
A Design/Constraint Model to Capture Design Intent

Chia-Hui Shih, Ph.D.
Pacific STEP

cshih@pacbell.net

Bill Anderson, Ph.D.
SCRA

Advanced Technology Group
anderson@scra.org

1. INTRODUCTION

1 .l Background

ENGEN (Enabling Next weration Mechanical Design) is
a program jointly sponsored by DARPA (Defense Advanced
Research Projects Agency) and PDES, Inc., an industry
consortium to accelerate the development and implementation
of IS0 10303, known informally as STEP (SJ’andard for
Exchange of Product Model Data). This research program is
an 24 month effort (Sept. 95 - Aug. 97) to prove the
feasibility of capturing certain key aspect of design intent in a
neutral data model as represented by constraints, parametrics,
design history, and features. The model will utilize the
EXPRESS modeling language and be independent of any
particular CAD system. In 1997 a demonstration is scheduled
to show exchange of design intent among dissimilar CAD
systems. The principal program deliverables are the ENGEN
Data Model (EDM), and a pilot demonstration showing
exchange of design intent using Ford’s work flow process
with the systems: Computervision (CV) - CADDS 5@,
Structural Dynamics Research Corporation (SDRC) -
I-DEAS”, and Parametric Technology Corporation (PTC) -
Pro/E”. Organizations and companies participating in
ENGEN are Ford Motor Company, SCRA, PDES, Inc., CV,
SDRC, PTC, International TechneGroup, Inc. (ITI), Pacific
STEP, Purdue University, and Arizona State University.

The main focus of this paper is to discuss the use and
representations of constraints within the framework of STEP
methodology, in particular, the conceptual modeling language
EXPRESS and the STEP physical file. A parametric module
is built on top of the design and constraint modules. Current
parametric/variational/feature-based CAD systems have the

powerful capability to associate parameters with a design, so
that a change in a parameter(s) results in an automatic update
to the design. For example, the diameter of a hole in a block
may be r/2 the length of the block, so that a change in the
length explicitly changes the diameter. Some of the
parameters provide insight into the intentions of the designer.

The initial release of STEP in 1994 successfully handles the
exchange of ‘static’ design, providing no mechanism to
capture design intent. This is a barrier to the exchange of
more intelligent product information between mechanical
design applications. Thus, commercial STEP translators
have focused primarily on lower level geometric and
topological information for solids, surfaces, and curves. The
IS0 Parametrics Group has begun to develop a model to
address the area of parametrics [I]. EDM [3] is a major
component in the STEP effort to develop parametrics
capability ([2]).

In our context, the design, rather than just being a passive
drawing or a flat file, becomes more active in the sense that it
enables the downstream users to modify or regenerate the
design from explicit information in the exchange file. The
information provided in the exchange file are generated by the
sender or upstream designer. Moreover, additional
requirements at later stages can feedback to the earlier
designers to refine the design. Constraints in predefined or
free form formulations capture the logical inter-relationship as
well as the inter-dependence of design/shape data. The design
intent is an accumulation of these interactions of design/shape
and constraints. A file or database containing design intent
information is more automatically “editable” than one which
contains nothing but a snap shot of a design. Because EDM is
a conceptual model that captures design plus constraints,
which are the main aspect of parametric technology, we can
view ENGEN as an application of the parametric technology
with a special objective, namely, to convey design intent.

255

http://crossmark.crossref.org/dialog/?doi=10.1145%2F267734.267802&domain=pdf&date_stamp=1997-05-01

1.2 Development platform

The EDM approach uses STEP as its development
environment/platform. STEP is developed as a group of
‘parts’ [8], each of which represents an International
Standard. The initial release of STEP in 1994 contained 12
parts. We utilize the EXPRESS [4] modeling language (IS0
10303-11 or Part II), and a data/information exchange
mechanism known as the physical file exchange format (IS0
10303-21 or Part 21). Unfortunately, once a language is
adopted, its style and grammar take away some freedom in
solution; hence, EDM is subject to the power as well as the
limitation inherited from EXPRESS. Furthermore, as the
EDM model is instantiated in a Part 2ltile (for brevity, STEP
file). additional limitations are present due to the mapping
rules between the EXPRESS grammar and the Part 21
grammar. Next is an example of the EXPRESS definition of a
widget entity followed by an instance in a STEP file.

