−→ (Υ,Φ, (Ψ, i:τ@p))

Ψ = Ψ1, i:τ@p,Ψ2 ` v : τ

(Υ,Φ,Ψ)
i↓v@p7−→ (Υ,Φ, (Ψ1,Ψ2))

Υ′ = Υ, T, T ′

T 6= T ′ T, T ′ 6∈ Υ

(Υ,Φ,Ψ)
T

b⇒T ′@p7−→ (Υ′,Φ,Ψ)

s 7→ s′

Σ = (Υ,Φ,Ψ)

Σ
δ@p7−→ Σ′ H

δ@p7−→ H ′ Υ; Φ ` ξ δ@p7−→ ξ′

(Σ, H, ξ) 7→ (Σ′, H ′, ξ′)

Figure 8: Dynamic Semantics, top-level

acyclic(
co→H,rf(iw,i)). If iw is an improper write for i to read

from—for example, if iw is coherence-older than some other
write visible to i—then adding rf(iw, i) to the history will
create a cycle in coherence order.

The top level The top-level dynamic semantics appears in
Figure 8. RMC’s top-level state consists of the three ambient
signatures, a history, and an execution state.

signature Σ ::= (Υ,Φ,Ψ)
state s ::= (Σ, H, ξ)

An auxiliary judgement over ambient signatures updates
them according to the transaction. The state can make a
transition when all three components agree on a transaction.

7 Coherence order

The ultimate question to be resolved is which writes are per-
mitted to satisfy a given read. In a sequentially consistent
setting, the only write permitted to satisfy a given read is
the unique, most-recent write to the read’s location. In re-
laxed memory setting, the “most-recent write” is no longer
unique. Nevertheless, we assume that there exists an order
on writes that is respected by all reads. Following Sarkar,
et al. [19], we call this the coherence order.

As in Sarkar, et al., the coherence order is a strict partial
order that relates only writes to the same location. In an ef-
fort to future-proof our calculus, we place only the minimum
constraints on coherence order necessary to accomplish three
goals: First, single-threaded computations should exhibit
the expected behavior. Second, the message passing idiom—
expressed via RMC’s visibility and execution order—should
work. Third, read-write operations should be atomic in an
appropriate sense. These three aims result in three rules
defining coherence order, which we explore below.

The first coherence rule states that a read always reads
from the most recent of all writes (to its location) that it
has seen:

i
wrp→H ir i′

rf→H ir i 6= i′

i
co→H i′

(Co-read)

Here we write i
wrp→ ir (pronounced “i is write-read-prior to

ir”) to say that the read ir has already seen the write i.

(Other writes may also have been seen; the prior writes are
the ones we know for certain have been seen.) Since ir reads
from i′ instead of i, we infer that i′ is coherence-later than i.

We know that ir has seen iw in one of two ways. First,
iw is program-order-earlier than ir (thus ensuring that
single-threaded computations work properly). Second, iw
is visibility-order-previous to some action that is execution-
order-previous to ir (thus ensuring that the message-passing
idiom works properly).

i
po→H i′ writesH(i, `, v) readsH(i′, `)

i
wrp→H i′

(Wrp-po)

i
vo→+
H

xo→∗H i′ writesH(i, `, v) readsH(i′, `)

i
wrp→H i′

(Wrp-vis)

The second coherence rule says that a write is always
more recent than all other writes (to its location) it has
seen:

i
wwp→H i′

i
co→H i′

(Co-write)

Here we write i
wwp→ i′ (write-write-prior) to say that the

write i′ has already seen the write i. This has two rules
similar to write-read priority:

i
po→H i′ writesH(i, `, v) writesH(i′, `, v′)

i
wwp→H i′

(Wwp-po)

i
vo→+
H

xo→∗H i′ writesH(i, `, v) writesH(i′, `, v′)

i
wwp→H i′

(Wwp-vis)

Another write-write-priority rule says that i′ has seen i,
if i′ has seen some read ir that has seen i:

i
wrp→H ir ir

rwp→H i′

i
wwp→H i′

(Wwp-read)

Read-write-priority (
rwp→), used here, has only a program-

order rule. Although a visibility rule would also be sound,
it is easy to show that it would not add any new coherence
edges, so we omit it for simplicity.

i
po→H i′ readsH(i, `) writesH(i′, `, v)

i
rwp→H i′

(Rwp-po)

The third coherence rule says that when an atomic read-
write action i reads from a write iw, no other write i′ can
come between them in coherence order:

iw
rf→H i H(is(i,RW[∗, ∗])) iw

co→H i′ i 6= i′

i
co→H i′

(Co-rw)

The fourth and final coherence rule says that extra co-
herence edges can be given in the history. This is a technical
device for Corollary 9; the operational semantics never in-
troduces any such events.

H(co(i, i′))

i
co→H i′

(Co-fiat)

10

7.1 Discussion

The definition of coherence order works in tandem with the
requirement for coherence order to be acyclic to prevent il-

legal resolution of reads. For example, suppose iw
co→ i′w and

ir has seen i′w. Then ir cannot read from iw. If it did, we

would infer that i′w
co→ iw, which would introduce a cycle in

coherence order.

Write-write conflicts An alert reader may have observed
that RMC enforces execution order only for programmer-
specified execution-order edges. Execution order does not
respect program order even for conflicting memory accesses.
This is an unusual design, and it merits a little discussion.

Suppose iw and i′w are writes to the same location, and

suppose iw
po→ i′w. It does not follow from any principle

identified above that iw must execute before i′w. All that is
required is that iw be coherence-earlier than i′w, so that any
read that sees both must choose the latter.

In fact, existing architectures do this. Both Power and
ARM employ write forwarding [19], wherein a write that is
not yet eligible to be sent to the storage system can never-
theless satisfy subsequent reads on the same processor. In
RMC’s view, such a write was executed as soon as it became
eligible to be read from,8 which might well be sooner than
some program-order-previous write.

Read-write conflicts Suppose ir reads from the same lo-

cation iw writes to, and suppose ir
po→ iw. Again, it does

not follow that iw must execute after ir. All that is re-
quired is that ir ultimately read from a write coherence-
earlier than iw.

In fact, existing architectures do this also! Some ARM
processors will sometimes aggressively carry out a write even
when preceding reads are not yet complete, and rely on the
storage system to ensure that those preceding reads are sat-
isfied by earlier writes. The left-hand trace in Figure 9 can
be observed (rarely) on the APQ8060 processor [5, figure
32]. For this trace to occur, the processor must execute Rx0
before the push, and hence it must execute Wy2 before Ry1.
We call this phenomenon a “leapfrogging write.”

