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Abstract 

We present efficient representations and algorithms for ex- 
act boundary computation on low degree sculptured CSG 
solids using exact arithmetic. Most of the previous work 
using exact arithmetic has been restricted to polyhedral 
models. In this paper, we generalize it to higher order ob- 
jects, whose boundaries are composed of rational paramet- 
ric surfaces. The use of exact arithmetic and representation 
guarantees that a geometric algorithm is numerically accu- 
rate and is likely to be required for perturbation techniques 
which handle degeneracies. We present efficient algorithms 
for computing the intersection curves of trimmed paramet- 
ric surfaces, decomposing them into multiple components 
for efficient point location queries inside the trimmed re- 
gions, and computing the boundary of the resulting solid 
using topological information and component classification 
tests. We also employ a number of previously developed 
algorithms like algebraic curve classification, multivariate 
Sturm sequences, and multivariate resultants. We have 
implemented key parts of these algorithms and preliminary 
implementations indicate the performance of our algorithm 
to be about one order of magnitude slower than similar al- 
gorithms using IEEE floating-point arithmetic. 

1 Introduction 

Constructive Solid Geometry (CSG) and Boundary Repre- 
sentations (B-rep) are two major approaches for represent- 
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ing solids [Bra75, RV85, Hof89, Man88]. CSG implicitly 
represents a solid as an algebraic expression, and B-rep 
explicitly stores an object as a set of surfaces. Both these 
representations have different inherent strengths and weak- 
nesses, and for most applications both are desired. 

Many of the current solid modeling systems are based 
on B-reps, and Boolean combinations (union, difference, in- 
tersection) are some of the common operations performed. 
Computing the B-rep of the resulting solid (after perform- 
ing Boolean operations) is an important operation in these 
systems. In this paper the objects correspond to sculptured 
solids, whose boundary can be represented using trimmed 
rational parametric surfaces. This is a wide family of ob- 
jects and can exactly represent quadrics, tori and free-form 
solids. 

The first systematic study of CSG to B-rep conversion 
appeared in [RV85] and nowadays the algorithms for con- 
version are relatively well understood [Hof89, Man88, CB89, 
Sar83, KM96]. However, the problem of robust and accu- 
rate computation of the boundary is considered one of the 
difficult problems in geometric and solid modeling [Hof96, 
Hea95, For96]. It is important that the computed B-rep be 
accurate, or at least topologically consistent, and this can 
be jeopardized by even small amounts of error in the repre- 
sentation of the model or in finite-precision computations 
(e.g. round-off errors). 

A number of approaches, mostly restricted to polyhe- 
dral modelers, have been proposed for robust and accurate 
B-rep computation. One of the most common approaches 
is based on using tolerances with floating-point arithmetic 
[Jac95], however it is hard to decide a global tolerance value 
for all computations. To circumvent these problems, com- 
binations of symbolic reasoning [HHK89] and adaptive tol- 
erances [SegSO] have been proposed. Other algorithms in- 
clude those based on redundancy elimination [FBZ93]. 

B-rep computation algorithms involve accurate evalua- 
tion of the sign of arithmetic expressions, which can present 
problems for floating-point arithmetic when the value of 
the expression is close to zero. If this problem is not 
properly addressed, the resulting algorithm becomes un- 
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reliable. Many algorithms based on exact arithmetic have 
been proposed for reliable numeric computation for polyhe- 
dra [SI89, For95, BMP94, Hof89]. These algorithms use a 
fixed upper bound on the bit-length of arithmetic required 
to evaluate geometric predicates. In particular, Fortune 
has presented an efficient algorithm based on exact arith- 
metic which has a small performance overhead as compared 
to a floating-point based implementation [For95]. Besides 

reliable computation, exact arithmetic allows the use of 
symbolic perturbation to handle degeneracies [YapSO]. The 
perturbation scheme greatly simplifies the implementation 
of the solid modeler. 

There is relatively little work on robust or accurate B- 
rep computation algorithms for curved primitives. Algo- 
rithms to handle degenerate intersections between quadrics 
have been presented in [MG91]. For arbitrary degree sculp- 
tured solids, it is difficult to compute tight bounds on the 
error generated due to floating-point arithmetic. As a re- 
sult, it is hard to extend algorithms based on tolerances to 
curved models. Furthermore, exact arithmetic for curved 
domains is perceived, for a number of reasons, to be ex- 
tremely slow and complex. Exact arithmetic involves com- 
putations on algebraic numbers and most of the current 
implementations of such arithmetic (e.g. those available 
as part of computer algebra systems) are extremely slow. 
Techniques using bit-length estimates may, in the worst 
case, require bit-lengths which are exponential with respect 
to the degree of the algebraic functions [Gan88, Yu92]. 
Moreover, many representations and predicates that are 
well-understood in the linear domain become rather hard 
in the curved domain. Overall, no good solutions are known 
for efficient and robust B-rep computation on curved solids. 
Main Contribution: We present efficient representations 
and algorithms for exact boundary computation on Boolean 
combinations of sculptured solids. Our contributions in- 
clude: 

l Representation: We present efficient and exact 
representations for points, edges and surfaces using 
algebraic sets along with a topological representa- 
tion. 

l Kernel Routines: We identify lower-level routines 
where the algorithms based on floating point arith- 
metic are susceptible to failure. These include sign- 
evaluation of geometric predicates, orientation of points 
with respect to curves, and component classification. 
We present fast algorithms to perform such tests re- 
liably using exact arithmetic. We refer to the result- 
ing set of routines as kernel routines. The efficiency 
and reliability of the overall algorithm is governed by 
these routines. 

l B-rep Computation: Given our kernel routines, 
we present an algorithm for B-rep computation. 

l Handling Degeneracies: We identify most cases 
where degeneracies can affect our algorithm, and pro- 
pose ways to identify and resolve some of them. 

l Implementation and Performance: We describe 
the performance of a preliminary implementation of 
our algorithm. 

The resulting algorithm and system work well on low-degree 
solids (composed of polyhedra, quadrics, tori, low-degree 
solids of revolution). In practice, most of the curved prim- 
itives of solid modeling systems are indeed low-degree. As 

compared to algorithms implemented in floating point arith- 
metic, our algorithm performs slightly more than one order 
of magnitude slower on low degree solids on average. 

Organization: The rest of this paper is organized as 
follows. Section 2 discusses background material, including 
our representation for solids. Section 3 gives an overview of 
our algorithm and discusses the kernel routines which form 
its basis. Section 4 discusses how each of the major steps 
are performed. In Section 5, we present some analysis of 
our approach along with some performance results and an 
illustrating example. Section 6 discusses degeneracies and 
Section 7 concludes with a mention of possible areas for 
extensions and future work. 