ENTITY widget;
al : INTEGER; -- A
a2 : STRING; --
a3 : BOOLEAN; -- : (F, T)
a4 : LOGICAL; -- D CF. U,IJ
a5 : SET[1:2]OFREAL; -- E
a6 : REAL; -- F
a7 : point; -- Cl (An entity type)

END-E NTITY;

Note: F = False, U = Unknown, T = True.

#I = POINT (..);
identifier entity name
#2 = WIDGET (99, ‘ABC’, .T.. UNKNOWN.,

I I I I

(9.000, 1.2345), -7.8,%);
B C D

I I I
E FG

Thus, the tight coupling of EXPRESS and STEP file on the
one hand offers efficient mapping and ease for
implementation; yet on the other hand causes restrictions on
expressions for both modeling and instantiation.

1.3 Terminology
In order to clarify the usage of several ordinary terms in this
discourse the following definitions are used:

Constraints: limitations on an item’s permissible values
within itself or with respect to other elements in the design,
such assize, shape, position, orientation, dimension, logical
relationships (such as identical, distinct, set relation), as well
as engineering constraints.

Design History: a record of the design activities or events in
the creation of the design.

Entity type: A major construct of EXPRESS that represents a
conceptual unit that is used in depicting a design. Examples
of entity types are line, transformation, and B-spline curve.
Entity types may have hierarchical relationships among each
other, that is, one entity type may be a subtype of one or more

other entity types (called supertypes) by inheriting the
supertypes’ attributes. One entity type may also contain
attributes (as part of its representation) of entity types. Every
entity type is associated naturally with a construct function.

Model: a collection of logically related entity types and rules
that the application designer can use as low level templates,
(e.g., line as a pair of direction and point) in order to create an
intermediate or final product. A model is a term at the
conceptual level; its analogy in STEP is a SCHEMA.

Module: a subset of a model containing types that are
grouped together based on some commonality such as
common characteristics or functionality. Structurally, there is
no distinction between a ‘model’ and a ‘module’, the difference
lies in their scopes and relative domains. We use ‘module’
when the collection is intended to support a part rather than
the whole for the discourse of interest, where ‘model’ is to
stand for the universe of an application. For example, in IS0
10303-203 [5] advanced boundary representation solids may
be considered a module. Thus, module is a relative term,

Parametrics: the use of equations and constraints to augment
(or replace) the explicit creation of product shape on CAD
systems.

Entity instance: An instance of an entity type appearing as a
data record in a STEP file or a database. A STEP pre-
processor outputs a STEP tile and takes as input either a CAD
system database or possibly its command log. This is because
not all CAD systems store the constraints in their databases,
but only use them to compute the solutions.

1.4 High level architecture

In this paper, we describe one major model (EDM) which
contains three modules: Design’, Constraint, Parametric
Module. The Design module is based on IS0 10303-42. The
short term approach requires no change of the existing STEP
schema(s) whereas the intermediate term approach will
require some extensions on schema(s). The Parametric
Module supports both parametric and variational technology
in declarative representations. Another module in EDM,
called Spatial Configuration, deals with assembly of parts
appearing as constrained shapes in a common coordinate
system will not be discussed in detail here. The Feature
Module is under development and currently contains a small
number of transition features ([3]). The Design module is
self-contained; Constraint module points to Design;
Parametric points to Design and Constraint. The architecture
is depicted in the following figure.

’ Design contains shape of the part without any external
constraints. Shape and design will be used
interchangeably.

256

-11 DESIGN MODULE 111

PARAMETRIC MODULE
VARIATIONAL DESIGN

SPATIAL CONFIGURATION

Figure 1: EDM high level architecture

CONSTRUCT
CONSTRAINT

, PARAMETRIC DESIGN

The purpose is to have an architecture whose base is built on
the traditional design models such as geometry, topology, or
configuration control by adding new modules in an upward
compatible manner. In order to make any extension upward
compatible, we must have the new modules pointing to the
existing ones, but not vice versa. In other words, the
existing one is self sufficient without knowing any new
modules referencing it. In the following sections, we give a
brief introduction of each module in EDM.

