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Abstract 

The tensor product Bkzier and NURBs surface 

representation is frequently exploited in computer 

aided geometric design. Yet, this representation 

is inherently rectangular, a topology that does 

not easily enable the skinning, filleting, and round- 

ing of triangular regions or domains with arbi- 

t,rary n-sided boundaries. 

Modern solid modeling systems support tensor 

product BCzier and NURBs surfaces with the ad- 

ditional ability to represent the trimmed form of 

these surfaces. This paper explores and presents 

an approach that allows one to construct regular, 

nondegenerate positional or tangent plane con- 

tinuous triangular or n-sided patches, each one 

as a trimmed tensor product surface. The pro- 

posed method is demonstrated on rounding of 

triangular corners using positional and tangent 

plane continuity conditions as well as an exam- 

ple of a Co hexagonal filleting patch. 
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1 Introduction 

BCzier and NURBs surfaces are two common representa- 

tions that can be frequently found in modern solid modeling 

systems. The simplicity involved in extending the univari- 

ate representation into a bivariate one, as a tensor product, 

made this topologically rectangular representation a method 

of choice. Trimmed tensor product surfaces [2, 121 are com- 

monly used to alleviate the deficiency of the tensor product 

scheme to represent holes in the rectangular patch. Round- 

ing and filleting, a common modeling operation in surface 

design, is a difficult task using tensor product surfaces. Even 

for simple objects, topologically triangular representations 

are necessary for the rounding of corners (see Figure 1). A 

triangular patch may be represented using three tensor prod- 

uct surfaces and, in general, an n-sided patch can be formed 

by using n tensor product surfaces. Also, representations 

of triangular patches [6], S-patches [ll] and multivariate 

splines [14] have been developed but are not as common, 

possibly because of the computational complexity involved, 

or lack of crucial algorithms such as subdivision. 

One can allow one of the four boundaries of the ten- 

sor product surface to degenerate into a point, emulating a 

triangular patch, as is done in Figure 2. An obvious dis- 

advantage of this approach lays in the fact that one of the 

partial derivatives vanishes along the degenerated bound- 

ary. As a non regular parameterization, the normal of the 

surface at the degenerated corner cannot be computed as a 

cross product of partial derivatives. Needless to say, approx- 

imating the patch into “fair” polygons becomes a difficult 

task. 

In this paper, an approach is presented in which a single 

trimmed rectangular regular tensor product surface is used 

to create patches with a topology of an arbitrary boundary, 

for which Figure 1 is an example. Positional and plane conti- 

nuity constraints are considered. This paper is organized. as 

follows. In Section 2. we provide the necessary background. 
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Figure 1: The rounding patch of the corner is topologically 

a triangle and is represented herein as a trimmed tensor 

product surface. 

Section 3 discusses the constraints for the interpolation of 

t,he boundary while Section 4 discusses tangent plane con- 

tinuity constraints. In Section 5, several examples for tri- 

angular filleting are presented. Finally, Section 6 considers 

t,he n-sided fillet case and also provides one example of a 

hexagonal fillet surface. All examples in the paper were cre- 

at,ed using the Alpha-l [l] solid modeller, a NURBs based 

solid modeling system that is developed at the University of 

1Jt,ah. 

2 Background 

Let S(u, u) be a tensor product BCzier surface, 

where mu and m, are the degrees of the surface. 

The partial derivative of S(u. u) with respect to u is equal 

to, 

as( u, w) 

&I 

n,-1 my 

= cc mu(P,+1,, - P,,3)B,““-‘(~)B,““(~), 

r=O j=o 

(2) 

and similarly for 9 [6]. 

Given a tensor product Bkzier surface (Equation (l)), 

,S( u, u), a degree raised BCzier surface in u is [6], 

m,-tl m” 

S(u, u) = c c Q’,3B~mU+‘(u)~,mu(~), (3) 
I=0 3=0 

Figure 2: A triangular patch constructed with the aid of a 

degenerated tensor product surface. 

where Q,,3 = tP,-1,,t(%It1-:)p,,~ 
m,+l and the convention that 

P-l,, = Pm,+l,3 = 0 [6] is used. 