2 Background Material 

In this section, we present our representation for a solid. 
Our algorithms assume that solids are specified in this for- 
mat, and the B-rep of resulting solids is given in this for- 
mat. We also present some background material that we 
use to compute the B-rep. This includes a number of al- 
gorithms from computational algebra. In particular, we 
shall briefly discuss our representation of algebraic num- 
bers, techniques for root isolation using multivariate Sturm 
sequences, and multipolynomial resultant computation. 

2.1 Representation of Solids 

Every solid is represented as a set of trimmed parametric 
surface patches which define the solid boundary. We repre- 
sent each surface patch F(s, t) as a rational function with 
rational coefficients. This kind of parametrization is possi- 
ble for all quadric surfaces such as spheres and cylinders, 
surfaces of revolution, and tori. The domain of the patch 
is the unit square in the (s, t)-plane (0 5 s, t 5 1). If we 
are given a different rectangular domain, we can always 
reparameterize to (0 5 s, t 5 1). 

Assumptions: Topological information of the solid is 
maintained in terms of an adjacency graph. It is similar to 
the winged-edge data structure [Hof89]. To start with, we 
assume that each of the input objects has manifold bound- 
aries, and the Boolean operation is wgularized. While it 
is possible to generate non-manifold objects from regular- 
ized Booleans on manifold solids, we assume for the sake 
of simplicity that this does not occur. It is a well-known 
fact that, while dealing with topological representation of 
curved objects, global resolution of edge ambiguities can- 
not be guaranteed at times [Hof89]. Some of these issues 
are addressed in Section 6. Given these assumptions, it can 
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Figure 1: Representation of a trimmed patch as algebraic 
curve segments 

be shown that an unambiguous topological representation 
is possible for a solid. 

A trimmed patch consists of a sequence of curves defined 
in the domain of the patch such that they form a closed 
curve (Ci’s in Fig. 1). Each ci is a segment of an algebraic 
curve. The portion of the patch that lies in the interior 
of this closed curve is retained. Most of these trimming 
curves correspond to intersection curves between two sur- 
faces. Therefore, these curves are typically algebraic curves 
that do not admit a rational parametrization. We repre- 
sent these curve segments (ci) by their algebraic equation 
and the two endpoints (pi and pi+l). The endpoints are 
computed by solving a set of polynomial equations, and are 
actually algebraic numbers (see Fig. 1). Exact representa- 
tion of these numbers is discussed later in this section. 

This representation of a solid lends itself to a descrip- 
tion in terms of faces, edges, and vertices analogous to the 
polyhedral case. Each face is a trimmed patch. Each of 
the trimming curves form an edge, and are formed as an 
intersection of two surfaces (faces). Finally, endpoints of 
edges form the vertices. They can be represented as an in- 
tersection of three surfaces. Fig. 2 shows an example solid 
and the face connectivity structure that we maintain. We 
also maintain the two faces that are adjacent to each edge, 
and an anticlockwise order of faces around each vertex. 

Representation of algebraic numbers: It was men- 
tioned earlier that each of the vertices in the solid is de- 
fined as the intersection of three surfaces, i.e. a root of a 
set of polynomial equations with rational coefficients. Be- 
cause of the rational parametrization of the surface, each of 
these equations is either univariate or bivariate. A vertex in 
the patch domain is therefore the common solution of two 
equations, f(s, t) = 0 and g(s, t) = 0. These are usually 
algebraic numbers, and cannot be represented exactly as 
finite precision numbers. Notice that a real algebraic num- 
ber is the solution of an equation, f(s) = 0, within some 
interval, a 5 s < b. In our algorithm, we represent each 
algebraic coordinate as an arbitrarily small rational rectan- 

Figure 2: A cylinder and its face connectivity structure 

gle (i.e. an axis-aligned rectangle whose four vertices have 
rational coordinates). The rational rectangle is guaranteed 
to isolate each common root of f(s, t) and g(s, t) (taking 
into account the multiplicities of roots). The root isolation 
algorithm uses multivariate Sturm sequences as proposed 
by Milne [Mi192]. 

2.2 Multipolynomial Resultants 

Elimination theory investigates the conditions under which 
sets of polynomials have common roots. Usually, it con- 
cerns itself with sets of n homogeneous polynomials in n 
unknowns, and finds the relationship between the coeffi- 
cients of the polynomials which can be used to determine 
whether the polynomials have a non-trivial common solu- 
tion. 

Definition 1 [Sal85] A resultant of a set of polynomials 
is an expression involving the coefficients of the polynomials 
such that the vanishing of the resultant is a necessary and 
suficient condition for the set of polynomials to have a 
common non-trivial root. 

[Mac021 provided a general method for eliminating n 
variables from n homogeneous polynomials. The resul- 
tant is expressed as a ratio of two determinants. However, 
a single determinant formulation exists for n = 2 and 3 
[Sa185, Dix08]. For n = 3, however, [Dix08] gives the re- 
sultant only if the three equations have the same degree. 
In our application, it is sufficient to compute resultants for 
the cases when n = 2 and 3. Sylvester’s method [Sal851 
can be used to express the resultant of two polynomials of 
degree m and n respectively as a determinant of a matrix 
with (m + n) rows and columns. For the polynomials, 

f”(z) = ~2~3~~ + an-la: n-1 
+ . ..+alx+ao (1) 

and 

y”(x) = b,xm + bm--lxn-l + . . + blx + bo (2) 
where n 2 m, the Sylvester’s resuhant is 
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an a,-1 . . . a0 0 . 0 
0 an a,.-1 a0 0 . 0 

0 . . . 0 an h-1 . . . a0 
0 . 0 b, b,-, . . b. 
0 0 b,, b,-l . . . bo 0 

b, b,:, . bo o . . 0 

(3) 

The problem of computing the implicit representation of a 
parametric surface F(s,t) = (x(s,t),Y(s,t),Z(s,1),W(s,t)) 
involves eliminating s and t from the three polynomials 

X(s,t) -zW(s,1) = Y(s,t) - yW(s,t) = Z(s,t) - zW(s,t) = 0. 

We use Dixon’s resultant [DixO8] to compute the im- 
plicit, form as described in [Sed83]. 

