
Efficient and Accurate B-rep Generation of Low Degree Sculptured
Solids using Exact Arithmetic *

John Geyser Shankar Krishnan Dines11 Manocha

Department of Computer Science
University of North Carolina

Chapel Hill, NC 27599
USA

{keyser,krishnas,manocha}@cs.unc.edu
http://www.cs.unc.edu/-geom/geom.html

Abstract

We present efficient representations and algorithms for ex-
act boundary computation on low degree sculptured CSG
solids using exact arithmetic. Most of the previous work
using exact arithmetic has been restricted to polyhedral
models. In this paper, we generalize it to higher order ob-
jects, whose boundaries are composed of rational paramet-
ric surfaces. The use of exact arithmetic and representation
guarantees that a geometric algorithm is numerically accu-
rate and is likely to be required for perturbation techniques
which handle degeneracies. We present efficient algorithms
for computing the intersection curves of trimmed paramet-
ric surfaces, decomposing them into multiple components
for efficient point location queries inside the trimmed re-
gions, and computing the boundary of the resulting solid
using topological information and component classification
tests. We also employ a number of previously developed
algorithms like algebraic curve classification, multivariate
Sturm sequences, and multivariate resultants. We have
implemented key parts of these algorithms and preliminary
implementations indicate the performance of our algorithm
to be about one order of magnitude slower than similar al-
gorithms using IEEE floating-point arithmetic.

1 Introduction

Constructive Solid Geometry (CSG) and Boundary Repre-
sentations (B-rep) are two major approaches for represent-

*Supported in part by an Alfred P. Sloan Foundation Fellow-
ship, AR0 Contract DAAH04-96-1-0257, NSF Grant CCR-9319957,
NSF Grant CCR-9625217, ONR Contract N00014-94-1-0738, ARPA
Contract DABT63-93-C-0048 and NSF/ARPA Center for Commuter
Graphics and Scientific Visualization ’

ing solids [Bra75, RV85, Hof89, Man88]. CSG implicitly
represents a solid as an algebraic expression, and B-rep
explicitly stores an object as a set of surfaces. Both these
representations have different inherent strengths and weak-
nesses, and for most applications both are desired.

Many of the current solid modeling systems are based
on B-reps, and Boolean combinations (union, difference, in-
tersection) are some of the common operations performed.
Computing the B-rep of the resulting solid (after perform-
ing Boolean operations) is an important operation in these
systems. In this paper the objects correspond to sculptured
solids, whose boundary can be represented using trimmed
rational parametric surfaces. This is a wide family of ob-
jects and can exactly represent quadrics, tori and free-form
solids.

The first systematic study of CSG to B-rep conversion
appeared in [RV85] and nowadays the algorithms for con-
version are relatively well understood [Hof89, Man88, CB89,
Sar83, KM96]. However, the problem of robust and accu-
rate computation of the boundary is considered one of the
difficult problems in geometric and solid modeling [Hof96,
Hea95, For96]. It is important that the computed B-rep be
accurate, or at least topologically consistent, and this can
be jeopardized by even small amounts of error in the repre-
sentation of the model or in finite-precision computations
(e.g. round-off errors).

A number of approaches, mostly restricted to polyhe-
dral modelers, have been proposed for robust and accurate
B-rep computation. One of the most common approaches
is based on using tolerances with floating-point arithmetic
[Jac95], however it is hard to decide a global tolerance value
for all computations. To circumvent these problems, com-
binations of symbolic reasoning [HHK89] and adaptive tol-
erances [SegSO] have been proposed. Other algorithms in-
clude those based on redundancy elimination [FBZ93].

B-rep computation algorithms involve accurate evalua-
tion of the sign of arithmetic expressions, which can present
problems for floating-point arithmetic when the value of
the expression is close to zero. If this problem is not
properly addressed, the resulting algorithm becomes un-

42

http://crossmark.crossref.org/dialog/?doi=10.1145%2F267734.267753&domain=pdf&date_stamp=1997-05-01

reliable. Many algorithms based on exact arithmetic have
been proposed for reliable numeric computation for polyhe-
dra [SI89, For95, BMP94, Hof89]. These algorithms use a
fixed upper bound on the bit-length of arithmetic required
to evaluate geometric predicates. In particular, Fortune
has presented an efficient algorithm based on exact arith-
metic which has a small performance overhead as compared
to a floating-point based implementation [For95]. Besides

reliable computation, exact arithmetic allows the use of
symbolic perturbation to handle degeneracies [YapSO]. The
perturbation scheme greatly simplifies the implementation
of the solid modeler.

There is relatively little work on robust or accurate B-
rep computation algorithms for curved primitives. Algo-
rithms to handle degenerate intersections between quadrics
have been presented in [MG91]. For arbitrary degree sculp-
tured solids, it is difficult to compute tight bounds on the
error generated due to floating-point arithmetic. As a re-
sult, it is hard to extend algorithms based on tolerances to
curved models. Furthermore, exact arithmetic for curved
domains is perceived, for a number of reasons, to be ex-
tremely slow and complex. Exact arithmetic involves com-
putations on algebraic numbers and most of the current
implementations of such arithmetic (e.g. those available
as part of computer algebra systems) are extremely slow.
Techniques using bit-length estimates may, in the worst
case, require bit-lengths which are exponential with respect
to the degree of the algebraic functions [Gan88, Yu92].
Moreover, many representations and predicates that are
well-understood in the linear domain become rather hard
in the curved domain. Overall, no good solutions are known
for efficient and robust B-rep computation on curved solids.
Main Contribution: We present efficient representations
and algorithms for exact boundary computation on Boolean
combinations of sculptured solids. Our contributions in-
clude:

l Representation: We present efficient and exact
representations for points, edges and surfaces using
algebraic sets along with a topological representa-
tion.

l Kernel Routines: We identify lower-level routines
where the algorithms based on floating point arith-
metic are susceptible to failure. These include sign-
evaluation of geometric predicates, orientation of points
with respect to curves, and component classification.
We present fast algorithms to perform such tests re-
liably using exact arithmetic. We refer to the result-
ing set of routines as kernel routines. The efficiency
and reliability of the overall algorithm is governed by
these routines.

l B-rep Computation: Given our kernel routines,
we present an algorithm for B-rep computation.

l Handling Degeneracies: We identify most cases
where degeneracies can affect our algorithm, and pro-
pose ways to identify and resolve some of them.

l Implementation and Performance: We describe
the performance of a preliminary implementation of
our algorithm.

The resulting algorithm and system work well on low-degree
solids (composed of polyhedra, quadrics, tori, low-degree
solids of revolution). In practice, most of the curved prim-
itives of solid modeling systems are indeed low-degree. As

compared to algorithms implemented in floating point arith-
metic, our algorithm performs slightly more than one order
of magnitude slower on low degree solids on average.

Organization: The rest of this paper is organized as
follows. Section 2 discusses background material, including
our representation for solids. Section 3 gives an overview of
our algorithm and discusses the kernel routines which form
its basis. Section 4 discusses how each of the major steps
are performed. In Section 5, we present some analysis of
our approach along with some performance results and an
illustrating example. Section 6 discusses degeneracies and
Section 7 concludes with a mention of possible areas for
extensions and future work.