Hence, one can degree raise Equation (2) to be, 

dS(K u) 
au 

m.-1 m, 

= c ph(P*+1,, - P*,3)z?~“-1(u)B3”“(w) 

Lemma 1 Let S(u, u) be Q polynomial surface in both u and 
21. Zf 24 = f(t), v = g(t) are polynomials in t then the curve 
S(f(t),g(t)) is also a polynomial in t. 

Proof: S(u, u) is a polynomial in both 11 and v. f(t), g(t) 
are polynomials in t. A composition h og of two polynomial 

is also a polynomial. Therefore, S(f(t), g(t)) is a univariate 

polynomial in t. m 

In [5], a symbolic approach to the computation of this 

composition for polynomial Bkzier curves and surfaces is dis- 

cussed. In [lo], this approach is extended to piecewise poly- 

nomial NURBs curves and surfaces. As a direct corollary 

of Lemma 1, a polynomial curve sketched in the parametric 

domain of surface S, can be realized as polynomial curve 

in the Euclidean space as a curve on surface S. Lemma 1 

can clearly be extended to (piecewise) rational representa- 

tions [5]. 

In this paper and for triangular surface domains defined 

using polynomial Bkzier tensor product surfaces, we will 
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concentrate on the case of the three lines in the parametric 

domain of thr surface of a surface boundary CO of u = 0, 

a surface boundary Cl of u = 1, and the diagonal Cz of 

1~ = 11 = 1.. Examine Cz(t) = S(t, t), a curve on the BCzier 

surface S along the diagonal of the parametric domain (see 

Cz(t) in Figure 3) For u = v = t, 

cz(t) = S(t, t) 

= j?J Pt,,B,“” (tpf”” (t) 

k=O 

with & being independent of t because 

\mu+muJ 

Therefore. Cz (t) is a polynomial curve of degree m, + mu. 

See [5] for compositions of varieties with degrees higher than 

linear and treatment of the (piecewise) rational cases. 

3 Positional continuity 

Given three polynomial curves, C,(t), i = 0...2, in arbitrary 

position sharing their end points so they topologically form 

a t,riangle, we seek a single tensor product BCzier patch that 

interpolates all three curves (see Figure 3). 

Without loss of generality, we will assume that the sought 

patch is t,o interpolate curve Co(t) along the boundary of 

S(0, u), to interpolate curve C,(t) along the boundary of 

S(u, I), and to interpolate curve G(t) along the diagonal 

of S(u, u). The boundary of S(0, V) is a polynomial in u of 

degree rn,, an d the boundary of S(u, 1) is a polynomial in u 

of degree m,. Furthermore, the diagonal S(u, u) is a poly- 

nomial of degree mu + m,, by Lemma 1 and Equation (5). 

Given Ic + 1 independent constraints, and using the fun- 

damental theorem of the algebra, there exists exactly one 

polynomial of degree k that satisfies these constraints. In 

the ensuing discussion, we count the degrees of freedom 

as well as the constraints for each individual coefficient of 

each vector valued constraint. Therefore, a point in three- 

space prescribes three constraints, one for each of x, y, 

and 2. One can convert the interpolation problem of the 

three boundary curves into a set of 3(m, + 1) linear con- 

straints for curve Co(t), 3(m, + 1) linear constraints for 

curve Cl (t), and 3(m, + m, + 1) linear constraints for curve 
Cx (t). Since the three vertices at the corners are shared by 

two curves each, 3 * 3 constraints are redundant and a total 

of 6(ml, + m, ) positional linear constraints are necessary to 

reproduce C,(t), 2 = 0...2. 

The polynomial patch has 3(m, + l)(m, + 1) degrees of 

freedom, the coefficients of its control points. For example, if 
m, = m, = m, in order for a solution to exist, the following 

must hold, 

3(m + 1)’ = 3(m, + l)( m, + 1) 2 6(m, + m,) = 12m. (6) 

For bilinear patches (m, = m, = 1) the condition becomes 

an equality. For bi-quadratic and higher degree surfaces, 

the strict inequality holds, so there are some unconstrained 

degrees of freedom. Consistency constraints also exist for 

the three curves of Co(t), Cl(t), and Cz(t). The degrees of 

these three curves must be less than or equal to m,, , m,, and 

mu + m,, respectively. These constraints are trivial to sat- 

isfy, and we will assume their implicit satisfaction, hereafter. 

