
Parallelizing Nonnumerical Code with
Selective Scheduling and Software Pipelining

SOO-MOOK MOON

Seoul National University

and

KEMAL EBCIOĞLU

IBM T. J. Watson Research Center

Instruction-level parallelism (ILP) in nonnumerical code is regarded as scarce and hard to exploit
due to its irregularity. In this article, we introduce a new code-scheduling technique for irregular
ILP called “selective scheduling” which can be used as a component for superscalar and VLIW
compilers. Selective scheduling can compute a wide set of independent operations across all
execution paths based on renaming and forward-substitution and can compute available operations
across loop iterations if combined with software pipelining. This scheduling approach has better
heuristics for determining the usefulness of moving one operation versus moving another and
can successfully find useful code motions without resorting to branch profiling. The compile-

time overhead of selective scheduling is low due to its incremental computation technique and its
controlled code duplication. We parallelized the SPEC integer benchmarks and five AIX utilities
without using branch probabilities. The experiments indicate that a fivefold speedup is achievable
on realistic resources with a reasonable overhead in compilation time and code expansion and
that a solid speedup increase is also obtainable on machines with fewer resources. These results
improve previously known characteristics of irregular ILP.

Categories and Subject Descriptors: D.3.4 [Programming Languages]: Processors—code gen-
eration; optimization

General Terms: Algorithms, Experimentation, Languages

Additional Key Words and Phrases: Global instruction scheduling, instruction-level parallelism,
software pipelining, speculative code motion, superscalar, VLIW

1. INTRODUCTION

In the last two decades, the performance of single-CPU microprocessors has in-
creased enormously, mostly due to continuing improvements in computer archi-
tecture [Rau and Fisher 1993]. One major architectural breakthrough has been
the RISC (Reduced Instruction Set Computer) technology [Patterson 1985] based
on instruction pipelining which overlaps execution steps of different instructions,

Authors’ addresses: S.-M. Moon, School of Electrical Engineering, Seoul National University,
Seoul 151-742, Korea; email: smoon@altair.snu.ac.kr; K. Ebcioğlu, IBM T. J. Watson Research
Center, P.O. Box 218, Yorktown Heights, NY 10598; email: kemal@us.ibm.com.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1997 ACM 0164-0925/97/1100-0853 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997, Pages 853–898.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F267959.269966&domain=pdf&date_stamp=1997-11-01

854 · Soo-Mook Moon and Kemal Ebcioğlu

achieving an execution rate of close to one instruction per clock cycle. In order to in-
crease processor performance beyond simple pipelining, modern architectures dupli-
cate pipeline data paths and execute multiple instructions in parallel, attempting to
reach execution rates of multiple instructions per clock cycle [Rau and Fisher 1993].
This technology, known as instruction-level parallelism or ILP, has rapidly become
the leader in new processor technologies and has already been incorporated in many
commercial machines [Colwell et al. 1988; IBM 1990; Rau 1989; Sites 1993].

ILP-machines require independent instructions in each cycle in order to make
good use of duplicated pipelines. This entails scheduling instructions from the
sequential code stream by analyzing data and control dependences. Depending on
when scheduling is performed, two distinct approaches have been used: superscalar
and VLIW (Very Long Instruction Word). Superscalar machines perform run-time
scheduling and dependence analysis using hardware among the instructions within
a window, and they issue independent instructions dynamically. On the other
hand, VLIW machines rely on compile-time scheduling to determine independent
instructions which can be issued concurrently at execution time.

The relative merits of these alternative approaches are still controversial, yet
there is a growing consensus that an ILP compiler must rearrange code for better
performance no matter which alternative is used [Rau and Fisher 1993]. That is,
even the compilers for superscalar machines should group independent instructions
together. Since the compiler has a larger (software) window and can utilize so-
phisticated analysis techniques that are too expensive to perform at run-time, such
grouping helps the hardware find more parallelism.

One of the biggest challenges for an ILP compiler is to extract ILP in nonnu-
merical code, such as user application programs or system programs. It has been
said that nonnumerical code leads to small speedup (as little as two) and that ILP
in such code is difficult to exploit due to its irregularity [Jouppi and Wall 1989;
Smith et al. 1989]. The following is a discussion of typical problems in exploit-
ing irregular ILP and a brief overview of corresponding solutions proposed in this
article.

Nonnumerical programs include a large number of conditional branches and con-
trol join points, resulting in basic blocks with few instructions. Such programs
require global scheduling of instructions which includes two types of upward code
motion: one ahead of conditional branches and one ahead of control join points.
Speculative code motion, the code motion of instructions before preceding condi-
tional branches in order to use otherwise idle resources, increases speedup if specu-
lative execution turns out to be useful (i.e., the path where the speculative instruc-
tions came from is taken at execution time); otherwise the resources are wasted.
Code motion ahead of control join points may cause instructions to be duplicated
at incoming edges to the join points, yet it also helps in reducing the length of
critical paths.

Static branch probabilities based on profiling have been widely used in numerical
code, for speculative code motion on selected paths [Ellis 1985]. However, despite
research advances [Gloy et al. 1995], static branch probability in nonnumerical code
is not always reliable (it may not be the same for different data sets) or useful for
code scheduling (a given branch may be taken half of the time). As an example,
consider the outcome of a compare-and-branch used in sorting. In addition, it
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 855

op0

if cc0 then {op1} else {op2}; if cc0 then {op1} else {op2; op0};
if cc1 then {op3} else {op4}; if cc1 then {op3} else {op4; op0};
...; ...;

if ccn then {op2n−1} else {op2n}; if ccn then {op2n−1} else {op2n; op0};
op0;

(a) (b)

Fig. 1. Speculative code motion and speculative bookkeeping code.

might be burdensome for the users or independent software vendors to obtain accu-
rate profiling data for large applications, or profiling may be disallowed because of
customer requirements. Therefore, it is desirable for a scheduling technique to do
well in the absence of branch probability and use branch probability for obtaining
additional performance when it is available [Fisher and Freudenberger 1992].

Mispredicted speculative code motion can also slow down program execution if
code is moved past several control join points. For example, consider the consecutive
if-then-else-endif constructs in Figure 1(a), where op0 has no dependence on
any op2k−1 (k = 1, 2, .., n) (the then portions). All branches are predicted to take
the true paths (the then portions), and op0 is scheduled speculatively across the true
paths, ahead of if cc0. For semantic correctness, a bookkeeping copy of op0 must
be inserted at each incoming edge to the path of code motion, which is just after
each op2k (k = 1, 2, .., n) (the else portions) as in Figure 1(b). Now, if all branches
take the false paths (the else portions) during execution, op0 is executed n+1
times, which could slow down program execution on machines with few resources,
compared to the original code running on a sequential machine. The problem
is that speculative code motion might generate excessive bookkeeping operations
which are also speculative; so they are not always useful during execution, yet do
take resources (in Figure 1(b), all bookkeeping copies of op0 except for the last one
are speculative).