The leapfrogging write phenomenon also illustrates why
priority-via-visibility (e.g., Wrp-vis) must be defined using
execution order, and not merely trace order, as might oth-

erwise seem attractive. If trace order (
to→) were used, RMC

would not admit the right-hand trace in Figure 9 because

then Wy2
vo→+ Rx1

to→ Ry1 would give us Wy2
wrp→ Ry1,

so Wy2
co→ Wy1 (by Co-read), which would contradict

Wy1
co→ Wy2 (which we have by Co-write). This trace,

although not yet observed on any processor, is admitted by
the revision [18] of the Sarkar, et al. model [19], to account
for leapfrogging writes. Thus, our definition of the message-
passing idiom that we seek to respect is based only on de-
liberate ordering using execution order, and not accidental
ordering observed by trace order.

Write-read conflicts Suppose iw writes to the same loca-

tion ir reads from, and suppose iw
po→ ir. Again, it does not

8Hence, RMC’s “executed” is not the same thing as Sarkar, et al.’s
“committed” [19].

Wx1

push

vo

Wy1

xo

Ry1

rf Wy2

Ry2

rf

Rx0

xo

Wy1 Ry1
rf

Wy2

co

Rx1

to

rwp

Ry2
rf

Wx1

vo

rf

Figure 9: Leapfrogging writes (left observed, right allowed
by Sarkar, et al. revised model)

follow that ir must execute after iw. Instead, it is conceiv-
ably possible that the architecture could aggressively com-
plete the read and then ensure that iw is coherence-earlier
that the write that satisfied ir.

This behavior has not been observed on any architecture,
and we certainly do not advocate it. But in light of the ex-
istence of leapfrogged writes, this sort of “leapfrogged read”
does not seem inconceivable.

Note, however, that this behavior can only occur in the
presence of a data race. If iw is coherence-later than all
other writes to the relevant location, as would be the case
in properly synchronized code, then ir cannot read from any
other write. In that case, ir must read from iw, and thus it
cannot execute until iw does.

Semantic deadlock One consequence of the very loose se-
mantics of RMC’s stores is that execution can find its way
into a dead end in which no more progress is possible. We
call this phenomenon semantic deadlock. To be clear, this
is a distinct phenomenon from ordinary deadlock, in which
a buggy program is unable to make progress, often due to
a faulty locking protocol. In semantic deadlock a correct
program is nevertheless unable to make progress due to in-
consistent choices made by the nondeterministic semantics.

Semantic deadlock arises when any progress would create
a cycle in coherence order. This can happen because of reads
or pushes. An example of the former is shown in the left-
hand trace in Figure 10. In this trace, Rx? cannot read

from Wx1, because if Wx1
rf→ Rx? then Wy2

vo→+ Rx?,

so Wy2
wwp→ Wy1, which would create a cycle in coherence

order. However, no other write to x is available, so Rx?
cannot execute.

An example of the latter is shown in the right-hand trace
of Figure 10. In this trace, neither push nor Wx1 nor Wy1
can execute. Suppose push1 executes before Wy1. Then

push1
πo→ Wy1, so Wy2

vo→+ Wy1, and so Wy2
wwp→ Wy1,

which creates a cycle in coherence order. Thus Wy1 must
execute before push1. Similarly, Wx1 must execute before

push2. But push1
xo→Wx1 and push2

xo→Wy1 so no progress
can be made.

Obviously, semantic deadlock cannot occur in a real exe-
cution. Therefore we restrict our attention to consistent his-

11

Rz1

Wx1

vo

Rx?

Wy1

xo

Wy2

wwp, co

Ry2
rf

Wz1

vo

rf

Ry2

push1

vo

Wx1

xo

Wx2

wwp, co

Rx2

rf

push2

vo

Wy1

xo

Wy2

wwp, co

rf

Figure 10: Semantic deadlock

tories, which are histories that can be extended so that every
action is executed, without initiating any new actions. (Re-
solving the former example by adding a new write for Rx?
to read from would be cheating. The storage system must
function on its own; it cannot rely on a thread to break its
deadlock.) This leads to a subtlety in type safety (Theo-
rem 3), similar to our treatment of moot states resulting
from inaccurate speculation.

8 Implementation

Implementing the RMC memory model on x86 architectures
is easy. The total-store-ordering semantics [20] provides that
all instructions are executed in program order (or, more pre-
cisely, cannot be observed to be executed out of program
order), each write is visible either globally or only to its
own thread, and writes become globally visible in program
order. Consequently, visibility- and execution-order edges
compile away to nothing, and pushes can be implemented
by mfences.

Power [19] and ARM [5] are more interesting. Pushes
are again implemented by a fence (sync on Power, dmb on
ARM). Necessary visibility edges—many can be eliminated
statically—are realized by a lightweight fence lying between
the two actions. On Power, the lightweight fence is lwsync;
ARM does not have one, so a full fence (dmb) is required.

Power and ARM do not provide an analogous execution-
order fence, but execution order can be enforced using a
number of standard devices, including data or address de-
pendencies (possibly spurious), control dependencies to an
isync (Power) or isb (ARM) instruction, and control de-
pendencies to writes.

Note that we do not give a direct mapping of RMC con-
structs onto the instruction set architecture, such as the
mappings for C/C++ considered in Batty, et al. [6]. In
C/C++, the synchronization code is determined by the
memory-order of an action, so such a mapping is meaningful.
In contrast, in RMC the synchronization code is determined
by the edges connecting two actions, and the resulting code

Wx1

Wy2

 vo

Ry2

rf

Wz3

 xo

Rz3

rf

Rx0

 xo

Figure 11: ISA2 litmus test

Wx1

Wy2

 vo

Wy1

Wx2

 vococo

Figure 12: 2+2W litmus test

might appear anywhere between the two. Thus, a direct
mapping is not meaningful.

For example, a C/C++ store-release is implemented on
Power by lwsync; st. Peephole optimization might im-

prove this, but not much. In RMC, a visibility edge i
vo→ i′

can be realized by a sync or lwsync appearing anywhere be-
tween i and i′. Indeed, multiple visibility edges might well
be realized by the same instruction.

The cost of minimality As always, one can sometimes ob-
tain better performance with hand-crafted assembly lan-
guage than with compiled code.

Consider the classic ISA2 litmus test [19, 5] in Figure 11.

This trace is possible in RMC. The edge Ry2
xo→ Wz3 breaks

up the chain of visibility order between Wx1 and Rz3, so we
cannot show that Wx1 is prior to Rx0.