2. INTERACTION OF DESIGN AND CONSTRAINT

2.1 Nomenclature

For the sake of this discussion, a specification stands for a
requirement at the higher conceptual design, while a
constraint stands for a requirement or a condition at the
detailed design level, using one or more mathematical
equations. A specification is usually broken into many low
level constraints through a sequence of design activities.
Thus, for a design to satisfy even a single specification it may
require the validation of many mathematical equations,
engineering equations, or logical conditions at different
phases of the design cycle. For example, suppose there is an
automobile design specification to have a seat belt that can
sustain a certain impact force. Meeting that specification
involves many low level detailed design requirements in
shape, assembly, and material. For each aspect, there may be
many equations to compute, solve, and verify. For our
purpose, the parametric modeling paradigm does not deal
with high level specifications, but rather deals with low level
constraints most represented by mathematical formulations.

A realized design is a collection of related instances of
standard entity types that together yield the desired outcome
at that design stage. When equipped with sufficient
constraining information, a ‘skeleton’ of such a design can be
extracted by leaving out some or all attributes values. Hence,
a potential design rather than a realized design can be
preserved and shared. Such a skeleton has true parametric
characteristics. For example, a cube can be decomposed into
a collection of six planar faces, twelve straight edges and
eight vertex points in such a way that parallelism and
dimensional constraints are imposed on the faces and edges.
Such a cubic skeleton may have only one parameter, e.g., the
dimension of an edge, to be realized. By using a parametric
model along with an assembly mechanism (spatial
configuration) we can place it in a larger design. In the
ENGEN program, we do not handle such a macro or
template entity, because of the limitation imposed by the

physical file that all attribute values must be given. In other
words, any complex template/macro must be declared as
entity types in the schema. In a sense, a macro could be a
user defined (likely complex) entity type; which cannot be
handled effectively by the first release of STEP.

2.2. Effects of constraints on design

Constraints can be viewed in three aspects:

I. As restrictions and limitations on parameters that
define the design. This is the intuitive
understanding.

2. As freedom for modification of the design. This
sounds like a total contradiction. First of all, by
‘freedom’, we do not mean tolerance in
dimensioning or precision for real numbers. When

257

a design without any constraint information is
passed down the development cycle, it represents a
fixed snap shot yielding no freedom to the receiver
to alter. Unless the constraint equation or
equations yield a unique result, in that case, the
intention is clear, the possibility of more than one
acceptable solution indicates a freedom to modify.
For example, two lines are passed along with the
constraint that they are parallel. A broad
interpretation is that both lines can move and the
distance between them can change so far as they
remain parallel. A single constraint is generally
not deterministic; but a group of them can be.

3. As a design generating tool subject to #l and #2.
We assume that the receiving system has a ‘solver’
which uses the information as input and generates
a result satisfying given constraints.

In particular, parametric modeling deals with constraints that
are expressible in terms of basic data types such as integers,
real numbers or strings, and entity types, such as line or
ellipse. We would prefer to think of a constraint as a
mathematical or engineering condition expressible in a
system of equations F(p 1, ~2,. ,pn) = 0. The result of each
developing stage feeds into the next phase as parameters
(with value already assigned) and additional conditions may
be imposed. The iterative process may require the change of
a design or even some constraints; hence it is very important
to identify the elements that control the design outcome and
the constraints they are subject to. This facilitates the
modification of a design with limited intervention while
enabling the preservation of design intent. In the simplest
case, a few attribute values can be changed as long as the
constraints are not violated; whereas in the extreme case, a
new design may need to be re-generated by the downstream
solver based on the parametric conditions that are presented
in the exchange file. The EDM conceptual model itself does
not preclude over-constrained or under-constrained design.
The protocol of these various situations must be understood
before any data sharing/exchange takes place.

3. ENGEN DATA MODEL (EDM)

The EDM modules introduced earlier are now discussed.

3.1 Design Module

The Design module consists of data structures and functions
for defining shape information, primarily from STEP Part 42.
The scopes of many supertypes are greatly reduced to include
only a few needed subtypes. Geometric entities included are
points, vectors, lines, tonics (circle and ellipse only), and
swept area solids (extrusion and revolution) plus Boolean
operations for combining solids. The test parts for ENGEN
are a Ford connecting rod and crankshaft, which will not
require free form curves (B-splines in STEP). They are
expected to be required in a future version of EDM for
modeling parts such as automobile manifolds.

