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1. INTRODUCTION 

1 .l Background 

ENGEN (Enabling Next weration Mechanical Design) is 
a program jointly sponsored by DARPA (Defense Advanced 
Research Projects Agency) and PDES, Inc., an industry 
consortium to accelerate the development and implementation 
of IS0 10303, known informally as STEP (SJ’andard for 
Exchange of Product Model Data). This research program is 
an 24 month effort (Sept. 95 - Aug. 97) to prove the 
feasibility of capturing certain key aspect of design intent in a 
neutral data model as represented by constraints, parametrics, 
design history, and features. The model will utilize the 
EXPRESS modeling language and be independent of any 
particular CAD system. In 1997 a demonstration is scheduled 
to show exchange of design intent among dissimilar CAD 
systems. The principal program deliverables are the ENGEN 
Data Model (EDM), and a pilot demonstration showing 
exchange of design intent using Ford’s work flow process 
with the systems: Computervision (CV) - CADDS 5@, 
Structural Dynamics Research Corporation (SDRC) - 
I-DEAS”, and Parametric Technology Corporation (PTC) - 
Pro/E”. Organizations and companies participating in 
ENGEN are Ford Motor Company, SCRA, PDES, Inc., CV, 
SDRC, PTC, International TechneGroup, Inc. (ITI), Pacific 
STEP, Purdue University, and Arizona State University. 

The main focus of this paper is to discuss the use and 
representations of constraints within the framework of STEP 
methodology, in particular, the conceptual modeling language 
EXPRESS and the STEP physical file. A parametric module 
is built on top of the design and constraint modules. Current 
parametric/variational/feature-based CAD systems have the 

powerful capability to associate parameters with a design, so 
that a change in a parameter(s) results in an automatic update 
to the design. For example, the diameter of a hole in a block 
may be r/2 the length of the block, so that a change in the 
length explicitly changes the diameter. Some of the 
parameters provide insight into the intentions of the designer. 

The initial release of STEP in 1994 successfully handles the 
exchange of ‘static’ design, providing no mechanism to 
capture design intent. This is a barrier to the exchange of 
more intelligent product information between mechanical 
design applications. Thus, commercial STEP translators 
have focused primarily on lower level geometric and 
topological information for solids, surfaces, and curves. The 
IS0 Parametrics Group has begun to develop a model to 
address the area of parametrics [I]. EDM [3] is a major 
component in the STEP effort to develop parametrics 
capability ([2]). 

In our context, the design, rather than just being a passive 
drawing or a flat file, becomes more active in the sense that it 
enables the downstream users to modify or regenerate the 
design from explicit information in the exchange file. The 
information provided in the exchange file are generated by the 
sender or upstream designer. Moreover, additional 
requirements at later stages can feedback to the earlier 
designers to refine the design. Constraints in predefined or 
free form formulations capture the logical inter-relationship as 
well as the inter-dependence of design/shape data. The design 
intent is an accumulation of these interactions of design/shape 
and constraints. A file or database containing design intent 
information is more automatically “editable” than one which 
contains nothing but a snap shot of a design. Because EDM is 
a conceptual model that captures design plus constraints, 
which are the main aspect of parametric technology, we can 
view ENGEN as an application of the parametric technology 
with a special objective, namely, to convey design intent. 
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1.2 Development platform 

The EDM approach uses STEP as its development 
environment/platform. STEP is developed as a group of 
‘parts’ [8], each of which represents an International 
Standard. The initial release of STEP in 1994 contained 12 
parts. We utilize the EXPRESS [4] modeling language (IS0 
10303-11 or Part II), and a data/information exchange 
mechanism known as the physical file exchange format (IS0 
10303-21 or Part 21). Unfortunately, once a language is 
adopted, its style and grammar take away some freedom in 
solution; hence, EDM is subject to the power as well as the 
limitation inherited from EXPRESS. Furthermore, as the 
EDM model is instantiated in a Part 2ltile (for brevity, STEP 
file). additional limitations are present due to the mapping 
rules between the EXPRESS grammar and the Part 21 
grammar. Next is an example of the EXPRESS definition of a 
widget entity followed by an instance in a STEP file. 