However, when compiled into Power, using an lwsync

for
vo→, and a dependency for

xo→, this trace is forbidden.
Power guarantees B-cumulativity [13, 19, 5], which says that
accepting a memory barrier from another thread has the
same effect as generating it on your own thread. For Ry2
to happen on Power, the second thread must accept the
lwsync barrier and the Wx1 before it, thus placing a barrier
between Wx1 and Wz3. In our terminology we would say B-

cumulativity results in Wx1
vo→ Wz3, and causes Wx1 to be

prior to Rx0.
To prevent this, the programmer would need to insert a

push between Wx1 and Wy2, or upgrade the Ry2→ Wz3 edge
to visibility order. Either way, some additional overhead
might be incurred.

As another example, consider the 2+2W litmus test [19,
5] in Figure 12. Nothing in RMC prevents this trace from
taking place. However, when compiled into Power, using an

lwsync for
vo→, this trace is forbidden. Power guarantees [19,

5] the acyclicity of a relation that in RMC we would write
co→ ∪ vo→, which is plainly violated by the trace. RMC makes
no such guarantee.

To prevent this, the programmer would need to insert
pushes between both pairs of writes. Again, some additional
overhead might be incurred.

12

Both traces are also possible when translated into
C/C++, so C/C++ shares these potential overheads. In
RMC we could avoid them by basing our design on stronger
assumptions, but we prefer to make the weakest possible
assumptions. Thus, some possible additional overhead in
cases such as these can be seen as the cost of our minimal
assumptions.

9 Theorems

Type safety The first property we establish for RMC is
type safety. RMC’s typing judgement for top-level states is
` (Σ, H, ξ) ok with the one rule:

` H : Σ Σ ` ξ ok
` (Σ, H, ξ) ok

The auxiliary judgement ` H : Σ states that H is trace
coherent (which basically means it could be generated by
RMC’s dynamic semantics), and H’s contents match Σ. The
details appear in Appendix A.

Now we can state the preservation theorem:

Theorem 1 (Preservation) If s 7→ s′ and ` s ok then
` s′ ok.

The progress theorem is trickier. The standard formula-
tion of progress—well-formed states either are final or take
a step—is inappropriate for RMC because of nondetermin-
ism. The goal of type safety is to show that bad states are
not reachable from well-formed programs, and the standard
formulation identifies bad states with “stuck” states. This is
very convenient, provided we can design our operational se-
mantics so that good states have at least one transition and
bad ones have no transitions. In a deterministic setting, this
is usually feasible.

But for RMC it is both too weak and too strong. Suppose
our state has two threads, running e and e′, and suppose
further that e is in a bad state. Even if e is stuck, the state
as a whole may not be, because we might still be able to take
a step on e′. In other words, “stuckness” fails to capture
“badness” when we can nondeterministically choose which
thread to execute.

Indeed, for RMC the problem is even more pronounced,
because no expression can ever be stuck. It is always possible
to take a step using the speculation rule.

Conversely, “unstuckness” is also too strong a condition
(or would be, if the speculation rule did not make it trivial).
We call a state moot if it contains an unresolvable specula-
tion (v = v′ in e, where v and v′ are closed but not equal),
or if it is semantically deadlocked. A moot state might well
be stuck (except for gratuitous speculation), if it had no
work left to do other than undischargeable speculations or
deadlocked actions, but it is not a bad state. It is simply
a state that resulted from nondeterministically exploring a
blind alley.

Instead, we characterize the good states directly with a
judgement s right. The details can be found in Appendix D.
Then, instead of “unstuckness”, we prove:

Theorem 2 (Rightness) If ` s ok then s right.

This is similar to Wright and Felleisen’s original tech-
nique [21], except they characterized the faulty states in-
stead of the good ones, and for them faultiness was a tech-
nical device, not the notion of primary interest.

By itself this is a little unsatisfying because we might
have made a mistake in the definition of rightness. To ame-
liorate this, we anchor rightness back to the operational se-
mantics:

Theorem 3 (Progress) If s right, then either (1) for ev-
ery thread p : e in s, e is final, or (2) there exists s′ such
that s 7→ s′ without using the speculation rule, or (3) s is
moot.

Sequential consistency We also prove two results that es-
tablish sequential consistency for different programming dis-
ciplines. Our first shows that the programmer can achieve
sequential consistency by interleaving actions with pushes.

The proof follows the general lines of Batty, et al.’s [8]
sequential consistency proof, but it is generalized to account
for the looseness of RMC (e.g., leapfrogging writes) and our
main lemma is simpler. We begin with three definitions:
Specified sequential consistency indicates that the two ac-
tions are separated by a push.9 A from-read edge between
i and i′ means that i reads from a write that is coherence-
earlier than i′. Sequentially consistent order [2] is the union

of
ssc→,

co→,
rf→, and

fr→:

i
ssc→H i′

def
= ∃ip. H(is(ip,Push)) ∧ i vo→+

H ip
xo→+
H i′

i
fr→H i′

def
= ∃iw. iw

rf→H i ∧ iw
co→+
H i′

i
sc→H i′

def
= i

ssc→H i′ ∨ i co→H i′ ∨ i rf→H i′ ∨ i fr→H i′

We also define communication order [2] as sequentially

consistent order without
ssc→:

i
com→H i′

def
= i

co→H i′ ∨ i rf→H i′ ∨ i fr→H i′

An important property of communication order is that
it relates only accesses to the same location, and it agrees
with coherence order on writes.

Lemma 4 (Main Lemma) Suppose H is trace coherent,
complete (that is, every identifier in H is executed), and

coherence acyclic (that is, acyclic(
co→H)). If i1

xo→+
H i2

com→∗H
i3

vo→+
H i4, where i1 and i4 are pushes, then i1

to→H i4.

Proof

We may assume, without loss of generality, that i3 is a
write: If i3 is a push or no-op, then i2 = i3 (because
com→ relates only reads and writes) and the result follows
immediately. If i3 is a read, then it reads from some

write i′3, and we can rearrange to obtain i1
xo→+
H i2

com→∗H
i′3

vo→+
H i4 (since i′3

vo→H i3).

Since H is complete, i1 and i4 are executed, so either

i1
to→H i4 or i4 = i1 or i4

to→H i1. In the first case we are
done. In both of the remaining cases we have i4

vo→∗H i1,

either trivially or using push order. Therefore i3
vo→+
H i1.

From this we draw a contradiction.

Suppose i2 is a write. Then i2
co→∗H i3 (since i2

com→∗H i3).

However, we also have i3
wwp→H i2 so i3

co→H i2, which is
a contradiction.

On the other hand, suppose i2 is a read. Let iw
rf→H i2.

Then iw
com→+

H i3, so iw
co→+
H i3. However, i3

wrp→H i2 so

i3
co→H iw, which is a contradiction. �

9In practice the execution-order edge from ip to i′ is ordinarily

provided by labelling the push with
exe
B.

