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Principles of Explanatory Debugging
to Personalize Interactive Machine Learning

ABSTRACT
How can end users efficiently influence the predictions that
machine learning systems make on their behalf? This paper
presents Explanatory Debugging, an approach in which the
system explains to users how it made each of its predictions,
and the user then explains any necessary corrections back to
the learning system. We present the principles underlying this
approach and a prototype instantiating it. An empirical evalua-
tion shows that Explanatory Debugging increased participants’
understanding of the learning system by 52% and allowed
participants to correct its mistakes up to twice as efficiently as
participants using a traditional learning system.

Author Keywords
Interactive machine learning; end user programming.

H.5.2. [Information interfaces and presentation (e.g. HCI)]
User interfaces

INTRODUCTION
In many machine learning applications, the user has a concept
in mind—songs he wants to hear, junk mail she doesn’t want
to see, anomalous transactions he wants to detect—that the
machine learning system is trying to identify. An increasing
body of research has begun to explore what users can do when
their machine learning systems misidentify their concepts [e.g.,
1, 2, 17, 24, 35, 42]. Much of this work shares a common chal-
lenge: how can end users effectively and efficiently personalize
the predictions or recommendations these learning systems
make on their behalf?

For example, engineer Alice has email folders for her project
group at work, an office sports pool, and individual folders
for colleagues she frequently collaborates with; she wants her
email program to automatically categorize new email into the
appropriate folder. This requires fine-grained control—perhaps
she wants email from her colleague Bob to go to the “sports”
folder if it mentions something about hockey, the “project”
folder if it references something related to their current project,
or the “Bob” folder if neither of those conditions are met.
However, Alice does not have enough email from Bob to

accurately train a learning system to recognize these three
concepts, and by the time she acquires it, the hockey season
may be over or her group’s project may change.

Our proposed solution is Explanatory Debugging, which is
an explanation-centric approach to help end users effectively
and efficiently personalize machine learning systems. We say
“debugging” because personalizing a machine learning system
is an end-user debugging problem: the user is trying to exert
fine-grained control over the system’s learned behavior.

In Explanatory Debugging, the system explains the reasons for
its predictions to its end user, who in turn explains corrections
back to the system. We hypothesize that this cycle of expla-
nations will help users build useful mental models—internal
representations that allow people to predict how a system will
behave [16]—and thus allow them to personalize their learning
system better and faster than traditional black-box systems.

In the earlier example, such an approach could show Alice all
the words the system uses to identify email about her group’s
project, the sports pool, or any other concept. She could then
add additional words she knows to be relevant, or remove
words that she knows are irrelevant. She would not need to
worry that her corrections might confuse the system (e.g.,
telling it that a message from Bob about hockey belongs in the
sports folder and hoping it will identify that the topic is the
reason, not the sender), nor would she need to spend weeks or
months acquiring new training instances.

In this paper we present the Explanatory Debugging approach
and instantiate it in EluciDebug, the first interactive system
designed to help end users build useful mental models of a
machine learning system while simultaneously allowing them
to explain corrections back to the system. We evaluate Ex-
planatory Debugging against a traditional black-box learning
system to determine whether Explanatory Debugging helped
end users build better mental models, and if so, whether these
mental models helped users more efficiently personalize their
learning system’s behavior.

RELATED WORK
The study of how end users interactively control machine
learning systems is gaining increased attention. Fails et al.
first popularized the phrase interactive machine learning in a
paper describing how an iterative train-feedback-correct cycle
allowed users to quickly correct the mistakes made by an



image segmentation system [11]. Since then, researchers have
explored using this cycle of quick interactions to train instance-
based classifiers [5, 13], enable better model selection by end
users [2, 12, 37], elicit labels for the most important instances
(e.g., active learning) [7, 34], and to improve reinforcement
learning for automated agents [20]. These use cases largely
treat the machine learning system as a “black box”—users can
try to personalize the system by providing it with different
inputs (e.g., labeled instances), but are unable to see why
different inputs may cause the system’s outputs to change.

An alternative to the “black box” model is a “white box” model
[15], in which the machine learning system is made more trans-
parent to the user. Increased transparency has been associated
with many benefits, including increased user acceptance of (or
satisfaction with) recommendations and predictions [4, 8, 39],
improved training of intelligent agents [38], and increased trust
in the system’s predictions [10]. In this paper, however, we
primarily care about transparency because it has been shown to
help users understand how a learning system operates [23, 28].

Recent work has suggested that as end users better understand
how a machine learning system operates, they are better able
to personalize it [12, 21]. Further, research has shown that in
the absence of transparency, it is difficult to build accurate
mental models of learning systems [21, 40]. People will still
build mental models of the system, but such flawed mental
models often lead to misinformed user behavior [18, 30].

Some researchers have sought to expand the types of inputs
interactive machine learning systems can process, and this can
also increase system transparency. For example, user feedback
may take the form of model constraints [17], critiques to
the model’s search space [42], or adjustments to the model’s
weights of evidence [24]. In addition to supporting novel user
feedback mechanisms, these approaches increase transparency
by enabling users to view such facets as the existing model
constraints [17], the model’s feature set [42], or the weights
of evidence responsible for each prediction [24].

