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I Introduction 

We consider NURBS based data structures for 
molecules and their properties, to support synthetic 
drug design and structural reasoning applications in 
molecular chemistry. The difficulty of modeling and 
visualization of large molecules derives from the high 
combinatorial complexity of the typical molecule con- 
sidered (e.g. proteins or nucleic acids [6, la]). There 
are two main modeling approaches. The first describes 
the molecule’s primary structure and the detailed 3D 
position of each of its atoms. The second groups some 
regions of the molecule into simpler shapes to describe 
the folding of the molecule into its secondary, tertiary 
and higher order structures. 

In this paper we focus on the first case where it is 
required to represent the primary structure of a macro- 
molecule. One representation of the primary structure 
is the space fillzng model, where each atom is described 
by a sphere with its van der Waals radius. The topo- 
logical and combinatorial structure of this model has 
recently been explored by Edelsbrunner [9, 10, 111. In 
particular from such formalization any information re- 
garding the topological structure and the corresponding 
geometry of the molecule can be easily extracted. 

On the basis of such results we develop a B-rep data 
structure that aims to be useful both for visualization 
and modeling purposes. This requires the ability (a) 
to exactly represent the shape of the molecule, (b) to 
directly render such a representation, and (c) to per- 
form modeling operations that correspond to the addi- 
tion/deletion of residues. The natural choice to achieve 
both goals is to use trimmed NURBS (Non Uniform Ra- 
tional tensor-product B-Spline with rational B-Spline 
trimming curves). They are an industry-wide stan- 
dard as a modeling primitive and graphics libraries for 

NURBS rendering are available (e.g. openGL, Open- 
Inventor [IS]). M oreover, the rational parameterization 
allows for an exact representation of a spherical surface. 
This alone is not sufficient. In order to have an exact 
representation of a macromolecular structure we also 
need to represent for each atom, not its entire sphere, 
only that portion of the sphere which belongs to the 
external molecule surface. This means that from the 
sphere which represents one atom we must cut away 
the pieces contained in the neighboring atoms. We can 
prove that adopting a certain parameterization each 
trimming curve (a circle) in the 3D space is mapped 
back in the parameter domain to a curve that can be in 
turn represented exactly as a NURBS curve. In this way 
we can represent the contribution of each atom to the 
molecule surface with a trimmed NURBS patch without 
any approximation. 

The method applies for example to the determination 
of the solvent accessible surface (the offset of a union of 
balls is a union of balls) and generalizes to achieve the 
exact representation of the solvent contact surface (also 
known as the Connolly surface of the molecule [7, 81). 

The main contributions of the paper are: (a) the defi- 
nition of a (minimal size) B-rep with standard trimmed 
NURBS representation (section 3), (b) parametric B- 
rep model of the solvent accessible surface useful for an- 
imation (section 4), (c) the classification of the solvent 
contact surface and computation of its representation 
as a trimmed NURBS. 

2 Boundary Representation of 
Molecule (Property) Surfaces 

The representation we use for molecule (property) sur- 
faces is a boundary representation. Two classes of in- 
formation are used: (a) geometric description of each 
patch, (b) topological relations amongst the patches. 
We maintain the following data structures related to 
the molecule. 
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The weighted Voronoi diagram [l, 141 (power dia- 
gram) 2) of the molecule atom centers (the weights 
are the squares of the atoms radii). 

A regular triangulation 7 (dual of the power dia- 
gram) of the same set of weighted points as in [ll]. 

A NURBS patch per molecule atom. 

As it will be shown in the following sections these 
data structures contain all the relevant information for 
the molecule surface. Edelsbrunner [9, 10, 1 l] has shown 
that the intersections among atoms in a molecule cor- 
respond to some edges of the regular triangulation’Z 
(those in the (Y = 0 shape). This implies that the 
edges of a specific subgraph of the regular triangulation 
correspond also to adjacency relations between bound- 
ary patches of the solvent accessible surface. Similarly, 
we have that the adjacency relations between pairs of 
spherical or toroidal patches in the solvent contact sur- 
face correspond to incidence relations (vertex-edge or 
edge-facet) of the boundary of the corresponding reg- 
ular triangulation. Hence the o = 0 shape provide us 
with topological relations between the patches that form 
the molecular surface. 