There is also one basic revision of these SCHEMAs
summarized as follows:

Each attribute in an EXPRESS ENTITY of a basic data type
such as REAL, INTEGER, or STRING is mapped into a
STEP file as a constant with no identifier. This EXPRESS
to STEP file mapping inhibits treating such attribute as a
parameter because they are not assigned with identifiers. In
order to handle attributes as parameters rather than static
data, we introduce an entity type for REAL, INTEGER, or
STRING as well as for each user defined data types of these
types. These identifiable constants can then be used in the
place of constants in a traditional STEP file. For example,
instead of assigning 5.0 as the radius for a circle,
alternatively we may assign R to the radius and assign 5.0 to
R, where R is a persistent name. In this manner, we can
assign constraint(s) on R, e.g. , 4 < R < 5, so that it becomes
much more versatile to modify the design.

3.2 Constraint Module

It is very important to point out the difference of the concept
of rule in EXPRESS and the constraints of EDM.
EXPRESS contains two types of rules: local and global. A
local rule (key word: WHERE) pertains to a given entity
type and applies to all instances of that entity type; for
example: the radius of a circle shall be greater than one. A
global rule (keyword: RULE) involves one or multiple types
and applies to all instances of those involved types in a given
instantiation of the schema; for example, the Euler’s equation
of topological elements for a manifold. However, there is
no need to exchange these at the instance level, because they
are part of the definitions. On the contrary, the constraints
of interest in this paper are user created requirements. It
contains constraints associated with the entity types in the
Design module and they are contingent rules against the
instances in the design process, not against the conceptual
model; for example, ‘the distance of the center of a
particular circle must be at least 1 mm from the closest
boundary curve’, or ‘Stress(A1) + Stress(A2) < l05k psi,
where Al and A2 are cross sections of a given part model‘.
These rules are not part of the conceptual model.

A pre-defined or explicit constraint may be applied in a
shape model composed of geometrical and/or topological
elements. It usually asserts a relationship between two or
more elements present in the model, and is also usually
external in the sense that it does not affect the shape or other
static properties of the representation. The purpose of such a
constraint is to capture a modest but important aspect of the

designer’s intent in creating the model; that is, the
requirement that certain characteristics of its shape should
remain invariant if any design modifications are subsequently
made. Thus, it is only after transfer of the model into a
receiving system that explicit geometric constraints have any
effect. They then restrict the design freedom available for
modification, the intention being that such restrictions ensure
the continued functionality of the design throughout any
changes that are made.

A shape model may contain two parallel linear edges. The
parallelism may be expressed by the fact that the lines on
which the edges lie share the same direction. This is part of
the representation of the model (as it currently exists). We
may say that the lines sharing the same direction instance are
constrained by ‘internal’ or ‘implicit’ constraint. However,

258

ambiguity in interpretation between the sender and the
receiver may exist. Is the usage of a shared direction
instance an indication of an intentional constraint or is it
simply for reducing the file size when the two edges are
‘incidentally’ parallel? Now suppose that a parallelism
constraint is applied to the same pair of edges. This causes
no changes to the geometry or topology of the shape model,
as stated above. It asserts something that is already true, but
additionally it expresses the requirement that the condition
should remain true after reconstruction in a receiving system
where further modifications may be made to the model. The
external or explicit constraint is therefore not part of the
shape description of the model as transferred, but governs
what changes may subsequently be made to it.

Explicit geometric constraints are not necessarily used in the
reconstruction of the model in the receiving system --- this
will often be possible in terms of geometry and topology
alone. However, it is envisaged that the constraint
management capability of the receiving system will be used
to check the model for compliance with the explicit
geometric constraints transferred with it.

Some constraints have predefined connotations and are easily
put in template forms. A constraint is either a condition(s) on
a given design entity, or to establish a relationship among
multiple design entities. They can be one-to-one, many-to-
one, one-to-many, or many-to-many.

There are two ways to convey such a relationship. One way
is to define pure design/shape elements (as in PART 42) and
pure conceptual constraints (e.g., the concept of parallelism)
separately and define an ‘action’ which chooses the constraint
element to act on the certain design elements. The other way
is to make the constraint elements as built-in characteristics
of the design elements so that an instantiation of such a
(relation) type conveys the whole action. An example of the
first approach is: given a line and two points, the constraint
is for the points to lie on the line or the line to pass through
the points. An example of the second approach is to create a
line passing through two points. EDM models the design-
constraint relationship in both ways. The first way is
depicted by the composition of Design Module and
Constraint Module, and the second by Construct Module.