All of these works have increased our understanding of how
human factors impact machine learning, but none have evalu-
ated the ability of an interactive machine learning system to (1)
help users build useful mental models of how it operates such
that (2) they can efficiently personalize the system. Kulesza
et al. found a link between mental models and personalization
ability, but relied on human instructors to help participants
build useful mental models [21]. Other work has studied the
impact of machine-generated explanations on users’ mental
models, but did not explore whether this helped participants’
personalize their learning systems [8, 23, 28]. In this paper we
rely on machine-generated explanations to help users build
good mental models and then evaluate their resulting ability
to personalize a learning system.

EXPLANATORY DEBUGGING
In 2010, Kulesza et al. proposed the idea of Explanatory
Debugging—a two-way exchange of explanations between
an end user and a machine learning system [22]—but did not
provide principles underlying the approach. In this section we

build upon that proposal by describing principles to ground
and support replication of Explanatory Debugging.

Explainability
Our first principle for Explanatory Debugging is Explain-
ability: accurately explain the learning system’s reasons for
each prediction to the end user. This principle builds upon
research showing that end users who received explanations
about a learning system’s rules of behavior were able to better
personalize classifiers and recommenders [4, 17, 22]. Without
explanations, however, users struggle to build accurate mental
models of such systems [21, 28, 40]. This suggests that expla-
nations are a necessary condition to help end users learn how
a machine learning system operates. To help users build useful
mental models of the learning system, these explanations
should observe the following principles:

Principle 1.1: Be Sound
Explanations should not be simplified by explaining the model
as if it were less complex than it actually is. In [23] this is
referred to as soundness: “the extent to which each component
of an explanation’s content is truthful in describing the under-
lying system.” In [21] the authors found a linear correlation
between the quality of a user’s mental model and their ability
to control the learning system as desired, suggesting that
the better someone understands the underlying system, the
better they will be able to control it. Further, [23] details the
impact of explanation fidelity on mental model development,
finding that users did not trust—and thus, were less likely
to attend to—the least sound explanations. Because reducing
soundness reduces both the potential utility of the explanation
and the likelihood that users will invest attention toward it,
Explanatory Debugging entails designing explanations that
are as sound as practically possible.

One method for evaluating explanation soundness is to com-
pare the explanation with the learning system’s mathematical
model. How accurately are each of the model’s terms ex-
plained? If those terms are derived from more complex terms,
is the user able to “drill down” to understand those additional
terms? The more these explanations reflect the underlying
model, the more sound the explanation is.

Principle 1.2: Be Complete
Kulesza et al. describe completeness as “the extent to which
all of the underlying system is described by the explanation”
[23], so a complete explanation does not omit important infor-
mation about the model. In that study, end users built the best
mental models when they had access to the most complete
explanations, which informed them of all the information
the learning system had at its disposal and how it used that
information [23]. Also pertinent is work showing that users
often struggle to understand how different parts of the system
interact with each other [24]. Complete explanations that
reveal how different parts of the system are interconnected
may help users overcome this barrier.

One method for evaluating completeness is via Lim and Dey’s
intelligibility types [27], with more complete explanations
including more of these intelligibility types.
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Principle 1.3: But Don’t Overwhelm
Balanced against the soundness and completeness principles
is the need to remain comprehensible and to engage user
attention. Findings from [23] suggest that one way to engage
user attention is to frame explanations concretely, such as
referencing the predicted item and any evidence the learning
system employed in its prediction. In some circumstances,
selecting a more comprehensible machine learning model may
also be appropriate. For example, a neural network can be
explained as if it were a decision tree [9], but this reduces
soundness because a different model is explained. Similarly,
a model with 10,000 features can be explained as if it only
used the 10 most discriminative features for each prediction,
but this reduces completeness by omitting information that
the model uses. Alternative approaches that embody the Ex-
planatory Debugging principles include selecting a machine
learning model that can be explained with little abstraction
[e.g., 25, 35, 36] or using feature selection techniques [44] in
high-dimensionality domains to prevent users from struggling
to identify which features to adjust (as happened in [24]).

Correctability
Our second top-level principle for Explanatory Debugging is
Correctability: allow users to explain corrections back to the
learning system. To enable an iterative cycle of explanations
between the system and the user, in Explanatory Debugging
the machine-to-user explanation should also serve as the user-
to-machine explanation. Research suggests that to elicit cor-
rections from users, this feedback mechanism should embody
the following principles:

Principle 2.1: Be Actionable
Both theory [3] and prior empirical findings [6, 21, 23] suggest
end users will ignore explanations when the benefit of attend-
ing to them is unclear. By making the explanation actionable,
we hope to lower the perceived cost of attending to it by
obviating the need to transfer knowledge from one part of
the user interface (the explanation) to another (the feedback
mechanism). Actionable explanations also fulfill three aspects
of Minimalist Instruction [41]: (1) people are learning while
performing real work; (2) the explanatory material is tightly
coupled to the system’s current state; and (3) people can
leverage their existing knowledge by adjusting the explanation
to match their own mental reasoning.

Principle 2.2: Be Reversible
A risk in enabling users to provide feedback to a machine
learning system is that they may actually make its predictions
worse [e.g., 22, 35]. Being able to easily reverse a harmful
action can help mitigate that risk. It may also encourage self-
directed tinkering, which can facilitate learning [33]. When
combined with Principle 2.4, reversibility also fulfills a fourth
aspect of Minimalist Instruction [41]: help people identify and
recover from errors.