The power diagram provides us with the cutting 
planes that generate each spherical patch. This enables 
us to determine the exact representation of the molecule 
surface. By translating the same planes we get the cut- 
ting planes necessary to determine the exact description 
of the solvent contact surface. 

The NURBS patches are thus defined in term of these 
two data structures. We are able to update them dy- 
namically as we change a parameter (e.g. the radius 
of the solvent atom or the number of atoms in the 
molecule) of the representation to have an efficient rep- 
resentation. This yields a parametric B-rep of the sol- 
vent accessible/contact surface for animation. 

3 Atom Boundary Patch as a 
Trimmed NURBS 

As we have outlined in the introduction we have selected 
NURBS as basic modeling primitive [15]. In this section 
we present the method for computing an exact NURBS 
representation for the spherical patches that compose 
the external surface of a molecule. This differs from 
the work of Piegl [17], where the goal was to represent 
an entire sphere as piecewise rational Bezier or NURBS 
patch. In particular, for an appropriate choice of pa- 
rameterization we obtain a single trimmed NURBS for 
each atom’s external surface contribution. Each such 
patch is the intersection of one sphere (representing one 
at,om) with the exterior of all its neighboring spheres. 
Consider the intersection S n R of a spherical surface 
S = {X : ]Jz - ~0)) = r”} with the external of sphere 

R = {X : (12 - zr(( 2 r’}. There always exists an halfs- 
pace ir = {z : (z. I) 5 d} such that: 

SnR=Sn?r. 

For each atom we can reduce our patch representation 
problem to the intersection of a sphere with a set of half- 
spaces. The union of balls model [9] provides the equa- 
tion of each halfspace intersecting one atom’. Note that, 
since we use a parametric representation S = f(u, v), we 
need to compute the domain D in (u, r~) space such that 
f(D) = Snn. 

To have an efficient representation we want to obtain 
only one NURBS patch per atom. Moreover, since we 
will use this formulation to achieve a representation of 
the surface parametric in the radii of the atoms we need 
a formulation that maps continuous modifications of the 
radii into continuous modifications of the domain D. 
This is not achieved with the classical NURBS sphere 
representation as a rotational surface of a half circle [17] 
since there are two points (north and south pole) of the 
sphere that are the image of two lines in the parameter 
domain (say ‘u = 0, 21 = 1 if the interval of the u domain 
is [0, 11). This implies that when the boundary plane of 
7r crosses one of the poles the corresponding trimming 
curve in the (u, TV) domain would have a discontinuous 
change in shape. 

Without loss of generality we assume that S is the 
unitary sphere. The parameterization we adopt is the 
following (see [4]): 
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X = 

u2 + 73 + 1 
2v 

Y = 73 + v2 + 1 
u2 + w2 - 1 

2 = 
212 + 02 + 1 

This parameterization maps the (infinite) rectangular 
domain 

[-co, +co] x [-co, +a] 

to the unitary sphere. Note that in practice we do not 
deal with an infinite domain since we do not represent 
an ent,ire sphere but only one spherical patch. In par- 
ticular assume that we are considering the intersection 
S* of the unit sphere S with the halfspace L < d (with a 
rigid body transformation and a scaling we can always 
reduce the first intersection to this case). We determine 
a positive constant 1 such that S’ C f(Z), where Z is 
the square domain [-I, +Z] x [--I, +I]. In the parame- 
ter domain this corresponds to the condition D c I. 
The minimum value of I that satisfies such condition 

‘Given the Voronoi complex of the weighted centers of the 
molecule atoms, the halfspaces whose common intersection gen- 
erates the Voronoi cell of the atom B are those with which S = aB 
must be intersected. 
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is I = 
II-- 

m l-d’ Regarding the numerical stability of the 

method it is important to note that for d = 0.999 we 
get 1 = 44.710.. . Even when d is much larger than a 
realistic value, we still deal with a small domain region. 