Resultant computation: We use an algorithm based 
on multivariate interpolation [MC931 to compute the resul- 
tant of a set of polynomials efficiently. The main bottleneck 
in most resultant algorithms is the symbolic expansion of 
determinants. Most of the computer algebra systems use 
symbolic algorithms like polynomial manipulations for re- 
sultants, which are very expensive. Further, the magnitude 
of intermediate expressions grows quickly, and the memory 
requirements are high. The algorithm in [MC931 performs 
all computations over finite fields, and uses a probabilis- 
tic algorithm based on the Chinese Remainder Theorem to 
recover actual coefficients. 

2.3 Multivariate Sturm sequences 

Here, we describe briefly the algorithm proposed by Milne 
[Mi192] to compute the number of common real solutions of 
n polynomials in n variables inside an n-dimensional rect- 
angle. This algorithm is an extension of the univariate case 
which constructs a polynomial sequence, and measures sign 
variations of this sequence at the endpoints of the interval. 
We restrict ourselves to the case when n = 2. 

Given two polynomials, fl (s, t) and fi(s, t), we con- 
struct the volume function, V(u, s, t), as follows: 

V(u, s, t) = ResaZ(Res~l(fl(~l,u2),f3),Res,,(f2(a~,az),j3)) 
udes(fl(s,O))des(fa(s,O)) 

where fs(u,s,t,al,az) = u+(s-al)(t--a*), Res, refers to 
the resultant of two polynomials after eliminating z, and 
deg refers to the degree of the polynomial. We use the 
Sylvester resultant [Sal851 t o eliminate one variable from 
two polynomials. 

Given a square-free polynomial p(z) we can construct a 
Sturm sequence of polynomials 
S, = -remainder(S,-n(z), S,-,(z)), where SI(Z) = p(z) 

and SZ(Z) = p’(z). Treating the volume function V as 
a univariate polynomial in u, we construct its Sturm se- 
quence .!$(u,s, t). The Sturm sequence is specialized at 
u = 0 to give a sequence of bivariate polynomials M(s, t). 

Definition 2 Given a sequence of polynomials M(s, t) of 
length n, the V operator at (al, az) (V(M(al,az))) gives 
the number of sign changes between consecutive terms of 

the sequence evaluated at (al, a~). Correspondingly, the P 
operatoris definedasP(IM(al,a:!)) = n-1-V(M(al,az)). 

Given the bivariate sequence M(s, 1) and a rational axis 
aligned rectangle r = [al, bl] x [aa, bz], the number of real 
roots of fl and f2 inside r is given by 

P(A4(bl,bz)) + P(M(a1,a2)) - P(M(bl,m)) - P(M(al,b)) 

2 

The justification for various steps and extension to ar- 
bitrary dimensions can be found in [Mil92]. 

2.4 Topological resolution of algebraic plane 
curves 

The intersection curve between two surfaces is typically 
a high degree algebraic curve. In practice, it may have 
multiple real components. Topological resolution involves 
identifying critical points like turning points and singular- 
ities and establishing a unique connectivity between them. 
A number of efficient (poly-log time) algorithms have been 
developed for special kinds of algebraic curves. We use the 
algorithm by [AF88] for regular curves. The algorithm ini- 
tially computes all the turning points of the curve. This 
is achieved in our case by taking partial derivatives and 
solving for common roots with the original curve inside a 
rational rectangle. A crucial step in establishing connec- 
tivity between the various turning point.s is to find the sign 
of the slope of the curve at certain irrational (algebraic) 
points. We present an exact algorithm to perform this step 
in section 3.3.2. 

The identification of turning points divides the inter- 
section curve into a set of monotonic curve segments. FOI 
each of these segments, we compute a bounding box (see 
Fig. 3) around it. Bounding boxes are needed to distinguish 
two such curve segments represented by the same algebraic 
equation. However, as seeu from Fig. 3 , not all the bound- 
ing boxes are non-overlapping. We perform a subdivision 
of these boxes until these two criteria are satisfied. We use 
an algorithm described in [KM941 to perform this subdivi- 
sion. The bounding boxes defined here are used to classify 
a point efficiently with respect to a curve. 

3 Algorithnx outline and Kernel rou- 

tines 

In this section, we give a brief overview of our algorithm 
and identify some steps that are susceptible to failure while 
using finite precision arithmetic. Finally, we describe the 
kernel routines and present efficient algorithms using exact 
arithmetic. 

3.1 Computation of Boolean operation 

The general outline for performing a Boolean operation 
between two solids follows. The overall approach is decom- 
posed into two stages. 
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Figure 3: Bounding boxes around monotonic curve segments 

I . Intersection curve computation (for each pair of patches): 

1. Obtain the intersection curve(s) between the 
two untrimmed patches. 

2. Find the points where the intersection curve 
meets the patch boundary. 

3. Decompose the intersection curve into a set of 
monotonic curve segments. 

4. Find the points where the intersection curve 
meets the trimming boundary, and subdivide 
the trimming and intersection curves, generat- 
ing adjacency information. 

II . Curve merging and boundary computation: 

1. Merge intersection curves together in each patch. 

2. Partition the patch domain. 

3. Compute the adjacency graph and components 
separated by intersection curves. 

4. Shoot rays from within one solid toward the 
other solid to classify components as inside or 
outside. 

5. Propagate the information from step 3 in the 
adjacency graph to compute the boundary of 
the resulting solid. 

3.2 Need for exact arithmetic 

The use of exact arithmetic has been shown to be useful 
(and probably necessary) for dealing with degeneracies in 
the polyhedral domain ([For95]), and so it is likely to be 
needed in the non-linear domain. In addition, the use of 
finite precision arithmetic can result in numerical problems 
for non-degenerate cases. 

We shall now identify two areas where our algorithm is 
susceptible to failure when using floating point arithmetic. 
In order to prevent these failures, we use exact arithmetic. 
Most of these errors finally boil down to either point ori- 
entation tests or comparison between two floating point 
numbers. 