ENTITY widget; 
al : INTEGER; -- A 
a2 : STRING; -- 
a3 : BOOLEAN; -- : (F, T) 
a4 : LOGICAL; -- D CF. U,IJ 
a5 : SET[1:2]OFREAL; -- E 
a6 : REAL; -- F 
a7 : point; -- Cl (An entity type ) 

END-E NTITY; 

Note: F = False, U = Unknown, T = True. 

#I = POINT (..); 
identifier entity name 
#2 = WIDGET (99, ‘ABC’, .T.. UNKNOWN., 

I I I I 

(9.000, 1.2345), -7.8,% ); 
B C D 

I I I 
E FG 

Thus, the tight coupling of EXPRESS and STEP file on the 
one hand offers efficient mapping and ease for 
implementation; yet on the other hand causes restrictions on 
expressions for both modeling and instantiation. 

1.3 Terminology 
In order to clarify the usage of several ordinary terms in this 
discourse the following definitions are used: 

Constraints: limitations on an item’s permissible values 
within itself or with respect to other elements in the design, 
such assize, shape, position, orientation, dimension, logical 
relationships (such as identical, distinct, set relation), as well 
as engineering constraints. 

Design History: a record of the design activities or events in 
the creation of the design. 

Entity type: A major construct of EXPRESS that represents a 
conceptual unit that is used in depicting a design. Examples 
of entity types are line, transformation, and B-spline curve. 
Entity types may have hierarchical relationships among each 
other, that is, one entity type may be a subtype of one or more 

other entity types (called supertypes) by inheriting the 
supertypes’ attributes. One entity type may also contain 
attributes (as part of its representation) of entity types. Every 
entity type is associated naturally with a construct function. 

Model: a collection of logically related entity types and rules 
that the application designer can use as low level templates, 
(e.g., line as a pair of direction and point) in order to create an 
intermediate or final product. A model is a term at the 
conceptual level; its analogy in STEP is a SCHEMA. 

Module: a subset of a model containing types that are 
grouped together based on some commonality such as 
common characteristics or functionality. Structurally, there is 
no distinction between a ‘model’ and a ‘module’, the difference 
lies in their scopes and relative domains. We use ‘module’ 
when the collection is intended to support a part rather than 
the whole for the discourse of interest, where ‘model’ is to 
stand for the universe of an application. For example, in IS0 
10303-203 [5] advanced boundary representation solids may 
be considered a module. Thus, module is a relative term, 

Parametrics: the use of equations and constraints to augment 
(or replace) the explicit creation of product shape on CAD 
systems. 

Entity instance: An instance of an entity type appearing as a 
data record in a STEP file or a database. A STEP pre- 
processor outputs a STEP tile and takes as input either a CAD 
system database or possibly its command log. This is because 
not all CAD systems store the constraints in their databases, 
but only use them to compute the solutions. 

1.4 High level architecture 

In this paper, we describe one major model (EDM) which 
contains three modules: Design’, Constraint, Parametric 
Module. The Design module is based on IS0 10303-42. The 
short term approach requires no change of the existing STEP 
schema(s) whereas the intermediate term approach will 
require some extensions on schema(s). The Parametric 
Module supports both parametric and variational technology 
in declarative representations. Another module in EDM, 
called Spatial Configuration, deals with assembly of parts 
appearing as constrained shapes in a common coordinate 
system will not be discussed in detail here. The Feature 
Module is under development and currently contains a small 
number of transition features ([3]). The Design module is 
self-contained; Constraint module points to Design; 
Parametric points to Design and Constraint. The architecture 
is depicted in the following figure. 

’ Design contains shape of the part without any external 
constraints. Shape and design will be used 
interchangeably. 
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Figure 1: EDM high level architecture 
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The purpose is to have an architecture whose base is built on 
the traditional design models such as geometry, topology, or 
configuration control by adding new modules in an upward 
compatible manner. In order to make any extension upward 
compatible, we must have the new modules pointing to the 
existing ones, but not vice versa. In other words, the 
existing one is self sufficient without knowing any new 
modules referencing it. In the following sections, we give a 
brief introduction of each module in EDM. 