13

Corollary 5 Suppose H is trace coherent, complete, and

coherence acyclic. If i1
xo→+
H i2

sc→∗H i3
vo→+
H i4, where i1 and

i4 are pushes, then i1
to→H i4.

Proof

By induction on the number of
ssc→ steps in i2

sc→∗H i3.

Theorem 6 Suppose H is trace coherent, complete, and co-

herence acyclic. Then
sc→H is acyclic.

Proof

Suppose i
sc→+
H i. We show there must be at least one

ssc→
edge in the cycle. Suppose the contrary. Then i

com→+
H i.

If i is a write, then i
co→+
H i, which is a contradiction. If

i is a read, then i
com→∗H iw

rf→H i, so iw
co→+
H iw, which is

a contradiction.

Thus suppose that i1
ssc→H i2

sc→∗H i1. Expanding
ssc→

we obtain i1
vo→+
H ip

xo→+
H i2

sc→∗H i1 for a push ip. By

Corollary 5, ip
to→H ip, which is a contradiction. �

Definition 7 A history H is consistent if there exists H ′

containing no is events, such that H,H ′ is trace coherent,
complete, and coherence acyclic.

Definition 8 Suppose R is a binary relation over identifiers
and S is a set of identifiers. Then R is a sequentially consis-
tent ordering for S if (1) R is a total order, (2) R respects
program order for elements of S, and (3) every read in the
domain of R is satisfied by the most R-recent write to its
location.

Corollary 9 (Sequential consistency) Suppose H is
consistent. Suppose further that S is a set of identifiers

such that for all i, i′ ∈ S, i
po→H i′ implies i

ssc→H i′. Then
there exists a sequentially consistent ordering for S.

Proof

Let H,H ′ be trace coherent, complete, and coherence
acyclic. Let H ′′ extend H,H ′ by making enough coher-
ence commitments to totally order all writes to the same
location. (The Co-rw rule makes this tricky, since we
must join read-write chains only at the ends, but it’s not
hard to show it can be done.) Then H ′′ too is trace
coherent, complete, and coherence acyclic.

By Theorem 6,
sc→H′′ is acyclic, so there exists a total

order containing it. Let R be such an order. Following
Alglave [2], we show that R is a sequentially consistent
order for S:

• Suppose i, i′ ∈ S and i
po→H i′. By assumption,

i
ssc→H i′. Since H ′′ extends H, we have i

ssc→H′′ i′,

so i
sc→H′′ i′, so i R i′.

• Suppose iw
rf→H ir. Then iw

rf→H′′ ir, so iw
sc→H′′

ir, so iw R ir. Let ` be the location that iw writes
and ir reads. It remains to show there is no write
i′w to ` such that iw R i′w R ir.

Suppose i′w is a write to ` and iw 6= i′w. Either

i′w
co→H′′ iw or iw

co→H′′ i′w. If i′w
co→H′′ iw then

i′w R iw. If iw
co→H′′ i′w, then ir

fr→H′′ i′w, so ir R i′w.
�

Observe that the sequentially consistent order includes
all of H’s writes, not only those belonging to S. Thus, writes
not belonging to S are adopted into the sequentially consis-
tent order. This means that the members of S have a con-
sistent view of the order in which all writes took place, not
just the writes belonging to S. However, for non-members
that order might not agree with program order. (The or-
der contains non-S reads too, but for purposes of reasoning
about S we can ignore them. Only the writes might satisfy
a read in S.)

Our second is a standard result establishing sequen-
tial consistency for data-race-free executions. We define
synchronized-before as follows:

i
sb→H i′

def
= ∃is. i

vo→+
H is

po→∗H i′ ∧H(label(
exe
B , is))

In essence i
sb→ i′ says that i is visible to some synchroniza-

tion operation is that is execution-order before i′. That is

must be labelled
exe
B so that i will also be synchronized before

any program-order successors of i′. Note that this defini-
tion is insensitive to the mechanism of synchronization: it
might use an atomic read-write, the Bakery algorithm, or
any other.

We say that an execution is data-race-free if any two
conflicting actions on different threads are ordered by
synchronized-before. Boehm and Adve [10] refer to this sort
of data race as a “type 2 data race.” We may then show
that data-race-free executions are sequentially consistent:

Theorem 10 Suppose H is trace coherent, coherence

acyclic, and data-race-free. Let
scdrf→ H be the union of

po→H ,
co→H ,

rf→H , and
fr→H . Then

scdrf→ H is acyclic.

Proof

Let
sq→H be the union of

po→H and
sb→H . We claim that

sq→H is acyclic and contains
scdrf→ H .

Suppose i
sq→H i. Then there must be an

sb→ edge in the

cycle, otherwise i
po→H i, which is impossible. Let is be

the synchronization operation in one of the
sb→ edges. We

may prove that is
to→H is by induction on the number of

sb→ edges in the cycle, which is a contradiction.

It remains to show that
scdrf→ H is contained in

sq→H .
Clearly

po→H edges are in
sq→H .

Suppose iw
co→H i′w. Then iw and i′w are conflicting

actions. If they are on the same thread, they are re-
lated by program order, and if not they are related by
synchronized-before. If they are related in the correct di-

rection we are done, so suppose i′w
po→H iw or i′w

sb→H iw.

Either way, i′w
wwp→H iw, so i′w

co→H iw. Thus there is a
cycle in coherence order.

Suppose iw
rf→H ir. Again, iw and ir are conflicting

actions. As before, suppose ir
po→H iw or ir

sb→H iw. In

the former case, iw
wrp→H ir

rwp→H iw, so iw
wwp→H iw, so

iw
co→H iw, giving a cycle in coherence order. In the

latter case, synchronized-before implies trace order, so

iw
rf→H ir

to→H iw, so iw executes before itself.

Suppose ir
fr→H iw. Again, ir and iw are conflicting

actions. As before, suppose iw
po→H ir or iw

sb→H ir.

14

Either way, iw
wrp→H ir. Expanding

fr→, we obtain i′w
rf→H

ir and i′w
co→+
H iw. By Co-read we have iw

co→H i′w, so
there is a cycle in coherence order. �

Corollary 11 (Sequential consistency) Suppose H is
consistent and data-race-free. Then there exists a sequen-
tially consistent ordering for all identifiers in H.

Proof

As above, noting that a data-race-free history extended
without any new is events is still data-race-free.

These two sequential consistency results can also be com-
bined into a single theorem for executions that are partially
data-race-free and also use specified sequential consistency.
Details appear in the Coq formalization.