3.2.1 Computing trimmed patch intersections 

Most algorithms using floating point arithmetic for com- 
puting tlie intersection curve use techniques like curve trac- 
ing or subdivision. As a result, these curves are approxi- 
mated as piecewise linear curves or splines to within a fixed 
tolerance (which is either too conservative or arbitrarily 
chosen), or as algebraic curves with floating point coeffi- 
cients. Since most of the surface patches we are dealing 
with are trimmed, we need to compute portions of the in- 
tersection curve that lie inside the trimmed boundaries of 
both the patches. Fig. 4(a) shows one such example. The 
curve I shown in dotted lines is the intersection curve in 
both the domains. IO and 11 are the intersection curves 
on the left patch obtained from other surfaces. To com- 
pute the actual intersection curve for trimmed patches, we 
need to compute the intersection points of the curve with 
the trimming boundary. po, ~1, pa and p3 are four such 
points on the right patch. If the boundary curves or the 
intersection curve are not accurate, neither are the pI’s. 
They may not even lie on the actual intersection curve. 
Corresponding to the Pi’s, we need to compute qi’s on the 
other patch to determine which portions of the intersec- 
tion curve to retain. This process is called inversion. Two 
problems can arise in inversion: (a) there may not be any 
corresponding point on the other patch (because pi’s do 
not lie exactly on the intersection curve), or (b) the qi’s 
could be positioned such that the curve segments qoql 
and q2q3 do not match up with IO and 11 for curve merg- 
ing. It is hard to perform this computation reliably using 
floating point arithmetic. 

3.2.2 Component classification 

Another area where floating point errors result in failure 
of the algorithm is during component classification. As we 
will describe later, we use ray shooting for this purpose and 
not sign evaluation of determinants as done by polyhedral 
modelers. The entire computation boils down to classi- 
fying whether a point lies inside or outside the trimming 
region. Fig. 4(b) shows an example. In most cases, clas- 
sifying points like q1 is not a problem. One ray-shooting 
query will determine it. However, consider a point like qo 
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which lies very close to the boundary. Approximate repre- 
sentations of the trimming boundary makes classifying q0 
a major problem. Depending on the choice of ray direc- 
tions and the tolerances used we may get different classi- 
fications. This error could result in topologically inconsis- 
tent answers. 

There are a number of similar problems which plague 
floating point modelers, and resolving these situations is 
no different from the ones highlighted. We believe that 
using exact arithmetic and representation is essential for 
reliable B-rep computation. 

3.3 Exact computation of kernel routines 

In this section, we will present efficient algorithms to imple- 
ment the kernel routines in exact arithmetic. In particular, 
given algebraic curves and points, we present efficient al- 
gorithms for comparing two algebraic numbers, evaluating 
signs of slopes for resolution of regular algebraic curves, 
and classifying points with respect to a region. 

3.3.1 Comparison between algebraic numbers 

It was mentioned in Section 2.1 that each of the vertices in 
the solid are defined as roots of a set of polynomial equa- 
tions with rational coefficients. Since we are dealing with 
rational parametric surfaces, each of these equations is bi- 
variate. A vertex in the patch domain is the common solu- 
tion of two equations, fl(s, t) = 0 and f~(s, t) = 0. This is 
usually an irrational number which cannot be represented 
exactly using floating-point arithmetic. In our algorithm, 
we represent each algebraic number as a small (based on 
lazy evaluation) rational rectangle. The rational rectangle 
is guaranteed to isolate each common root of fl(s, t) and 
fz(s, t) (taking into account the multiplicities of roots). 

Consider a rational rectangle, r, that contains two al- 
gebraic numbers, yl and yz (see Fig. 5(a)) . Let y1 be the 
common root of fl(s, t) and fz(s, t), and yz the common 
root of gl(s, t) and gz(s, t). There is an exact procedure 
to answer the question of equality of y1 and yz. Consider 
the new polynomial p(s, t) = fF(s, t) + fz(s, t) + g:(s, t) + 

g;(s, t), and one of the original polynomials (say fl(s, t)). 
It is easy to show that p(s, t) and fl(s, t) have a common 
isolated root in r iff y1 = 72. We check for the common 
root using Sturm sequences. Further, this method can be 
extended to arbitrary dimensions. 

3.3.2 Slope sign computation at algebraic points 

Fig. 5(b) shows an example of an algebraic curve in a small 
region. Once the turning points are computed, they are 
separated using rational grid lines (~1, ~2, tl, and t2 in the 
figure). In order to determine the topology of the curve 
(see Section 2.4), we need to compute the sign of the slope 
of the curve at points where the grid lines intersect the 
curve (e.g. p4 in figure). Since pq is algebraic (a root of 
a univariate polynomial), we can compute it only within 
an interval (say, [t41, &I). It is non-trivial to compute the 
sign of the slope directly (equivalent to computing signs of 
partial derivatives) at ~4. Let f(s, t) be the equation of the 
curve. We know that there is a unique root of f(sl, t) in 
the interval [t41, t42]. Let g(t) = fs(sl, t). We know that 
p4 is not a common root of f(sl, t) and g(t) (because it is 
not a turning point). We refine the interval [t41, t42] such 
that there is no root of g(t) within the interval. The sign of 
g(t) can be obtained by evaluating it at any rational point 
in the interval. 

3.3.3 Point classification 

Classifying a component with respect to a solid amounts 
to classifying a point with respect to the trimmed domain. 
Problems associated with point classification using floating 
point arithmetic were highlighted earlier. We now describe 
our algorithm to exactly check whether a point (with alge- 
braic number coordinat,es) lies inside or outside the trim- 
ming boundary. lnit,ially, we assume that the actual point 
does not lie exactly on any algebraic curve that is part of 
the trimming boundary. This would be a case of four sur- 
faces intersecting at a point and will be discussed when we 
handle degeneracies. 
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Given that the point is an algebraic number, we rep- 
resent it with a rational rectangle of small size. We must 
ensure that the rectangle lies in at most one of the bound- 
ing boxes of the trimming curve (see Section 2.4). If it lies 
in more than one, the rectangle should be further refined so 
that it lies in only one. Each of the four vertices of the rect- 
angle is classified with respect to the trimming boundary. 
This classification is done using a ray shooting technique 
(see Fig. 4(b)). To determine if a point (say, q1 in figure) 
lies inside or outside the trimming boundary, we shoot an 
arbitrary semi-infinite ray (say, ri in figure) from it. The 
parity of the number of intersections of the ray with the 
boundary is sufficient to classify the point. 

We perform this test on each of the four vertices of the 
rectangle. If all the results are same, actual point classi- 
fication is done. The more interesting case is when some 
vertices of the rectangle yield different results. In this case, 
we refine our rectangle until consistency is achieved. We 
know this is assured because the point does not lie on any 
boundary curve. In practice, if we cannot classify the point 
after a few levels of refinement, we choose a different ray. 

4 Exact B-rep Computation Algorithm 

In this section, we briefly describe each step of our algo- 
rithm. It is implemented on top of the kernel routines. 