2. INTERACTION OF DESIGN AND CONSTRAINT 

2.1 Nomenclature 

For the sake of this discussion, a specification stands for a 
requirement at the higher conceptual design, while a 
constraint stands for a requirement or a condition at the 
detailed design level, using one or more mathematical 
equations. A specification is usually broken into many low 
level constraints through a sequence of design activities. 
Thus, for a design to satisfy even a single specification it may 
require the validation of many mathematical equations, 
engineering equations, or logical conditions at different 
phases of the design cycle. For example, suppose there is an 
automobile design specification to have a seat belt that can 
sustain a certain impact force. Meeting that specification 
involves many low level detailed design requirements in 
shape, assembly, and material. For each aspect, there may be 
many equations to compute, solve, and verify. For our 
purpose, the parametric modeling paradigm does not deal 
with high level specifications, but rather deals with low level 
constraints most represented by mathematical formulations. 

A realized design is a collection of related instances of 
standard entity types that together yield the desired outcome 
at that design stage. When equipped with sufficient 
constraining information, a ‘skeleton’ of such a design can be 
extracted by leaving out some or all attributes values. Hence, 
a potential design rather than a realized design can be 
preserved and shared. Such a skeleton has true parametric 
characteristics. For example, a cube can be decomposed into 
a collection of six planar faces, twelve straight edges and 
eight vertex points in such a way that parallelism and 
dimensional constraints are imposed on the faces and edges. 
Such a cubic skeleton may have only one parameter, e.g., the 
dimension of an edge, to be realized. By using a parametric 
model along with an assembly mechanism (spatial 
configuration) we can place it in a larger design. In the 
ENGEN program, we do not handle such a macro or 
template entity, because of the limitation imposed by the 

physical file that all attribute values must be given. In other 
words, any complex template/macro must be declared as 
entity types in the schema. In a sense, a macro could be a 
user defined (likely complex) entity type; which cannot be 
handled effectively by the first release of STEP. 

2.2. Effects of constraints on design 

Constraints can be viewed in three aspects: 

I. As restrictions and limitations on parameters that 
define the design. This is the intuitive 
understanding. 

2. As freedom for modification of the design. This 
sounds like a total contradiction. First of all, by 
‘freedom’, we do not mean tolerance in 
dimensioning or precision for real numbers. When 
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a design without any constraint information is 
passed down the development cycle, it represents a 
fixed snap shot yielding no freedom to the receiver 
to alter. Unless the constraint equation or 
equations yield a unique result, in that case, the 
intention is clear, the possibility of more than one 
acceptable solution indicates a freedom to modify. 
For example, two lines are passed along with the 
constraint that they are parallel. A broad 
interpretation is that both lines can move and the 
distance between them can change so far as they 
remain parallel. A single constraint is generally 
not deterministic; but a group of them can be. 

3. As a design generating tool subject to #l and #2. 
We assume that the receiving system has a ‘solver’ 
which uses the information as input and generates 
a result satisfying given constraints. 

In particular, parametric modeling deals with constraints that 
are expressible in terms of basic data types such as integers, 
real numbers or strings, and entity types, such as line or 
ellipse. We would prefer to think of a constraint as a 
mathematical or engineering condition expressible in a 
system of equations F(p 1, ~2,. ,pn) = 0. The result of each 
developing stage feeds into the next phase as parameters 
(with value already assigned) and additional conditions may 
be imposed. The iterative process may require the change of 
a design or even some constraints; hence it is very important 
to identify the elements that control the design outcome and 
the constraints they are subject to. This facilitates the 
modification of a design with limited intervention while 
enabling the preservation of design intent. In the simplest 
case, a few attribute values can be changed as long as the 
constraints are not violated; whereas in the extreme case, a 
new design may need to be re-generated by the downstream 
solver based on the parametric conditions that are presented 
in the exchange file. The EDM conceptual model itself does 
not preclude over-constrained or under-constrained design. 
The protocol of these various situations must be understood 
before any data sharing/exchange takes place. 

3. ENGEN DATA MODEL (EDM) 

The EDM modules introduced earlier are now discussed. 