In nonnumerical code, it is preferable to perform speculative code motion across
all execution paths whenever resources permit, to cope with unpredictable branches.1

At the same time, code motion across all paths should be performed, as a way of
generating less speculative bookkeeping code. Both goals can be achieved if the
compiler performs useful code motion, such as nonspeculative or mildly speculative
code motion. For example, nonspeculative motion of an instruction across both
targets of each branch will be useful regardless of which path is taken at execu-
tion time; similarly, code motion that does not pass too many branches will have
a higher chance of being on the taken path and of generating less bookkeeping
code. In the example above, if op0 has no dependences on any op2k (k = 1, 2, .., n)
as well, op0 can be scheduled ahead of if cc0 across both targets of each branch
without generating any bookkeeping code. In case op0 has data dependences on
some instructions and cannot be scheduled across both targets of each branch, the
scheduling technique should obtain an accurate estimate of the cost associated with
moving up op0 and should choose a more useful instruction to move if one is avail-
able. The job of the compiler is then to do as many useful code motions as possible,

1Loop control branches are generally taken (and therefore predictable), and we can utilize this
branch behavior through software pipelining.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

856 · Soo-Mook Moon and Kemal Ebcioğlu

by using aggressive code motion techniques.
In order to enhance ILP beyond loop boundaries, the technique of software

pipelining has been used for generating code where the execution of different it-
erations is overlapped in a pipelined fashion. Innermost loops of numerical code
have often been software pipelined by computing the minimum initiation interval
based on resource constraints and data dependence cycles; according to the ini-
tiation interval, the pipelined loop kernel, the startup code, and the drain code
are scheduled [Lam 1988; Rau and Glaeser 1981]. These techniques are collectively
called modulo scheduling. When the loop body includes conditional branches if
any, modulo scheduling computes a conservative initiation interval across all paths,
either by removing branches through if-conversion [Dehnert and Towle 1993] or
by reducing the entire if-then-else-endif control structure to a single super-
instruction through padding the shorter path with no-ops (hierarchical reduction)
[Lam 1988].

These techniques with a fixed initiation interval are not appropriate for software
pipelining of loops in nonnumerical code, where multiple execution paths have
similar probabilities of being taken at execution time. A fixed initiation interval
based on worst-case data dependences and resource requirements across all paths
just loses loop parallelism. In the presence of conditionally executed subroutine
calls or inner loops within a loop, the length of the worst-case dependence cycle
may not even be precisely computable, since inner loops and subroutines take a
variable amount of time. On the other hand, the idea of computing an initiation
interval for each possible combination of loop execution paths does not provide an
easy way of generating such a pipelined loop schedule. This requires a new method
which combines global scheduling with software pipelining, so that speculative code
motion is fully supported and so that different initiation intervals in different ex-
ecution paths of a loop are allowed, thus obtaining a variable initiation interval
[Ebcioğlu and Nakatani 1989].

The example in Figure 2 shows how a loop with a conditional branch can be soft-
ware pipelined with a variable initiation interval. In Figure 2(a), each instruction in
the loop is assumed to take a single cycle except for the multiplication, which takes
two cycles. The loop can execute at a rate of one cycle/iteration when cc is false,
and three cycles/iteration when cc is true. Figure 2(b) shows its software-pipelined
loop with a variable initiation interval, where each shaded group includes indepen-
dent instructions that can be executed in the same cycle. Each instruction includes
its iteration number ([]), and a speculative instruction is marked with “S.”. The
parallel group L3 will be executed repeatedly in each cycle (i.e., at a rate of one
cycle/iteration) except when cc is true; in this case, the execution follows the path
L3-L4-L2 and goes back to L3 (at a rate of three cycles/iteration). The techniques
of hierarchical reduction or if-conversion will reduce the “if cc {x=x*y}” to a sin-
gle superinstruction that uses x, y, and cc and sets x as in Figure 2(c). There
is a spurious dependence cycle, x=x+x → cc=test(x) → x=super op(cc,x,y) →
x=x+x, which precludes any hope of achieving one cycle per iteration, regardless of
how many resources are available.

Previous compilers exploiting irregular ILP have been disappointing in terms of
the performance of scheduled code and compilation efficiency. There have been two
major approaches for global scheduling: those that allow code motion across only
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 857

L1:
x = x+x [n]
goto L2

L2:
cc = test(x) [n]

x" = x*yS. [n]

x’ = x+xS. [n+1]

goto L3

while (TRUE)
{

x = x+x
cc = test(x)

if cc {x = x*y}

}

(a) L3:

if cc goto L4 [n]

cc = test(x’) [n+1]

x" = x’*yS. [n+1]

x’ = x’+x’S. [n+2]

goto L3

L4:

x = x"+x" [n+1]

goto L2

(b)

x = super_op(cc, x, y)

while (TRUE)
{

x = x+x
cc = test(x)

}

(c)

Compute the addition of iteration [n].

Here, x contains the result of addition of iteration [n].
Compute the cc of iteration [n] from x.
Since we don’t know the value of cc yet,
hedge bet for both branch outcomes.

Speculate assuming cc=T in iteration [n] and compute
multiplication of iteration [n] from x.
Speculate assuming cc=F in iteration [n] and compute
addition of iteration [n+1] from x without waiting
for multiplication of iteration [n].

Here, cc = result of test of iteration [n].
x" = result of speculative multiplication of
 iteration [n] (the latency not yet elapsed).
x’ = result of speculative addition of iteration [n+1].

Perform branch of iteration [n] as soon as possible

Here, cc is known to be F in iteration [n], meaning that
x’ contains the correct result of addition in iteration [n+1].

Compute cc of iteration [n+1] from x’; we don’t know
the value of cc yet, so hedge bet for both branch outcomes.
Speculate assuming cc=T in iteration [n+1] and compute
multiplication of iteration [n+1] from x’.
Speculate assuming cc=F in iteration [n+1] and compute
addition of iteration [n+2] from x’ without
waiting for multiplication of iteration [n+1].
Set n = n+1 and iterate on short path.