2 Background Material

In this section, we present our representation for a solid.
Our algorithms assume that solids are specified in this for-
mat, and the B-rep of resulting solids is given in this for-
mat. We also present some background material that we
use to compute the B-rep. This includes a number of al-
gorithms from computational algebra. In particular, we
shall briefly discuss our representation of algebraic num-
bers, techniques for root isolation using multivariate Sturm
sequences, and multipolynomial resultant computation.

2.1 Representation of Solids

Every solid is represented as a set of trimmed parametric
surface patches which define the solid boundary. We repre-
sent each surface patch F(s, t) as a rational function with
rational coefficients. This kind of parametrization is possi-
ble for all quadric surfaces such as spheres and cylinders,
surfaces of revolution, and tori. The domain of the patch
is the unit square in the (s, t)-plane (0 5 s, t 5 1). If we
are given a different rectangular domain, we can always
reparameterize to (0 5 s, t 5 1).

Assumptions: Topological information of the solid is
maintained in terms of an adjacency graph. It is similar to
the winged-edge data structure [Hof89]. To start with, we
assume that each of the input objects has manifold bound-
aries, and the Boolean operation is wgularized. While it
is possible to generate non-manifold objects from regular-
ized Booleans on manifold solids, we assume for the sake
of simplicity that this does not occur. It is a well-known
fact that, while dealing with topological representation of
curved objects, global resolution of edge ambiguities can-
not be guaranteed at times [Hof89]. Some of these issues
are addressed in Section 6. Given these assumptions, it can

43

Vertices formed a8 intersection
of algebraic curve8

i
Algebraic curves as

trimming curve*

Figure 1: Representation of a trimmed patch as algebraic
curve segments

be shown that an unambiguous topological representation
is possible for a solid.

A trimmed patch consists of a sequence of curves defined
in the domain of the patch such that they form a closed
curve (Ci’s in Fig. 1). Each ci is a segment of an algebraic
curve. The portion of the patch that lies in the interior
of this closed curve is retained. Most of these trimming
curves correspond to intersection curves between two sur-
faces. Therefore, these curves are typically algebraic curves
that do not admit a rational parametrization. We repre-
sent these curve segments (ci) by their algebraic equation
and the two endpoints (pi and pi+l). The endpoints are
computed by solving a set of polynomial equations, and are
actually algebraic numbers (see Fig. 1). Exact representa-
tion of these numbers is discussed later in this section.

This representation of a solid lends itself to a descrip-
tion in terms of faces, edges, and vertices analogous to the
polyhedral case. Each face is a trimmed patch. Each of
the trimming curves form an edge, and are formed as an
intersection of two surfaces (faces). Finally, endpoints of
edges form the vertices. They can be represented as an in-
tersection of three surfaces. Fig. 2 shows an example solid
and the face connectivity structure that we maintain. We
also maintain the two faces that are adjacent to each edge,
and an anticlockwise order of faces around each vertex.

Representation of algebraic numbers: It was men-
tioned earlier that each of the vertices in the solid is de-
fined as the intersection of three surfaces, i.e. a root of a
set of polynomial equations with rational coefficients. Be-
cause of the rational parametrization of the surface, each of
these equations is either univariate or bivariate. A vertex in
the patch domain is therefore the common solution of two
equations, f(s, t) = 0 and g(s, t) = 0. These are usually
algebraic numbers, and cannot be represented exactly as
finite precision numbers. Notice that a real algebraic num-
ber is the solution of an equation, f(s) = 0, within some
interval, a 5 s < b. In our algorithm, we represent each
algebraic coordinate as an arbitrarily small rational rectan-

Figure 2: A cylinder and its face connectivity structure

gle (i.e. an axis-aligned rectangle whose four vertices have
rational coordinates). The rational rectangle is guaranteed
to isolate each common root of f(s, t) and g(s, t) (taking
into account the multiplicities of roots). The root isolation
algorithm uses multivariate Sturm sequences as proposed
by Milne [Mi192].

2.2 Multipolynomial Resultants

Elimination theory investigates the conditions under which
sets of polynomials have common roots. Usually, it con-
cerns itself with sets of n homogeneous polynomials in n
unknowns, and finds the relationship between the coeffi-
cients of the polynomials which can be used to determine
whether the polynomials have a non-trivial common solu-
tion.

Definition 1 [Sal85] A resultant of a set of polynomials
is an expression involving the coefficients of the polynomials
such that the vanishing of the resultant is a necessary and
suficient condition for the set of polynomials to have a
common non-trivial root.

[Mac021 provided a general method for eliminating n
variables from n homogeneous polynomials. The resul-
tant is expressed as a ratio of two determinants. However,
a single determinant formulation exists for n = 2 and 3
[Sa185, Dix08]. For n = 3, however, [Dix08] gives the re-
sultant only if the three equations have the same degree.
In our application, it is sufficient to compute resultants for
the cases when n = 2 and 3. Sylvester’s method [Sal851
can be used to express the resultant of two polynomials of
degree m and n respectively as a determinant of a matrix
with (m + n) rows and columns. For the polynomials,

f”(z) = ~2~3~~ + an-la: n-1
+ . ..+alx+ao (1)

and

y”(x) = b,xm + bm--lxn-l + . . + blx + bo (2)
where n 2 m, the Sylvester’s resuhant is

44

an a,-1 . . . a0 0 . 0
0 an a,.-1 a0 0 . 0

0 . . . 0 an h-1 . . . a0
0 . 0 b, b,-, . . b.
0 0 b,, b,-l . . . bo 0

b, b,:, . bo o . . 0

(3)

The problem of computing the implicit representation of a
parametric surface F(s,t) = (x(s,t),Y(s,t),Z(s,1),W(s,t))
involves eliminating s and t from the three polynomials

X(s,t) -zW(s,1) = Y(s,t) - yW(s,t) = Z(s,t) - zW(s,t) = 0.

We use Dixon’s resultant [DixO8] to compute the im-
plicit, form as described in [Sed83].

Resultant computation: We use an algorithm based
on multivariate interpolation [MC931 to compute the resul-
tant of a set of polynomials efficiently. The main bottleneck
in most resultant algorithms is the symbolic expansion of
determinants. Most of the computer algebra systems use
symbolic algorithms like polynomial manipulations for re-
sultants, which are very expensive. Further, the magnitude
of intermediate expressions grows quickly, and the memory
requirements are high. The algorithm in [MC931 performs
all computations over finite fields, and uses a probabilis-
tic algorithm based on the Chinese Remainder Theorem to
recover actual coefficients.

2.3 Multivariate Sturm sequences

Here, we describe briefly the algorithm proposed by Milne
[Mi192] to compute the number of common real solutions of
n polynomials in n variables inside an n-dimensional rect-
angle. This algorithm is an extension of the univariate case
which constructs a polynomial sequence, and measures sign
variations of this sequence at the endpoints of the interval.
We restrict ourselves to the case when n = 2.