3.1 Design Module 

The Design module consists of data structures and functions 
for defining shape information, primarily from STEP Part 42. 
The scopes of many supertypes are greatly reduced to include 
only a few needed subtypes. Geometric entities included are 
points, vectors, lines, tonics (circle and ellipse only), and 
swept area solids (extrusion and revolution) plus Boolean 
operations for combining solids. The test parts for ENGEN 
are a Ford connecting rod and crankshaft, which will not 
require free form curves (B-splines in STEP). They are 
expected to be required in a future version of EDM for 
modeling parts such as automobile manifolds. 

There is also one basic revision of these SCHEMAs 
summarized as follows: 

Each attribute in an EXPRESS ENTITY of a basic data type 
such as REAL, INTEGER, or STRING is mapped into a 
STEP file as a constant with no identifier. This EXPRESS 
to STEP file mapping inhibits treating such attribute as a 
parameter because they are not assigned with identifiers. In 
order to handle attributes as parameters rather than static 
data, we introduce an entity type for REAL, INTEGER, or 
STRING as well as for each user defined data types of these 
types. These identifiable constants can then be used in the 
place of constants in a traditional STEP file. For example, 
instead of assigning 5.0 as the radius for a circle, 
alternatively we may assign R to the radius and assign 5.0 to 
R, where R is a persistent name. In this manner, we can 
assign constraint(s) on R, e.g. , 4 < R < 5, so that it becomes 
much more versatile to modify the design. 

3.2 Constraint Module 

It is very important to point out the difference of the concept 
of rule in EXPRESS and the constraints of EDM. 
EXPRESS contains two types of rules: local and global. A 
local rule (key word: WHERE) pertains to a given entity 
type and applies to all instances of that entity type; for 
example: the radius of a circle shall be greater than one. A 
global rule (keyword: RULE) involves one or multiple types 
and applies to all instances of those involved types in a given 
instantiation of the schema; for example, the Euler’s equation 
of topological elements for a manifold. However, there is 
no need to exchange these at the instance level, because they 
are part of the definitions. On the contrary, the constraints 
of interest in this paper are user created requirements. It 
contains constraints associated with the entity types in the 
Design module and they are contingent rules against the 
instances in the design process, not against the conceptual 
model; for example, ‘the distance of the center of a 
particular circle must be at least 1 mm from the closest 
boundary curve’, or ‘Stress(A1) + Stress(A2) < l05k psi, 
where Al and A2 are cross sections of a given part model‘. 
These rules are not part of the conceptual model. 

A pre-defined or explicit constraint may be applied in a 
shape model composed of geometrical and/or topological 
elements. It usually asserts a relationship between two or 
more elements present in the model, and is also usually 
external in the sense that it does not affect the shape or other 
static properties of the representation. The purpose of such a 
constraint is to capture a modest but important aspect of the 

designer’s intent in creating the model; that is, the 
requirement that certain characteristics of its shape should 
remain invariant if any design modifications are subsequently 
made. Thus, it is only after transfer of the model into a 
receiving system that explicit geometric constraints have any 
effect. They then restrict the design freedom available for 
modification, the intention being that such restrictions ensure 
the continued functionality of the design throughout any 
changes that are made. 

A shape model may contain two parallel linear edges. The 
parallelism may be expressed by the fact that the lines on 
which the edges lie share the same direction. This is part of 
the representation of the model (as it currently exists). We 
may say that the lines sharing the same direction instance are 
constrained by ‘internal’ or ‘implicit’ constraint. However, 
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ambiguity in interpretation between the sender and the 
receiver may exist. Is the usage of a shared direction 
instance an indication of an intentional constraint or is it 
simply for reducing the file size when the two edges are 
‘incidentally’ parallel? Now suppose that a parallelism 
constraint is applied to the same pair of edges. This causes 
no changes to the geometry or topology of the shape model, 
as stated above. It asserts something that is already true, but 
additionally it expresses the requirement that the condition 
should remain true after reconstruction in a receiving system 
where further modifications may be made to the model. The 
external or explicit constraint is therefore not part of the 
shape description of the model as transferred, but governs 
what changes may subsequently be made to it. 

Explicit geometric constraints are not necessarily used in the 
reconstruction of the model in the receiving system --- this 
will often be possible in terms of geometry and topology 
alone. However, it is envisaged that the constraint 
management capability of the receiving system will be used 
to check the model for compliance with the explicit 
geometric constraints transferred with it. 