In each constraint type we classify the design elements in two
classes: target and referent. The implication is that in a given
constraints, the parameters do not necessarily play symmetric
roles in the design process, but have a dependency
relationship. The independent ones are included in the
referent and the dependent ones in the targets. The purpose
is to simulate a command during the design process as well
as to convey the logical asymmetric relationship, if any.

A partial design history can be extract from the relationship
by interpreting that the target instance is created after the
referent element. This history is only abstract, because it is
derived from the exchange file. The editability of the data
file depends on the classification of the target and the
referent set. EDM’s Parametric Module contains an entity
called ‘design history’ which explicitly captures the design
history by listing the sequence of events. An event is a triad
of (design instances, constraints, design instances). In

short, the triad represents one design step seen by the user. It
could be as atomic as a single design-constraint operation, or
as molecule as a collection of them. Within the collection,
the design-constraint instances can be sequential or
concurrent.

There are basically three classes of constraints from the
aspect of representation:

1. Predefined : Contains constraints that have well
defined semantics with well known parameters
(variables) in established formulations. Every entity
type is basically a template. For example: parallel (for
lines), axial symmetry (for curves or points), point on
curve.

2. Free Form : Contains constraints that do not have a
pre-conceived semantics and frame work. For example:
The sum of the length and width of a rectangle = 10.0;

Construct : Contains built-in constraints in the process
of creating the design element. For example, in
STEP a standard line is represented by a point and a
vector. Suppose we wish to impose the condition for a
line to pass through another point. Instead of using a
predefined constraint: ‘curve passing through a point’ to
the line instance, in this module we have an entity type
“construct-line-through-two-points” which is a subtype
of the line type. In other words, this entity type inherits
the standard attributes (‘start’ and ‘dir’) and has an
additional attribute second-point. Many standard
construction methods can be included as entity types in
this module.

In EDM most constraints that are predelined can be
characterized as geometric constraints with the exception of
logical constraints, and the free form as algebraic constraint;
but that distinction is, though intuitive, not precise. The
analogy of “predefined vs. free-form” constraints in the area
of design is “standard vs. user-defined” entity types. The
latter has no pre-established notion or formulation, and is
represented by means of composing basic, generic
mathematical or other type of symbols. For predefined
constraints, we will use the EXPRESS construct ENTITY to
capture the parameters needed; even though conceptually the
EXPRESS reserved word RULE is a more appropriate
keyword for constraint type elements. This is because at
present, all RULES are observed at the conceptual level, and
there is neither need nor mechanism to instantiate RULES in
STEP files. For the same reason, there is no direct and clean
way to instantiate free form constraints, because of the lack
of support in STEP files for anything but ENTITY. We
shall handle them by means of a special type of STRING.

3.2.1 Predefined Constraint

Most predelined constraints in EDM are geometric in nature
with a few logical/algebraic in nature. Figure 2 shows the
pre-defined constraints included in EDM.

259

multiple curve tangent

.urve/point axial symmetry

:urve&oint radial symmetr$,
____.._..............................

I+ POSITION

LOGICAL
i- DIMENSION . point distance ratio
*...

I .._......

Figure 2: Hierarchy of Constraint Module

Every predefined constraint type contains also one or two
attributes indicating the linear accuracy, the angular
accuracy, or both. In addition, every constraint is
associated with a constraint validation function which returns
TRUE if the computation results in numbers that are less
then the prescribed accuracy values.

3.2.2 Freeform Constraints
Freeform constraints are in the form of equations
(expression). There are at least two approaches to represent
an expression. One of the approaches is to define the basic
ingredients that play roles in a general equation, such as
variable, constants, operations, mathematical or numerical
relationships, etc. as entity types, then define an expression
also as an entity type that contains adequate attributes which
facilitate the construction of an expression using these basic
ingredients [6]. The advantage of this approach is that we
can accomplish the goal by strictly remaining in the scope of
STEP. These could be done because the construct ENTITY
TYPE of EXPRESS lacks any pre-existing semantics so that
very general concepts can be declared as an entity type.
Thus, to define an expression, though tedious and complex,
is safely within the power of EXPRESS. The disadvantage is
that it is tedious and complex and non-intuitive. The
exchange tile has to re-construct a simple expression such as
a + b = 5 by putting together the ‘jigsaw puzzle’ containing
‘a’, ‘b’, ‘+I, I=‘, and ‘5’ together. For example, let us assume
that ‘real-variable’, ‘real-constant’, ‘add’, and ‘equal’ are
entity types with appropriate attributes, five records are
needed to create a single expression for a + b = 5 as follows:

#I = REAL-VARIABLE (‘A’):
#2 = REAL-VARIABLE (‘B’);
#3 = REAL-CONSTANT (5);
#4 = ADD(#1,#2);
#5 = EQUAL(#4,#3);

. :

The postprocessor would have to put them together into an
expression which is recognizable by the CAD system; but
the effort may be justified by not requiring an extension to
EXPRESS and the existing STEP standards.