Principle 2.3: Always Honor User Feedback
As Yang and Newman found when studying users of learn-
ing thermostats [43], a system that appears to disregard user
feedback deters users from continuing to provide feedback.

However, methods for honoring user feedback are not always
straightforward. Handling user feedback over time (e.g., what
if new instance-based feedback contradicts old instance-based
feedback?) and balancing different types of feedback (e.g.,
instance-based feedback versus feature-based feedback) re-
quires careful consideration of how the user’s feedback will
be integrated into the learning system.

Principle 2.4: Incremental Changes Matter
In [23], participants claimed they would attend to explanations
only if doing so would enable them to more successfully
control the learning system’s predictions. Thus, continued
user interaction may depend upon users being able to see
incremental changes to the learning system’s reasoning after
each interaction (i.e., overcoming the gulf of evaluation that
exists between a user’s mental model and a system’s actual
state [31]). Additionally, our thesis is that users will develop
better mental models iteratively, requiring many interactions
with the learning system. These interactions may not always
result in large, obvious changes, so being able to communicate
the small, incremental changes a user’s feedback has upon a
learning system seems critical to our approach’s feasibility.

ELUCIDEBUG: EXPLANATORY DEBUGGING IN ACTION
We instantiated Explanatory Debugging in a text classifica-
tion prototype we call EluciDebug (Figure 1). We chose text
classification because (1) many real-world systems require it
(e.g., SPAM filtering, news recommendation, serving relevant
ads, search result ranking, etc.) and (2) it can be evaluated
with documents about common topics (e.g., popular sports),
allowing a large population of participants for our evaluation.
We designed EluciDebug to look like an email program with
multiple folders, each representing a particular topic. The
prototype’s machine learning component attempts to automati-
cally classify new messages into the appropriate folder.

While the principles of Explanatory Debugging primarily deal
with the user interface, two principles place constraints on the
machine learning model: (1) it must be able to honor user
feedback in real-time, and (2) it must be explainable with
enough soundness and completeness to allow users to build
useful mental models of how it operates without overwhelming
them. Our EluciDebug prototype uses a multinomial naive
Bayes model (MNB) [19] with feature selection [44] to meet
these constraints. Evaluating the suitability of—or changes
necessary to—other models remains an open question.

The Multinomial Naive Bayes Classifier: A Brief Review
Before describing how we integrated MNB with Explanatory
Debugging, we first summarize how MNB operates. An MNB
classifier computes the probability that a given input (e.g., the
document being classified) has of belonging to each output
(e.g., the possible labels). The output with the highest prob-
ability “wins” and becomes the predicted label for the input.
For example, if MNB calculates that a document has a 70%
probability of being junk mail and a 30% probability of not
being junk mail, the document will be labeled as junk mail.
The equations for computing probability, as defined in [19],
are shown below. We use c to represent an individual class
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Figure 1. The EluciDebug prototype. (A) List of folders. (B) List of messages in the selected folder. (C) The selected message. (D)
Explanation of the selected message’s predicted folder. (E) Overview of which messages contain the selected word. (F) Complete list of
words the learning system uses to make predictions.

in the collection of potential output classes C, di to represent
an individual document to classify, and assume that the only
features the classifier uses are individual words in the set of
known documents:

Pr(c|di ) =
Pr(c)Pr(di |c)

Pr(di )
(1)

The term Pr(c) represents the probability that any given docu-
ment belongs to class c and can be estimated by dividing the
number of documents in c by the total number of documents
in the training set. The term Pr(di |c) represents the probability
of document di given class c and can be estimated as:

Pr(di |c) =
∏
n

Pr(wn |c) fni (2)

The term fni is the number of instances of word n in document
di and the term Pr(wn |c) is the probability of word n given
class c, estimated with the equation

Pr(wn |c) =
pnc + Fnc

N∑
x=1

pxc +
N∑
x=1

Fxc

(3)

where Fnc is the number of instances of word n in all of the
training documents for class c, N is the number of unique
words in the training documents for all classes, and pnc is

a smoothing term (usually 1) to prevent the equation from
yielding 0 if no documents from class c contain word wn .

The Explanatory Debugging Principles in EluciDebug
Being Sound
Soundness means that everything an explanation says is true.
Our explanations aim to be sound by accurately disclosing all
of the features the classifier used to make its prediction, as
well as how each feature contributed to the prediction. Elu-
ciDebug’s Why explanation is responsible for communicating
much of this information to users (Figure 2).

Soundly explaining the MNB classifier requires explaining
the Pr(c) and Pr(di |c) terms from Equation 1, as these are the
only terms that impact the model’s predictions1. Because the
Pr(di |c) term expands into Equation 2, we also need to explain
how word probabilities for each class factor into the prediction.
We can further increase soundness by explaining how these
probabilities are calculated (i.e., by explaining Equation 3).