Some constraints have predefined connotations and are easily 
put in template forms. A constraint is either a condition(s) on 
a given design entity, or to establish a relationship among 
multiple design entities. They can be one-to-one, many-to- 
one, one-to-many, or many-to-many. 

There are two ways to convey such a relationship. One way 
is to define pure design/shape elements (as in PART 42) and 
pure conceptual constraints (e.g., the concept of parallelism) 
separately and define an ‘action’ which chooses the constraint 
element to act on the certain design elements. The other way 
is to make the constraint elements as built-in characteristics 
of the design elements so that an instantiation of such a 
(relation) type conveys the whole action. An example of the 
first approach is: given a line and two points, the constraint 
is for the points to lie on the line or the line to pass through 
the points. An example of the second approach is to create a 
line passing through two points. EDM models the design- 
constraint relationship in both ways. The first way is 
depicted by the composition of Design Module and 
Constraint Module, and the second by Construct Module. 

In each constraint type we classify the design elements in two 
classes: target and referent. The implication is that in a given 
constraints, the parameters do not necessarily play symmetric 
roles in the design process, but have a dependency 
relationship. The independent ones are included in the 
referent and the dependent ones in the targets. The purpose 
is to simulate a command during the design process as well 
as to convey the logical asymmetric relationship, if any. 

A partial design history can be extract from the relationship 
by interpreting that the target instance is created after the 
referent element. This history is only abstract, because it is 
derived from the exchange file. The editability of the data 
file depends on the classification of the target and the 
referent set. EDM’s Parametric Module contains an entity 
called ‘design history’ which explicitly captures the design 
history by listing the sequence of events. An event is a triad 
of (design instances, constraints, design instances). In 

short, the triad represents one design step seen by the user. It 
could be as atomic as a single design-constraint operation, or 
as molecule as a collection of them. Within the collection, 
the design-constraint instances can be sequential or 
concurrent. 

There are basically three classes of constraints from the 
aspect of representation: 

1. Predefined : Contains constraints that have well 
defined semantics with well known parameters 
(variables) in established formulations. Every entity 
type is basically a template. For example: parallel (for 
lines), axial symmetry (for curves or points), point on 
curve. 

2. Free Form : Contains constraints that do not have a 
pre-conceived semantics and frame work. For example: 
The sum of the length and width of a rectangle = 10.0; 

Construct : Contains built-in constraints in the process 
of creating the design element. For example, in 
STEP a standard line is represented by a point and a 
vector. Suppose we wish to impose the condition for a 
line to pass through another point. Instead of using a 
predefined constraint: ‘curve passing through a point’ to 
the line instance, in this module we have an entity type 
“construct-line-through-two-points” which is a subtype 
of the line type. In other words, this entity type inherits 
the standard attributes (‘start’ and ‘dir’) and has an 
additional attribute second-point. Many standard 
construction methods can be included as entity types in 
this module. 

In EDM most constraints that are predelined can be 
characterized as geometric constraints with the exception of 
logical constraints, and the free form as algebraic constraint; 
but that distinction is, though intuitive, not precise. The 
analogy of “predefined vs. free-form” constraints in the area 
of design is “standard vs. user-defined” entity types. The 
latter has no pre-established notion or formulation, and is 
represented by means of composing basic, generic 
mathematical or other type of symbols. For predefined 
constraints, we will use the EXPRESS construct ENTITY to 
capture the parameters needed; even though conceptually the 
EXPRESS reserved word RULE is a more appropriate 
keyword for constraint type elements. This is because at 
present, all RULES are observed at the conceptual level, and 
there is neither need nor mechanism to instantiate RULES in 
STEP files. For the same reason, there is no direct and clean 
way to instantiate free form constraints, because of the lack 
of support in STEP files for anything but ENTITY. We 
shall handle them by means of a special type of STRING. 

3.2.1 Predefined Constraint 

Most predelined constraints in EDM are geometric in nature 
with a few logical/algebraic in nature. Figure 2 shows the 
pre-defined constraints included in EDM. 
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Figure 2: Hierarchy of Constraint Module 

Every predefined constraint type contains also one or two 
attributes indicating the linear accuracy, the angular 
accuracy, or both. In addition, every constraint is 
associated with a constraint validation function which returns 
TRUE if the computation results in numbers that are less 
then the prescribed accuracy values. 