4.1 Obtain intersection curve for two patches 

We want to find the intersection curve in the domain of 
each of the two patches. To find the intersection curve in 
the domain of patch 1, we substitute the parameterization 
of patch 1 into the (precomputed) implicit representation 
of patch 2. A similar procedure obtains the intersection 
curve in the domain of patch 2. 

4.2 Clip to Patch Boundary 

Curve-surface intersection is used to find the points where 
the intersection curve meets the patch boundary. We want 
to find the intersection points of the curve and surface in 

both domains. Finding the intersection points of a curve 
with the boundaries of its own patch is straightforward - 
just substitute in the value for s or t and use a univariate 
Sturm sequence to isolate the roots. The inversionproblem 
is to find the corresponding points in the domain of patch 
2. 

The inversion problem can be solved by considering the 
patch boundary as a curve in space. We compute the inter- 
sections of this space curve with the other patch (a curve- 
surface intersection). For example, consider the domain 
boundary t = 0. Then, the space curve corresponding to 
the patch boundary will be given by X(s, 0), Y(s, 0), Z(s, 
0), and W(s,O), where X, Y, Z, W give the parameteriza- 
tion of the first patch. The second patch will have the 
parameterization x(u, v),y(u, v),z(u, u),~(u, u). Then, 
to solve for the points of intersection we need to solve for 
solutions of the equations (5) in their respective domains. 

X(u,tl) W(s,O) - X(s,O) W(u,tJ) = 0 

Y(u,v) W(s,O) - Y(s,O) iT(u, u) = 0 (4) 
qu, u) W(s,O) - Z(s,O) W(u,u) = 0 

These equations may be solved using a trivariate Sturm 
sequence as described in [Mi192]. This will give solutions 
bounded in U, U, and s. However, the volume function com- 
putation involves three successive elimination steps (Syl- 
vester resultant). Depending on the size of the coefficients, 
this process could be computationally intensive. 

A more practical, though not exact, approach to solve 
this problem is to isolate all the roots in the s domain using 
a univariate Sturm sequence. This is followed by eliminat- 
ing s from (5) to produce two independent equations in u 
and U. This is a bivariate Sturm sequence problem and is 
solved by a single Sylvester resultant computation. This 
gives all t,he solutions in (u, U) space. Determining the cor- 
respondence between the (u, 0) pairs and s roots is done 
by comparing each of them in 3-space. We found that in 
practice, this method was significantly more efficient. 
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4.3 Decompose into monotonic curve segments 

The process for isolating turning points and decomposing 
the intersection curve into segments monotonic in s and t 
(the patch parameters) was discussed in Section 2.4. 

4.4 Prune intersection curves 

We now have to trim the curve based upon the trimming 
boundary. Basically, we need to intersect the intersection 
curves with the trimming curves (represented as algebraic 
curves) and throw away sections of the intersection curve 
which are outside the trimming boundary. 

Finding the points of intersection between the trimming 
curve and the intersection curve is relatively simple - use 
the bivariate Sturm sequence again. It is also relatively 
simple to find the corresponding points on the other patch 
- the trimming curve has a surface associated with it, and 
this surface intersected with the second patch gives another 
curve in the domain of that second patch, From this we 
obtain the intersection points on the intersection curve in 
the second patch, and figure out which points correspond 
by matching the intervals in 3-space. The actual prun- 
ing step is carried out by determining the orientation (in- 
side/outside) of one point (we choose the starting point on 
the intersection curve) using 2D ray-shooting. Propagating 
this information to adjacent sections of the curve clearly 
identifies the curve segments that lie inside the trimmed 
region, and which lie outside. Along with this intersection 
curve segment, we also maintain the patch number of the 
other solid that defined this curve. We use this later when 
we update the topology information. 

4.5 Merging intersection curves 

In the previous step, we obtained the intersection curves on 
each patch for all patch-patch pairs. We now need to merge 
these curves (which will define the new trimming curves). 
This is done by matching the endpoints of each of the inter- 
section curves, thereby partitioning the patch domain into 
closed loops. Notice that the monotonic segments of each 
intersection curve are already merged. Basically, we must 
check both endpoints of each intersection curve against the 
endpoints of all of the other intersection curves. If we find 
that two curves share a common endpoint, then we store 
this information and consider the curves merged. Checking 
for point equality is implemented as a kernel routine. 

Once the intersection curves have been merged, we need 
to once again check whether the bounding boxes of the 
monotonic segments are overlapping and, if so, subdivide 
the curve appropriately. 

4.6 Partitioning Trimming Boundaries 

Once all the intersection curves are merged within each 
patch, they will partition the trimmed domain (if the as- 
sumptions that the individual solid boundaries are closed 
and compact are maintained). Otherwise it is a degenerate 
intersection (we discuss such cases in Section 6). Fig. 6(a) 

shows intersection curves inside a trimmed domain. ci’s 
(with endpoints pi and pi+l) are monotonic curves (in 
both s and t) that form the trimmed boundary of the patch. 
IO, 11, and 12 are the intersection curves computed with 
various patches of the other solid. to is a turning point on 
the curve 12. As described earlier, all the turning points are 
identified before the topology of the algebraic intersection 
curve can be resolved. qi’s are points on the intersection 
curve where the curve intersects the t.rimmed boundary. 
Given this information, Fig. 6(b) shows the actual parti- 
tions (Ris). To compute the explicit B-rep of the resulting 
solid, each of these partitions is generated. We now present 
an algorithm that computes these partitions provided the 
intersection curves have no singularity in the trimmed do- 
main. 

The main idea in this algorithm is the fact that since 
the intersection curve segments (10 and 11 in Fig. 6(c)) do 
not cross each other, each resulting partition starts at one 
endpoint of a curve segment, and ends at the other end- 
point of the same curve segment. We shall assume that the 
trimming curves and the intersection curves are given in a 
specific order. We number the endpoints of the intersection 
curve segments such that q2j and q2j+l belong to Ij. The 

algorithm works in three steps. 

Each endpoint of a curve segment (for example, q6 of 
16) lies on a unique curve (except when it coincides 
with one of the curve endpoints of the boundary) 
of the trimming boundary. In fact, points like q6 
are determined as the intersection of 10 with CO. 
Note that even though CO and cl could be part of 
the same algebraic curve, the association of qo with 
co is determined because of the monotonicity of the 
Ci’s. Each boundary curve ci is then partitioned 
into multiple segments depending on the number qj’s 

lying on it. 