10 Conclusion

The “thin-air” problem As given above, RMC makes no
effort to rule out “thin-air reads”, in which a write of a
speculated value justifies itself, thereby allowing a value to
appear which has no cause to exist (out of thin air, so to
speak). This could be done by adapting the parallel trace
mechanism in Jagadeesan, et al. [14], as follows:

First we break the execute transaction (i ↓ v) into two
forms: write execution (i ⇓ v) for writes, and benign execu-
tion (still i ↓ v) for everything else. The important differ-
ence is that write execution is not passed up by speculation
expressions:

e
δ7→ e′ δ not of the form i ⇓ v

v = v′ in e
δ7→ v = v′ in e′

By itself, this prevents speculated values from being writ-
ten to the store, since speculated values appear only in ac-
tions that arise within speculation expressions. We do not
want to go so far as to rule out speculated writes entirely.
Instead, we allow a benign execution in the thread (which
might be speculated) to rendezvous with a write execution,
provided there exists an alternative trace in which that write
could have taken place without speculation:

Σ = (Υ,Φ,Ψ) Σalt = (Υalt ,Φalt ,Ψalt)

Σ
i⇓v@p7−→ Σ′ H

i⇓v@p7−→ H ′ Υ; Φ ` ξ i↓v@p7−→ ξ′

(Σ, H, ξ) 7→∗ (Σalt , Halt , ξalt)

Halt
i⇓v@p7−→ H ′alt Υalt ; Φalt ` ξalt

i⇓v@p7−→ ξ′alt

(Σ, H, ξ) 7→ (Σ′, H ′, ξ′)

However, this is not a complete solution to the problem.
It prevents thin-air reads, but at the cost of preventing some
desirable compiler optimizations. As Batty and Sewell [9]
illustrate, it is very difficult to distinguish between thin-air
traces and some desirable traces.

Related work RMC’s store is inspired by the storage sub-
system of Sarkar, et al. [19]. However, the RMC store is
more general, as it is not intended to capture the behavior
of a specific architecture, and the RMC’s thread semantics
is entirely different from Sarkar, et al.’s thread subsystem.

Another similar formalism is the axiomatic framework
of Alglave, et al. [5] (hereafter “Cats”), which builds on

Alglave [2]. Like RMC, Cats is a generic system, not spe-
cific to any architecture. RMC is an operational framework
and Cats is axiomatic, but this difference is less than it
might seem since (as noted in Section 1.1), RMC’s acyclic-
coherence requirement gives it an axiomatic flavor. More-
over, Cats also defines a operational system in a similar
fashion (transitions may take place provided they violate
no axiom), and show it equivalent to the axiomatic system.

The greatest differences between RMC and Cats stem
from their differing aims: First, Cats is not intended to serve
as a programming language. Second, while RMC aims to be
weaker than all real architectures, Cats aims to model them.
Thus, Cats includes a variety of parameterized machinery
that can be instantiated to obtain the behavior of a specific
architecture, machinery that RMC omits.

Cats includes four axioms that relate to RMC’s five as-
sumptions. Their “sc per location” axiom corresponds to
our first two assumptions (sequential consistency for single-
threaded computations, and an acyclic coherence order),
except that unlike RMC, Cats chooses to forbid read-read
hazards. (Nevertheless Cats could easily be altered to per-
mit them, and RMC could forbid them with an additional
coherence rule.) Their “observation” axiom includes our
third assumption (message-passing works), but also includes
B-cumulativity (recall Section 8) which RMC does not.
Their “propagation” axiom includes our fourth assumption
(pushes exist), and defines a propagation order similar to
our visibility order. However, the propagation axiom goes

further, requiring (in RMC terminology) that
co→ ∪ vo→ be

acyclic (recall Section 8), which we do not. We omit Cats’s
“no thin air” axiom, while Cats omits our fifth assumption
(atomic read-writes exist), although Cats includes much of
the machinery necessary to support them.

RMC’s speculation mechanism is inspired by the one sug-
gested in Jagadeesan, et al. [14]. Like RMC, they allow a
speculated value to be invented out of whole cloth, provided
that speculation is subsequently discharged. However, the
details are quite different. In their system, the speculated
value is written immediately into the store. This makes
speculation an effectful operation, while in RMC it is pure.

Moreover, the means of discharge is quite different. In
RMC, speculation is tied to a value, and is discharged when
it becomes equal to the speculated value. In Jagadeesan et
al. speculation is tied to a location in the store. Discharge
occurs when the speculated value is written to that location,
but that condition would be trivial if employed naively, since
such a write already happened at the moment of speculation.
Instead, they maintain a parallel trace without the specu-
lated write, and the speculation is discharged when the write
occurs in the parallel trace.

Putting speculation in the thread semantics, as we do,
rather than the store semantics, makes for a cleaner for-
malism, since it separates orthogonal concerns, and since it
does not require a parallel-trace mechanism. On the other
hand, their approach automatically rules out thin-air reads,
which ours does not. As discussed above, doing so in our
setting requires the addition of a parallel-trace mechanism
reminiscent of theirs.

Formalization All the results of this paper are formalized
in Coq. The formalization consists of 29 thousand lines of
code (including comments and whitespace), and takes 93
seconds to check on a 3.4 GHz Intel Core i7.

15

Acknowledgements

We gratefully acknowledge Luke Zarko, Susmit Sarkar, and
Jade Alglave for their many helpful comments and sugges-
tions.

A Static semantics

Υ; Φ; Γ ` m : τ

Γ(x) = τ

Υ; Φ; Γ ` x : τ Υ; Φ; Γ ` () : unit

Φ(`) = τ

Υ; Φ; Γ ` ` : τ ref

Υ; Φ; ε; Γ ` e : τ

Υ; Φ; Γ ` susp e : τ susp Υ; Φ; Γ ` n : nat

Υ; Φ; Γ ` m1 : nat Υ; Φ; Γ ` m2 : τ Υ; Φ; Γ ` m3 : τ

Υ; Φ; Γ ` ifzm1 thenm2 elsem3 : τ

Υ; Φ; (Γ, f :(τ1→ τ2), x:τ1) ` m : τ2 f, x 6∈ Dom(Γ)

Υ; Φ; Γ ` fun f(x:τ1):τ2.m : τ1→ τ2

Υ; Φ; Γ ` m1 : τ → τ ′ Υ; Φ; Γ ` m2 : τ

Υ; Φ; Γ ` m1m2 : τ ′

Υ; Γ ` ϕ : label

t:tag ∈ Γ

Υ; Γ ` t : label
T ∈ Υ

Υ; Γ ` T : label

Υ; Γ `
b
C : label Υ; Γ `

b
B : label

e init

retm init i init

e1 init e2 init

x:τ ← e1 in e2 init
e init

v1 = v2 in e init

Υ; Φ; Ψ; Γ ` e : τ

Υ; Φ; Γ ` m : τ

Υ; Φ; ε; Γ ` retm : τ

Υ; Φ; Γ ` m : τ susp

Υ; Φ; ε; Γ ` forcem : τ

Υ; Φ; Ψ; Γ ` e1 : τ1 Υ; Φ; Ψ′; (Γ, x:τ1) ` e2 : τ2
e1 init x 6∈ Dom(Γ)