Here, cc is known to be T in iteration [n], meaning that
x" contains the correct result of multiplication in
iteration [n] (the multiplication latency has elapsed now)
Recompute addition of iteration [n+1] from x" (previous
addition of iteration [n+1] at L2 or L3 was wrong)

Set n = n+1 and iterate on long path.

Comments

Fig. 2. Software pipelining with a variable initiation interval; three iterations ((n)th, (n + 1)th,
and (n+ 2)nd) are executed in parallel in L3; more details follow in Section 6.

one execution path that is chosen based on branch probability (trace based) and
those that allow code motion across all execution paths of a DAG (DAG based).

Trace-based techniques [Ellis 1985] fundamentally suffer from loss of speedup
during off-trace execution, which can be caused by speculative code motion and
excessive bookkeeping code at the joins. In order to avoid the generation of book-
keeping code, there have been approaches to duplicate code below join points prior
to scheduling [Hwu et al. 1993] or to perform nonspeculative code motion on a
trace without generating redundant bookkeeping code [Freudenberger et al. 1994;
Smith et al. 1992]. These techniques are limited in performing useful code motion
in the sense that only the trace is examined for available parallelism, and they
might generate unnecessary bookkeeping code.

DAG-Based techniques have advantages in performing useful code motion, since
they have a more global view of the code than on a single trace. The con-
trol dependence graph [Ferrante et al. 1987] has been used in order to identify
control-equivalent basic blocks or “regions” to perform nonspeculative code mo-
tion between them [Bernstein and Rodeh 1991; Gupta and Soffa 1990]. However,
the control dependence graph alone is not precise in computing usefulness, as
will be seen in Section 5.3. Greedy application of primitive code motion be-
tween adjacent nodes within a DAG can identify all nonspeculative code motions
[Aiken and Nicolau 1988; Nakatani and Ebcioğlu 1993]. However, this approach
generates a large amount of speculative instructions that cannot be accommodated

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

858 · Soo-Mook Moon and Kemal Ebcioğlu

with finite resources, which might either slow down program execution or entail the
unnecessary complexity of undoing code motions.

Among the above techniques, those that target machines with many resources
[Aiken and Nicolau 1988; Ellis 1985] tend to suffer from inefficiency problems such
as code explosion or long compilation time, which have made them difficult to use in
practice. Other techniques that target machines with few resources [Bernstein and
Rodeh 1991; Smith et al. 1992] are severely restricted; they employ neither renam-
ing nor software pipelining, and code motion is constrained to occur only between
basic blocks, so that neither creation of a new basic block nor destruction of an
existing basic block is allowed during scheduling. These restrictions are to avoid the
additional complexity of maintaining correct data flow information when aggres-
sive code motion is performed and are based on the notion that a machine with few
resources does not need aggressive code scheduling. We disagree with this notion
because aggressive scheduling techniques help to find more of useful code motions,
as well as to find more of available code motions.

In this article, we introduce a new DAG-Based global scheduling technique called
selective scheduling and its compiler for ILP machines. Selective scheduling can
extract a large amount of useful code motion across all paths and can be in-
corporated in software pipelining. Our optimizing compiler based on selective
scheduling (thereafter referred to as selective scheduling compiler) can generate
high-performance code for machines with many resources, as well as for machines
with few resources, without resorting to branch profiling. For additional perfor-
mance, branch probabilities can be used to choose among speculative operations
to be moved. The compiler is reasonably efficient in terms of code expansion and
compilation time.

The rest of this article is organized as follows. Section 2 briefly overviews the new
features of the selective scheduling compiler. The intermediate representations of
code that are manipulated by the compiler are described in Section 3, and Section 4
includes our techniques to overcome nontrue data dependences during code motion.
Section 5 describes the details of the selective scheduling algorithm, and Section
6 includes our software pipelining techniques. Section 7 presents our experimental
results to examine the performance and the scheduling efficiency of the compiler.
Section 8 summarizes the main results of the article.

2. FEATURES OF SELECTIVE SCHEDULING

The selective scheduling compiler uses innovative techniques to exploit irregular
ILP. We summarize its features in this section. The most important global schedul-
ing problem is gathering a group of independent operations2 at a point of a con-
trol flow graph as in Figure 3(a). Each group is eventually transformed into a
VLIW instruction or is likely to be executed by superscalar hardware in the same
cycle. Most global scheduling techniques [Bernstein and Rodeh 1991; Ellis 1985;
Smith et al. 1992] solve this problem in the same way: first compute the set of all
available operations that can move into the group (availability set); then, choose
the best operations from the availability set and schedule them into the group.

2To avoid confusion, we use the term operation for a single primitive instruction, and instruc-
tion for the long instruction word with several operations.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 859

(3) u := x + 1

(5) w := y + 1

(2) y := z

(1) if cc0

Availability Set =

(NSP) (SP) (NSP) (SP) (SP)

(4) x := load(u)

TRUE (T) FALSE (F)

w := y + 1

y := z

if cc0

Availability Set =

(NSP) (SP) (SP)(SP)

x := load(u)

u := x + 1

w := y + 1

y := z

if cc0

Availability Set =

(NSP) (NSP)

x := load(u)

u := x + 1

{if cc0[1], z[2], x+1[3], y+1[5], z+1[5]} {if cc0, z, y+1, z+1} { z, y+1, z+1}
(NSP)

(a) (b) (c)

T F
FT

create a group of
independent instructions

Fig. 3. Gathering a group of independent operations with resource constraints; SP: speculative,
NSP: nonspeculative.

Selective scheduling also follows this two-step strategy.
Selective scheduling can compute a large availability set because

—it computes the set of available right-hand sides (RHS) of operations instead of
computing the set of whole operations, since nontrue data dependences associated
with target registers of operations can be overcome through renaming;

—it computes available RHS across all execution paths, allowing speculative code
motion across both targets of each branch;

—it computes RHS across loop iteration boundaries combined with software pipelin-
ing;

—it recomputes the availability set after each code motion to obtain the correct
availability set.

Figure 3(a) shows our availability set of RHS (the number shown in brackets
after each RHS indicates the operation in the graph from which it is derived). Any
of the RHS can move into the group with either its original target register or a new
target register after renaming (for example, y+1 can be scheduled after renaming).
In addition, the two RHS in our availability set, y+1 and z+1, are computed from
the same operation w:=y+1, one across the true path of if cc0 and the other one
across the false path of if cc0 after substituting z for y.3 Consequently, when
resources permit, selective scheduling can schedule operations on all paths as soon
as their source operands are ready.