In EluciDebug we explain the Pr(di |c) term by using a word
cloud to visualize the difference between each feature’s prob-
ability for the two output classifications (Equation 3) as the
following ratio: Pr(wn |c1) fni

Pr(wn |c2) fni
, where c1 is the class with the

larger probability for feature wn . We use the result to compute

1The Pr(di ) term in the denominator of Equation 1 is only used to normalize
the result to fall within the range 0–1; it does not impact the model’s
prediction.
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Figure 2. The Why explanation tells users how features and
folder size were used to predict each message’s topic. This figure
is a close-up of Figure 1 part D.

the feature’s font size, while its font color is based on the
class with the larger probability. For example, in Figure 2
the word stanley is larger than tiger because its ratio of word
probability is correspondingly larger, and it is blue because its
probability of occurring in the hockey class is larger than its
probability of occurring in the baseball class. Hovering over a
word in this cloud shows a tooltip that explains the word’s size
was determined by a combination of (1) how many times it
appeared in each class, and (2) any adjustments the user made
to the word’s importance (Equation 3).

The second component of a sound explanation of the MNB
classifier is the Pr(c) term from Equation 1. We explain this
term via a bar graph visualization of the number of items in
each class (Figure 2, middle).

The top-to-bottom design of this entire Why explanation, along
with the text that describes Part 1 and Part 2, is intended to
teach the user that both word presence (the Pr(di |c) term) and
folder size (the Pr(c) term) play a role in each of the classifier’s
predictions. The result, shown at the bottom of Figure 2,
explains how these two parts are combined to determine the
classifier’s certainty in its prediction.

Being Complete
Completeness means telling the whole truth. For the MNB
classifier, this means not only explaining each of the terms
from Equation 1, but also all of the information the classifier
could use, where it came from, and how likely it is that each
prediction is correct. To help ensure completeness, we turn to
Lim and Dey’s schema of intelligibility types. The results of
[23] suggest that a complete explanation should include Lim
and Dey’s why, inputs, model, and certainty types. Lim’s work
suggests the usefulness of the what if type in scenarios where
the user is attempting to change the behavior of a classifier
[26], so we included this intelligibility type as well.

We thus designed our EluciDebug explanations to detail all
of the information the classifier could potentially use when
making predictions. The Why explanation shown in Figure 2
tells users that both feature presence and folder size played
a role in each prediction (the numerator of Equation 1). The
Important words explanations (Figure 4) goes even further,
telling the user all of the features the classifier knows about
and may use in its predictions. Because it tells the user about
the sources of information available to the classifier, this is
also an instantiation of Lim and Dey’s inputs intelligibility
type. To make it clear to users that these features can occur
in all parts of the document—message body, subject line, and
sender—EluciDebug highlights features in the context of each
message (Figure 1, part C).

In [23] the authors found that Lim and Dey’s model intelligi-
bility type was associated with better mental models, but this
intelligibility type was rarely attended to by most participants.
To solve this dilemma, we incorporated the model content into
our Why explanation—it explains all of the evidence the classi-
fiers used, but it also explains where that evidence came from
(e.g., words or folder size) and how it was combined to arrive
at a final prediction. This approach has the added advantage of
making the potentially abstract model intelligibility type very
concrete; it is now tailored to each specific prediction.

A further aspect of completeness is evident in the Feature
overview explanation (Figure 1, part E). This explanation
shows users how many messages contain a given feature and
is intended to help users identify when a feature they think
the computer should pay attention to may not be very useful.
The explanation updates in real-time as the user types in a
potential feature; users do not need to add the feature to view
its potential impact on classifications, making this an instance
of the what if intelligibility type.

Finally, we also included the certainty intelligibility type. This
is instantiated via the Prediction confidence column (Figure 1,
part B), which reveals the classifier’s confidence in each of its
predictions to the user.

Not Overwhelming
To avoid overwhelming users, EluciDebug limits the initial set
of features available to the classifier using information gain
[44]. Because Principle 1.2 states that explanations should
be as complete as possible, users should be able to see all
of the classifier’s features. Given this constraint, we decided
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Figure 3. Selecting the 10 highest information gain features
resulted in similar classifier performance as larger feature sets.

50 would be the upper limit on feature set size. Offline tests,
however, revealed that MNB’s F1 score did not improve while
the feature set size increased from 10 to 50 (Figure 3), so
we decided our classifier would automatically select only the
10 features with the highest information gain (until the user
specifies otherwise by adding or removing features).

Being Actionable
The Important words explanation (Figure 4) is the most ac-
tionable of EluciDebug’s explanations. Users can add words
to—and remove words from—this explanation, which in turn
will add those words to (or remove them from) the machine
learning model’s feature set. Users are also able to adjust the
importance of each word in the explanation by dragging the
word’s bar higher (to make it more important) or lower (to
make it less important), which then alters the corresponding
feature’s weight in the learning model.

The Why explanation (Figure 2) is a likely candidate for action-
ability, but we have not yet made it actionable in EluciDebug.
As this explanation includes only features extant in the selected
message, it cannot replace the Important words explanation
because doing so would interfere with our explanations’ com-
pleteness. It could, however, complement the Important words
explanation by allowing users to directly adjust the importance
of features responsible for the given prediction. For example,
users could drag out from the center of a word to increase
its importance, or drag in toward the center of the word to
decrease its importance. Whether such additional actionability
would help users, however, remains an open question.

Being Reversible
EluciDebug includes an undo button for reversing changes to
the Important words explanation. There is no limit on how
many actions can be un-done because we want users to interact
with the system without fear they will harm its predictions;
regardless of how much they adjust its reasoning, they can
always return to any prior state.