Given two polynomials, fl (s, t) and fi(s, t), we con-
struct the volume function, V(u, s, t), as follows:

V(u, s, t) = ResaZ(Res~l(fl(~l,u2),f3),Res,,(f2(a~,az),j3))
udes(fl(s,O))des(fa(s,O))

where fs(u,s,t,al,az) = u+(s-al)(t--a*), Res, refers to
the resultant of two polynomials after eliminating z, and
deg refers to the degree of the polynomial. We use the
Sylvester resultant [Sal851 t o eliminate one variable from
two polynomials.

Given a square-free polynomial p(z) we can construct a
Sturm sequence of polynomials
S, = -remainder(S,-n(z), S,-,(z)), where SI(Z) = p(z)

and SZ(Z) = p’(z). Treating the volume function V as
a univariate polynomial in u, we construct its Sturm se-
quence .!$(u,s, t). The Sturm sequence is specialized at
u = 0 to give a sequence of bivariate polynomials M(s, t).

Definition 2 Given a sequence of polynomials M(s, t) of
length n, the V operator at (al, az) (V(M(al,az))) gives
the number of sign changes between consecutive terms of

the sequence evaluated at (al, a~). Correspondingly, the P
operatoris definedasP(IM(al,a:!)) = n-1-V(M(al,az)).

Given the bivariate sequence M(s, 1) and a rational axis
aligned rectangle r = [al, bl] x [aa, bz], the number of real
roots of fl and f2 inside r is given by

P(A4(bl,bz)) + P(M(a1,a2)) - P(M(bl,m)) - P(M(al,b))

2

The justification for various steps and extension to ar-
bitrary dimensions can be found in [Mil92].

2.4 Topological resolution of algebraic plane
curves

The intersection curve between two surfaces is typically
a high degree algebraic curve. In practice, it may have
multiple real components. Topological resolution involves
identifying critical points like turning points and singular-
ities and establishing a unique connectivity between them.
A number of efficient (poly-log time) algorithms have been
developed for special kinds of algebraic curves. We use the
algorithm by [AF88] for regular curves. The algorithm ini-
tially computes all the turning points of the curve. This
is achieved in our case by taking partial derivatives and
solving for common roots with the original curve inside a
rational rectangle. A crucial step in establishing connec-
tivity between the various turning point.s is to find the sign
of the slope of the curve at certain irrational (algebraic)
points. We present an exact algorithm to perform this step
in section 3.3.2.

The identification of turning points divides the inter-
section curve into a set of monotonic curve segments. FOI
each of these segments, we compute a bounding box (see
Fig. 3) around it. Bounding boxes are needed to distinguish
two such curve segments represented by the same algebraic
equation. However, as seeu from Fig. 3 , not all the bound-
ing boxes are non-overlapping. We perform a subdivision
of these boxes until these two criteria are satisfied. We use
an algorithm described in [KM941 to perform this subdivi-
sion. The bounding boxes defined here are used to classify
a point efficiently with respect to a curve.

3 Algorithnx outline and Kernel rou-

tines

In this section, we give a brief overview of our algorithm
and identify some steps that are susceptible to failure while
using finite precision arithmetic. Finally, we describe the
kernel routines and present efficient algorithms using exact
arithmetic.

3.1 Computation of Boolean operation

The general outline for performing a Boolean operation
between two solids follows. The overall approach is decom-
posed into two stages.

45

/ f
OverlappIng boxes Boxes bounding monotonic Non-overlapplng bounding boxes

curve segments

Figure 3: Bounding boxes around monotonic curve segments

I . Intersection curve computation (for each pair of patches):

1. Obtain the intersection curve(s) between the
two untrimmed patches.

2. Find the points where the intersection curve
meets the patch boundary.

3. Decompose the intersection curve into a set of
monotonic curve segments.

4. Find the points where the intersection curve
meets the trimming boundary, and subdivide
the trimming and intersection curves, generat-
ing adjacency information.

II . Curve merging and boundary computation:

1. Merge intersection curves together in each patch.

2. Partition the patch domain.

3. Compute the adjacency graph and components
separated by intersection curves.

4. Shoot rays from within one solid toward the
other solid to classify components as inside or
outside.

5. Propagate the information from step 3 in the
adjacency graph to compute the boundary of
the resulting solid.

3.2 Need for exact arithmetic

The use of exact arithmetic has been shown to be useful
(and probably necessary) for dealing with degeneracies in
the polyhedral domain ([For95]), and so it is likely to be
needed in the non-linear domain. In addition, the use of
finite precision arithmetic can result in numerical problems
for non-degenerate cases.

We shall now identify two areas where our algorithm is
susceptible to failure when using floating point arithmetic.
In order to prevent these failures, we use exact arithmetic.
Most of these errors finally boil down to either point ori-
entation tests or comparison between two floating point
numbers.

3.2.1 Computing trimmed patch intersections

Most algorithms using floating point arithmetic for com-
puting tlie intersection curve use techniques like curve trac-
ing or subdivision. As a result, these curves are approxi-
mated as piecewise linear curves or splines to within a fixed
tolerance (which is either too conservative or arbitrarily
chosen), or as algebraic curves with floating point coeffi-
cients. Since most of the surface patches we are dealing
with are trimmed, we need to compute portions of the in-
tersection curve that lie inside the trimmed boundaries of
both the patches. Fig. 4(a) shows one such example. The
curve I shown in dotted lines is the intersection curve in
both the domains. IO and 11 are the intersection curves
on the left patch obtained from other surfaces. To com-
pute the actual intersection curve for trimmed patches, we
need to compute the intersection points of the curve with
the trimming boundary. po, ~1, pa and p3 are four such
points on the right patch. If the boundary curves or the
intersection curve are not accurate, neither are the pI’s.
They may not even lie on the actual intersection curve.
Corresponding to the Pi’s, we need to compute qi’s on the
other patch to determine which portions of the intersec-
tion curve to retain. This process is called inversion. Two
problems can arise in inversion: (a) there may not be any
corresponding point on the other patch (because pi’s do
not lie exactly on the intersection curve), or (b) the qi’s
could be positioned such that the curve segments qoql
and q2q3 do not match up with IO and 11 for curve merg-
ing. It is hard to perform this computation reliably using
floating point arithmetic.

3.2.2 Component classification

Another area where floating point errors result in failure
of the algorithm is during component classification. As we
will describe later, we use ray shooting for this purpose and
not sign evaluation of determinants as done by polyhedral
modelers. The entire computation boils down to classi-
fying whether a point lies inside or outside the trimming
region. Fig. 4(b) shows an example. In most cases, clas-
sifying points like q1 is not a problem. One ray-shooting
query will determine it. However, consider a point like qo

46

I
0 S--r

-
0 la---- 0' s---

(a) (W

Figure 4: (a) Inaccurate point inversion for curve merging (b) Inaccurate point classification

I
actual boundary

I approxlmte boundary
,

which lies very close to the boundary. Approximate repre-
sentations of the trimming boundary makes classifying q0
a major problem. Depending on the choice of ray direc-
tions and the tolerances used we may get different classi-
fications. This error could result in topologically inconsis-
tent answers.