Υ; Φ; (Ψ,Ψ′); Γ ` x:τ1 ← e1 in e2 : τ2

Υ; Φ; Ψ; Γ ` e1 : τ1 Υ; Φ; ε; (Γ, x:τ1) ` e2 : τ2 x 6∈ Dom(Γ)

Υ; Φ; Ψ; Γ ` x:τ1 ← e1 in e2 : τ2

Υ; Φ; Γ ` v1 : τ Υ; Φ; Γ ` v2 : τ Υ; Φ; Ψ; Γ ` e : τ ′

Υ; Φ; Ψ; Γ ` v1 = v2 in e : τ ′

Υ; Φ; (i:τ@p); Γ ` i : τ

Υ; Φ; Γ ` m : τ ref

Υ; Φ; ε; Γ ` R[m] : τ

Υ; Φ; Γ ` m1 : τ ref Υ; Φ; Γ ` m2 : τ

Υ; Φ; ε; Γ `W[m1,m2] : unit

Υ; Φ; Γ ` m1 : τ ref Υ; Φ; Γ ` m2 : τ

Υ; Φ; ε; Γ ` RW[m1,m2] : τ

Υ; Φ; Γ ` m1 : τ ref Υ; Φ; Γ, x:τ ` m2 : τ

Υ; Φ; ε; Γ ` RMW[m1, x:τ.m2] : τ

Υ; Φ; ε; Γ ` Push : unit Υ; Φ; ε; Γ ` Nop : unit

Υ; Φ; Ψ; (Γ, t:tag, t′:tag) ` e : τ t, t′ 6∈ Dom(Γ)

Υ; Φ; Ψ; Γ ` new t
b⇒t′.e : τ

Υ; Γ ` ϕ : label Υ; Φ; Ψ; Γ ` e : τ

Υ; Φ; Ψ; Γ ` ϕ# e : τ

Υ; Φ; Ψ ` ξ ok

Υ; Φ; ε ` ε ok

p 6∈ ξ Υ; Φ; (Ψ�6=p) ` ξ ok Υ; Φ; (Ψ�=p); ε ` e : τ

Υ; Φ; Ψ ` ξ ‖ p : e ok

Ψ�=p =

 ε if Ψ = ε
Ψ′�=p , i:τ@p if Ψ = Ψ′, i:τ@p
Ψ′�=p if Ψ = Ψ′, i:τ@p′ and p 6= p′

Ψ�6=p =


ε if Ψ = ε
Ψ′�6=p if Ψ = Ψ′, i:τ@p
Ψ′�6=p , i:τ@p′ if Ψ = Ψ′, i:τ@p′ and p 6= p′

` Υ ok ` H : Υ

` ε ok
` Υ ok T 6∈ Υ

` Υ, T ok

` Υ ok ∀T. T ∈ Υ⇔ tagdeclH(T)

` H : Υ

` Φ ok Υ; Φ0 ` H : Φ

` ε ok
` Φ ok ` 6∈ Dom(Φ)

` Φ, `:τ ok

` Φ ok
∀(`:τ)∈Φ. initializedH(`)
∀(`:τ)∈Φ. ∀i, v.writesH(i, `, v) ⊃ Υ; Φ0; ε ` v : τ
∀i, `, v.writesH(i, `, v) ⊃ ` ∈ Dom(Φ)

Υ; Φ0 ` H : Φ

16

The auxiliary definition initializedH(`) says that there ex-
ists a write to ` that is visible to all reads from `:

initializedH(`)
def
=

∃iw, ip, v.writesH(iw, `, v) ∧H(is(ip,Push))

∧ iw
vo→+
H ip ∧ execH(ip)

∧∀ir. readsH(ir, `) ⊃ ip
to→H ir

` Ψ ok Υ; Φ ` H : Ψ

` ε ok
` Ψ ok i 6∈ Dom(Ψ)

` Ψ, i:τ@p ok

` Ψ ok

∀(i:τ@p)∈Ψ.∃α.H(init(i, p)) ∧H(is(i, α))
∧Υ; Φ; ε; ε ` α : τ ∧ ¬execH(I)

∀i.H(init(i, ∗)) ⊃ ¬execH(i) ⊃ i ∈ Dom(Ψ)

∀i1, i2,Ψ1,Ψ2.
Ψ = Ψ1,Ψ2 ⊃ i1 ∈ Dom(Ψ1) ⊃ i2 ∈ Dom(Ψ2)

⊃ i1
po→H i2

Υ; Φ ` H : Ψ

` H : Σ

H trco acyclic(
co→H)

` H : Υ Υ; Φ ` H : Φ Υ; Φ ` H : Ψ

` H : (Υ,Φ,Ψ)

` s ok

` H : Σ Σ ` ξ ok
` (Σ, H, ξ) ok

B Trace coherence

H trco

ε trco

H trco ¬H(init(i, ∗))
H, init(i, p) trco

H trco H = H ′, init(i, p)

H, is(i, α) trco

H trco H(is(i, α)) ¬execH(i)

∀i′. i′ xo→H i ⊃ execH(i′)
α not of the form R[`] or RW[`, v]

H, exec(i) trco

H trco writesH(iw, `, v) readsH(ir, `)
execH(iw) ¬execH(ir)

∀i′. i′ xo→H i ⊃ execH(i′)

H, rf(iw, ir) trco

H trco T 6= T ′ ¬tagdeclH(T) ¬tagdeclH(T ′)

H, edge(b, T, T ′) trco

H trco
(∃H ′, α.H = H ′, is(i, α)) ∨ (∃H ′, ϕ′. H = H ′, label(ϕ′, i))
labeldeclH(ϕ)

H, label(ϕ, i) trco

tagdeclH(T)

labeldeclH(T) labeldeclH(
b
C) labeldeclH(

b
B)

H trco writesH(i, `, v) writesH(i′, `, v′)