Honoring User Feedback
EluciDebug allows users to provide two types of feedback:
traditional instanced-based feedback, where the user applies a
label2 to an entire item, and feature-based feedback, where the
user tells the classifier an item should be labeled in a certain
manner because of specific features it contains or feature
values it matches. EluciDebug honors instance-based feedback
in a straightforward manner: once the user labels an item, the

2A label is a potential output of the learning system, such as junk mail or
normal mail.

Figure 4. The Important words explanation tells users all of the
features the classifier is aware of, and also lets users add, remove,
and adjust these features. Each topic is color-coded (here, blue
for hockey and green for baseball) with the difference in bar
heights reflecting the difference in the word’s probability with
respect to each topic (e.g., the word canadian is roughly twice
as likely to appear in a document about hockey as one about
baseball, while the word player is about equally likely to appear
in either topic). This figure is an excerpt from Figure 1 part F.

classifier will use it as part of its training set, with no distinc-
tion between older versus more recent feedback. Honoring
feature-based feedback, however, is more complicated.

The smoothing term pnc from Equation 3 acts as a Bayesian
prior, effectively adding some number of virtual occurrences
(again, traditionally 1) to the number of actual occurrences
of each word in the training data, and we can leverage it to
integrate feature-based feedback. By allowing the user to set
the value of pnc , we are letting the user increase the number
of virtual occurrences of word n in class c. The result is a
classifier that considers word n to be stronger evidence in
favor of class c than it had before the user’s feedback.

Using the smoothing term as a feature-based feedback mecha-
nism, however, has a drawback: Fnc may increase as the train-
ing set size increases, causing the value of pnc to become a
smaller component of Equation 3. Thus, a user’s feature-based
feedback could account for less and less of the classifier’s
reasoning as their instance-based feedback increased.

To prevent a user’s feature-based feedback from degrading in
importance over time, we developed a visual feedback mech-
anism (Figure 4) that allows users to specify how important
their feedback should be relative to the model’s internal word
probabilities (the F terms in Equation 3). The black lines on
the blue and green bars in Figure 4 show the model-computed
probabilities for each feature, which serve as a starting point
for feature-based feedback. Users can tell the system that the
probability of seeing word wn in class c should be increased
by clicking and dragging its bar higher, which will translate
to an increased value for pnc . If the user later provides addi-
tional instance-based feedback (thus causing Fnc to change),
pnc will be automatically recalculated such that the ratios of
N∑
x=1

pxc to
N∑
x=1

Fxc and pnc to Fnc remain constant.

Revealing Incremental Changes
There are many components of EluciDebug that may change
after each user action, so to avoid confusing users with several
different explanation paradigms, we designed a method that
consistently reveals changes in terms of increases and de-
creases. Increases of any numeric value are identified by green
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“up” arrows, while decreasing numeric values are identified by
red “down” arrows. Examples of each are shown in Figure 1,
part B. Hovering over either of these arrow icons yields a
tooltip detailing what just changed and how much it changed
by, e.g., “Confidence increased by 9%”. These indicators
reveal changes in the number of messages correctly classified
in each folder, the total number of messages the machine
learning model currently classified into each folder, and the
confidence of each prediction.

In addition to numeric change indicators, we also needed
an ordinal change indicator to highlight when a message’s
prediction flipped from one topic to the other. We used a grey
background for these recently-changed predictions (see part B
of Figure 1) and included a tooltip explaining that the user’s
last action resulted in the message’s predicted topic changing.

EVALUATION
We evaluated Explanatory Debugging, as instantiated in Elu-
ciDebug, to investigate the following research questions:

RQ1: Does Explanatory Debugging help users personalize a
classifier more efficiently than instance labeling?

RQ2: Does Explanatory Debugging help users personalize a
classifier more accurately than instance labeling?

RQ3: Does Explanatory Debugging help users build better
mental models than a traditional black-box approach?

Experiment Design
We used a between-subject, single-factor experimental setup
to evaluate Explanatory Debugging. The factor we varied was
experiment condition: one condition (control) used a variation
of EluciDebug with all of its explanation and feature-based
feedback capabilities removed (Figure 5), while the second
condition (treatment) used the EluciDebug prototype described
earlier. In both conditions EluciDebug was setup as a binary
classifier that attempted to predict whether each message
belonged to one of two topics.

To provide messages for EluciDebug, we selected two con-
cepts from the 20 Newsgroups dataset3: hockey and baseball
(the rec.sport.hockey and rec.sport.baseball newgroups, respec-
tively). We used two subgroups of a larger group of related
concepts (rec.sport) to ensure overlap in the terminology of
each concept (e.g., “player” and “team” may be equally rep-
resentative of baseball or hockey). These shared terms help
make the classification task more challenging.

To simulate a situation where personalization would be re-
quired because sufficient training data does not yet exist, we
severely limited the size of the machine learning training
set for this experiment. At the start of the experiment this
training set consisted of 5 messages in the Hockey folder
and 5 messages in the Baseball folder, with 1,185 unlabeled
messages in the Unknown folder. The small training set (10
messages) allowed us to evaluate a situation with limited
training data, and the large amount of potential training data

3http://qwone.com/~jason/20Newsgroups/

Figure 5. Control participants used this variant of EluciDebug,
which lacks explanations and feature-based feedback.