There are a number of similar problems which plague
floating point modelers, and resolving these situations is
no different from the ones highlighted. We believe that
using exact arithmetic and representation is essential for
reliable B-rep computation.

3.3 Exact computation of kernel routines

In this section, we will present efficient algorithms to imple-
ment the kernel routines in exact arithmetic. In particular,
given algebraic curves and points, we present efficient al-
gorithms for comparing two algebraic numbers, evaluating
signs of slopes for resolution of regular algebraic curves,
and classifying points with respect to a region.

3.3.1 Comparison between algebraic numbers

It was mentioned in Section 2.1 that each of the vertices in
the solid are defined as roots of a set of polynomial equa-
tions with rational coefficients. Since we are dealing with
rational parametric surfaces, each of these equations is bi-
variate. A vertex in the patch domain is the common solu-
tion of two equations, fl(s, t) = 0 and f~(s, t) = 0. This is
usually an irrational number which cannot be represented
exactly using floating-point arithmetic. In our algorithm,
we represent each algebraic number as a small (based on
lazy evaluation) rational rectangle. The rational rectangle
is guaranteed to isolate each common root of fl(s, t) and
fz(s, t) (taking into account the multiplicities of roots).

Consider a rational rectangle, r, that contains two al-
gebraic numbers, yl and yz (see Fig. 5(a)) . Let y1 be the
common root of fl(s, t) and fz(s, t), and yz the common
root of gl(s, t) and gz(s, t). There is an exact procedure
to answer the question of equality of y1 and yz. Consider
the new polynomial p(s, t) = fF(s, t) + fz(s, t) + g:(s, t) +

g;(s, t), and one of the original polynomials (say fl(s, t)).
It is easy to show that p(s, t) and fl(s, t) have a common
isolated root in r iff y1 = 72. We check for the common
root using Sturm sequences. Further, this method can be
extended to arbitrary dimensions.

3.3.2 Slope sign computation at algebraic points

Fig. 5(b) shows an example of an algebraic curve in a small
region. Once the turning points are computed, they are
separated using rational grid lines (~1, ~2, tl, and t2 in the
figure). In order to determine the topology of the curve
(see Section 2.4), we need to compute the sign of the slope
of the curve at points where the grid lines intersect the
curve (e.g. p4 in figure). Since pq is algebraic (a root of
a univariate polynomial), we can compute it only within
an interval (say, [t41, &I). It is non-trivial to compute the
sign of the slope directly (equivalent to computing signs of
partial derivatives) at ~4. Let f(s, t) be the equation of the
curve. We know that there is a unique root of f(sl, t) in
the interval [t41, t42]. Let g(t) = fs(sl, t). We know that
p4 is not a common root of f(sl, t) and g(t) (because it is
not a turning point). We refine the interval [t41, t42] such
that there is no root of g(t) within the interval. The sign of
g(t) can be obtained by evaluating it at any rational point
in the interval.

3.3.3 Point classification

Classifying a component with respect to a solid amounts
to classifying a point with respect to the trimmed domain.
Problems associated with point classification using floating
point arithmetic were highlighted earlier. We now describe
our algorithm to exactly check whether a point (with alge-
braic number coordinat,es) lies inside or outside the trim-
ming boundary. lnit,ially, we assume that the actual point
does not lie exactly on any algebraic curve that is part of
the trimming boundary. This would be a case of four sur-
faces intersecting at a point and will be discussed when we
handle degeneracies.

47

OI s--w

(a) (b)
Figure 5: (a) Algebraic number comparison (b) Topological resolution of algebraic curves in finite domain

Grid lines separating
turning points

n -Boundary intersection points
, -Turning points

Given that the point is an algebraic number, we rep-
resent it with a rational rectangle of small size. We must
ensure that the rectangle lies in at most one of the bound-
ing boxes of the trimming curve (see Section 2.4). If it lies
in more than one, the rectangle should be further refined so
that it lies in only one. Each of the four vertices of the rect-
angle is classified with respect to the trimming boundary.
This classification is done using a ray shooting technique
(see Fig. 4(b)). To determine if a point (say, q1 in figure)
lies inside or outside the trimming boundary, we shoot an
arbitrary semi-infinite ray (say, ri in figure) from it. The
parity of the number of intersections of the ray with the
boundary is sufficient to classify the point.

We perform this test on each of the four vertices of the
rectangle. If all the results are same, actual point classi-
fication is done. The more interesting case is when some
vertices of the rectangle yield different results. In this case,
we refine our rectangle until consistency is achieved. We
know this is assured because the point does not lie on any
boundary curve. In practice, if we cannot classify the point
after a few levels of refinement, we choose a different ray.

4 Exact B-rep Computation Algorithm

In this section, we briefly describe each step of our algo-
rithm. It is implemented on top of the kernel routines.

4.1 Obtain intersection curve for two patches

We want to find the intersection curve in the domain of
each of the two patches. To find the intersection curve in
the domain of patch 1, we substitute the parameterization
of patch 1 into the (precomputed) implicit representation
of patch 2. A similar procedure obtains the intersection
curve in the domain of patch 2.

4.2 Clip to Patch Boundary

Curve-surface intersection is used to find the points where
the intersection curve meets the patch boundary. We want
to find the intersection points of the curve and surface in

both domains. Finding the intersection points of a curve
with the boundaries of its own patch is straightforward -
just substitute in the value for s or t and use a univariate
Sturm sequence to isolate the roots. The inversionproblem
is to find the corresponding points in the domain of patch
2.

The inversion problem can be solved by considering the
patch boundary as a curve in space. We compute the inter-
sections of this space curve with the other patch (a curve-
surface intersection). For example, consider the domain
boundary t = 0. Then, the space curve corresponding to
the patch boundary will be given by X(s, 0), Y(s, 0), Z(s,
0), and W(s,O), where X, Y, Z, W give the parameteriza-
tion of the first patch. The second patch will have the
parameterization x(u, v),y(u, v),z(u, u),~(u, u). Then,
to solve for the points of intersection we need to solve for
solutions of the equations (5) in their respective domains.

X(u,tl) W(s,O) - X(s,O) W(u,tJ) = 0

Y(u,v) W(s,O) - Y(s,O) iT(u, u) = 0 (4)
qu, u) W(s,O) - Z(s,O) W(u,u) = 0

These equations may be solved using a trivariate Sturm
sequence as described in [Mi192]. This will give solutions
bounded in U, U, and s. However, the volume function com-
putation involves three successive elimination steps (Syl-
vester resultant). Depending on the size of the coefficients,
this process could be computationally intensive.

A more practical, though not exact, approach to solve
this problem is to isolate all the roots in the s domain using
a univariate Sturm sequence. This is followed by eliminat-
ing s from (5) to produce two independent equations in u
and U. This is a bivariate Sturm sequence problem and is
solved by a single Sylvester resultant computation. This
gives all t,he solutions in (u, U) space. Determining the cor-
respondence between the (u, 0) pairs and s roots is done
by comparing each of them in 3-space. We found that in
practice, this method was significantly more efficient.

48

4.3 Decompose into monotonic curve segments

The process for isolating turning points and decomposing
the intersection curve into segments monotonic in s and t
(the patch parameters) was discussed in Section 2.4.