Another approach is to use STRING. This needs one
additional assistance beyond the common usage of STRING.
STRING allows us the freedom to put any collections of
characters inside a string, even foreign characters, with a few
precautions. The content in a STRING is for human
readability. In order for a computer to read the value of a
string, the string must have a grammar that can be processed
by a computer. A freeform constraint in EDM is represented
by a STRING that obeys the EXPRESS grammar on
expressions. An ‘EXPRESS based STRING’ is signaled by
an escape symbol Ye’. A user defined grammar can be used
in a STRING with an escape symbol 9~‘. The latter situation
is based on the private agreement of the data sharing parties.

Finally, in order to facilitate expressions, besides all the
available functions in EXPRESS, we included in EDM some
functions which we call ‘predicate functions’. For example,
distance (point, point): REAL; These functions can be used
in the place of an identifier in a legitimate expression. This
approach would require an extension to the EXPRESS
production rule. For example, for the equation above, we will
have the following record:

#lOOO = CONSTRAINT-FREEFORM (target-id,
referent-id,‘<eso A+B = S’,‘comment’);

3.2.3 Construct Module

This module contains entity types that depict construction
procedures. In the purest sense of a standard, a schema of
STEP should contain a unique representation for each entity
type. For example, if ‘point’ and ‘vector’ are chosen to
represent a line, then two points should not be used to
represent a line, no matter how common and useful it is.

260

However, for practical reason, there exists a handful ot
SUBTYPES in the STEP parts that actually indicate
enhanced representations for some entities. The EXPRESS
SUPERTYPE/SUBTYPE feature provides extended entity
representation in a controlled manner. We note that a
SUBTYPE always inherits the attributes of its SUPERTYPE,
hence it retains its ‘standard representation’. Every entity
type defined in the Construct Module is a SUBTYPE of
some standard entity type. The additional attributes in the
construct type is to serve the purpose of ‘parameters’ as they
are used to solve the solution. Naturally, a construct entity
type is over-constrained in that all the attribute values are not
independent. The extra attributes of the construct type are
different from the derived attribute of EXPRESS in that a
derived attribute is a computational result from the standard
attributes, while for a construct entity type, the standard
attribute values are fully or partially derived from the given
attributes in the construct entity type. For example, a line-
through-two-point instance contains a start point, a vector,
and another point. The direction of the line is computed from
the points, but the magnitude of the vector is an independent
information.

The Construct Module contains sufficient declarations of
such nature as to provide additional methods in creating and
modifying standard entity types. There are two reasons to
choose ENTITY over other EXPRESS keywords such as
PROCEDURE or FUNCTION, even though the nature of the
latter is more compatible with the concept of constructor.

A. There is no mapping of FUNCTION to the physical
file. In order to work within the existing STEP framework,
ENTITY is the only available EXPRESS construct.

B. For EXPRESS FUNCTION, we need to include the
actual algorithm for the function, not just the signature or

prototype of the function. Since our purpose is NOT to tell
HOW the constraints are solved, but WHAT they are, we
use ENTITY to declare the functional argument. The
attributes of an ENTITY are basically the arguments of a
function.

In the future when the representation capability of STEP
file is extended, more sophisticated constraints in the form of
procedure can be exchanged by means of user defined
procedures or functions. That will help the communication
among dissimilar systems. At the present, since only
‘WHAT is represented, we have to leave alone the issue
concerning solver incompatibility. There are several points
worth noting concerning the Construct Module.

I. Every construct entity is a subtype of the original type.
It is open-ended how many construct entity can be
declared.

2. In each construct entity type, there is an attribute called
“fixed” which indicates which attribute values, if any,
are treated as constants (i.e., fixed constraints not
subject to change).