This is followed by a traversal of the trimming bound- 
ary in a consistent order by maintaining a stack. Two 
types of elements are pushed in the stack - curve seg- 
ments, and curve endpoints. Initially, we keep push- 
ing in the boundary curve segments until we reach a 
vertex like qo. Let the vertex number be k. If the 
topmost curve endpoint type of t.he stack (say, 1) has 
a number (Ic + 1) or (k - l), then a partition has to 
be read out. Otherwise, vertex k is pushed into the 
stack followed by all the curves that comprise Zlki21. 
If a decision to read out a region has been reached, all 
the curve segments until vertex 1 are popped. Curves 
comprising Ilk,21 are pushed again because they are 
required by the next region too. The order in which 
these curve segments are pushed into the stack has 
to be monitored carefully so that a region which is 
read out is oriented consistently. 

Till now, we have considered only intersection curve 
segments whose endpoints lie on the trimming bound- 
ary. However, there may be loops that lie completely 
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Figure 6: (a) intersection curves inside trimmed domain (b) Partitions introduced by intersection curves 
(c) Partitioning a trimmed patch with chains of algebraic curves 

inside the boundary. Any loop is present (if at all) 
inside one of the obtained partitions. Each of the 
loops (starting from the innermost if the loops are 
nested) themselves form a partition. The remaining 
part of the region (it has boundaries with multiple 
components) is broken into simple regions by intro- 
ducing a simple cut from the loop to the boundary 
of the partition or the next loop. 

This completes the algorithm to compute the partitions 
introduced by intersection curves. A feature of this algo- 
rithm is that the adjacency structure between the various 
partitions (which is necessary to avoid redundant, expen- 
sive ray-shooting queries during component classification) 
are obtained by the order in which they are read out. 

4.7 Updating Topological Information 

It is clear from the previous section that intersection corn- 

putation introduces new vertices, edges, and faces in the 
solid. This change needs to be incorporated in our topo- 
logical structure. Further, information about the adjacency 
between the various faces significantly reduces the compo- 
nent classification time. At this time, we just concentrate 
on the face adjacency. Vertex and edge adjacency are up 
dated during final solid generation. 

The new graph is a refinement of the original adjacency 
graph. Remember that a vertex of the graph corresponds 
to a face of the solid. Each vertex in the original graph 
is split into a few vertices depending on the partitions ob- 
tained due to the intersection curves. We need to figure 
out the adjacency relationship between the newly created 
vertices. Consider, for example, that vertices u and v were 
adjacent in the original graph. Due t,o the intersection 
curves, let the vertex u be split into ~1, ~2, . ., urn, and 
let the vertex v be split into vi, ~2, . ., vn. The adja- 
cency between the various Ui’s (similarly Vi’s) has already 
been determined (during partitioning). These adjacencies 
(let us call it set S) are purposely left out in the new graph. 
Let e be the edge along which II and v were adjacent, in 

the original graph, and let it be divided into k portions 
during partitioning. Then all the adjacencies bet,ween ui’s 
and vj’s can be obtained in O(k) time. The number of con- 

nected components in this graph gives the number of solid 
components introduced by the intersection curves. Let the 
solid components be named CC’s, CC1 , . . . Note that each 
CC, has a collection of faces. 

To obtain the connectivity between the various CC,s, we 
introduce some notation. Let R be a mapping which takes 
a vertex in the new graph to the corresponding vertex in 
the original graph. For example, if u was split into ~1, ~2, 
. . ., nnr, then R(Ui) = U. Two components CC, and CC, 
are connected if 

(3Ul E c:c,,3u2 E CC,pqUl) = R(q) and (u1,u-J) E S} 

Using this, we have obtained the various components 
and their connectivity. Next we resolve each of these com- 
ponents (inside/outside) with respect to the other solid. 

4.8 Component Classification 

Component classification involves determining whether a 
given component of one solid is inside or outside the other 
solid. It is obvious that the entire component (as obtained 
in the previous section) lies completely inside or outside the 
other solid. In most polyhedra1 modelers, component clas- 
sification is carried out locally [Hof89]. When dealing with 
sculptured surfaces, though, the same technique cannot be 
used. The most general method used instead is based on 
ray-shooting. Ray-shooting is done by firing a semi-infinite 
ray in an arbitrary direction and checking for intersections 
with the other solid. If the number of intersections is even, 
the point (and hence, the entire component) lies outside 
the solid; if it is odd, it lies inside. 

There are three steps involved in our algorithm to per- 
form component classification. The first step involves get- 
ting a point that is part of the component. This reduces 
t.o finding a point inside the trimming boundary of one 
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patch. This is accomplished by 2D ray-shooting. We ini- 
tially choose some rational point p = (s, t) in the domain 
such that t lies between the lower and upper extents of the 
trimming boundary. A horizontal line passing through p 
(in both directions) is intersected with the boundary, and 
all the intersections are determined using the root isolation 

method of Milne [Mi192]. Th e intersections must be even in 
number and are of the form (81, t), (sz, t), . . . , (szn, t). The 
s,‘s are algebraic numbers and are represented as small ra- 
tional intervals. Choosing the midpoint of ~~-1 and sz, for 
i = 1,2, . , n gives one rational point inside the trimming 
boundary. Let this point be called q. 

The second step involves actual ray-shooting in 3-space. 
To perform 3D ray-shooting, we compute q’s mapping in 
3-space using the patch parametrization. Let this point 
be (sq,yg,zq). This point is rational because of the for- 
mulation of the patch parametrization. We pick a random 
direction and fire a semi-infinite ray in that direction. We 
compute all the intersections of each patch of the other 
solid with this ray. This is done similar to the curve-surface 
intersection computation described earlier in this section. 
However, not all the intersection points computed this way 
lie inside the trimmed boundary of the patch. Checking if 
the intersection point lies inside the trimmed boundary, as 
in Section 3.3.3, is the third step of our algorithm. 

4.9 Final B-rep Generation 

The trimmed patches that make up the final solid are de- 
termined by the Boolean operation performed. Given two 
solids solid1 and solidz, we decide on the final B-rep de- 
pending on the Boolean operation as follows: 

l Union: All components of solid1 that lie outside 
solidz, and vice-versa are retained. 

l Intersection: All components of solid, that lie in- 
side solidz, and vice-versa are retained. 

l Difference: All components of solid1 that lie outside 
solidz, and all components of solid2 that lie inside 
solid1 are retained. 

We also update the topology information. Each con- 
nected component that is retained in the final solid has 
some graph vertices (faces of the solid) whose complete 
adjacency is not determined. These correspond to edges 
which are formed by intersection curves. The vertex that 
should be adjacent to this vertex along this edge in the fi- 
nal graph is part of the other solid, and is the surface that 
formed the intersection curve. We maintain the patch num- 
ber of the other solid that resulted in an intersection curve, 
and use it to complete the adjacency. From this graph, the 
entire topological information is easily computable. 