(1,185 messages) allowed us to contrast Explanatory Debug-
ging against black-box instance labeling in a situation where
instance labeling could be expected to succeed.

Participants and Procedure
We recruited 77 participants (27 females, 50 males) from the
local community and university. To ensure that participants
would have little or no prior experience with software debug-
ging or machine learning, we did not accept participants who
had more programming experience than an introductory-level
course. A total of 37 participants experienced the control con-
dition and 40 participants took part in the treatment condition.

A researcher introduced participants to the prototype via a
brief hands-on tutorial that explained how to use it, but did
not discuss how it made predictions. Participants then had
three minutes to explore the prototype on their own. To avoid
learning effects, the tutorial and practice session involved
messages about topics (outer space and medicine) different
from the main experiment task.

The main experiment task followed the practice session. Par-
ticipants were asked to “make the computer’s predictions as
accurate as possible” and given 30 minutes to work. The soft-
ware logged all participant interactions and logged evaluations
of its internal classifier at 30-second intervals.

After the main task concluded, we assessed participants’ men-
tal models via a questionnaire. This test instrument evalu-
ated how well participants understood the two components
that contribute to the MNB classifier’s predictions: feature
presence and class ratios. Because feature presence can be
easy to detect given certain words (e.g., the word “hockey”
is obviously related to the concept of hockey), we evaluated
participants’ understanding of feature presence using both
“obvious” and “subtle” features. We define “subtle” features
as words that are not normally associated with a topic, but
appear in the classifier’s training set and thus will impact
classification. Participants were given three short messages
about two topics (swimming and tennis) and told that “these are
the only messages the software has learned from”. Participants
in the treatment condition were also given an Important words
explanation similar to the one they saw in the prototype. A
second sheet displayed 12 messages, each only one or two

7

http://qwone.com/~jason/20Newsgroups/


sentences long, and asked participants which topic the clas-
sifier would assign to each message, and why. The messages
were constructed such that only one component—either an
obvious feature, a subtle feature, or class ratios—was entirely
responsible for the classification.

To understand participants’ reactions to EluciDebug, the post-
task questionnaire also asked participants about various fea-
tures of the prototype and their perceived task load during the
experiment (via the NASA-TLX questionnaire [14]).

Data analysis
We used non-parametric methods for all statistical analyses.
As suggested in [29], we used Mann–Whitney U-tests for
ordinal data, Wilcoxon signed rank tests for interval data, and
Spearman’s ρ for correlations.

To analyze participants’ mental models, a researcher graded
participant responses to the post-task mental model question-
naires. Because some participants may have randomly guessed
which topic the classifier would predict for each message,
we ignored all predicted topics and only graded the reason
participants’ stated for the classifier’s prediction. Participants
earned two points for correct reasons and one point for partially
correct reasons. The researcher graded participant responses
without knowing which condition the participant was in (i.e.,
blindly). Each participants’ points were summed to yield a
mental model score with a maximum possible value of 24.

We analyzed classifier performance via the F1 score. This
combines two simpler measures, precision and recall, each of
which can range from 0 to 1. In the context of a binary clas-
sification system that predicts whether each input is positive
or negative, a precision of 0 indicates that none of its positive
predictions were correct, while a precision of 1 indicates that
all of its positive predictions were correct. For the same system,
a recall of 0 indicates the classifier did not correctly identify
any of the positive items, while a recall of 1 indicates that
it correctly identified all of them. As the harmonic mean of
precision and recall, F1 also ranges from 0 (no precision and
no recall) to 1 (perfect precision and recall).

We supplemented our evaluation of classifier accuracy with an
additional offline experiment using a separate feature selection
method. Recall that EluciDebug limits its classifier to the 10
features with the highest information gain. Text classifiers,
however, often include most—if not all—of the words in the
training set as features. Thus, we analyzed participants’ classi-
fiers using both HighIG features and Comprehensive features.
For control participants (who could not provide feature-based
feedback), HighIG was recomputed after each message was
labeled and kept the 10 highest information gain features. For
treatment participants, HighIG was never recomputed; instead,
participants needed to modify it manually by adding, removing,
or adjusting features. The Comprehensive feature set included
all words from the set of labeled messages at the end of the
experiment. The classifiers participants interacted with used
the HighIG features; the Comprehensive features were only
used for offline analysis.

RESULTS
Explaining Corrections to EluciDebug
EluciDebug includes several methods for users to explain
corrections to the classifier, and treatment participants made
frequent use of all of them. On average, they added 34.5 new
features, removed 8.2 features (including 7.4 of EluciDebug’s
10 initial features), and made 18.3 feature adjustments (e.g.,
increasing or decreasing a feature’s importance to a topic).
Control participants—who could not provide feature-based
feedback—instead relied on instance-based feedback to adjust
EluciDebug’s predictions, labeling an average of 182 messages
vs. the treatment average of 47 (W = 1395, p < .001).
Control participants also examined more messages, averaging
296 message views vs. 151 views (W = 1306, p < .001).
Treatment participants thus provided less feedback overall
(and needed to explore less of the dataset while providing
it), instead leveraging EluciDebug’s abilities to target their
feedback at features rather than instances.