In order to choose useful operations from the availability set, the usefulness of
each RHS is estimated during the computation through a simple comparison at
the branches (see Section 5.1.1). In Figure 3(a), x+1 is nonspeculative because
it is available for moving up in both targets of the branch, whereas y+1 or z+1
are speculative because they are available in only one target. Figure 3(b) shows a
nonspeculative code motion. The computation of RHS across all paths enhances
our chances of finding more useful code motions, in addition to avoiding nontrue
data dependences and increasing the number of available operations.

3Our techniques of renaming and substitution will be described in detail in Section 4.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

860 · Soo-Mook Moon and Kemal Ebcioğlu

cc0:=x>0

if cc0

y:=x

y:=y+1

cc0:=x>0

if cc0

y:=x

y:=y+1

(a)

cc0:=x>0

if cc0

cc1:=y>0

if cc1

y:=y+1

cc2:=w>0

if cc2

z:=load(x)

cc0:=x>0

if cc0

cc1:=y>0

if cc1

y:=y+1

cc2:=w>0

if cc2

z:=load(x)

(b)

u:=z+1 v:=z+1

v:=z+1

v:=z+1

v:=z+1
v:=z+1

v:=z+1

u:=v

Fig. 4. (a) Unification in a simple if-then-else-endif construct; (b) in an unstructured code
fragment.

Selective scheduling schedules conditional branch operations as well as data oper-
ations, as in Figure 3(c), to deal with the high frequency of branches in nonnumer-
ical code. Although the code motion of a branch duplicates operations on its way,
it helps in reducing unnecessary speculative code motions that may waste resources
(i.e., the earlier we execute a branch and know its outcome, the less we need to
speculate). In addition, by scheduling branches in a group with other data opera-
tions, we can utilize a more compact representation of concurrency where data and
branch operations can be executed concurrently and where multiple branches can
be executed in a single cycle. This representation is called a tree representation and
is one component of our compiler (see Section 3.1). The tree representation helps to
reduce the performance bottleneck of sequential branch execution in nonnumerical
code [Moon and Ebcioğlu 1997].

Regarding the efficiency of selective scheduling, we should mention that the over-
head of recomputation is low because it is done incrementally, only on the paths
through which the chosen operation is actually moved up. In addition, selective
scheduling reduces code expansion by unifying the same computation on differ-
ent execution paths; multiple occurrences of the same computation are hoisted
up as a single operation. A simple example of unification can be found in the
if-then-else-endif construct shown in Figure 4(a); v:=z+1 below the construct
is moved up across both paths of the construct and is unified into one. If the opera-
tion were scheduled speculatively across only one target, a conservative scheduling
technique would generate a bookkeeping copy at the join point, thus causing code
expansion. In fact, unification includes the useful code motions past conditional
branches, that were discussed in the introduction.

Selective scheduling can perform unification across multiple branches after gener-
ating bookkeeping code, even in an unstructured code fragment as the one depicted
in Figure 4(b); two copies of z+1 are unified into one at if cc2, which is then moved
up across one target of if cc1, yet two copies of the operation are again unified
into one at if cc0. Although these unstructured code fragments do not neces-
sarily arise initially, aggressive code scheduling including branch code motion can
render the code structure quite different from the initial program. It would be dif-
ficult for trace-based scheduling techniques to avoid the generation of speculative
bookkeeping code and to perform useful code motion on these unstructured code
fragments.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 861

cc0 cc1 r0 r1

4 8

register values after executing L3

T

cc0 cc1 r0 r1

0 4

register values before executing L3

F F

F

r0:=r1r0:=0

r1:=r1+4

r0:=r1

L1

L1

L2

L3:

cc0:=r1>0

FT

FT

if cc0

if cc1

(a) (b)

Fig. 5. A VLIW tree instruction.

3. INTERMEDIATE REPRESENTATION OF CODE

Our compiler generates parallelized code from sequential code using the features
described in the previous section. In this section, we introduce the intermediate
representations of code that are manipulated by the compiler and describe the
scenario of code scheduling and code generation.

3.1 Tree Representation

In order to model uniprocessors that can execute multiple operations concurrently,
we introduce the tree representation, a new intermediate representation of paral-
lelized code. A VLIW implementation of the tree representation is called a tree
instruction [Ebcioğlu 1988] which has the form of a binary decision tree.

The tree instruction allows the representation of a high degree of parallelism with
respect to both data and branch operations. Figure 5(a) shows an example of a tree
instruction L3. Each internal node of the tree corresponds to a test on a condition
register (if ccj), whereas terminal nodes have instruction labels indicating where
this instruction can branch to. Each directed edge of the tree is annotated with
zero or more data (ALU or memory) operations. All operations scheduled in a
tree are guaranteed by the compiler to have no dependences on each other and can
thus be executed simultaneously. For a specific implementation, there will be a
finite limit on the number of distinct data operations and on the number of branch
targets (which equals to the number of test nodes + 1) that can be contained
in a tree instruction, and there may be other resource constraints as well. The
instruction L3 in Figure 5(a) has four distinct data operations even though there
are five instances and does three-way branching, since there are two test nodes.

The execution of L3 consists of two steps. First, using the current values of the
condition registers cc0 and cc1, a unique taken path is determined by traversing
the tree from the root to a leaf. The instruction label at the selected leaf becomes
the next tree instruction to be executed. Then, the operations on the taken path
are executed in parallel by performing all the operand “reads” first, and then all
the operand “writes.” If the initial values of both cc0 and cc1 are false (F), for
example, r0:=r1, cc0:=r1>0, and r1:=r1+4 are executed in parallel using the old
values of r1 that are available from previous instructions. In the next cycle, the
updated values of r0, cc0, and r1 will be observed by the instruction L2 as shown
in Figure 5(b).

The abstract VLIW machine at this level is assumed to have multiple ALUs,
all of which share a register file, and multiple condition registers that take binary

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

862 · Soo-Mook Moon and Kemal Ebcioğlu

values (T or F). It is also assumed to have a branch unit capable of deciding the
next target in a single cycle (multiway branching [Moon and Carson 1995]) and an
execution mechanism to commit operations depending on the outcome of branching
(conditional execution [Ebcioğlu 1988]). In order to reduce the critical path of a
cycle time, multiway branching and conditional execution are performed concur-
rently [Ebcioğlu 1988], and this allows identical operations occurring in multiple
paths on a tree (e.g., r0:=r1 in L3) to be allocated to the same ALU, thus requir-
ing four ALUs instead of five for the execution of L3. The tree instruction has a
pipelined implementation (with bypass paths), so that it takes one short machine
cycle. The tree instruction also does not incur any branch stalls. Ebcioğlu [1988]
and Nakatani and Ebcioğlu [1993] describe methods for building a pipelined tree
VLIW machine with a short cycle time.