An interesting question is also raised about the way one can 

exploit the extra degree of freedom, or control points that 

are not fully prescribed, a question we will partially address 

in Sections 4 and 5. 

The simplest non trivial case is a bi-quadratic (degree 2) 

surface. The boundaries of S(0, U) and S(u, 1) are quadratic 

polynomial curves while the diagonal is a quartic curve. Be- 

cause m, = m, = 2 we have 3(2 + 1)2 = 27 degrees of 

freedom and only 6(2 + 2) = 24 constraints. Any set of in- 

dependent parametric locations can be selected to form the 

k + 1 linear constraints, effectively coercing the interpolation 

of a degree k curve. Nevertheless, in this work we employ the 

node points or the Greville Abscissae [7], points that are typ- 

ically more stable, numerically. In Figure 4, a bi-quadratic 

surface is coerced to interpolate the eight points q,, i = 0...7 
yielding 24 constraints, while exploiting its 27 degrees of 

freedom from the nine control points pJkr j, k = 0...2. As a 

result, this biquadratic tensor product surface interpolates 

the three given curves. 

4 Tangent Plane Continuity 

Given three polynomial curves, C,(t), i = 0...2, in arbitrary 

position sharing their end points, so they topologically form 

a triangle, and three polynomial vector field curves, Di(t), 

i = 0...2, we seek a BCzier patch, S, that interpolates all 

three C,(t) curves so that the tangent plane of S at C,(t) 

contains D,(t) (see Figure 5). We further assume that D,(t) 
and v are independent, that is, D,(t) # a*, Vt. 

Without loss of generality, we will assume that the sought 

patch is to interpolate curve Co (DO) along S(0, U) boundary, 

to interpolate curve Cl (01) along S(u, 1) boundary, and to 

interpolate curve C2 (Dz) along the diagonal of S(u, u). 

The vector field curves, Dt(t), can be prescribed by the 

three neighboring patches of the triangular patch S. Then, 

the D,(t) are derived as the cross boundary derivatives of 

these three neighboring patches. Alternatively, the D,(t) 
can be implicitly specified as a difference of two Euclidean 

curves, as in Figure 5. 

In Section 2, a representation to the partial derivatives 

of the surface is constructed, that exploits the Same basis 
functions as the original surface. The partial derivatives 

are elevated to the same degree using degree raising. By 

elevating the differentiated surface to the same degrees as 

the original surface, it is straightforward to use the same 

basis functions for representing both the positional and tan- 

gent plane continuity constraints. Fewer evaluations of basis 

functions are therefore necessary in the construction of the 
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(b) 

Figure 3: A BCzier patch interpolating curve Co(t) along S(0, U) b oundary, curve Cr (t) along S(u, 1) boundary, and curve 

6’2 (t) along S(u, u) diagonal. In (a), the full surface is shown while in (b) only the non-trimmed triangular domain is displayed. 

PO1 

Figure 4: This bi-quadratic BCzier patch is coerced to interpolate the three space curves (thick lines) by solving an under- 

constrained Linear system with 24 linear constraint equations and 27 unknown or degrees of freedom. 
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Figure 5: A BCzier patch S interpolates curve Co(t) along S(0, v) boundary, curve Ci (t) along S(u, 1) boundary, and curve 

C$ (t) along the diagonal of S(u, u). Furthermore, the tangent plane of S at Ci(t) contains D;(t). 

constraints as a linear system for the purpose of resolving 

the tangent plane continuity. 

Setting u = 0 in Equation (4), leads to a simplified ex- 

pression for g. Because B,““(O) = 6,,0, where 6 denotes 

the Kronecker delta, 

aqu, u) ) 

Lb Lo 

= ~~((m,-i)P,+I,,+(2i-m,)P*,~ 

(7) 
3=0 

Similarly, for v = 1, By”(l) = a,,,, and v simpli- 

fies to. 