3.2.2 Freeform Constraints 
Freeform constraints are in the form of equations 
(expression). There are at least two approaches to represent 
an expression. One of the approaches is to define the basic 
ingredients that play roles in a general equation, such as 
variable, constants, operations, mathematical or numerical 
relationships, etc. as entity types, then define an expression 
also as an entity type that contains adequate attributes which 
facilitate the construction of an expression using these basic 
ingredients [6]. The advantage of this approach is that we 
can accomplish the goal by strictly remaining in the scope of 
STEP. These could be done because the construct ENTITY 
TYPE of EXPRESS lacks any pre-existing semantics so that 
very general concepts can be declared as an entity type. 
Thus, to define an expression, though tedious and complex, 
is safely within the power of EXPRESS. The disadvantage is 
that it is tedious and complex and non-intuitive. The 
exchange tile has to re-construct a simple expression such as 
a + b = 5 by putting together the ‘jigsaw puzzle’ containing 
‘a’, ‘b’, ‘+I, I=‘, and ‘5’ together. For example, let us assume 
that ‘real-variable’, ‘real-constant’, ‘add’, and ‘equal’ are 
entity types with appropriate attributes, five records are 
needed to create a single expression for a + b = 5 as follows: 

#I = REAL-VARIABLE (‘A’): 
#2 = REAL-VARIABLE (‘B’); 
#3 = REAL-CONSTANT (5); 
#4 = ADD( #1,#2); 
#5 = EQUAL(#4,#3); 

. : 

The postprocessor would have to put them together into an 
expression which is recognizable by the CAD system; but 
the effort may be justified by not requiring an extension to 
EXPRESS and the existing STEP standards. 

Another approach is to use STRING. This needs one 
additional assistance beyond the common usage of STRING. 
STRING allows us the freedom to put any collections of 
characters inside a string, even foreign characters, with a few 
precautions. The content in a STRING is for human 
readability. In order for a computer to read the value of a 
string, the string must have a grammar that can be processed 
by a computer. A freeform constraint in EDM is represented 
by a STRING that obeys the EXPRESS grammar on 
expressions. An ‘EXPRESS based STRING’ is signaled by 
an escape symbol Ye’. A user defined grammar can be used 
in a STRING with an escape symbol 9~‘. The latter situation 
is based on the private agreement of the data sharing parties. 

Finally, in order to facilitate expressions, besides all the 
available functions in EXPRESS, we included in EDM some 
functions which we call ‘predicate functions’. For example, 
distance (point, point): REAL; These functions can be used 
in the place of an identifier in a legitimate expression. This 
approach would require an extension to the EXPRESS 
production rule. For example, for the equation above, we will 
have the following record: 

#lOOO = CONSTRAINT-FREEFORM (target-id, 
referent-id,‘<eso A+B = S’,‘comment’); 

3.2.3 Construct Module 

This module contains entity types that depict construction 
procedures. In the purest sense of a standard, a schema of 
STEP should contain a unique representation for each entity 
type. For example, if ‘point’ and ‘vector’ are chosen to 
represent a line, then two points should not be used to 
represent a line, no matter how common and useful it is. 
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However, for practical reason, there exists a handful ot 
SUBTYPES in the STEP parts that actually indicate 
enhanced representations for some entities. The EXPRESS 
SUPERTYPE/SUBTYPE feature provides extended entity 
representation in a controlled manner. We note that a 
SUBTYPE always inherits the attributes of its SUPERTYPE, 
hence it retains its ‘standard representation’. Every entity 
type defined in the Construct Module is a SUBTYPE of 
some standard entity type. The additional attributes in the 
construct type is to serve the purpose of ‘parameters’ as they 
are used to solve the solution. Naturally, a construct entity 
type is over-constrained in that all the attribute values are not 
independent. The extra attributes of the construct type are 
different from the derived attribute of EXPRESS in that a 
derived attribute is a computational result from the standard 
attributes, while for a construct entity type, the standard 
attribute values are fully or partially derived from the given 
attributes in the construct entity type. For example, a line- 
through-two-point instance contains a start point, a vector, 
and another point. The direction of the line is computed from 
the points, but the magnitude of the vector is an independent 
information. 