3. The attributes in a construct entity may not yield a unique
result, hence it is not exactly the same as the ‘constructor’ in
programming language such as C++. We note that a
construct entity is a subtype of the original type, hence it
inherits the set of attributes that uniquely define an instance.
The intent of a construct entity is to make the constraints a
‘built-in’ feature of the entity.

The following table shows the current content of the
Construct Module of EDM.

ENTITY TYPE

point

vector

METHOD

intersection, bisect, tangent, centroid, displaced, extruded

two points, cross product, sum, difference, scalar multiplication, tangent
vector, extruded

direction twe points, c10s.s product, sum, difference, tangent

line two points, parallel through a point, perpendicular, angled, tangent, extruded

circle three points, concentric, tangent to line and through a point

plane three points, parallel through point

Figure 3: Construct Entities

3.3 Parametric Module

Parametric Module contains mainly collections of individual
design and constraint elements, EDM uses it to support
parametric technology in which the input and output
parameters are design data and the constraints behave like
‘operations’ on the parameters. We can imagine the

parametric model as a vending machine to which one or
multiple ‘parameters’ are dropped into the slots, either order
sensitive or order insensitive, and some ‘product design’,
either singular or complex. comes out of the output spout.

261

Parametric Module contains entity types that represent the
various ‘ways’ the user inputs the ‘parameters’ and chooses
the operations. Hence, it uses the individual design types
and constraints defined in the Design Module (they are like

the token or coins we drop into the machine) and Constraint
Module (they are like the different choices) as its basic
structure. The Parametric Module and its relations with

other modules can be depicted by the following diagram:

representation

STRING

parametric-design or variationalJeometry

STRING

arametric-representation

constraint-driven-representation

1 target collection of \ \r?__._______._.._._...._______~ ~.‘........“.‘...........‘........”.~ ,................-.......-......... . : pq/: pgiq v/i
*.__._____.............................~_.._................~

Figure 4: Architecture of Parametric Module

Based on Solver characteristics:

1. Parametric Design : Stands for the type of solver
which requires an explicit order for the
constraints/conditions to compute the solution stepwise.
Such technology can be viewed as showing HOW. The
process is represented by a list (i.e. ordered) of (design,
constrain) pair or a list of construct entity types. Recall
that a construct entity type is an entity type with built-in
constraints.

2. Variational Geometry : Stands for solver which does
not require orders for the constraints/conditions, and it
is irrelevant on how to solve them. Such technology
can be viewed as showing WHAT.

Further discussion can be in found in [9].

Based on representations:

I. Constraint Based design : A constraint based
parametric model is basically a collection of either
unordered (concurrent constraints) or ordered
(sequential constraints) constraints.

2. Constraint Driven Design : The constraints take a
more active role so that the design is computed out of
the constraints from solvers. It is a collection of either
ordered or unordered generators. A generator is a triad
of (input, operator, output), where input and output are

design elements and operator is a choice of constraint as
defined in the Constraint module or the Construct
module.

4. TECHNOLOGY APPLICATION

4.1 Demonstration
A work-in-process demonstration was conducted for the
PDES, Inc. Technical Advisory Committee which showed
exchange of some geometric constraints (parallel,
perpendicular, point on, equal length) for a connecting rod
test part. Suppliers participating were SDRC (IDEAS), CV
(CADDS 5). and PTC (Pro/E). Figure 5 in the following
provides the scenario of the demonstration. The connecting
rod had been designed on CADDS 5 with the geometric
constraints captured. The CV pre-processor generated an
ENGEN Part 21 (STEP) tile containing the constraints. PTC
ran its post-processor on the file and brought the connecting
rod into Pro/E with the geometric constraints displayed.
The connecting rod had also been created in SDRC, and the
pre-processor output the ENGEN tile with the geometric
constraints. The post-processor to transfer the ENGEN file
into CADDS 5 was in-work as indicated, but has
subsequently been completed. The ‘Mesh’ arrow shows a
direct transfer of a finite element mesh from Pro/E to IDEAS.
A future extension of the ENGEN technology might
incorporate this capability.