5 Analysis and Performance 

In this section, we shall discuss some of the theoretical 
and empirical complexity analysis for some important steps 

of our algorithm. It is clear that the most dominating 
steps in terms of time are the root isolation of bivariate 
polynomials, and the topological resolution of intersection 
curves. We optimize these algorithms, and implement them 
as part of the kernel routines. The complexity of steps 
involving partitioning based on the intersection curve, and 
the face connectivity generation are very small compared 
to the total cost, and their analysis is omitted here. We 
now give the theoretical worst-case complexity of the root 
isolation algorithm. 

5.1 Worst case analysis 

Root isolation: Most of the results involving real root 
isolation are based on Sturm sequences, and we quote a re- 
sult from Davenport [Dav85] for the worst-case time com- 
plexity of root isolation algorithm for univariate polynomi- 
als. 

Theorem 1 [Dav85] The running time of the root isola- 
tion algorithm based on Sturm sequences of univariatepoly- 
nomials is bounded by O(n6(log n + log Cot)3), where n is 
the degree of the polynomial and a, are its coeficients. 

But this bound is too pessimistic, and a result based on 
[Hei71] predicts the average case to be more like O(n4). 

Sylvester resultant: Given two polynomials of degree 
m and n respectively, the coefficient size of the resultant 
is bounded by [(m + n) clmSn [KKM96], where c is the 
maximum coefficient size of the polynomials. For the case 
of quadrics, tori, and other low-degree solids that we deal 
with m and n is at most four. Thus the bit complexity of 
the coefficients of the univariate polynomial is roughly 8 
times the original bit complexity in the worst case. 

Topological resolution of intersection curves: The 
algorithm described [AF88] computes the sign invariant de- 
composition of an algebraic curve in a finite domain. The 
time complexity is given by the following result: 

Theorem 2 [AF88] Given a bivariate polynomial of total 
degree n and coefficient size d in E2, it is possible to ob- 
tain a sign invariant decomposition of the curve in time 

O(n I2 (d + log n)” log n). 

5.2 Improving performance of exact arithmetic 

As exhibited by the worst case bounds, the arithmetic of 
these symbolic coefficients is expensive. Actually, the cost 
of arithmetic operations is quadratic in the size of its co- 
efficients. Even though, in reality, we do not experience 
such a drastic increase in bit complexity for intermediate 
computation, it nevertheless grows. To reduce the cost 
of arithmetic operations, we perform all our computations 
over finite fields, and use a probabilistic algorithm based 
on the Chinese Remainder Theorem to recover the actual 
coefficients [MC93]. The time complexity of the resultant 
computation (using interpolation algorithm in [MC93]) is 
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directly proportional to the number of primes used in the 
finite field computation. To reduce this number, we use 
primes of maximum possible magnitude. Most current im- 
plementations of bignum libraries use finite fields of order 
2” to prevent overflow when taking products. Most of the 
current machines provide multiplication instructions that 
give the result out in two registers. Taking advantage of 
this fact, we use an assembly level subroutine that performs 
multiplication. This allows us to use finite fields of order 
as high as 231. Compared to finite fields of order 216, we 

get almost two-fold improvement in speed. 
Lazy evaluation during root isolation: Another 

optimization that we perform to improve our speedup is 
to evaluate rational intervals (in root isolation) as lazily as 
possible. This is based on the assumption that the worst 
case bounds that govern the closeness of roots actually oc- 
cur very rarely in practice. Thus, most of the time, we are 
able to iso1at.e the roots of polynomials inside the domain 
of surfaces quickly. However, during later computation of 
other roots, it might be necessary to make sure that two 
roots are not the same (because of large overlapping inter- 
vals). At this time, we refine the computed intervals fur- 
ther and try to isolate their intervals. This lazy approach 
to root isolation behaves almost like an output sensitive 
algorithm. 

5.3 Empirical Performance 

It is quite clear that the running time of our algorithm 
grows quickly as a function of the degree of the solids. 
We have tried computing B-reps for low degree solids like 
quadrics and tori. Based on our experience for these solids, 
the use of exact arithmetic slows us down by slightly more 
than one order of magnitude (as compared to B-rep al- 
gorithms based on IEEE floating point arithmetic). The 
performance varies with the degrees, relative orientation of 
two solids and the complexity of the output. In cases when 
the solids are close to being degenerate, the coefficient sizes 
grow more quickly, and the algorithm slows down. How- 
ever, we feel that this penalty is justified for improving 
the accuracy of the modeler and performing reliable com- 
putation. We would like to mention that though we have 
implemented various steps of the algorithm independently, 
they have not yet been integrated together. Furthermore, 
our implementations have not been optimized (especially 
the kernel routines). 

For most quadrics, the parameterization is biquadric 
(leading term a2t2). Substituting this into the implicit form 
of the other patch results in an intersection curve which is 
biquartic (a“ t”) in the domain of the patch. While comput- 
ing the resultants of two such equations for root isolation, 
the order of the resultant matrix is at most 8 x 8. For these 
orders of matrices, the resultant algorithm finishes in about 
50 milliseconds. The algorithm uses the special structure 
of the Sylvester matrix, and evaluates the resultant using 
interpolation methods. The volume function (see Section 
8.2), thus computed, is a univariate polynomial in u of 

maximum degree 8. Depending on the size of the actual 
coefficients, the time taken to compute the Sturm sequence 
ranges from 0.2 to 1 second. The entire root isolation pro- 
cedure for these cases typically takes less than a second to 2 
seconds. We estimate that for a boolean operation between 
two low-degree solids, our algorithm will compute the exact 
B-rep in 40 - 100 seconds - slightly more than one order of 
magnitude slower than a finite precision implementation. 
Timings are based on an HP 712/100 model workstation. 

5.4 Example 

In this section, we illustrate some key parts of our ap- 
proach using an example of two cylinders which are just in- 
terpenetrating (see Fig. 7(a)). The cylinders are of radius 
1 and 0.5, and their centers are spaced 1.49 units apart. 
The cylinders are rotated with respect to each other. We 
divide the surface of each cylinder into four equal parts 
and represent each of them as a rational parametric sur- 
face with rational coefficients. The parametric form of a 
sample patch from each cylinder are given below. 