The Construct Module contains sufficient declarations of 
such nature as to provide additional methods in creating and 
modifying standard entity types. There are two reasons to 
choose ENTITY over other EXPRESS keywords such as 
PROCEDURE or FUNCTION, even though the nature of the 
latter is more compatible with the concept of constructor. 

A. There is no mapping of FUNCTION to the physical 
file. In order to work within the existing STEP framework, 
ENTITY is the only available EXPRESS construct. 

B. For EXPRESS FUNCTION, we need to include the 
actual algorithm for the function, not just the signature or 

prototype of the function. Since our purpose is NOT to tell 
HOW the constraints are solved, but WHAT they are, we 
use ENTITY to declare the functional argument. The 
attributes of an ENTITY are basically the arguments of a 
function. 

In the future when the representation capability of STEP 
file is extended, more sophisticated constraints in the form of 
procedure can be exchanged by means of user defined 
procedures or functions. That will help the communication 
among dissimilar systems. At the present, since only 
‘WHAT is represented, we have to leave alone the issue 
concerning solver incompatibility. There are several points 
worth noting concerning the Construct Module. 

I. Every construct entity is a subtype of the original type. 
It is open-ended how many construct entity can be 
declared. 

2. In each construct entity type, there is an attribute called 
“fixed” which indicates which attribute values, if any, 
are treated as constants (i.e., fixed constraints not 
subject to change). 

3. The attributes in a construct entity may not yield a unique 
result, hence it is not exactly the same as the ‘constructor’ in 
programming language such as C++. We note that a 
construct entity is a subtype of the original type, hence it 
inherits the set of attributes that uniquely define an instance. 
The intent of a construct entity is to make the constraints a 
‘built-in’ feature of the entity. 

The following table shows the current content of the 
Construct Module of EDM. 

ENTITY TYPE 

point 

vector 

METHOD 

intersection, bisect, tangent, centroid, displaced, extruded 

two points, cross product, sum, difference, scalar multiplication, tangent 
vector, extruded 

direction twe points, c10s.s product, sum, difference, tangent 

line two points, parallel through a point, perpendicular, angled, tangent, extruded 

circle three points, concentric, tangent to line and through a point 

plane three points, parallel through point 

Figure 3: Construct Entities 

3.3 Parametric Module 

Parametric Module contains mainly collections of individual 
design and constraint elements, EDM uses it to support 
parametric technology in which the input and output 
parameters are design data and the constraints behave like 
‘operations’ on the parameters. We can imagine the 

parametric model as a vending machine to which one or 
multiple ‘parameters’ are dropped into the slots, either order 
sensitive or order insensitive, and some ‘product design’, 
either singular or complex. comes out of the output spout. 
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Parametric Module contains entity types that represent the 
various ‘ways’ the user inputs the ‘parameters’ and chooses 
the operations. Hence, it uses the individual design types 
and constraints defined in the Design Module (they are like 

the token or coins we drop into the machine) and Constraint 
Module (they are like the different choices) as its basic 
structure. The Parametric Module and its relations with 

other modules can be depicted by the following diagram: 

representation 

STRING 

parametric-design or variationalJeometry 

STRING 

arametric-representation 

constraint-driven-representation 

1 target collection of \ \r? . . . . . . . . . . . . . . . . . ..__._______._.._._...._______~ ~.‘........“.‘...........‘........”.~ ,................-.......-......... . : pq/: pgiq v/i 
*.__._____.............................~ . . . . . . . . . . . . . . . . .._................................................_................~ 

Figure 4: Architecture of Parametric Module 

Based on Solver characteristics: 

1. Parametric Design : Stands for the type of solver 
which requires an explicit order for the 
constraints/conditions to compute the solution stepwise. 
Such technology can be viewed as showing HOW. The 
process is represented by a list (i.e. ordered) of (design, 
constrain) pair or a list of construct entity types. Recall 
that a construct entity type is an entity type with built-in 
constraints. 

2. Variational Geometry : Stands for solver which does 
not require orders for the constraints/conditions, and it 
is irrelevant on how to solve them. Such technology 
can be viewed as showing WHAT. 