The partial derivatives along the diagonal are affected by 

the entire set, of control points, since none of the Bkzier basis 

functions is zero for interior points. Using Equation (4), 

dS(u, v) 

au 

= gy 
((mu - i)P+1,, 

z=o 3=0 

t (2i - mu)Pz,, - 

zPz-1,3) Btm”(v)qm”(u). (9) 

Since the tangent plane constraints, D%(t), are repre- 

sented as vector field polynomials, it is possible to coerce 

the interpolated triangular patch to satisfy the tangent plane 

constraints using only linear systems of equations. 

The formulated problem is overconstrained since the tan- 

gent planes are already fully prescribed at the three corners 

of the triangular patch by the positional constraints. In the 

ensuing discussion, it is therefore assumed that the Di(t)‘s 
are coplanar with the planes prescribed by the positional 

constraints, at the corners. 

A simple approach to formulating the tangent plane con- 

tinuity constraints is to add linear constraints that will force 

the interpolated patch to have its cross partial at C;(t) 
match that of Dt(t). However, since only tangent plane 

continuity is necessary, the C’ parametric continuity con- 

straints may be relaxed into G’ geometric continuity con- 

straints. In [4], the necessary and sufficient conditions for 

tangent plane continuity are derived for Bkxier surfaces. 

Consider the derivative along the mutual boundary of the 

two patches as well as the two cross boundary derivatives of 

the two patches along that boundary. Then, [4) defines the 

tangent plane continuity conditions in terms of the copla- 

narity of there three derivative vector fields. The G’ geomet- 

ric continuity continuity constraints can also be formulated 

as linear constraints, as we do herein. The (unnormalized) 

surface normal at C, (t) is fully specified by C,(t) and D,(t) 
and is equal to 

N;(t) = D,(t) X T. 

Extending [3,8, 91, we define a linear constraint for a sur- 

face cross derivative along an entire boundary. For example, 

along the surface boundary curve S(0, v), w must be 

perpendicular to Ni (v), 

o= (N(v), (WI,=,>>. (11) 

The constraint in Equation (11) is linear in the control 

points of the patch. In [3, 8, 91, such constraints are used 

to enforce normal direction interpolation at a discrete set 

of locations, while each normal direction interpolation is ex- 

pressed as a pair of linear constraints on the two partial 

derivatives of the surface. Because both w and N,(v) 
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Figure 6: Positional continuity for a triangular trimmed tensor product surface. Compare with Figure 7. Both images in this 

figure are identical while the right one also presents the C,(t) curves as well as the curves used to derive D,(t). 

(Equation (10)) are polynomials, their inner product (Equa- 

tion (11)) is also a polynomial. Further, this polynomial 

must the zero polynomial, a constraint that can be satisfied 

if and only if all the coefficients of all its basis functions are 

identically zero. 

Assume the neighboring surfaces are all degree nu by 

nvr and that the triangular patch we attempt to construct 

is degree m, by m,,. For simplicity we also assume that 

nu = n, = n and m, = m, = m. Hence, C,(t) and D,(t) are 

degree n curves. Further, N,(t) (Equation (10)) is degree n+ 

(n - I ), and the constant zero polynomial of Equation (11) is 

degree n + (n - 1) + m for the two boundaries of the triangular 

patch that are also boundaries of the tensor product surface, 

and is degree n + (n - 1) + (2m - 1) for the third boundary of 
the triangular patch, which is a diagonal the tensor product 

surfaces. Using the fundamental theorem of the algebra, 
n + (n - 1) + m + 1 linear constraints at different 21 parameter 

values of Equation (11) are sufficient to coerce Equation (II) 

to be identically zero at the boundary of the patch and n + 

(n - 1) + (2m - 1) + 1 linear constraints are sufficient for the 

diagonal. 

We are now ready to count, the number of constraints 

t,hat are needed for tangent plane continuity. For the posi- 

t,ional constraink, each point contributes three constraint. 