The next step is to determine the domain D. At this 
end we simply replace the parametric equations (1) of 
the of the sphere to the variables in the Cartesian in- 
equality of T obtaining the Cartesian inequality defining 
D. 

u2 + v2 - 1 
Cd =+ 

742 + v2 + 1 - 
u2 + v2 _< l2 (2) 

Thus the domain D is a disc with center in the origin 
and radius 1. Note that a variation of d corresponds to 
a scaling of D, that can be performed by simply scaling 
its control polygon (once a NURBS representation is 
defined for the trimming curve of D). For any additional 
cutting halfspace f : ax + by + ct < d we have: 

(c-d)u2+(~-d)~2+2azl+2bv-(c+d)~0 (3) 

If the plane ax + by + cz = d contains the singular 
point of the parameterization P = (O,O, 1) then c = d. 
In this case the trimming curve is the straight line: 

2au + 2bv - (C + d) = 0. (4) 

The domain D must be intersected with the half-plane 
2au + 2bv - (c + d) _< 0. 

If c - d # 0 the trimming curve derived from (3) has 
Cartesian equation: 

(u+ 5)” + (v + -&)Z = a2 +i2T;);- d2 (5) 

In general we note that all the trimming curves are cir- 
cles (possibly with infinite radius) so that the region 
D can be modeled as progressive intersection/difference 
of a sequence of circles. Corresponding to the cutting 
halfspace s of normalized equation ax + by + cz 5 d, 
with a2 + b2 +c2=1, we have in parameter space a circle 
C of center (A, A) and radius m. The region c-d 
defined by such circle (inside/outside) depends on the 
sign of the term c - d. For c - d < 0 P = (O,O, 1) is 
inside % and hence the points of the plane at infinity are 
included in the region corresponding to %. That is % is 
mapped onto the outside of C. This requires C to be 
parameterized with a clockwise orientation. Symmetri- 
cally c + d < 0 implies that i corresponds to the region 
inside C and hence C must be parameterized with a 
counterclockwise orientation. 

In appendix A we detail the control points computa- 
tion used for the definition of the spherical patch. 

Figure 1: The HIV-2 PROTEASE (a) and one solvent 
accessible surface (b) for the same molecule. 

4 Solvent Accessible Surface 

In this section we discuss the representation of the sol- 
vent accessible surface of a molecule. Since we are rep- 
resenting the molecule with a union of balls a, in the 
following, with some abuse of terminology, we will call a 
both the molecule or the union of balls. Similarly each 
single ball B will be called either a ball or an atom. 

Assume we have a ball B of radius r (a solvent atom) 
free to move in space without intersecting the union of 
balls L? (a molecule). We say that R is in a legal position 

if its interior i does not intersect a. 

Definition 1 The solvent accessible surface S, of the 
union of balls B relative to a solvent atom B of radius 
r, is the locus (envelope) of the centers of the spheres 
wzth radius r tangent to B. 

From [9, lo] we know that S, is the boundary surface 
of the union of balls B’ that has the same set of atoms 
as B but with all the radii increased by r (see figure 1). 
On the basis of this property we can achieve a repre- 
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sentation of S, parametric in T. For T = 0 we obtain 
the van der Waals surface of the molecule 8s. Varying 
the value of T we get the accessible surfaces of different 
solvents. 

Let V’ E V’ be the convex cell corresponding to the 
ball B’ E f?‘. V’ is the intersection of a set of k halfspace 
~ln.. .I~Q. The the contribution of B to the boundary 
of a (the surface S, for T = 0) is given by dB n ~1 n 
. ,-, ak. 

Now assume T > 0 and consider the sphere B’ in L?’ 
corresponding to B in L?. The contribution of B’ to S, 
is computed by intersecting 8s’ with the same set of 
halfspaces 7ri, ,*i,. 

To compute the trimming curves in the parameter 
space (u, u) of the NURBS patch representing dB’n(n 
. . n a;, we apply a mapping that transforms B’ into 
the unitary ball B,. Under this mapping the variation 
of 1’ corresponds to have a fixed (unitary) radius ball B, 
intersected with a set of varying halfspaces. Formally, 
if the ball B’ and one halfspace R’ have equations: 

B’ : x2 + y2 + z2 5 R2 

R’ : ax+by+cz+d~O 

we apply the coordinate transformation x = Rx’, y = 
Ryl, z = Rt’ to map B’ to B,: 