4.4 Prune intersection curves

We now have to trim the curve based upon the trimming
boundary. Basically, we need to intersect the intersection
curves with the trimming curves (represented as algebraic
curves) and throw away sections of the intersection curve
which are outside the trimming boundary.

Finding the points of intersection between the trimming
curve and the intersection curve is relatively simple - use
the bivariate Sturm sequence again. It is also relatively
simple to find the corresponding points on the other patch
- the trimming curve has a surface associated with it, and
this surface intersected with the second patch gives another
curve in the domain of that second patch, From this we
obtain the intersection points on the intersection curve in
the second patch, and figure out which points correspond
by matching the intervals in 3-space. The actual prun-
ing step is carried out by determining the orientation (in-
side/outside) of one point (we choose the starting point on
the intersection curve) using 2D ray-shooting. Propagating
this information to adjacent sections of the curve clearly
identifies the curve segments that lie inside the trimmed
region, and which lie outside. Along with this intersection
curve segment, we also maintain the patch number of the
other solid that defined this curve. We use this later when
we update the topology information.

4.5 Merging intersection curves

In the previous step, we obtained the intersection curves on
each patch for all patch-patch pairs. We now need to merge
these curves (which will define the new trimming curves).
This is done by matching the endpoints of each of the inter-
section curves, thereby partitioning the patch domain into
closed loops. Notice that the monotonic segments of each
intersection curve are already merged. Basically, we must
check both endpoints of each intersection curve against the
endpoints of all of the other intersection curves. If we find
that two curves share a common endpoint, then we store
this information and consider the curves merged. Checking
for point equality is implemented as a kernel routine.

Once the intersection curves have been merged, we need
to once again check whether the bounding boxes of the
monotonic segments are overlapping and, if so, subdivide
the curve appropriately.

4.6 Partitioning Trimming Boundaries

Once all the intersection curves are merged within each
patch, they will partition the trimmed domain (if the as-
sumptions that the individual solid boundaries are closed
and compact are maintained). Otherwise it is a degenerate
intersection (we discuss such cases in Section 6). Fig. 6(a)

shows intersection curves inside a trimmed domain. ci’s
(with endpoints pi and pi+l) are monotonic curves (in
both s and t) that form the trimmed boundary of the patch.
IO, 11, and 12 are the intersection curves computed with
various patches of the other solid. to is a turning point on
the curve 12. As described earlier, all the turning points are
identified before the topology of the algebraic intersection
curve can be resolved. qi’s are points on the intersection
curve where the curve intersects the t.rimmed boundary.
Given this information, Fig. 6(b) shows the actual parti-
tions (Ris). To compute the explicit B-rep of the resulting
solid, each of these partitions is generated. We now present
an algorithm that computes these partitions provided the
intersection curves have no singularity in the trimmed do-
main.

The main idea in this algorithm is the fact that since
the intersection curve segments (10 and 11 in Fig. 6(c)) do
not cross each other, each resulting partition starts at one
endpoint of a curve segment, and ends at the other end-
point of the same curve segment. We shall assume that the
trimming curves and the intersection curves are given in a
specific order. We number the endpoints of the intersection
curve segments such that q2j and q2j+l belong to Ij. The

algorithm works in three steps.

Each endpoint of a curve segment (for example, q6 of
16) lies on a unique curve (except when it coincides
with one of the curve endpoints of the boundary)
of the trimming boundary. In fact, points like q6
are determined as the intersection of 10 with CO.
Note that even though CO and cl could be part of
the same algebraic curve, the association of qo with
co is determined because of the monotonicity of the
Ci’s. Each boundary curve ci is then partitioned
into multiple segments depending on the number qj’s

lying on it.

This is followed by a traversal of the trimming bound-
ary in a consistent order by maintaining a stack. Two
types of elements are pushed in the stack - curve seg-
ments, and curve endpoints. Initially, we keep push-
ing in the boundary curve segments until we reach a
vertex like qo. Let the vertex number be k. If the
topmost curve endpoint type of t.he stack (say, 1) has
a number (Ic + 1) or (k - l), then a partition has to
be read out. Otherwise, vertex k is pushed into the
stack followed by all the curves that comprise Zlki21.
If a decision to read out a region has been reached, all
the curve segments until vertex 1 are popped. Curves
comprising Ilk,21 are pushed again because they are
required by the next region too. The order in which
these curve segments are pushed into the stack has
to be monitored carefully so that a region which is
read out is oriented consistently.

Till now, we have considered only intersection curve
segments whose endpoints lie on the trimming bound-
ary. However, there may be loops that lie completely

49

(a)

A

l-

t
t

I

4

0- S-

W

Figure 6: (a) intersection curves inside trimmed domain (b) Partitions introduced by intersection curves
(c) Partitioning a trimmed patch with chains of algebraic curves

inside the boundary. Any loop is present (if at all)
inside one of the obtained partitions. Each of the
loops (starting from the innermost if the loops are
nested) themselves form a partition. The remaining
part of the region (it has boundaries with multiple
components) is broken into simple regions by intro-
ducing a simple cut from the loop to the boundary
of the partition or the next loop.

This completes the algorithm to compute the partitions
introduced by intersection curves. A feature of this algo-
rithm is that the adjacency structure between the various
partitions (which is necessary to avoid redundant, expen-
sive ray-shooting queries during component classification)
are obtained by the order in which they are read out.

4.7 Updating Topological Information

It is clear from the previous section that intersection corn-

putation introduces new vertices, edges, and faces in the
solid. This change needs to be incorporated in our topo-
logical structure. Further, information about the adjacency
between the various faces significantly reduces the compo-
nent classification time. At this time, we just concentrate
on the face adjacency. Vertex and edge adjacency are up
dated during final solid generation.

The new graph is a refinement of the original adjacency
graph. Remember that a vertex of the graph corresponds
to a face of the solid. Each vertex in the original graph
is split into a few vertices depending on the partitions ob-
tained due to the intersection curves. We need to figure
out the adjacency relationship between the newly created
vertices. Consider, for example, that vertices u and v were
adjacent in the original graph. Due t,o the intersection
curves, let the vertex u be split into ~1, ~2, . ., urn, and
let the vertex v be split into vi, ~2, . ., vn. The adja-
cency between the various Ui’s (similarly Vi’s) has already
been determined (during partitioning). These adjacencies
(let us call it set S) are purposely left out in the new graph.
Let e be the edge along which II and v were adjacent, in

the original graph, and let it be divided into k portions
during partitioning. Then all the adjacencies bet,ween ui’s
and vj’s can be obtained in O(k) time. The number of con-

nected components in this graph gives the number of solid
components introduced by the intersection curves. Let the
solid components be named CC’s, CC1 , . . . Note that each
CC, has a collection of faces.

To obtain the connectivity between the various CC,s, we
introduce some notation. Let R be a mapping which takes
a vertex in the new graph to the corresponding vertex in
the original graph. For example, if u was split into ~1, ~2,
. . ., nnr, then R(Ui) = U. Two components CC, and CC,
are connected if

(3Ul E c:c,,3u2 E CC,pqUl) = R(q) and (u1,u-J) E S}

Using this, we have obtained the various components
and their connectivity. Next we resolve each of these com-
ponents (inside/outside) with respect to the other solid.