In contrast, for the plane continuity constraints, we intro- 

duce scalar valued equations. Each set of tangent plane 

continuity constraints of a boundary has two of its degrees 

of freedom already specified, at the three corners of the tri- 

angular patch, by the positional constraints. Accumulating 

the tangent plane continuity constraints of all three bound- 

aries, 

(n i- (n - 1) + m + 1) * 2 

+ (n + (n - 1) + (2m - 1) + 1) - 2 * 3 

= 6n+4m-7. (12) 

Combined with the necessary (vect,or valued) positional 

constraints (Equation (6)), th e number of constraints should 

be not greater than the number of degrees of freedom, 3(m+ 

I)*, 

3(m -l- 1)’ > 6n+4m-7+12m 

= 6n + 16m - 7, (13) 

3m2 - 10m - 6n + 10 > 0. (14) 

The minimal degree m that satisfies inequality (14) is 

therefore the ceiling (minimal upper integer bound) of the 

larger zero of quadratic inequality (14), 

m = ceil 
10 + ,/lo0 - 12(10 - 6n) 

6 
), 

(15) 

For example for both n = 2 (bi-quadratic neighboring 

patch) with m = 4 (quartic trimmed tensor product fillet 

patch), and n = 3 (bi-cubic neighboring patch) with m = 4 

(quartic trimmed tensor product fillet patch) satisfy that 

relationship constraint. 

One can exploit either g, g, or any linear combination 

of the two partial derivatives to yield an equivalent system 
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Figure 7: Tangent plane continuity for a triangular trimmed tensor product surface. Compare with Figure 6. The three C,(t) 

curves as well as the three Dl(t) vector fields are of degree four and the trimmed triangular patch is b-quartic (degree five by 

degree five). Roth images in this figures are identical while the right one also presents the C,(t) curves along with the curves 

used to d<+ve D,(t). 

of linear c-onstraints for the tangent plane continuity along 

t,he diagonal of the patch, provided that g, g, and y 

are nowhere collinear in the domain. This, due to the fact 

that $$ $$ and v are all coplanar. 

5 Examples 

ftounding and filleting of corners is an obvious example that 

might benefit. from the proposed method. Figure 6 shows a 

trimmed f%zier surface interpolating the three corner curves 

providing only positional continuity. Figure 7 shows the 

same patch, t,his time with tangent plane continuity. Fig- 

ures 8 and 9 show same additional triangular patch inter- 

polated using the proposed scheme. In all the figures, the 

D,(t)‘s were specified as vector field curves. 

The intcrpolat,ion problem resulting from the constraint 

satisfaction is usually under-constrained. In other words, 

Equat,ions (6) or (14) are strict inequalities. One can use 

the degrees of freedom that are left t,o coerce the patch to 
int,crpolat,e additional interior points and/or tangents and 

normals as is done, for example, in [15], or to satisfy some 

global smoothness criteria. Figure 10 shows several trian- 

gular patches of rounded corners that interpolate additional 

prescribed interior points. 

The interpolated surface may self intersect as can be seen 

m Figure 1 I, and surface fuirness techniques can be consid- 

ered in the proposed scheme to alleviate this problem, ex- 

ploiting the free degrees of freedom. The method suggestred 

in [15] &hat, minimizes st,retch (magnitude of first deriva- 

tives) and bending (magnitude of second derivatives) over 

the surface domain, might be combined with the triangular 

skinning method proposed herein. 

Figure 12 is used to raise a point of caution. While the re- 

sulting surfaces do interpolate their constraints. the control 

meshes can assume an unexpected shape due to the inter- 

polatory approach employed. This unpredictable behavior 

is typically more significant, in the unconstraint triangular 

region of the tensor product surface. This behavior might of 

importance if, for example, tight bounding boxes for these 

surfaces are necessary, and t,he bounding boxes of the control 

meshes are exploited 

6 n-sided Surface Patches 

The domain that trims the tensor product surface can be 

arbitrarily shaped and it is not limited to a triangular shape 

as in the previous sections. Given a patch, S, of a degree of 

m x m, every isoparametric curve of S will be of degree m 

as well. Any straight line in the interior of the parametric 

space of the surface will be elevated into a curve of degree 21n 
(See Equation (5)). Therefore, one can create an arbitrary 

n-sided freeform patch by trimming an n-sided freeform do- 

main out of a tensor product, surface. At the worst case, all 

n sides are interior to the tensor product surface and none 1s 

212 



Figurr 8: Tangent plane continuity for a triangular trimmed tensor product surface. The three C,(t) curves as well as the 

thrvc D,(t) vrctar‘ fields are cubic and the trimmed triangular patch is bi-quartic. 130th images in this figure arc identical 

while 01c right one also presents the C,(t) curves along with the curves used to derive D%(t). 