B, : d2 + yt2 + .z’2 5 1 

73 : ax’ + by’ + cz’ + ; 5 0 

The change of the radius R of B’ to R + T is hence 
mapped in normalized coordinates (z’, y’, t’) to the 
change of the paramet,er $ of the halfspace R’ to &. 
This means that the equation of the trimming circles 
can be rewritten, including the parameter r, as: 

(u++p2+(“+$p2 = 
u2 + b2 + c2 - C&C)” 

1‘ (c - &I2 

(6) 
that is a circle of center ( +, &-) and radius r = 

R+r-” .?+r 

$ggg To maintain the description of the domain 
D we have to maintain a 2D dynamic union of balls that 
is equivalent to maintain a weighted Voronoi diagram of 
moving points in the plane [13, 51. 

Note also that the coefficient d of the plane equation 
is also function of T. In fact as the radius of each ball is 
increased by T the Voronoi plane that separates two balls 
moves toward the smaller one. An example is shown in 
figure 2. The distances II, 12 of the Voronoi plane r from 
the centers of the two balls must, be such that the power 
distances of r are equal, that is: 

Figure 2: As the radius of the two balls is increased by 
1 the Voronoi plane that separate them moves towards 
the smaller ball. 

Moreover the sum of two distances is constant (the two 
balls grow but do not move): 

11 + /2 = 1 

From these two equations we get for II so: 

12 + 7-H - r; 
1;-r;=(l-11)2-r; j 11= 21 

When ~1 changes to rl + r and r2 changes to r2 + r 
we have: 

5 Rolling Ball Surface 

In this section we extend the method to achieve an exact 
NURBS representation of the rolling ball surface S, of 
a molecule L?. The goal is to achieve an intermediate 
stage toward to construction the solvent contact surface 
S, defined in the next section. In Figure 3 is shown 
the Fullerene molecule along with two solvent contact 
surfaces corresponding to two different solvent radii. 

We assume to have a ball B of radius r (the solvent 
molecule) which is free to roll along the union of balls 
a (the molecule). The union of all the balls B (moving 
tangentially to B in all the possible directions) is a re- 
gion whose outer envelope strictly contains (if r > 0) 0 
and whose inner envelope is tangent to B (see [3]). 

Definition 2 The rolling ball surface S,. of 2he 
molecule B with respect to a ball B of radius r is the 
inner envelope of the region described by B rolling on B 
in all possable directions. 

The close relationship between the solvent accessible 
surface and the rolling ball surface is evident from this 
definition. 
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Figure 3: The Fullerene molecule (a) and two solvent 
contact surfaces (b),( c corresponding to two different ) 
solvent radii. 

Lemma 1 (Necessary Condition) If a poznt p lies on 
the rollang ball surface S, then it lies also on the bound- 
ary of a ball B wath center on the solvent accessible sur- 
face S,. 

Proof: By Definition 2 when p E S,. there exists a 
ball B of radius T such that p E dB, B n B # 0 and 

h nB = 8. But if the center q of Lj does not belong to 
S, either 

BnB=0 

or 

0 

Using the regular triangulation 7’ associated with B’ 
we can define the set of patches composing S, First, 
recall the relationship between 87’ and 8B’: 

each vertex 21 of 87’ corresponds to a spherical 
patch of da’; 

each edge e of 137’ corresponds to the intersection 
line between two adjacent spherical patches of 8s’; 

each triangle t of 87’ corresponds to the intersec- 
tion point between three adjacent spherical patches 
of dB’. 

We base the construction of the rolling ball surface 
on these properties. Using Connolly’s terminology [7] 
(as we will later see that the solvent contact surface is 
a subset of the rolling ball surface) we have (a) each 
vertex v of 87’ corresponding to a “convex” spherical 
patch in S,., (b) each edge e of 87’ corresponding to a 
“saddle” toroidal patch in S,., and (c) each triangle t 
of 87” corresponding to a “concave” spherical patch in 
S, The definitions of these three kinds of patches are 
reported in the following three subsections. 