It should be noted that neither multiway branching nor conditional execution is a
requirement for applying our compilation techniques, although these architectural
features are recommended for achieving better parallelism. The tree paradigm can
be restricted at will to obtain the existing architectural paradigms. For those VLIW
architectures that do not have the conditional execution features [Aiken and Nicolau
1988], all data operations will be placed at the root of the tree above any condi-
tional branches. For those VLIW architectures that allow only two-way branching,
our tree will have at most one test node. Superscalar resources can be represented
by choosing an appropriate tree with maximum resources equal to the number of
functional units in the superscalar (for example, one could allow a maximum of one
integer operation, one conditional branch, and one floating-point operation in a tree
for the IBM RS/6000 [Ebcioğlu et al. 1994]). Therefore, the resource constraints of
many existing ILP machines can be accommodated by our algorithms in a flexible
manner. In the context of the present work, our compiler generates parallelized
code targeted for the VLIW tree instruction.

3.2 Sequential Representation

Although VLIW trees are generated as the final code, code scheduling itself is
performed on a sequential representation of code. The input to the compiler is a
control flow graph (CFG) whose nodes are primitive operations obtained from se-
quential code. This graph is called a sequential program. Based on specific resource
constraints, the compiler generates a parallelized program which is still a sequential
CFG, yet in which independently executable operations have been brought together
and are located in adjacent nodes. This parallelized program is in fact called su-
perscalar code, where each group of adjacent independent operations is likely to be
executed in the same cycle by a superscalar machine. Finally, the parallelized pro-
gram is converted into a VLIW program which is a CFG whose nodes are VLIW tree
instructions. The VLIW program is assembled into binary VLIW code. Through-
out the remaining of the article, we use the term “program” to denote the internal
CFG form of code that is manipulated by our compiler, and we use the term node
interchangeably with operation in the sequential program. Since each edge in the
CFG directly represents the successor relationship, unconditional branches do not
exist in the sequential program.

Figure 6(a) shows an example of a sequential program, and Figure 6(b) shows
its corresponding parallelized program. A group of operations in the shaded area
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 863

r0 := f(r0)

cc0 := r0 < C

if cc0

r0 := f(r0)

cc0 := r0 < C

r1 := f(r0)

if cc0

r0 := r1
cc0 := r0 < C

r1 := f(r0)

L2:

cc0 := r0 < C
r1 := f(r0)

L1:

L2

r0 := r1
cc0 := r1 < C

r1 := f(r1)

L2

r0 := f(r0)
L0:

L1

exit exit
exit

(a) (b) (c)

r0 is live

if cc0T F

Fig. 6. (a) An example of a sequential program, (b) its parallelized version, and (c) the corre-
sponding VLIW program.

indicates independently executable operations and is called a “parallel group.” Each
operation is assigned a sequence number (seqno), such that all operations in the
same parallel group have the same seqno. Hence, the final transformation can easily
identify each parallel group and can convert it to a VLIW tree instruction as in
Figure 6(c).

Although there have been approaches to perform code scheduling directly on
the VLIW program [Aiken and Nicolau 1988; Nakatani and Ebcioğlu 1993], code
scheduling on the sequential program is more efficient and simpler. In order to
generate parallel groups corresponding to final tree instructions, it is possible that
a parallel group includes copy operations and other operations that are data de-
pendent on the copies. For example, a parallel group can be formed from the
operations [r0:=r1; r1:=r2*r2; r3:=r0+1], in this order. The operations cannot
execute concurrently in this form, yet after forward substitution of the copy r0:=r1
they can. The corresponding tree instruction will hold them as [r0:=r1; r1:=r2*r2;
r3:=r1+1] (note that r3:=r1+1 will read the old r1 value, not the one written by
r1:=r2*r2 because of the execution semantics of the tree instruction, reads-first-
then-writes). However, an operation such as r4:=r1+r1 cannot be scheduled into
the same parallel group, due to its data dependence on r1:=r2*r2. The point to
note here is that the sequential form of an operation scheduled in a parallel group
might be different from the VLIW form of the operation in the corresponding tree
instruction. This distinction is made in our description of the algorithm in Section
5 by using different RHS notations (i.e., Sequential RHS vs. VLIW RHS). Basically,
in the sequential program, the compiler schedules parallel groups, which correspond
to the final VLIW tree instructions.

4. NONTRUE DATA DEPENDENCES

Code scheduling on the sequential program is frequently hampered by nontrue data
dependences that are caused by storage conflicts arising from reusing registers. This
section describes our techniques to avoid nontrue data dependences, which include
both renaming registers and resolving false dependences related to copy operations.
In order to keep our description of techniques manageable, we assume only register-
to-register operations in the sequential program, yet in Section 6 we describe how
we disambiguate memory operations in our real implementation. In addition, the
sequential program is assumed to be already register allocated. Our compiler re-

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

864 · Soo-Mook Moon and Kemal Ebcioğlu

if cc0

if cc1

u := x * x

cc0 := x > 0

x := x’

x’ := y+1

(b)

if cc0

if cc1

cc0 := x > 0

x’ := y+1

x := x’

u := x’ * x’
(c)

Partial Renaming Forward Substitution

if cc0

if cc1

x := y+1

u := x * x

cc0 := x > 0

(a)

x is live

z is live

Fig. 7. Partial renaming and forward substitution techniques.

names registers directly using hardware registers during code scheduling, instead
of first introducing symbolic registers, and then allocating hardware registers after
scheduling.4

4.1 Partial Renaming and Forward Substitution

Previous renaming infrastructures such as live range renaming [Padua and Wolfe
1986] or static single assignment [Cytron et al. 1991] are not enough to avoid all
nontrue data dependences that occur during code motion; for example, software
pipelining often requires moving a definition of a register from iteration n+1 to
iteration n, to a point where the same register of iteration n is still live at a loop
exit, which cannot be achieved by these techniques alone. We introduce techniques
that rename registers on an as-needed basis when parallelism opportunities arise.

In Figure 7(a), the operation x:=y+1 cannot move into the parallel group because
x is live at the other target of the branch if cc1. However, its right-hand side, y+1,
can still move into the desired group with a new target register x’ by substituting a
copy operation for the original operation, as shown in Figure 7(b). This technique
is called partial renaming, in order to distinguish it from previous techniques that
rename whole live ranges.