Figure 9: ‘I’ange[lt, plane contimlity for a kiangular trimmed t,ensor product surface. The three C,(t) curves as well as the 

t,hrrc, /I,(b) vector fields are of degrees three, four, and four, and the trimmed triangular patch is bi-quartic. Bot,h images in 

this ligurr al’<’ i(l~~ntical while the right, onr also presents the C,(t) curves along with the curves used to derive Dz( t)” 
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Figure 10: Tangent plane continuity with the additional interpolation of interior points at different bcations. 

Figure 11: While tangent plane continuous, the interpolated triangular patch can self intersect as is evident in this Figure. 
Both images in this figure are ident,ical while the right one also presents the C,(t) curves along with the curves used to derive 

DE(t) 
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Figlue 12: The control mesh of the interpolated triangular meshes can assume unpredictable shapes, especially in the trimmed 

out domain, as is demonstrated herein for the patches computed in Figures 7 and 9. 

in an iso-parametric direction. Hence, 3* (2m + 1) *n degrees 

of freedom are necessary, where 3( m + 1)’ are available, and 

it is clear that given n, there is always a sufficient m that 

satisfies the constraint equation of 3(m+1)2 > 3*(2m+l)*n. 

Consider, for example, the case of an hexagonal fillet 

patch (See Figure 13 (a)). Herein, four boundaries out of the 

six boundaries of the hexagonal fillet patch are selected to 

be on (part. of) the boundaries of the tensor product surface 

while t,wo additional boundary curves of the hexagonal fillet 

are diagonal straight lines in the interior of the parametric 

domain of the tensor product trimmed surface. Hence, the 

number of constraint imposed by the four tensor product 

boundary curves is 4 * 3(m + 1) and by the two diagonal 

boundary curves is 2 * 3(2m + 1). Yet, the six vertices of 

the boundaries of the hexagonal fillet patch are constrained 

twice. Hence, the total number of positional constraint is 

4 * 3(m + I) + 2 * 3(2m + 1) - 3 * 6 = 24m. Because 24m 

must be less than or equal to 3(m + l)‘, m 2 6 can be em- 

ployed. Figure 13(b) shows one example of a Co continuous 

hexagonal fillet, patch exploiting this proposed scheme, for 

a six-sided fillet patch at, a corner. 

7 Conclusion 

An approach to represent triangular or n-sided patches using 

trimmed t,ensor product rectangular patches was presented. 

Thea proposed method is able to represent non degenerated 

kiangular patches by utilizing tools that are available in 

most modern solid modeling systems, namely tensor prod- 

uct polynomial surface representation and trimmed surface 

support. 

We have demonstrated the construction of rounded tri- 

angular polynomial corners of various degrees as well as an 

hexagonal filleting, using the Bkzier representation. One can 

extend the proposed approach to support the NURBs rep- 

resentation since algorithms for the computation and repre- 

sentation of the composition operation [lo], derivatives [6], 

and products [5, 131 of NURBs as NURBs do exists. 

Arbitrary polygonal regions can be defined in a paramet- 

ric domain of a surface by using only linear functions of the 

form u = au + b. Given a tensor product surface S(u, v) of 

degree m, by mvr the boundary curve of the n-sided patch 

is composed as S(aw + b, v) into the interior of the tensor 

product surface, is of degree m, + m, in 21, and it can be 

computed symbolically. Hence, the number of positional 

and tangent plane continuity constraints grow linearly with 

the degree while the number of degrees of freedom grow 

quadratically with the degree. This suggests there always 

exists a patch with a sufficient degree that is able to satisfy 

all the necessary constraints. 
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