5.1 “Convex” Spherical Patches 

Consider the spherical patch G with radius r + r1 of dB’ 
associated with the vertex 21 (see figure 4). It represents 
a moving solvent ball that maintains contact with dB 
at a point p. The surface described by the point p is in 
turn a spherical patch of radius T (part of 8B). It can 
be computed from the power diagram of 8s. Call B the 
ball (of radius r1) of B with center v. It contributes the 
patch dB fl r1 fl . n nl, (that is the Voronoi cell of w is 
~1 n n rk) to dB The ball B contributes the patch 
dB fl Xl rl . fl %l, to S,, where YYi is parallel to ?r~i but 
nearer to v. Without loss of generality we assume w to 
be the origin (O,O, 0) and x1 to be orthogonal to the z 
axis (with a rigid body transformation we can always 
achieve this situation). The halfspace ~1 is x 5 d and 
the halfspace x1 is x 5 d where: 
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Figure 4: A solvent atom of radius T that rolls on the 
molecule surface f? maintaining its center on the solvent 
accessible surface f3’. Its point of contact with B belongs 
to the solvent contact surface S,. 

We can so determine any halfspace ai corresponding 
to7riandhencedBniiin...n%k. 

5.2 “Saddle” toroidal patches 

A similar argument holds for saddle toroidal patches. 
With reference to figure 5 we consider the edge e of 87’ 
with extreme vertices ui and 212. The edge e corresponds 
on aa’ to a (portion of) circle E of intersection between 
two adjacent balls dB1 n a&. Thus, it is possible to 
roll a solvent ball, moving its center along the arc Z. 

If the edge e is not a facet of any triangle of 87’ then 
e is an entire circle. The ball that rolls maintaining 
its center on E describes a torus E. We are interested 
in just a portion of dE. Consider the plane 7r of the 
Voronoi diagram on which e lies. Applying the proce- 
dure specified in the previous subsection we compute 
two planes si and 82 by translating s towards vi and 
212, respectively. The intersection of ilE with the region 
within 7~1 and ~2 generates two toroidal patches. The 
one nearest to the torus axis m is the toroidal patch 
E’ that belongs to S,. 

If the edge e is the arc from point ii to point fz then 
the toroidal patch associated with e is the portion of 
the patch E* intersected with two more halfspaces. Call 
~(~Q,w~,v~;zJ~) the halfspace that contains wi,u2,vs in 
its boundary and 7~4 in its interior (with vi, ~2, us, 214 
affinely independent). The toroidal patch corresponding 
to e is (see figure 5): 

E:* n i7(vl, v2, Cl; t2) n T(v~, w2, t2; tl). 

5.3 “concave” spherical patches 

Finally, consider the triangle t of 87’ with vertices ~1, 
~2, and us. It corresponds to the point t in df?‘. In 

Figure 5: (Top) A solvent atom B of radius r that rolls 
on the molecule surface B maintaining its center on the 
solvent accessible surface f?’ and two points of contact 
with two molecule atoms. The portion of circle of dB 
that belongs to the triangle with the three vertices vi ,212 
center of B, belongs to the rolling ball surface S,.. (Mid- 
dle) The toroidal NURBS patches of the rolling ball sur- 
face $, of the caffeine molecule. (Bottom) The toroidal 
NURBS patches of S, shown together with the union of 
balls. 
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Figure 6: A solvent atom of radius r tangent to the 
molecule surface B maintaining its center on the solvent 
accessible surface t3’ and three points of contact with 
three molecule atoms. The portion of dB inside the 
tetrahedron with vertices v1,v2,v2, center of B, belongs 
to the rolling ball surface S,. 

this case we have a solvent atom B with no degrees of 
freedom (it cannot roll since its center is fixed in q. The 
contribution of B to S, is thus given by: 

dB f-3 4~ v2, t; u3) i-3 4v1, v3, c v2) i-3 4v2, v3, t; Q). 

Figure 7 depicts a complete solvent contact surface 
(a superset of the rolling ball surface) of the caffeine 
molecule with the concave patches highlighted in purple. 

5.4 Correctness of the Result 

In this subsection we show that the set of patches we 
have computed form the required rolling ball surface S,. 

We have already shown in Lemma 1 that any point 
p of S,. must belong to the boundary of a ball B whose 
center belongs to X?‘. 

Take the point p in dB and the direction z= o?, where 
o is the center of B (with o E as’). It easy to verify 
that p E S,. iff the following property holds. 