4.8 Component Classification

Component classification involves determining whether a
given component of one solid is inside or outside the other
solid. It is obvious that the entire component (as obtained
in the previous section) lies completely inside or outside the
other solid. In most polyhedra1 modelers, component clas-
sification is carried out locally [Hof89]. When dealing with
sculptured surfaces, though, the same technique cannot be
used. The most general method used instead is based on
ray-shooting. Ray-shooting is done by firing a semi-infinite
ray in an arbitrary direction and checking for intersections
with the other solid. If the number of intersections is even,
the point (and hence, the entire component) lies outside
the solid; if it is odd, it lies inside.

There are three steps involved in our algorithm to per-
form component classification. The first step involves get-
ting a point that is part of the component. This reduces
t.o finding a point inside the trimming boundary of one

50

patch. This is accomplished by 2D ray-shooting. We ini-
tially choose some rational point p = (s, t) in the domain
such that t lies between the lower and upper extents of the
trimming boundary. A horizontal line passing through p
(in both directions) is intersected with the boundary, and
all the intersections are determined using the root isolation

method of Milne [Mi192]. Th e intersections must be even in
number and are of the form (81, t), (sz, t), . . . , (szn, t). The
s,‘s are algebraic numbers and are represented as small ra-
tional intervals. Choosing the midpoint of ~~-1 and sz, for
i = 1,2, . , n gives one rational point inside the trimming
boundary. Let this point be called q.

The second step involves actual ray-shooting in 3-space.
To perform 3D ray-shooting, we compute q’s mapping in
3-space using the patch parametrization. Let this point
be (sq,yg,zq). This point is rational because of the for-
mulation of the patch parametrization. We pick a random
direction and fire a semi-infinite ray in that direction. We
compute all the intersections of each patch of the other
solid with this ray. This is done similar to the curve-surface
intersection computation described earlier in this section.
However, not all the intersection points computed this way
lie inside the trimmed boundary of the patch. Checking if
the intersection point lies inside the trimmed boundary, as
in Section 3.3.3, is the third step of our algorithm.

4.9 Final B-rep Generation

The trimmed patches that make up the final solid are de-
termined by the Boolean operation performed. Given two
solids solid1 and solidz, we decide on the final B-rep de-
pending on the Boolean operation as follows:

l Union: All components of solid1 that lie outside
solidz, and vice-versa are retained.

l Intersection: All components of solid, that lie in-
side solidz, and vice-versa are retained.

l Difference: All components of solid1 that lie outside
solidz, and all components of solid2 that lie inside
solid1 are retained.

We also update the topology information. Each con-
nected component that is retained in the final solid has
some graph vertices (faces of the solid) whose complete
adjacency is not determined. These correspond to edges
which are formed by intersection curves. The vertex that
should be adjacent to this vertex along this edge in the fi-
nal graph is part of the other solid, and is the surface that
formed the intersection curve. We maintain the patch num-
ber of the other solid that resulted in an intersection curve,
and use it to complete the adjacency. From this graph, the
entire topological information is easily computable.

5 Analysis and Performance

In this section, we shall discuss some of the theoretical
and empirical complexity analysis for some important steps

of our algorithm. It is clear that the most dominating
steps in terms of time are the root isolation of bivariate
polynomials, and the topological resolution of intersection
curves. We optimize these algorithms, and implement them
as part of the kernel routines. The complexity of steps
involving partitioning based on the intersection curve, and
the face connectivity generation are very small compared
to the total cost, and their analysis is omitted here. We
now give the theoretical worst-case complexity of the root
isolation algorithm.

5.1 Worst case analysis

Root isolation: Most of the results involving real root
isolation are based on Sturm sequences, and we quote a re-
sult from Davenport [Dav85] for the worst-case time com-
plexity of root isolation algorithm for univariate polynomi-
als.

Theorem 1 [Dav85] The running time of the root isola-
tion algorithm based on Sturm sequences of univariatepoly-
nomials is bounded by O(n6(log n + log Cot)3), where n is
the degree of the polynomial and a, are its coeficients.

But this bound is too pessimistic, and a result based on
[Hei71] predicts the average case to be more like O(n4).

Sylvester resultant: Given two polynomials of degree
m and n respectively, the coefficient size of the resultant
is bounded by [(m + n) clmSn [KKM96], where c is the
maximum coefficient size of the polynomials. For the case
of quadrics, tori, and other low-degree solids that we deal
with m and n is at most four. Thus the bit complexity of
the coefficients of the univariate polynomial is roughly 8
times the original bit complexity in the worst case.

Topological resolution of intersection curves: The
algorithm described [AF88] computes the sign invariant de-
composition of an algebraic curve in a finite domain. The
time complexity is given by the following result:

Theorem 2 [AF88] Given a bivariate polynomial of total
degree n and coefficient size d in E2, it is possible to ob-
tain a sign invariant decomposition of the curve in time

O(n I2 (d + log n)” log n).

5.2 Improving performance of exact arithmetic

As exhibited by the worst case bounds, the arithmetic of
these symbolic coefficients is expensive. Actually, the cost
of arithmetic operations is quadratic in the size of its co-
efficients. Even though, in reality, we do not experience
such a drastic increase in bit complexity for intermediate
computation, it nevertheless grows. To reduce the cost
of arithmetic operations, we perform all our computations
over finite fields, and use a probabilistic algorithm based
on the Chinese Remainder Theorem to recover the actual
coefficients [MC93]. The time complexity of the resultant
computation (using interpolation algorithm in [MC93]) is

51

directly proportional to the number of primes used in the
finite field computation. To reduce this number, we use
primes of maximum possible magnitude. Most current im-
plementations of bignum libraries use finite fields of order
2” to prevent overflow when taking products. Most of the
current machines provide multiplication instructions that
give the result out in two registers. Taking advantage of
this fact, we use an assembly level subroutine that performs
multiplication. This allows us to use finite fields of order
as high as 231. Compared to finite fields of order 216, we

get almost two-fold improvement in speed.
Lazy evaluation during root isolation: Another

optimization that we perform to improve our speedup is
to evaluate rational intervals (in root isolation) as lazily as
possible. This is based on the assumption that the worst
case bounds that govern the closeness of roots actually oc-
cur very rarely in practice. Thus, most of the time, we are
able to iso1at.e the roots of polynomials inside the domain
of surfaces quickly. However, during later computation of
other roots, it might be necessary to make sure that two
roots are not the same (because of large overlapping inter-
vals). At this time, we refine the computed intervals fur-
ther and try to isolate their intervals. This lazy approach
to root isolation behaves almost like an output sensitive
algorithm.