Further discussion can be in found in [9]. 

Based on representations: 

I. Constraint Based design : A constraint based 
parametric model is basically a collection of either 
unordered (concurrent constraints) or ordered 
(sequential constraints) constraints. 

2. Constraint Driven Design : The constraints take a 
more active role so that the design is computed out of 
the constraints from solvers. It is a collection of either 
ordered or unordered generators. A generator is a triad 
of ( input, operator, output), where input and output are 

design elements and operator is a choice of constraint as 
defined in the Constraint module or the Construct 
module. 

4. TECHNOLOGY APPLICATION 

4.1 Demonstration 
A work-in-process demonstration was conducted for the 
PDES, Inc. Technical Advisory Committee which showed 
exchange of some geometric constraints (parallel, 
perpendicular, point on, equal length) for a connecting rod 
test part. Suppliers participating were SDRC (IDEAS), CV 
(CADDS 5). and PTC (Pro/E). Figure 5 in the following 
provides the scenario of the demonstration. The connecting 
rod had been designed on CADDS 5 with the geometric 
constraints captured. The CV pre-processor generated an 
ENGEN Part 21 (STEP) tile containing the constraints. PTC 
ran its post-processor on the file and brought the connecting 
rod into Pro/E with the geometric constraints displayed. 
The connecting rod had also been created in SDRC, and the 
pre-processor output the ENGEN tile with the geometric 
constraints. The post-processor to transfer the ENGEN file 
into CADDS 5 was in-work as indicated, but has 
subsequently been completed. The ‘Mesh’ arrow shows a 
direct transfer of a finite element mesh from Pro/E to IDEAS. 
A future extension of the ENGEN technology might 
incorporate this capability. 
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___t Operational (Geometric Constraints) 

---* In Work 

Figure 5: Work-in-Process Demonstration 

This demonstration generated additional interest from PDES. 
Inc. member companies All three CAD vendors are working 
on input and output translators for geometric constraints in 
EDM. Figure 6 shows some of the geometric constraints 

handled by the CAD vendors. The constraints are on the 
profile and a solid model of the connecting rod is obtained 
by extruding the profile. 

constraint-concentric -4 
(Cl G!) 

constraint-collinear 
(Ll, L9) F’ u 

u 

constraJn?perpendicular 

onstraint-parallel 

Figure 6: Geometric Constraints 

5. Implementation difficulties and summary 

The EDM has developed a foundation for capturing some 
key aspects of design intent and will be extended to include 
free form curves and some transition features. Vendors in 
the ENGEN program are developing pre- and post- 
processors to exchange design and constraints. The main 
obstacles so far encountered were: 

1. Achieving agreement on which constraints in the EDM 
that the vendor systems can exchange: one might use an 
explicit constraint (line 1 parallel to line 2) or an implicit 
constraints (line 1 and line 2 use same direction vector); 
explicit constraints were decided on in the exchange format 
since they more accurately convey design intent. 

2. CAD system deveJopers differ in their opinion as to what 
constitutes design intent. Some use explicit constraints 
where others use implicit constraints (as mentioned above) or 
topological relationships. Thus some systems generate many 
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topological relationships. Thus some systems generate many 
more constraints in the exchange file, and this has led to 
problems of compatibility of interpretation. 

3. The same effect can be achieved through the use of 
different but equivalent constraint sets. This should be no 
worse a problem than the use of different but equivalent 
shape representations in solid modeling, but it will take time 
to perfect the necessary translations. The actual choice of 
constraints transmitted in the neutral file should be 
transparent to the user. 

4. Understanding the relationship between the modules, 
with primary focus on DESIGN and CONSTRAINT 
Modules so far, has been a challenge for the team, and 
particularly for vendors writing software; the model has 
been updated several times based on feedback from the 
implementers. 

5. Maintaining an aggressive schedule with technical 
resources distributed throughout the U.S. and Italy; 
language differences of technical team whose native 
languages are: Chinese, Russian, Italian, and ‘Texas English’ 
provide an interesting challenge for communications. 

A Pilot Demonstration in mid 1997 at Ford’s Alpha 
Manufacturing facility will illustrate program vendors’ 
support for EDM in capturing and exchanging key aspects of 
design intent. 
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