Although the RHS is moved up, partial renaming alone cannot reduce the total
time, since the copy operation still remains. However, the copy operation is rela-
tively cheap, in the sense that it often has lower latencies than other operations,
can be propagated and coalesced away at later stages, or can be executed con-
currently with any operations that are data dependent on the copy operation. In
Figure 7(b), there is a data dependence between x:=x’ and u:=x*x, yet this is not
a real true dependence; the operation u:=x*x can be executed concurrently with
the copy x:=x’ after replacing x by x’ as in Figure 7(c). This technique of forward
substitution5 allows the scheduling of copies and data-dependent operations on the
copies in the same parallel group as discussed in Section 3.2.

4Code scheduling performed before register allocation can use the same techniques in this section,

yet should be careful not to exceed the hardware register resources, since register spill code can
cause significant serialization on ILP machines.
5A more general technique called combining allows forward substitution with operations other
than copies [Nakatani and Ebcioğlu 1989].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 865

Forward substitution is also helpful in enhancing upward code motion. In Figure
7(b), u:=x*x can be scheduled before the copy x:=x’ in the form of u:=x’*x’.6

In fact, an operation can be transformed multiple times through substitution while
it is being moved up if it passes through multiple copies. Since partial renaming
results in the generation of many copy operations, upward code motion through
substitution is important.

Selective scheduling incorporates both partial renaming and forward substitution
techniques in its computation step: all available RHS that can be scheduled into
the desired parallel group are computed, which

—do not violate any true dependences on the way up, yet can be substituted at
copies,

—are not true dependent on any operations already scheduled in the group, yet
may be dependent on copies in the group.

In order to describe this computation step precisely, we introduce a primitive
scheduling function that shows the result of moving up a given RHS through an
operation or through an execution path of operations.

4.2 The Functions moveup()

When we try to move up a given RHS Υ above an operation Θ, there are three
possible outcomes as described in moveup rhs(Υ,Θ) in Figure 8: NULL if Υ cannot
be scheduled above Θ due to a nonsubstitutable true dependence, a substituted Υ’
if Θ is a copy and if there is a substitutable dependence, and the original Υ if there
is no dependence at all.

We can also extend the function moveup rhs() across an execution path. Let
Ψi,j be an acyclic execution path from an operation i to an operation j in the flow
graph of a sequential program. Moving up Υ across the path Ψi,j (starting from j
back to i following the arrows on the edges in reverse order) can be described by the
function moveup path(Υ,Ψi,j) in Figure 8, which either returns the resulting Υ af-
ter it has been moved through the path or returns NULL indicating that the Υ could
not be moved due to nonsubstitutable true dependences. Finally, the two func-
tions are defined for a set of right-hand sides, ∆, as in moveup set rhs(∆,Θ) and
moveup set path(∆,Ψi,j) in Figure 8. For example, let Ψx1,x4 be a given directed
path x1x2x3x4, where oper(x1) ≡ (y:=z), oper(x2) ≡ (w:=w+1), oper(x3) ≡ (x:=y),
oper(x4) ≡ (y:=w*2). Then, moveup set path({x + 1, y + 1, z + 1},Ψx1,x4) = {z+
1}; x+1 is forward substituted at x3 becoming y+1, then forward substituted at x1

becoming z+1; y+1 is deleted at x4; z+1 remains as it is, since it is not affected.
The functions moveup() will be helpful in understanding the selective scheduling
algorithm in the next section.

5. DESCRIPTION OF SELECTIVE SCHEDULING

In the next two sections, we describe the parallelization process in the selective
scheduling compiler. The backbone of the parallelization is the software pipelining

6If u:=x*x was the last use of x:=x’, the copy operation can be deleted after u:=x’*x’ is moved
up above the copy because it now becomes a dead operation. This controls code expansion caused
by partial renaming.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

866 · Soo-Mook Moon and Kemal Ebcioğlu

For an operation Θ in a sequential program,
rhs(Θ): the RHS of the operation dest(Θ): the target register
opcode(Θ): the operation code sources(Θ): the set of source registers in rhs(Θ)

moveup rhs(Υ,Θ) (Υ: RHS or NULL, Θ: operation)
if (Υ 6= NULL and dest(Θ) ∈ sources(Υ)) {

if (opcode(Θ) ≡ copy (i.e., x:=y)) {
Υ’ = ReplaceEachOcurrenceBy(Υ, x, y) ; replace each occurrence of x in Υ by y

return(Υ’) ; move up through substitution
}
return(NULL) ; nonsubstitutable true data dependence

}
return(Υ) ; move up with no change
End moveup rhs

moveup path(Υ,Ψi,j) (Υ: RHS, Ψi,j : path)
τ = Υ
for (n=length(Ψi,j); n≥1; n=n-1); length(Ψi,j)≡ number of operations in Ψi,j

τ = moveup rhs(τ,Ψi,j(n)) ; Ψi,j(n) ≡ nth operation on ~ij, n = 1, 2, ..., length(Ψi,j)
return(τ)
End moveup path

moveup set rhs(∆,Θ) ≡ {τ |(∃Υ ∈ ∆)[τ = moveup rhs(Υ,Θ)∧τ 6= NULL]} ;∆: set of RHS

moveup set path(∆,Ψi,j) ≡ {τ |(∃Υ ∈ ∆)[τ = moveup path(Υ,Ψi,j) ∧ τ 6= NULL]}

Fig. 8. The functions moveup.

of a loop as will be described in Section 6; however, at each stage of software pipelin-
ing, code motion through certain edges in the sequential program is inhibited such
that the remaining edges where code motion is allowed form a DAG. The scheduling
within this DAG is handled by the selective scheduling algorithm described in this
section.

The input to the algorithm is a rooted DAG, Gr = (V,E), obtained from a
sequential program where there is an empty parallel group just before the root
node, r. Figure 9(a) shows a rooted DAG, G(3), and an empty parallel group. The
parallel group is associated with specific resource constraints, and our objective is
to “fill” the group with independently executable operations. A filled parallel group
will finally correspond to a VLIW tree instruction.

The following two actions are repeated until either the parallel group becomes
full, that is, the resource constraints are met, or no more operations can be moved
into the group due to data dependences.

—Computation: the set of all available right-hand sides (RHS) that can move
into the parallel group is computed, and the best RHS is selected among them.