Property 1 Given a direction of translation d: iff 
d’. d’ > 0 there is always a small 6 > 0 such that any 
translation of B of an e > 0 with F < 6 along the direc- 
tion d’ will intersect B. 

Theorem 1 Any point in the rolling ball surface of the 
molecule B belongs to one of the patches of S, computed 
in the section above. 

Proof: From Lemma 1 we have that all the points p of 
S, belong to the boundary of some tangent solvent ball 
B. Also for each solvent ball B of radius r its intersec- 
tion points p with S, are (all) its boundary points for 

Figure 7: Complete Connolly surface of a caffeine 
molecule. 
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which property 1 holds. Thus, the fact that there is a 
small neighborhood of B where no legal ball B’ contains 
in its interior any point p E S,, proves the theorem. o 

6 Solvent contact surface 

In this section we extend the method to achieve an exact 
NURBS representation of the solvent contact surface S, 
(also known as the Connolly surface) of a molecule f?. 
The surface is defined as follows. 

Definition 3 A point P belongs to the solvent contact 
surface S, of the molecule 8 with respect to a solvent 
with atoms of radius r iff: 

a there exists a legal ball B1 of radius r that contains 
p in its boundary: 

3B1 Ip E ~BI and 61 rlf? = 0 (7) 

a there is no legal ball B2 of radius r that contains p 
in its interior: 

h,nB=0 =s- P $42 (8) 

The close relationship between the solvent contact sur- 
face and the rolling ball surface becomes clear from this 
definition. 

Lemma 2 If a point p lies on the solvent accessible sur- 
face S, then it lies also on the rolling ball surface S,.. 

Proof: The proof can immediately be derived from the 
comparison of definition 2 with definition 3. Further, 
from this follows that lemma 1 holds not only for S,., 
but also for SC. 0 

The problem that remains to be solved is the removal 
of (possible) self intersections that the rolling ball sur- 
face might have, and that make it differ from the solvent 
contact surface (for a classification of the classes of self- 
intersection that may occur see [3], figl). This problem 
can be geometrically highlighted even with a set of two 
small balls along which a large radius probe is rolled (see 
figure 8). In this case the blending surface is formed by 
a toroidal patch that is self-intersecting. 

To show the same problem for the concave patches 
at least three spheres are needed. Figure 9 shows three 
possible configurations of the solvent contact surface for 
a set of three balls. From the picture it is clear how 
complex the shape can get (with sharp features, varying 
in genus and possibly disconnected) even for a simple 
configuration of three balls. 

In the following subsections we will show how the 
patches of the rolling ball surface can be trimmed to 
get the exact representation of the solvent contact sur- 
face. As for the previous case we will report a brief 
sketch of the proof of correctness. 

Figure 8: (a) The rolling ball surface (in green) with 
a probe of radius 10 on two spheres (in red) of radius 
1 is a self intersecting surface. (b) The corresponding 
solvent contact surface has no self intersection. 

6.1 Convex Patches 

The convex patches of the solvent contact surface are 
exactly the same of the rolling ball surface. This derives 
immediately from the following: 

Lemma 3 The solvent contact surface S, of the 
molecule B is completely included within the region be- 
tween 8B and aB’, where dB’ is the corresponding sol- 
vent accessible surface. 

Since S, does not intersect the interior of B there is 
no nee to further trim the convex patches since they 
belong to LW. 

6.2 Toroidal Patches 

First of all, we exclude the possibilities of two toroidal 
patches intersecting each other and of a toroidal patch 
intersecting with a concave/convex patch. 

Lemma 4 Given two toroidal patches Ti,Tj (with 
i # j) their relative interiors are disjoint: 

+i n+j=0 

Lemma 5 Given a toroidal patch Ti and a concave 
(convex) patch Cj, their relative interiors are disjoint: 
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(b) 

Figure 9: (a) The rolling ball surface (in green) with a probe of radius 10 on two spheres (in red) of radius 1 is a self 
intersecting surface. (b) Th e corresponding trimmed version has no self intersection. 
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From the two previous lemmas we derive that one 
toroidal patch can intersect only itself. This happens 
when it can be constructed as rotational surface of an 
arc of circle around an axes that intersect the arc (see 
figure 10). For each arc a rotating around an axis 1 
intersecting a we must remove that portion of a lying 
on the “wrong” side of 1. In this way we compute the arc 
a’ (a disconnected subset of a) whose rotational surface 
around 1 has no self intersection as in figure 8. 