H, co(i, i′) trco

C Dynamic semantics

m 7→ m′

m1 7→ m′1

ifzm1 thenm2 elsem3 7→ ifzm′1 thenm2 elsem3

ifz 0 thenm2 elsem3 7→ m2

ifz s(n) thenm2 elsem3 7→ m3

m1 7→ m′1

m1m2 7→ m′1m2

m7 → m′2

v1m2 7→ v1m
′
2

(fun f(x:τ1):τ2.m)v 7→ [(fun f(x:τ1):τ2.m), v/f, x]m

Υ; Φ; Γ ` e δ7→ e′

m 7→ m′

Υ; Φ; Γ ` retm
∅7→ retm′

Υ; Φ; Γ ` e1
δ7→ e′1

Υ; Φ; Γ ` (x:τ ← e1 in e2)
δ7→ (x:τ ← e′1 in e2)

e1 init Υ; Φ; (Γ, x:τ) ` e2
δ7→ e′2 x 6∈ FV(δ)

Υ; Φ; Γ ` (x:τ ← e1 in e2)
δ7→ (x:τ ← e1 in e

′
2)

Υ; Φ; Γ ` (x:τ ← ret v in e)
∅7→ [v/x]e

Υ; Φ; Γ ` v : τ Υ; Φ; Γ ` v′ : τ

Υ; Φ; Γ ` [v/x]e
∅7→ (v = v′ in [v′/x]e)

Υ; Φ; Γ ` e δ7→ e′

Υ; Φ; Γ ` v = v′ in e
δ7→ v = v′ in e′

17

Υ; Φ; Γ ` (v = v in e)
∅7→ e

Υ; Φ; Γ ` α ε#i=α7−→ i Υ; Φ; Γ ` i i↓v7−→ ret v

e
δ7→ e′

Υ; Φ; Γ ` ϕ# e
ϕ#δ7−→ ϕ# e′

e init

Υ; Φ; Γ ` ϕ# e
∅7→ e

m 7→ m′

Υ; Φ; Γ ` forcem
∅7→ forcem′ Υ; Φ; Γ ` force(susp e)

∅7→ e

Υ; Φ; Γ ` new t
b⇒t′.e T

b⇒T ′
7−→ [T, T ′/t, t′]e

m 7→ m′

Υ; Φ; Γ ` R[m]
∅7→ R[m′]

m1 7→ m′1

Υ; Φ; Γ `W[m1,m2]
∅7→W[m′1,m2]

m2 7→ m′2

Υ; Φ; Γ `W[v1,m2]
∅7→W[v1,m

′
2]

m1 7→ m′1

Υ; Φ; Γ ` RW[m1,m2]
∅7→ RW[m′1,m2]

m2 7→ m′2

Υ; Φ; Γ ` RW[v1,m2]
∅7→ RW[v1,m

′
2]

m1 7→ m′1

Υ; Φ; Γ ` RMW[m1, x:τ.m2]
∅7→ RMW[m′1, x:τ.m2]

Υ; Φ; Γ ` v : τ

Υ; Φ; Γ ` RMW[`, x:τ.m2]
∅7→

(x:τ ← RW[`, [v/x]m2] in x = v in ret v)

Υ; Φ ` ξ δ@p7−→ ξ′

Υ; Φ; ε ` e δ7→ e′

Υ; Φ ` (ξ ‖ p : e)
δ@p7−→ (ξ ‖ p : e′)

ξ
δ@p′7−→ ξ′

(ξ ‖ p : e)
δ@p′7−→ (ξ′ ‖ p : e)

H
δ@p7−→ H ′

H
∅@p7−→ H

(None)

¬H(init(i, ∗))

H
~ϕ#i=α@p7−→ H, init(i, p), is(i, α), [label(ϕ, i) | ϕ ∈ ~ϕ]

(Init)

H(init(i, p)) H(is(i, α)) α = R[`] ∨ α = RW[`, v′]

executableH(i) acyclic(
co→H;rf(iw,i))

writesH(iw, `, v) execH(iw)

H
i↓v@p7−→ H, rf(iw, i)

(Read)

H(init(i, p)) H(is(i, α))
α = W[`, v] ∨ α = Push ∨ α = Nop

executableH(i) acyclic(
co→H;exec(i))

H
i↓()@p7−→ H, exec(i)

(Nonread)

T 6= T ′ ¬tagdeclH(T) ¬tagdeclH(T ′)

H
T

b⇒T ′@p7−→ H, edge(b, T, T ′)

(Edge)

Σ
δ@p7−→ Σ′

Σ
∅@p7−→ Σ

∀ϕ ∈ ~ϕ. Υ; ε ` ϕ : label Υ,Φ,Ψ, ε ` α : τ

(Υ,Φ,Ψ)
~ϕ#i=α7−→ (Υ,Φ, (Ψ, i:τ@p))

Ψ = Ψ1, i:τ@p,Ψ2 ` v : τ

(Υ,Φ,Ψ)
i↓v7−→ (Υ,Φ, (Ψ1,Ψ2))

T 6= T ′ T, T ′ 6∈ Υ

(Υ,Φ,Ψ)
T

b⇒T ′
7−→ ((Υ, T, T ′),Φ,Ψ)

s 7→ s′

Σ
δ@p7−→ Σ′ H

δ@p7−→ H ′ Υ; Φ ` ξ δ@p7−→ ξ′

(Σ, H, ξ) 7→ (Σ′, H ′, ξ′)

D Rightness

Γ ` m right

FV(v) ⊆ Dom(Γ)

Γ ` v right

Γ ` m1 right Γ ` m2 right Γ ` m3 right
m1 value ⊃ ∃n.m1 = n

Γ ` ifzm1 thenm2 elsem3 right

Γ ` m1 right Γ ` m2 right
m1 value ⊃ ∃τ1, τ2,m′1.m1 = fun f(x:τ1):τ2.m

′
1

Γ ` m1m2 right

18

Γ ` ϕ rightH

t ∈ Dom(Γ)

Γ ` t rightH
tagdeclH(T)

Γ ` T rightH

Γ `
b
C rightH Γ `

b
B rightH

i rightH

H(is(i, α))

(α = R[`] ∨ α = RW[`, v]) ⊃ ∃iw. iw
wrp→H i

i rightH

A read i from ` is right if there is at least one write to
` that is prior to i. This is a subtle but important safety
condition, to rule out reading an ill-formed stale value from
the cache. When the processor goes to read ` it will certainly
find something. If there exists at least one visible write, then
some value known to the operational semantics has gone to
the thread. However, if there exists no visible write at all,
the processor might find an old junk value in its cache.

Υ; Φ; Γ ` e rightH,p,I

Here p is the current thread and I is the set of unexe-
cuted, program-order predecessors of identifiers in e (as ac-
cording to the code, which is verified to agree with H in the
identifier rule).

