
A compiler providing incremental scalability for web
applications

Etienne Brodu, Stéphane Frénot
firstname.lastname@insa-lyon.fr

IXXI – ENS Lyon
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ABSTRACT
To develop a web application, one needs to choose between
two programming models. The monolithic one favors fea-
tures improvements, while the decentralized one favors per-
formance improvements. To avoid this choice, we compile
monolithic web applications into a high-level language com-
pliant with a distributed model.

Categories and Subject Descriptors
D.3.4 [Software Engineering]: Processors—Code genera-
tion, Compilers, Run-time environments

General Terms
Compilation

Keywords
Flow programming, Web, Javascript

1. INTRODUCTION
A community quickly adopts a web application if it complies
with user requirements. To do so, the monolithic program-
ming approach facilitates quick enhancements in features.
Java is a very popular choice using this approach. To cope
with the community growth, the resources shall grow pro-
portionally. The threading approach to scale an application
on growing resources is error-prone. Eventually this growth
requires to replace the initial approach for models providing
incremental scalability. These models generally distribute
application parts on a cluster of commodity machines[4].
However these models are specific and require the develop-
ment team to be trained and to start over the initial code
base. These modifications imply to spend development re-
sources in background without adding visible value for the
users.
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Node.js provides a more efficient approach for network ap-
plications than the threading approach. Its monolithic ap-
proach facilitates quick enhancements in features, but lacks
incremental scalability. It is based on an event-loop consu-
ming messages, similarly the models described above. Be-
cause of this similarity, we think it is possible to identify
autonomous parts communicating through data streams.

To lift the risks described above, we maintain the Node.js
monolithic approach and propose a tool to compile it into a
high-level language compatible with a more scalable model.
It extracts autonomous parts by searching for rupture points
marking them out.

We present rupture points in section 2, the high-level lan-
guage in section 3, and a compilation example in 4. Finally,
we cite related works in section 5 and conclude this presen-
tation.

2. RUPTURE POINTS
A rupture point is a call of a loosely coupled function. It
indicates an interface between two application parts along
a data stream. In Node.js, I/O operations are asynchronous
functions. That is a function call that resumes immedia-
tely, with a function to process later the result of the ope-
ration : the callback. The callback is loosely coupled with
the initial caller. An asynchronous call indicates a rupture
point. To detect rupture points, the compiler uses a predefi-
ned list of asynchronous functions. For example app.get and
fs.readFile in listing 1, lines 5 and 6.

1 var app = require(’express ’)(),
2 fs = require(’fs’),
3 count = 0;
4

5 app.get(’/’, function handler(req , res){
6 fs.readFile(__filename , function reply(err , data) {
7 count += 1;
8 var code = (’’ + data).replace (/\n/g, ’<br>’).replace

(/ /g, ’&nbsp’);
9 res.send(err || ’downloaded ’ + count + ’ times <br><

br><code >’ + code + ’</code >’);
10 });
11 });
12

13 app.listen (8080);
14 console.log(’>> listening 8080’);

Listing 1: A simple application presenting two
asynchronous functions : app.get and fs.readFile



In Node.js, there is a single thread of execution to avoid
concurrent memory access. The compiler needs to control
the memory to assure independence between application parts.
If an application part reads a variable from another part, it
sends the variable downstream. If an application part mo-
difies a variable from another part, it persists the variable.
If several application parts modify the same variable, the
compiler merges these parts.

3. HIGH-LEVEL LANGUAGE
〈program〉 |= 〈flx〉 | 〈flx〉 eol 〈program〉

〈flx〉 |= flx 〈id〉 〈ctx〉 eol 〈streams〉 eol 〈fn〉
〈streams〉 |= null | 〈stream〉 | 〈stream〉 eol 〈streams〉
〈stream〉 |= 〈op〉 〈dest〉 [〈msg〉]

〈dest〉 |= 〈list〉
〈ctx〉 |= {〈list〉}
〈msg〉 |= [〈list〉]
〈list〉 |= 〈id〉 | 〈id〉 , 〈list〉
〈op〉 |= >> | ->

〈id〉 |= Javascript identifier

〈fn〉 |= Javascript and stream syntax

The compiler encapsulates an application part in a fluxion
〈flx〉. It is an autonomous entity of execution with a unique
name 〈id〉 and a persisted memory, called context 〈ctx〉. At
a message reception, it executes its function 〈fn〉. This func-
tion uses the Javascript syntax augmented with 〈stream〉
to indicate an output stream to other fluxions 〈dest〉. The
function 〈fn〉 is indented to be demarcated from the rest.

4. COMPILATION EXAMPLE
To illustrate the compiler features, we compiled the example
from listing 1 into listing 2. Source and result are available on
github[2]. The two asynchronous functions from the source
are detected, which result in three fluxions. Callbacks are re-
placed by output streams. The variable res is read by fluxion
reply_1001, and is forwarded along the message stream. The
variable count is modified only by fluxion reply_1001, and
is persisted in its context.

1 flx source_js {}
2 >> handler_1000 [res]
3 var app = require(’express ’)(), fs = require(’fs’),

count = 0;
4 app.get(’/’, >> handler_1000);
5 app.listen (8080);
6 console.log(’>> listening 8080’);
7

8 flx handler_1000 {fs}
9 -> reply_1001 [res]

10 function handler(req , res) {
11 fs.readFile(__filename , -> reply_1001);
12 }
13

14 flx reply_1001 {count}
15 -> null
16 function reply(err , data) {
17 count += 1;
18 var code = (’’ + data).replace (/\n/g, ’<br>’).replace

(/ /g, ’&nbsp’);
19 res.send(err || ’downloaded ’ + count + ’ times <br><

br><code >’ + code + ’</code >’);
20 }

Listing 2: Compilation result for listing 1

5. RELATED WORKS
Our work is based on Node.js 1 by Ryan Dahl. It is also ins-
pired by works on incremental scalability, like the Staged
Event-Driven Architecture of Matt Welsh[8], System S de-
velopped in the IBM T. J. Watson research center[5]. More
recent projects are Spark Streaming[9], MillWheel[1], Times-
tream[7] and Storm 2. The idea is also inspired by works on
DataFlow leading up to Flow-Based programming (FBP)
and Functional Reactive Programming (FRP)[3]. Both FBP
and FRP, recently got some attention in the Javascript com-
munity, respectively with the projects NoFlo 3 and Bacon.js 4.
Promises[6] are related to our work. Like callbacks, they
bring an asynchronous execution model to a synchronous
programming style.

6. CONCLUSION
We present in this paper a compiler to transform a Node.js
web application into independent parts communicating by
message streams. The compiler spots rupture points in the
application indicating an interface between two parts. We
believe this compilation can enable incremental scalability
for web applications without discarding the monolithic pro-
gramming model favoring enhancements in features.
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