This feature-based feedback proved efficient at improving
participants’ classifiers. We examined the change in F1 for
each participant’s classifier during the experiment and divided
this by the number of actions the participant made that could
influence the classifier’s predictions (instances labeled and
features added, removed, or adjusted). The results, shown in
Figure 6 (left), were that treatment participants performed
fewer actions, but each of their actions resulted in larger
classifier improvements than those of control participants.
Treatment participants’ feedback was twice as efficient as
control participants’ using HighIG features (0.16% vs. 0.34%
F1 improvement per action, W = 207, p < .001), and remained
superior when using the Comprehensive feature set (0.65% vs.
0.97%, W = 367, p < .001).

We thus have evidence that when users can only provide a
limited amount of feedback to a learning system (such as
when labeling instances is expensive, insufficient instances
are available for labeling, or the user’s time is constrained),
Explanatory Debugging can result in superior classifiers than
a traditional black-box instance labeling approach. Indeed,
Figure 6 (right) shows that by the end of the 30-minute ex-
periment, treatment participants had created classifiers that
were roughly 10% more accurate than control participants,
averaging F1 scores of 0.85 vs. 0.77 (W = 237, p < .001).

However, our analysis with the Comprehensive feature set
suggests that when the user can label many instances, instance
labeling with a large feature set may be preferable to Ex-
planatory Debugging—at least to initially train a classifier.
The combination of a large training set and many features
allowed control participants’ classifiers to edge out those of
treatment participants by about 8% (Figure 6, right). Even
though treatment participants’ feedback was up to twice as
efficient, control participants provided almost four times as
many labeled instances, allowing them to train classifiers with
an average F1 of 0.94, while treatment participants averaged
0.87 (W = 1290, p < .001).
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Figure 6. (Left) Average classifier F1 improvement per user
action for control (dark blue) and treatment (light orange);
treatment participants controlled their classifiers up to twice as
efficiently as control participants. (Right) Average classifier F1
scores per condition. Control participants needed four times as
much data and the Comprehensive feature set to create better
classifiers than treatment participants.

To verify it was the amount of instance-based feedback that
allowed control participants to outperform treatment partic-
ipants when Comprehensive features were considered, we
analyzed the accuracy of their classifiers after the same number
of actions had been performed. Figure 7 shows the F1 scores
after n feedback actions using the HighIG (solid line) and Com-
prehensive (dotted line) feature sets. Given the same number
of actions, control participants never outperformed treatment
participants. This suggests that when treatment participants did
provide instance-based feedback (which was the only type of
feedback used for the Comprehensive analysis), it was usually
more useful than control participants’ feedback.

We also analyzed participant reactions to the two prototype
variations. Treatment participants liked their variant more than
control participants, rating its helpfulness as 4.8 vs. 4.3 on a
6-point scale (W = 474, p = .006). Further, we found no evi-
dence that treatment participants felt Explanatory Debugging
involved more work than black-box instance labeling. We used
the NASA-TLX survey to measure participants’ perceived task
load while attempting to improve their classifier, but found no
evidence of a difference between conditions.

These classifier measures reveal three findings. First, in situ-
ations where large amounts of training data is unavailable or
expensive to obtain, Explanatory Debugging (as instantiated in
EluciDebug) allows users to successfully train a classifier by
telling it about features instead of instances. Second, the mix
of feature- and instance-based feedback provided by treatment
participants was more efficient than the purely instance-based
feedback provided by control participants, suggesting that
when an end user has a specific goal in mind (such as our
Alice example from earlier), Explanatory Debugging can help
the user quickly realize their goal.

Third, control participants’ success with using large amounts
of instance-based feedback suggests that in domains where
labeling instances is quick and practical, some combination
of feature- and instance-based feedback may be best. In fact,
such systems may need to emphasize the potential usefulness
of labeling instances. In our experiment, the mere presence of
feature-based feedback tools appears to have biased partici-
pants against instance-based feedback: 3 treatment participants
did not provide any at all, while the smallest number of labeled
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Figure 7. Treatment participants (light orange) created equiv-
alent or better classifiers than control participants (dark blue)
using the same amount of feedback. This held for both the
HighIG (solid) and Comprehensive (dotted) feature sets.

instances from a control participant was 56—more than even
the treatment average of 47 labeled instances.

EluciDebug’s Explanations to End Users
Before users can correct a machine learning system’s explana-
tion of its reasoning, they must first understand the explanation.
This understanding is reflected in their mental model.

Treatment participants built significantly better mental models
than participants in the control condition. As shown in Table 1,
treatment participants scored 52% higher on the mental model
assessment than control participants (W = 259, p < .001).
Much of this difference stems from treatment participants iden-
tifying all of the keywords the classifier used, while control
participants often identified only the “obvious” keywords. In
fact, treatment participants averaged a score of 14.1 out of 16
(88%) during the keyword assessment, suggesting they firmly
understood how the classifier involved keywords—regardless
of whether the words had any semantic association with their
topics—in its reasoning.