Γ ` m right

Υ; Φ; Γ ` retm rightH,p,I

Γ ` m right m value ⊃ ∃e.m = susp e

Υ; Φ; Γ ` forcem rightH,p,I

Υ; Φ; Γ ` e1 rightH,p,I Υ; Φ; (Γ, x:τ) ` e2 rightH,p,(I∪ids(e1))
ids(e2) 6= ∅ ⊃ e1 init

Υ; Φ; Γ ` x:τ ← e1 in e2 rightH,p,I

The notation ids(e) represents the set of identifiers of e:

ids(i)
def
= {i}

ids(x:τ ← e1 in e2)
def
= ids(e1) ∪ ids(e2)

ids(v = v′ in e)
def
= ids(e)

ids(ϕ# e)
def
= ids(e)

ids(e)
def
= ∅ (for e not as above)

FV(v1) ⊆ Dom(Γ) FV(v2) ⊆ Dom(Γ)
Υ; Φ; Γ ` e rightH,p,I

Υ; Φ; Γ ` v1 = v2 in e rightH,p,I

Γ ` m right m value ⊃ ∃`.m = `

Υ; Φ; Γ ` R[m] rightH,p,I

Γ ` m1 right Γ ` m2 right m1 value ⊃ ∃`.m1 = `

Υ; Φ; Γ `W[m1,m2] rightH,p,I

Γ ` m1 right Γ ` m2 right m1 value ⊃ ∃`.m1 = `

Υ; Φ; Γ ` RW[m1,m2] rightH,p,I

Γ ` m1 right Γ, x:τ ` m2 right
m1 value ⊃ ∃v.Υ; Φ; Γ ` v : τ

Υ; Φ; Γ ` RMW[m1, x:τ.m2] rightH,p,I

Υ; Φ; Γ ` Push rightH,p,I Υ; Φ; Γ ` Nop rightH,p,I

H(init(i, p)) ¬execH(i) i rightH
∀i′. i′ ∈ I ⇔ (i′

po→H i ∧ ¬execH(i′))

Υ; Φ; Γ ` i rightH,p,I

Γ, t:tag, t′:tag ` e rightH,p,I

Υ; Φ; Γ ` new t
b⇒t′.e rightH,p,I

Γ ` ϕ rightH Υ; Φ; Γ ` e rightH,p,I
Υ; Φ; Γ ` ϕ# e rightH,p,I

Υ; Φ ` ξ rightH

Υ; Φ ` ε rightH

Υ; Φ ` ξ rightH Υ; Φ; ε ` e rightH,p,∅
∀i.H(init(i, p)) ⊃ ¬execH(i) ⊃ i ∈ ids(e)

Υ; Φ ` ξ ‖ p : e rightH

s right

Σ = (Υ,Φ,Ψ) H trco Υ; Φ ` ξ rightH
∀i, p.H(init(i, p)) ⊃ ¬execH(i) ⊃ p ∈ Dom(ξ)

(Σ, H, ξ) right

References

[1] Sarita Adve and Kouroush Gharachorloo. Shared mem-
ory consistency models: A tutorial. IEEE Computer,
1995.

[2] Jade Alglave. A Shared Memory Poetics. PhD thesis,
Université Paris VII, November 2010.

[3] Jade Alglave. A formal hierarchy of weak memory mod-
els. Formal Methods in System Design, 41:178–210,
2012.

[4] Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter
Sewell. Fences in weak memory models. In Twenty-
Second International Conference on Computer Aided
Verification, 2010.

[5] Jade Alglave, Luc Maranget, and Michael Tautschnig.
Herding cats: Modelling, simulation, testing, and data-
mining for weak memory. ACM Transactions on Pro-
gramming Languages and Systems, 2014. To appear.

19

[6] Mark Batty, Kayvan Memarian, Scott Owens, Susmit
Sarkar, and Peter Sewell. Clarifying and compiling
C/C++ concurrency: from C++11 to POWER. In
Thirty-Ninth ACM Symposium on Principles of Pro-
gramming Languages, Philadelphia, Pennsylvania, Jan-
uary 2012.

[7] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell,
and Tjark Weber. Mathematizing C++ concurrency:
The post-Rapperswil model. Technical Report N3132,
ISO IEC JTC1/SC22/WG21, August 2010. Available
electronically at www.open-std.org/jtc1/sc22/wg21/
docs/papers/2010/n3132.pdf.

[8] Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell,
and Tjark Weber. Mathematizing C++ concurrency. In
Thirty-Eighth ACM Symposium on Principles of Pro-
gramming Languages, Austin, Texas, January 2011.

[9] Mark Batty and Peter Sewell. The thin-air problem.
Working note, available at http://www.cl.cam.ac.uk/

~pes20/cpp/notes42.html, February 2014.

[10] Hans-J. Boehm and Sarita V. Adve. Foundations of
the C++ concurrency memory model. In 2008 SIG-
PLAN Conference on Programming Language Design
and Implementation, Tucson, Arizona, June 2008.

[11] Richard Grisenthwaite. ARM barrier litmus tests and
cookbook. http://infocenter.arm.com/help/topic/
com.arm.doc.genc007826/Barrier_Litmus_Tests_
and_Cookbook_A08.pdf, 2009.

[12] David Howells and Paul E. McKenney. Circular buffers.
https://www.kernel.org/doc/Documentation/
circular-buffers.txt.

[13] IBM. Power ISATM version 2.06 revision B, 2010.

[14] Radha Jagadeesan, Corin Pitcher, and James Riely.
Generative operational semantics for relaxed memory
models. In Nineteenth European Symposium on Pro-
gramming, 2010.

[15] Leslie Lamport. How to make a multiprocessor com-
puter that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9), September
1979.

[16] Jeremy Manson, William Pugh, and Sarita V. Adve.
The Java memory model. In Thirty-Second ACM Sym-
posium on Principles of Programming Languages, Long
Beach, California, January 2005.

[17] Jeff Polakow. Ordered Linear Logic and Applications.
PhD thesis, Carnegie Mellon University, School of Com-
puter Science, Pittsburgh, Pennsylvania, August 2001.

[18] Susmit Sarkar, Peter Sewell, Jade Alglave, and Luc
Maranget. ppcmem executable model (ARM version).
Unpublished code, 2011.

[19] Susmit Sarkar, Peter Sewell, Jade Alglave, Luc
Maranget, and Derek Williams. Understanding
POWER multiprocessors. In 2011 SIGPLAN Confer-
ence on Programming Language Design and Implemen-
tation, San Jose, California, June 2011.

[20] Peter Sewell, Susmit Sarkar, Scott Owens,
Francesco Zappa Nardelli, and Magnus O. Myreen.
x86-TSO: A rigorous and usable programmer’s model
for x86 multiprocessors. Communications of the ACM,
53(7), July 2010.

[21] Andrew K. Wright and Matthias Felleisen. A syntactic
approach to type soundness. Information and Compu-
tation, 115:38–94, 1994.

20