5.3 Empirical Performance

It is quite clear that the running time of our algorithm
grows quickly as a function of the degree of the solids.
We have tried computing B-reps for low degree solids like
quadrics and tori. Based on our experience for these solids,
the use of exact arithmetic slows us down by slightly more
than one order of magnitude (as compared to B-rep al-
gorithms based on IEEE floating point arithmetic). The
performance varies with the degrees, relative orientation of
two solids and the complexity of the output. In cases when
the solids are close to being degenerate, the coefficient sizes
grow more quickly, and the algorithm slows down. How-
ever, we feel that this penalty is justified for improving
the accuracy of the modeler and performing reliable com-
putation. We would like to mention that though we have
implemented various steps of the algorithm independently,
they have not yet been integrated together. Furthermore,
our implementations have not been optimized (especially
the kernel routines).

For most quadrics, the parameterization is biquadric
(leading term a2t2). Substituting this into the implicit form
of the other patch results in an intersection curve which is
biquartic (a“ t”) in the domain of the patch. While comput-
ing the resultants of two such equations for root isolation,
the order of the resultant matrix is at most 8 x 8. For these
orders of matrices, the resultant algorithm finishes in about
50 milliseconds. The algorithm uses the special structure
of the Sylvester matrix, and evaluates the resultant using
interpolation methods. The volume function (see Section
8.2), thus computed, is a univariate polynomial in u of

maximum degree 8. Depending on the size of the actual
coefficients, the time taken to compute the Sturm sequence
ranges from 0.2 to 1 second. The entire root isolation pro-
cedure for these cases typically takes less than a second to 2
seconds. We estimate that for a boolean operation between
two low-degree solids, our algorithm will compute the exact
B-rep in 40 - 100 seconds - slightly more than one order of
magnitude slower than a finite precision implementation.
Timings are based on an HP 712/100 model workstation.

5.4 Example

In this section, we illustrate some key parts of our ap-
proach using an example of two cylinders which are just in-
terpenetrating (see Fig. 7(a)). The cylinders are of radius
1 and 0.5, and their centers are spaced 1.49 units apart.
The cylinders are rotated with respect to each other. We
divide the surface of each cylinder into four equal parts
and represent each of them as a rational parametric sur-
face with rational coefficients. The parametric form of a
sample patch from each cylinder are given below.

X(a,t) = 1 - a2
Y(3, t) = 2 a
Z(s, t) = 2 t + 2 2 t - I
W(3, t)= 1 + Q2

After implicitizing using Dixon’s formulation, the im-
plicit forms are

f(x,y,z,w) =w2 - x2 - y2
g(x, y,z,w) = 19701 w2 - 29800 x w + 10000 2’ +

6400 y2 + 9600 y z + 3600 z2

To obtain the intersection curve of the two patches in the
domain of the first patch, we substitute its parameteriza-
tion into the implicit form of the second patch (g(z, y, z, UJ) =

0).

h(a, t) = -3501 + 19200 a - 45002 8’ - 59501 s4 +
14400 t - 38400 st + 14400 s2t -
38400 a3t - 14400 t2 - 28800 s2t2 -
14400 a4tZ = 0

Since the patches are untrimmed, we have to compute
the starting points of the curve on the boundary of the
patch. Substituting a = 0 into h and computing the
volume function for this univariate case, we get

V(21, t) = -3501 + 14400 t - 14400 t2 +
14400 u - 28800 t u - 14400 u2

We computed the Sturm sequence of this volume func-
tion, and isolated the roots of the original equation between
[0, l] to within a precision of &. The two roots were

52

intersection curve

$ t-turning point

s-iurning point

-

Figure 7: (a) Two views of just interpenetrating cylinders (b) Complete intersection curve in the domain of one patch

226834 1838 I 1 1298 6634

390625’3125 ’ zfiz’15625 1
These numbers give the ranges in t for which there

is an intersection of the intersection curve with the s=O
edge of the patch domain. Of these, only the first one
corresponds to a point inside the domain of the second
patch. This was obtained by inversion and a bivariate
Sturm sequence generation. The point corresponding to

m, ““1) inside the domain of the second patch is j;7!,;“,““25 312543682

78125’~l’ ha %%I>~ The s (or t) turning points
on the intersection curve were obtained by performing bi-
variate Sturm sequence root isolation on the pairs of poly-
nomials h(s, t) and h,(s, t) (Izt(s, t)). The s and t turning
points were found to be ([m, $$$&I , [a, a])

and ([$$J$, $$$I , [$, m]) respectively.
Now that we have the turning points of the intersection

curve, we compute the topological resolution. After sepa-
rating the turning points and evaluating the signs of slope
at various grid lines, the connectivity of the curve is ob-
tained unambiguously. The resulting curve in the domain
of the first patch is shown in Fig. 7(b). The intersections
of the curve with the s=O axis, the turning points in s and
t, and the grid lines for curve connectivity computation are

all shown in the picture. Note that the curve shown was
obtained by intersecting this patch with all the patches of
the second cylinder.

6 Degeneracies

A number of degenerate cases can arise when dealing
with curved surfaces. Some of these degeneracies are of
the same general type as is found in a polyhedral modeler,
while some others arise only with curved surface modelers.
These include:

l Two surfaces meeting at a point: This is a sin-
gularity which we assume does not occur. If it does

occur, we can find it by noticing that the intersection
curve has an s turning point and a t turning point
at the same position.

l Two surfaces lneeting at a curve: This is a de-
generate case when the surfaces are tangent to each
other along that curve. We will be able to detect
this when we generate the adjacency graph by finding
whether two components which should be adjacent
are actually part of the same component.

l Two surfaces overlapping: This corresponds to
a face-face overlap in the polyhedral domain. Here,
though, if the surfaces we use have an irreducible
implicit form, then they will not overlap unless this
form is identical.

l A surface just touching an edge: This is an edge-
face contact in the polyhedral domain, and can hap-
pen when three surfaces meet in a curve. In our rep-
resentation, this will appear as an intersection curve
which is tangent to a trimming curve (see Fig. 8(a)).
Such a case can be automatically eliminated if we
check each component of the intersection curve to
see whether it is in the trimmed region. This does
not allow us to use the speed-up of propagating the
infonnat~ion about one component of the intersection

curve to all other components of that curve.

. Four surfaces meeting at a point: This, is the
foundation for several types of degeneracies and will
be discussed next.

Examples of four surfaces meeting at a point include
when a vertex of one solid lies on the surface of another
solid, or when the edges of two solids meet. Obviously,
the vertex can be thought of as the intersection of three
surfaces, and the edges can be thought of as the intersection
of two surfaces, thus the cases mentioned would involve the
intersection of four surfaces.

Even more degenerate cases, such as two vertices meet-
ing, or a vertex lying on an edge, are possible, but these

53

0 *) S--W 0 C4

(d (b)

Figure 8: (a) Surface-edge contact degeneracy (b) Four surfaces meeting at a

can be viewed as 5 or 6 surfaces meeting at a point - i.e.
at least four surfaces are still meeting at a point.

These cases will manifest themselves in our modeler as
t,hree (or more) curves meeting at a common point in the
domain of some patch (see Fig. 8(b)). Assume these three
curves are fl, f2, and f3. We can find out whether this
case has occurred by checking equality of the intersection
of fl and f2 in some interval with the intersection of fl
and f3 (or f2 and f3) in that same interval.