262

___t Operational (Geometric Constraints)

---* In Work

Figure 5: Work-in-Process Demonstration

This demonstration generated additional interest from PDES.
Inc. member companies All three CAD vendors are working
on input and output translators for geometric constraints in
EDM. Figure 6 shows some of the geometric constraints

handled by the CAD vendors. The constraints are on the
profile and a solid model of the connecting rod is obtained
by extruding the profile.

constraint-concentric -4
(Cl G!)

constraint-collinear
(Ll, L9) F’ u

u

constraJn?perpendicular

onstraint-parallel

Figure 6: Geometric Constraints

5. Implementation difficulties and summary

The EDM has developed a foundation for capturing some
key aspects of design intent and will be extended to include
free form curves and some transition features. Vendors in
the ENGEN program are developing pre- and post-
processors to exchange design and constraints. The main
obstacles so far encountered were:

1. Achieving agreement on which constraints in the EDM
that the vendor systems can exchange: one might use an
explicit constraint (line 1 parallel to line 2) or an implicit
constraints (line 1 and line 2 use same direction vector);
explicit constraints were decided on in the exchange format
since they more accurately convey design intent.

2. CAD system deveJopers differ in their opinion as to what
constitutes design intent. Some use explicit constraints
where others use implicit constraints (as mentioned above) or
topological relationships. Thus some systems generate many

263

topological relationships. Thus some systems generate many
more constraints in the exchange file, and this has led to
problems of compatibility of interpretation.

3. The same effect can be achieved through the use of
different but equivalent constraint sets. This should be no
worse a problem than the use of different but equivalent
shape representations in solid modeling, but it will take time
to perfect the necessary translations. The actual choice of
constraints transmitted in the neutral file should be
transparent to the user.

4. Understanding the relationship between the modules,
with primary focus on DESIGN and CONSTRAINT
Modules so far, has been a challenge for the team, and
particularly for vendors writing software; the model has
been updated several times based on feedback from the
implementers.

5. Maintaining an aggressive schedule with technical
resources distributed throughout the U.S. and Italy;
language differences of technical team whose native
languages are: Chinese, Russian, Italian, and ‘Texas English’
provide an interesting challenge for communications.

A Pilot Demonstration in mid 1997 at Ford’s Alpha
Manufacturing facility will illustrate program vendors’
support for EDM in capturing and exchanging key aspects of
design intent.

Acknowledgements : We gratefully acknowledge the
support of DARPA and PDES, Inc. for this research We
also wish to thank members of the ENGEN team, and in
particular, Dr. Mike Pratt, Dr. Jami Shah, Dr. Chris
Hoffman, and Mr. Noel Christensen for their interest, review
and valuable comments.

References

1. Pratt, M. J., ‘The STEP Standard, and its
Extension to cover Parametric, Constraint-
based and Feature-based Modelling’, in
Advances in Computer Aided Design (H. P.
Santos, ed.), Proc. CADEX ‘96 Conference,
Hagenberg, Austria, Sept. 1996; IEEE
Computer Society Press (1996).

2. Christensen, Noel, 1996, Parametrics
Framework Proposal (Working Draft), IS0
Parametrics Committee, pages l-20 (on the
WWW at http:/www.nist.gov/scWparamet/
shortlframewWdec96).

4. International Organisation for Standardisation
(ISO), International Standard IS0 10303-l I,
Product Data Representation and Exchange,
Part 11 - EXPRESS Language Reference
Manual. 1994.

5. International Organisation for Standardisation
(ISO), International Standard IS0 10303-
203, Product Data Representation and
Exchange, Part 203- Application Protocol:
Configuration Controlled Design, 1994.

6. Pierra, G., Ait-Ameur, Y., Besnard, F., Girard,
P. and Potier, J.-C., A General Framework for
Parametric Product Models within STEP and
Parts Library, in Proc. PDTAG Product Data
Technology Days ‘96, ‘BusinessBenefits from
PDT’, Shell Centre, London, England, 18 -- 19
April 1996.

7. Hoffmann, Christoph, and Juan, Robert, 1993,
Erep- An editable, high-level representation for
geometric design and analysis, In Geometric
Modeling for Product Realization (eds. P.R.
Wilson, M. J. Wozny & M. J. Pratt) North-
Holland (1993).

8. International Organisation for Standardisation
(ISO), International Standard 10303- 1, Product
Data Representation and Exchange, Part 1:
Overview and Fundamental Principles, 1994.

9. Shah, Jami, and Mantyla, Martti, 1995,
Parametric and Feature-Based CAD/CAM,
Wiley Interscience, New York.

3. Shih, Chia-Hui, 1996, ENGEN Data Model
Version 4.2 (on the WWW at
http:/www.nist.govlsc4lparametfshortlengenled
m42.ps or .doc)

264