—Code Motion: the best RHS is actually scheduled into the group with a suitable
target register

Our availability set7 of RHS at the parallel group is described as av(group) in

7Availability set has been called “unifiable-ops” previously [Ebcioğlu and Nicolau 1989].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 867

(a) (b)

if cc0

y:=z

u:=y+1

z:=x+1

y:=w*w

(4)

(5) (6)

(7)

(8)

av(7)={y+1[7], x+1[8]}

av(6)=
{z[6], z+1[7], x+1[8]}

av(5)=
{w*w[5], x+1[8]}

x:=y

if cc0

y:=z

u:=y+1

z:=x+1

y:=w*w

(4)

(5) (6)

(7)

(8)

An empty group

x:=y(3) (3)

av(group) = {y[3], if cc0[4], w*w[5],

z[6], z+1[7], y+1[8]}

Fig. 9. A rooted DAG input to selective scheduling and the availability set; the number in brackets
after each RHS in av(group) and in av sets indicates the original operation of the RHS.

Figure 9(a). Initially, the av(group) is computed by traversing the DAG from the
bottom in reverse topological order8 and by collecting all available RHS across all
execution paths (This computation is actually performed by calling compute av()
routine, described in the Appendix, from the group boundary). If this computation
is done from scratch after each code motion, it will introduce high overhead. To
reduce the overhead, an intermediate availability set “av” is left at each basic block
header (bb header)9 during the first computation, as shown in Figure 9(b). The
data flow set, av(n), is defined to be the set of all available RHS that can move
up and through n from the “sub-DAG” rooted at n, G′n = (V ′, E′), where V ′ ⊂
V,E′ ⊂ E, and V ′ and E′ are vertices and edges reachable from n in G.10 Our idea
is that after each code motion the av(group) can be recomputed incrementally
based on av sets saved at the basic block headers closest to the parallel group. This
incremental computation is possible because selective scheduling can maintain valid
av sets efficiently during code motion due to the following two properties.

—During a code motion, the av(n) at a bb header n might become invalid only
when the chosen operation is actually moved up through n; an av(n′) that is not
located on the current path of code motion (which we call the current moving
path) is not affected.

—The invalid av(n) itself can also be recomputed incrementally based on the av
sets saved at the bb headers closest to n in G′n.

During the code motion step of selective scheduling, av(n) is recomputed on-the-fly
only when n is located on the current moving path. Consequently, the portion of
a given DAG which is walked through for the computation of the next av(group)
is confined to the paths of the current code motion, rather than the whole DAG
which is walked through during the first computation.

8For example, the DAG in Figure 9(a) is traversed in the order of 8, 7, 5, 6, 4, and 3.
9An operation is a basic block header if it has more than one predecessor, or is a target operation
of a conditional branch.
10In the example of Figure 9(b), the sub-DAG rooted at 5 includes nodes 5, 7, 8, and edges 57,
78.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

868 · Soo-Mook Moon and Kemal Ebcioğlu

We first describe the computation step using the moveup() functions discussed
in Section 4 and then the code motion step. We include a brief comparison with
other DAG-Based approaches.

5.1 Computation Step

The computation step consists of computing av sets and av(group). Both com-
putations are essentially the same, except that when computing av(group) the
data dependences on the operations already scheduled in the group must also be
considered according to the model of the tree instruction.

5.1.1 Computing av Sets. The (re)computation of av(n) is performed incre-
mentally, which means scanning the sub-DAG rooted at n (G′n) by the depth-first
search to identify bb headers where valid av sets are found, followed by reverse
topological-order traversal to collect available RHS (see compute av() in the Ap-
pendix). When a valid av set is found at a bb header m during the depth-first
scanning, av(m) is guaranteed to be valid because the overall (re)computation is
performed in reverse topological order of the given DAG, G. Actually, we compute
the av set for each operation, yet it is not saved unless the operation is a bb header.
Initially, the av set below the DAG is assumed to be empty. Then, the incremental
computation of av(n) of an operation n in the DAG is performed as follows:

—When opcode(n) 6= if: Given the availability set av0 below an operation n,
av(n) above n is computed as [moveup set rhs(av0, n) ∪{rhs(n)}].

—When opcode(n) = if: Given that avT and avF have been computed on the T
and F paths of the branch n whose operation is if ccj , av(n) becomes [((avT ∪
avF)−AllCondBranches11)) ∪ {if ccj}].

If n is a bb header, then av(n) is saved at n; otherwise it is not saved.
Each RHS Υ in av(n) has an attribute “spec,” the degree of speculativeness,

which tells the maximum number of conditional branches through which this oper-
ation would have to be moved up from Υ’s original location through n, in a manner
that the operation is available at only one target of those branches. It shows the
amount of “speculation” or “gambling” involved in moving Υ through n. During
the above computation, the following apply:

—When opcode(n) 6= if: The spec attribute of rhs(n) is set to zero in av(n). If a
given RHS in av0 is not true dependent on oper(n), it is placed in av(n) with its
spec attribute unchanged. When oper(n) is a copy, and if two distinct RHS in
av0 become the same RHS through substitution in moveup set rhs(av0, n), the
maximum of their spec attributes is taken as the spec of the RHS.

—When opcode(n) = if: The spec attribute of the conditional branch, (if ccj),
is set to zero. For other RHS in av(n), if the RHS is present in both of avT and
avF , its spec attribute is set to the maximum of the two; if the RHS is present
in only one of avT or avF , its spec attribute is incremented by one.

11Conditional branches are not allowed to move above other conditional branches in the current
implementation.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 869

The above computation of av(n) identifies all available RHS in the sub-DAG and
estimates their degree of speculativeness. In Figure 9(b), there are three bb headers
5, 6, and 7. The initial computation obtains av(8), av(7), av(5), av(6), av(4), and
av(3) in this order, yet only av(7), av(5), and av(6) are saved. av(7) includes
all RHS on its downward paths, y + 1 (0) and x + 1 (0), where the number in the
parentheses shows the spec attribute. We say that y+1 and x+1 have come from
their original operations u:=y+1 and z:=x+1, respectively. av(5) and av(6) are
computed as

av(5) = moveup set rhs(av(7), y := w ∗ w) ∪ {w ∗ w} = {w ∗ w (0), x + 1 (0)}

av(6) = moveup set rhs(av(7), y := z) ∪ {z} = {z (0), z + 1 (0), x + 1 (0)}.
av(5) does not include y+1, since there is a true dependence on y:=w*w, whereas
av(6) includes z+1 that is substituted at y:=z. Consequently, even though an
element has come from its original operation n, its RHS may differ from the rhs(n)
due to substitution on the way up. When we compute av(4) in Figure 9(b) as

av(4) = (av(5)∪av(6))∪{if cc0} = {if cc0 (0), w ∗ w (1), z (1), z + 1 (1), x + 1 (0)},

the spec of x+1 is still zero (nonspeculative), since it is present at both targets of
the branch, while the spec of others is incremented by one (speculative) because
they are present at only one target. Figure 10 shows, in more detail, how av(3) (=
av(group)) in Figure 9(b) is computed, step by step (see procedure compute av
in the Appendix).