X(a,t) = 1 - a2 
Y(3, t) = 2 a 
Z(s, t) = 2 t + 2 2 t - I 
W(3, t)= 1 + Q2 

After implicitizing using Dixon’s formulation, the im- 
plicit forms are 

f(x,y,z,w) =w2 - x2 - y2 
g(x, y,z,w) = 19701 w2 - 29800 x w + 10000 2’ + 

6400 y2 + 9600 y z + 3600 z2 

To obtain the intersection curve of the two patches in the 
domain of the first patch, we substitute its parameteriza- 
tion into the implicit form of the second patch (g(z, y, z, UJ) = 

0). 

h(a, t) = -3501 + 19200 a - 45002 8’ - 59501 s4 + 
14400 t - 38400 st + 14400 s2t - 
38400 a3t - 14400 t2 - 28800 s2t2 - 
14400 a4tZ = 0 

Since the patches are untrimmed, we have to compute 
the starting points of the curve on the boundary of the 
patch. Substituting a = 0 into h and computing the 
volume function for this univariate case, we get 

V(21, t) = -3501 + 14400 t - 14400 t2 + 
14400 u - 28800 t u - 14400 u2 

We computed the Sturm sequence of this volume func- 
tion, and isolated the roots of the original equation between 
[0, l] to within a precision of &. The two roots were 
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Figure 7: (a) Two views of just interpenetrating cylinders (b) Complete intersection curve in the domain of one patch 
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These numbers give the ranges in t for which there 

is an intersection of the intersection curve with the s=O 
edge of the patch domain. Of these, only the first one 
corresponds to a point inside the domain of the second 
patch. This was obtained by inversion and a bivariate 
Sturm sequence generation. The point corresponding to 

m, ““1) inside the domain of the second patch is j;7!,;“,““25 312543682 

78125’~l’ ha %%I>~ The s (or t) turning points 
on the intersection curve were obtained by performing bi- 
variate Sturm sequence root isolation on the pairs of poly- 
nomials h(s, t) and h,(s, t) (Izt(s, t)). The s and t turning 
points were found to be ([m, $$$&I , [a, a]) 

and ([ $$J$, $$$I , [$, m]) respectively. 
Now that we have the turning points of the intersection 

curve, we compute the topological resolution. After sepa- 
rating the turning points and evaluating the signs of slope 
at various grid lines, the connectivity of the curve is ob- 
tained unambiguously. The resulting curve in the domain 
of the first patch is shown in Fig. 7(b). The intersections 
of the curve with the s=O axis, the turning points in s and 
t, and the grid lines for curve connectivity computation are 

all shown in the picture. Note that the curve shown was 
obtained by intersecting this patch with all the patches of 
the second cylinder. 

6 Degeneracies 

A number of degenerate cases can arise when dealing 
with curved surfaces. Some of these degeneracies are of 
the same general type as is found in a polyhedral modeler, 
while some others arise only with curved surface modelers. 
These include: 

l Two surfaces meeting at a point: This is a sin- 
gularity which we assume does not occur. If it does 

occur, we can find it by noticing that the intersection 
curve has an s turning point and a t turning point 
at the same position. 

l Two surfaces lneeting at a curve: This is a de- 
generate case when the surfaces are tangent to each 
other along that curve. We will be able to detect 
this when we generate the adjacency graph by finding 
whether two components which should be adjacent 
are actually part of the same component. 

l Two surfaces overlapping: This corresponds to 
a face-face overlap in the polyhedral domain. Here, 
though, if the surfaces we use have an irreducible 
implicit form, then they will not overlap unless this 
form is identical. 

l A surface just touching an edge: This is an edge- 
face contact in the polyhedral domain, and can hap- 
pen when three surfaces meet in a curve. In our rep- 
resentation, this will appear as an intersection curve 
which is tangent to a trimming curve (see Fig. 8(a)). 
Such a case can be automatically eliminated if we 
check each component of the intersection curve to 
see whether it is in the trimmed region. This does 
not allow us to use the speed-up of propagating the 
infonnat~ion about one component of the intersection 

curve to all other components of that curve. 

. Four surfaces meeting at a point: This, is the 
foundation for several types of degeneracies and will 
be discussed next. 

Examples of four surfaces meeting at a point include 
when a vertex of one solid lies on the surface of another 
solid, or when the edges of two solids meet. Obviously, 
the vertex can be thought of as the intersection of three 
surfaces, and the edges can be thought of as the intersection 
of two surfaces, thus the cases mentioned would involve the 
intersection of four surfaces. 

Even more degenerate cases, such as two vertices meet- 
ing, or a vertex lying on an edge, are possible, but these 
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Figure 8: (a) Surface-edge contact degeneracy (b) Four surfaces meeting at a 

can be viewed as 5 or 6 surfaces meeting at a point - i.e. 
at least four surfaces are still meeting at a point. 

These cases will manifest themselves in our modeler as 
t,hree (or more) curves meeting at a common point in the 
domain of some patch (see Fig. 8(b)). Assume these three 
curves are fl, f2, and f3. We can find out whether this 
case has occurred by checking equality of the intersection 
of fl and f2 in some interval with the intersection of fl 
and f3 (or f2 and f3) in that same interval. 

Degeneracies in the polyhedral case can generally be 
classified into the category of four planes meeting at a 
point. It has been shown [For951 that a simple perturba- 
tion scheme applied to a single basic geometric predicate 
can eliminate these degeneracies. No obvious extension of 
this method exists in the curved surface domain, though 
there is hope that some perturbation method can be devel- 
oped which would work similarly. 

7 Extensions and Future Work 

In this paper, we have presented representations and algo- 
rithms to compute B-reps for boolean combinations of low- 
degree solids specified with rational parametric surfaces. 
We use exact arithmetic to perform reliable computations 
on a number of kernel routines, upon which the rest of the 
modeler is built. The efficient and accurate implementa- 
tion of the kernel routines allows us to have an efficient 
and reliable method for the overall B-rep computation. 

There are a number of ways in which the method we 
have described might be extended. These are: 

l We need to be able to handle singularities in inter- 
section curves and surfaces. 

l In order to claim robustness, we will need to be able 
to deal with all degneracies (possibly using pertur- 
bations). 

l Although this method is efficient for lower-degree 
surfaces, it would be useful for it to be more efficient 
for higher degree surfaces. 

point 

It would also be useful to extend our method to deal 
with non-manifold cases or with non-parametric/non- 
algebraic surfaces. 

Finally, we would like to investigate the use of par- 
allelism or a combination of floating-point and exact 
arithmetic to get a faster implementation. 
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