Table 1 also suggests treatment participants may have better
understood that the classifier used class ratios as part of its
prediction strategy than participants in the control condition
(W = 619.5, p = .099), but the evidence is weak—even among
treatment participants, the mean score was only 1.8 out of 8.
Further, a majority of participants in both conditions failed to
answer any class ratio question correctly, suggesting that this
explanation either failed to convey relevant information about
how class ratios were used by the classifier, or failed to attract
participants’ attention.

In general, however, control participants wanted the same in-
formation available to the treatment group. As one participant
stated:

C1: “More information on how emails are sorted would
help the user target emails to categorize, which would
increase accuracy.”

Another control participant (C15) described the software as
“annoying”, but that working with it “would have been easier
if we knew how it made predictions”, while still another (C4)
said it was annoying to work with because he “didn’t know
what it was basing its predictions off of”. A fourth participant
(C11) even asked for a similar feedback mechanism as was
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Model
component

Max
score

Control
mean (SD)

Treatment
mean (SD) p-value

Obvious features 8 6.7 (2.7) 7.3 (1.8) .345
Subtle features 8 2.8 (2.6 ) 6.8 (1.9) <.001
Class ratios 8 0.6 (1.5) 1.8 (3.0) .099

Total score 24 10.4 (5.3) 15.8 (4.6) <.001

Table 1. Treatment participants finished the experiment with sig-
nificantly higher mental model scores than control participants.

available to treatment participants, saying the software was
“time-consuming” because there was “no way to highlight key
words/terms”. A fifth control participant summed it up:

C30: “That was a long 30 minutes.”

Participants in the treatment condition, conversely, appreciated
EluciDebug’s explanations and feedback mechanisms:

T24: “Not difficult to understand/operate, doesn’t take a
lot of effort.”

T40: “It was really fast to get a high degree of accuracy.”

T37: “I felt in control of all the settings.”

T6: “It was so simple my parents could use it.”

Overall, our principled Explanatory Debugging approach suc-
cessfully helped participants develop accurate mental models
of the classifier they used, and participants benefited from this
additional knowledge. Spearman’s ρ confirms a link between
participants’ mental model scores and their classifier’s F1
scores (ρ[75] = .282, p = .013)

DISCUSSION
RQ1 and RQ2: Efficient and Accurate Personalization
Our results suggest that Explanatory Debugging can be an
efficient method for users to personalize a machine learning
system, but that it may not always result in the most accurate
classifiers. For example, we found that feature-based feedback
was up to twice as effective as instance-based feedback, but
instance labeling could still yield more accurate classifiers
given enough labels and features (in our experiment, four times
as many labels were needed). In situations where labeling
instances is considerably easier or faster than providing feature-
based feedback, users may be better served by labeling a large
number of instances than a small number of features.

However, when users need fine-grained control over a clas-
sifier, Explanatory Debugging has two advantages beyond
efficiency. First, it does not require that training data exist,
and thus can be used to bootstrap a learning system. Even
a trained system that suddenly needs to support a new out-
put type may benefit from such bootstrapping. Second, the
quick improvements—during even the first 10 user actions—
treatment participants made to their classifiers suggest that
users will remain engaged with Explanatory Debugging. This
matters because research has shown that if an end-user debug-
ging technique is not perceived as useful after a small number
of interactions, users are unlikely to continue using it [32].
Seeing an immediate improvement after providing feedback

suggests that users will continue to view and correct the
Explanatory Debugging explanations, while the lack of such
an improvement may discourage users of black-box instance
labeling systems from continuing to provide feedback.
RQ3: Mental Models
Not only did Explanatory Debugging help participants build
useful mental models, it accomplished this without a perceived
increase in task load. We found no evidence that treatment
participants found the extra information or feedback mecha-
nisms more difficult to understand or use; instead, treatment
participants’ responses suggest they appreciated having such
information available.

Indeed, the fact that many control participants’ requested
explanations remarkably similar to those the treatment par-
ticipants saw suggests the need for machine learning sys-
tems to be able to explain their reasoning in accordance with
Explanatory Debugging’s Explainability principle. Even if
this information is hidden by default, users should be able to
view such explanations on demand. Further, because machine
learning systems are meant to classify items as their user
would, the user must have some method to correct the system’s
mistakes. Thus, we hypothesize that including Explanatory
Debugging-style explanations without also supporting our
Correctibility principle will frustrate users—they would be
able to see what needs correcting, but without a clear mapping
to the actions they need to take.
CONCLUSION
Overall, Explanatory Debugging’s cycle of explanations—
from the learning system to the user, and from the user back
to the system—resulted in smarter users and smarter learning
systems. Participants using Explanatory Debugging under-
stood how the learning system operated about 50% better
than control participants, and this improvement correlated
with the F1 scores of participants’ classifiers. Each piece of
feedback provided by Explanatory Debugging participants
was worth roughly two pieces of feedback provided by con-
trol participants; even when we expanded our analysis to
include a comprehensive feature set, treatment participants
still maintained a 50% edge over the control group. Further,
participants liked Explanatory Debugging, rating this variant
of EluciDebug higher than the control group and responding
enthusiastically to the system’s explanations.

Our results show that when end users want to personalize a
machine learning system, Explanatory Debugging is a more
controllable and satisfying approach than black-box instance
labeling. The approach’s focus on users—in which the system
explains its reasoning and the user explains back corrections
as needed—enables ordinary end users to get the most out of
the learning system on which they are starting to depend.
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