Degeneracies in the polyhedral case can generally be
classified into the category of four planes meeting at a
point. It has been shown [For951 that a simple perturba-
tion scheme applied to a single basic geometric predicate
can eliminate these degeneracies. No obvious extension of
this method exists in the curved surface domain, though
there is hope that some perturbation method can be devel-
oped which would work similarly.

7 Extensions and Future Work

In this paper, we have presented representations and algo-
rithms to compute B-reps for boolean combinations of low-
degree solids specified with rational parametric surfaces.
We use exact arithmetic to perform reliable computations
on a number of kernel routines, upon which the rest of the
modeler is built. The efficient and accurate implementa-
tion of the kernel routines allows us to have an efficient
and reliable method for the overall B-rep computation.

There are a number of ways in which the method we
have described might be extended. These are:

l We need to be able to handle singularities in inter-
section curves and surfaces.

l In order to claim robustness, we will need to be able
to deal with all degneracies (possibly using pertur-
bations).

l Although this method is efficient for lower-degree
surfaces, it would be useful for it to be more efficient
for higher degree surfaces.

point

It would also be useful to extend our method to deal
with non-manifold cases or with non-parametric/non-
algebraic surfaces.

Finally, we would like to investigate the use of par-
allelism or a combination of floating-point and exact
arithmetic to get a faster implementation.

References

[AF88]

[BMP94]

[Bra751

[Can881

[CB89]

[Dav85]

[Dix08]

[FBZ93]

S. Arnborg and H. Feng. Algebraic decomposi-
tion of regular curves. Journal of Symbolic Com-
putation, 5:131-140, 1988.

M. Benouamer, D. Michelucci, and B. Peroche.
Error-free boundary evaluation based on a lazy
rational arithmetic: a detailed implementation.
Computer-Aided Design, 26(6), 1994.

I. Braid. The synthesis of solid bounded by many
faces. Comm. ACM, 18:209-216, 1975.

J.F. Canny. The Complexity of Robot Motion
Planning. ACM Doctoral Dissertation Award.
MIT Press, 1988.

M. S. Casale and J. E. Bobrow. A set oper-
ation algorithm for sculptured solids modeled
with trimmed patches. Computer Aided Geo-
metric Design, 6~235-247, 1989.

J. H. Davenport. Computer algebra for cylin-
drical algebraic decomposition. Technical Re-
port TRITA-NA-8511, NADA, KTH, Stock-
holm, 1985.

A.L. Dixon. The eliminant of three quantics
in two independent variables. Proceedings of
London Mathematical Society, 6:49-69, 209-236,
1908.

S. Fang, B. Bruderlin, and X. Zhu. Robustness in
solid modeling: a tolerance-based intuitionistic

54

approach. Computer-Aided Design, 25(9):567-
576, 1993.

[For951 S. Fortune. Polyhedral modeling with exact
arithmetic. Proceedings of A CM Solid Modeling,
pages 225-234, 1995.

[For961 S. Fortune. Robustness issues in geometric algo-
rithms. In M.C. Lin and D. Manocha, editors,
Applied Computational Geometry, pages 9-14.
Springer-Verlag, 1996.

[Hea95] M. Higashi and et al. Face-based data structure
and its application to robust geometric model-
ing. Proceedings of ACM Solid Modeling, pages
2355246, 1995.

[Hei’il] I,. E. Heindel. Integer arithmetic algorithm for
polynomial real zero determination. Journal of
ACM, 18(4):535-548, 1971.

[HHK89] C. Hoffmann, J. Hopcroft, and M. Karasick. Ro-
bust set operations on polyhedral solids. IEEE
Computer Graphics and Applications, 9(6):50-
59, 1989.

[Hof89] C.M. Hoffmann. Geometric and Solid Model-
ing. Morgan Kaufmann, San Mateo, California,
1989.

[Hof96] C.M. Hoffmann. How solid is solid modeling.
In M.C. Lin and D. Manocha, editors, Applied
Computational Geometry, pages 1-8. Springer-
Verlag, 1996.

[Jac95] D. Jackson. Boundary representation modeling
with local tolerances. Proceedings of ACM Solid
Modeling, pages 247-253, 1995.

[KKM96] .J. Keyser, S. Krishnan, and D. Manocha. Effi-
cient boundary generation of low-degree sculp-
tured solids using exact arithmetic. Technical
Report TR96-040, Department of Computer Sci-
ence, University of North Carolina, 1996.

[KM941 S. Krishnan and D. Manocha. An efficient sur-
face intersection algorithm based on the lower di-
mensional formulation. Technical Report TR94-
062, Department of Computer Science, Univer-
sity of North Carolina, 1994. To appear in ACM
Trans. on Computer Graphics.

[KM961 S. Krishnan and D. Manocha. Efficient represen-
tations and techniques for computing b-rep’s of
csg models with nurbs primitives. In Proceedings
of CSG’96, pages 101-122. Information Geome-
ters Ltd, 1996.

[Mac021 F.S. Macaulay. On some formula in elimina-
tion. Proceedings of London Mathematicul So-
ciety, 1(33):3-27, May 1902.

[Man881

[MC931

[MG91]

[Mil92]

[RV85]

[Sal851

[Sar83]

[Sed83]

[Se@1

[SI89]

[Yap901

[Yu92]

M. Mantyla. An Introduction to Solid Modeling.
Computer Science Press, Rockville, Maryland,
1988.

D. Manocha and J.F. Canny. Multipolynomial
resultant algorithms. Journal of Symbolic Com-
putation, 15(2):99-122, 1993.

J. Miller and R. Goldman. Combining algebraic
rigor with geometric robustness for the detection
and calculation of conic sections in the intersec-
tion of two quadric surfaces. Proceedings OJ A CM
Solid Modeling, pages 221-233, 1991.

P. S. Milne. On the solutions of a set of poly-
nomial equations. In Symbolic and Numeri-
cal Computation for Artificial Intelligence, pages
89-102, 1992.

A.A.G. Requicha and H.B. Voelcker. Boolean
operations in solid modeling: boundary evalua-
tion and merging algorithms. Proceedings of the
IEEE, 73(l), 1985.

G. Salmon. Lessons Introductory to the Modern
Higher Algebra. G.E. Stechert & Co., New York,
1885.

R F Sarraga. Algebraic methods for intersection.
Computer Vision, Graphics and Image Process-
ing, 221222-238, 1983.

T. W. Sederberg. Implicit and Parametric
Curves and Surfaces. PhD thesis, Purdue Uni-
versity, 1983.

M. Segal. Using tolerances to guarantee valid
polyhedral modeling results. In Proceedings of
ACM Siggraph, pages 105-114, 1990.

K. Sugihara and M. hi. A solid modeling sys-
tem free from topological inconsistencis. J. hf.
Proc., In. Proc. Sot. of Japan, 12(4):380-393,
1989.

C. Yap. A geometric consistency theorem for a
symbolic perturbation scheme. Journal of Sym-
bolic Computation, 40:2-18, 1990.

J. Yu. Ekact arithmetic solid modeling. PhD
thesis, Purdue University, 1992.

55