(a) 

-. . ..* : 
. . *...._...... ..-. 

(b) 
Figure 10: (a) The arc a rotating around the axes I 
describes a self intersection portion of torus. (b) The 
arc a’ rotating around the axes 1 describes portion of 
torus with no self intersection. 

6.3 Trimming the Concave Patches 

First of all, we exclude the possibility of a concave patch 
intersecting either itself or a convex patch (we already 
know that it cannot intersect a toroidal patch). 

Lemma 6 Given a concave patch Ci and a convex 
patch Cj, their relative interiors are disjoint: 

:ifl;j=0 
Lemma 7 One concave patch cannot intersect itself. 

As show in Figure 9 two distinct concave patches can 
intersect each other. Since each concave patch is a por- 
tion of sphere we have to deal again with a sphere-sphere 
intersection problem. Hence we can simply maintain 

the regular triangulation of the centers of the concave 
patches (in this case all the weights are equal) so that we 
have all the relation of reciprocal intersection between 
concave patches. It has been shown in section 3 that 
the intersection between each pair of spheres is mapped 
to the insertion of an additional trimming circle in the 
domain space. Taking into account the intersections 
between pairs of concave patches, we must add some 
trimming circles to the domains of each concave patch 
to obtain the result of Figure 9. 

6.4 Correctness of the Result 

After the additional trimming curves are added to each 
toroidal/concave patch we get an exact representation 
of the solvent contact surface S, (see Figure 11). 

Theorem 2 Any point in the solvent contact surface 
of the molecule B belongs to one of the patches of SC 
computed in the section above. 

Proof: From Theorem 1 we are “locally” guaranteed 
that S, is the solvent contact surface of 13. Moreover 
the additional trimming curves guarantee that there is 
no legal ball B’ (not only in the neighborhood of B) 
that contains in its interior any point p E cap&. Hence 
the theorem. 0 
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APPENDIX A - control points 
computation - 

In this appendix we explain the computation of the 
NURBS control points. The approach we take is to 
compute the control points once for all molecule atoms. 
That is each atom will be represented by its specific do- 
main D in (u, V) space and the same set of normalized 
control points that represent the unitary sphere with 
center in the origin. Then we apply an affine transfor- 
mation to map the unitary sphere to the position taken 
by the atom. To have a unique base set of control points 
(defining a portion of the normalized sphere) that can 
represent any atom we need to be sure that for each 
ball B in B there is at least a neighbor ball fi, that 
intersects B for the smallest portion. This is because 
we wish to compute the control points of a portion of 
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Figure 11: Complete Connolly surface of a Nutrasweet 
molecule. 

sphere which is a (bounded) rectangular domain and a 
minimum superset of any domain D of any atom. 

Fortunately this condition is satisfied for all 
molecules. For example in the ball and stick represen- 
tation used in Raster3D [2, 161 a bond (stick) is drawn 
between to atoms of radii ~1, ~2 if the distance T between 
the centers of the two atoms is less than O.~(TI + ~2). 

Since in a molecule there is at least one bond per atom 
we have that for each atom there is at least a neighbor 
atom for which T < O.~(TI + ~2). If we also consider 

that minimum atom size in a molecule is 1.3 i and 
the maximum is 2.18 i we have that each atom is in- 
tersected by a neighbor atom for at least 0.15477% of 
its radius. This means that, with reference to equa- 
tion (2) we can always assume to have d 5 0.84523 that 
is 1 _< 3.45288299571568. For this fixed value of 1 we 
apply a change of polynomial basis to get the coordi- 
nates (5, y, Z) of one quarter of the control points (and 
relative weight UI) as in the table below. 

. 

1 

A 

..p3 -ps p9 

..p2 ..Ps ps 

..Pl ..p4 ..4 

Pl 

p2 

p3 

p4 

i 

p5 

p6 

p7 

PS 

p9 

The other control points are just computed mirroring 
these twice with respect to the z and y axis. The knots 
vectors are ‘11 : [-l- 1- lOOlll] 21 : [-l- 1 - lOOlll]. 
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