Through the above incremental computations performed on a given DAG, we can
finally obtain the av(group) that includes all available RHS with estimated spec
attached. The spec of an RHS in the av(group) indicates the maximum (over all
paths p from the parallel group to an operation that derived RHS) of the number of
conditional branches on the path p where the RHS corresponding to the operation
at the end of the path is available in only one target. The parallel group is first
filled by nonspeculative RHS whose spec is zero, and the remaining resources are
filled by speculative RHS whose spec is small. Selective scheduling does not reorder
branches to reduce code expansion, and thus all branch RHS are nonspeculative
and are preferred for code motion.

Each bb header n includes another data flow set, lv(n), which is the set of reg-
isters that are live12 at n. Before the parallelization starts, correct lv sets are
initialized for all bb headers and the procedure exit labels. Since the lv set also
has properties similar to the av set mentioned above, invalid lv sets on the current
moving path during a code motion are recomputed incrementally. Given the live
variables lv0 below an operation n, the live variables above n, lv(n), are computed
as (lv0 − {dest(n)}) ∪ {sources(n)}; similarly, given the live variables lvT and lvF
at the targets of a conditional branch if cc, the live variables above the conditional
branch are computed as (lvT ∪ lvF) ∪ {cc}. The lv set is used to determine an ap-
propriate target register for the best RHS that is chosen for upward code motion.

12A register is live at n if there is a path starting from n in the flow graph where the register is
used before being set.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

870 · Soo-Mook Moon and Kemal Ebcioğlu

---Visit 3.

---Visit 4. 4 has two successors, 5 and 6. Try 5 first.

---Visit 5.

---Visit 7.

---Visit 8. 8 has no successors. Compute from oper(8)= z:=x+1 : av(8) = {
x+1(0)[8] } (original operation node=8, spec=0).

---Backtrack to 7. Compute from oper(7)= u:=y+1 and av(8): av(7)= { y+1(0)[7],

x+1(0)[8] }. Save av(7) since 7 is a bb header.

---Backtrack to 5. Compute from oper(5)= y:=w*w and av(7): av(5)= { w*w(0)[5],

x+1(0)[8] }. y+1 is not available because y:=w*w sets y. Save av(5) since 5 is

a bb header.

---Backtrack to 4. 4 had another unvisited successor (i.e. 6) besides 5.

---Visit 6.

---Visit 7. av(7) is already computed, do nothing.

---Backtrack to 6. Compute from oper(6)= y:=z and av(7): av(6)={ z(0)[6],

z+1(0)[7], x+1(0)[8]}. y+1 gets renamed as z+1, because of forward-substitution.

Save av(6) since 6 is a bb header.

---Backtrack to 4. All successors of 4 are now visited. Compute from oper(4)=

if cc0, av(5), av(6): av(4)= { if cc0(0)[4], w*w(1)[5], z(1)[6], z+1(1)[7],

x+1(0)[8] }. x+1 is available in both 5 and 6, so its spec value remains 0. w*w

is only available in 5 (and not 6), so its spec value is incremented.

---Backtrack to 3. Compute from oper(3)= x:=y and av(4): av(3)= { y(0)[3], if

cc0(0)[4], w*w(1)[5], z(1)[6], z+1(1)[7], y+1(0)[8] }. x+1 gets renamed as y+1

because of forward substitution.

Fig. 10. Steps of the computation of av(3) by procedure compute av of the Appendix.

5.1.2 Computing av(group). Most of computation details in this section are
due to the features of tree instruction, not the features of selective scheduling itself.
In order to compute av(group), av sets must be computed first at each group
boundary. A group boundary is an edge in the DAG going from a node inside
the parallel group to a node outside the parallel group. The computation of av
at group boundaries is composed of two steps. First, av sets are computed at all
nodes that are immediately outside the current group boundaries using the same
method for computing av(n) at the bb headers. Then, the av set at each group
boundary is further reduced to include only those RHS that are not true dependent
on any operations already included in the parallel group, on the path from the
boundary where they are computed to the root of the parallel group. The parallel
group is maintained as a tree, so the path from a boundary to the root is unique.
Substitutable (nontrue) dependences are again disregarded.

Initially, the empty group in a rooted DAG Gr is implemented as a dummy
node, Ω; all predecessors of r are made to point to Ω, and Ω is made to be the sole
predecessor of r. The dummy node will be deleted after the parallel group is filled.
The first group boundary is located between Ω and r in which the first “best”
operation will be scheduled. As operations including conditional branches move
into the group, there can be more than one group boundary. For example, consider
a parallel group that currently has n boundaries x1, x2, . . ., xn, and assume we are
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 871

about to compute the next av(group) for this group. Let xi be a group boundary
between operations pi and si which are inside and outside of the group, respectively.
av(si) is computed, and it becomes av(xi). Since bb headers hold correct av sets,
this computation will be incremental, in the sense that it will search at most to the
next bb header on downward paths. Let us define av′(xi) from av(xi) as follows:

av′(xi) ≡ moveup set path(av(xi),ΨΩ,pi),

where ΨΩ,pi is the unique path from Ω to pi. This computation deletes those
RHS in av(xi) that have true dependences on any operations on the path from
xi back to Ω, while all substitutable RHS are substituted. Then,

⋃
1≤i≤n av

′(xi)
defines all VLIW RHS that are currently movable into the VLIW tree instruction
corresponding to the group. Among them, one RHS ΥV LIW is selected as the best
operation, and the best operation will be moved up to every group boundary xi
whose av′(xi) includes ΥV LIW . Since the scheduling is performed on a sequential
program, not on a VLIW program, the best operation should be created at each xi
in the form of a sequential RHS rather than a VLIW RHS as discussed at the end
of Section 3.2. ΥSeq(xi) is defined to be a set of RHS in av(xi) satisfying

moveup set path(ΥSeq(xi),ΨΩ,pi) = {ΥV LIW }.

That is, ΥSeq(xi) is the set of (one or more) original RHS included in av(xi) which
derived ΥV LIW .

The empty parallel group in Figure 9 is filled with three operations in Figure
11(a). There are two group boundaries, f1 and f2. av(f1) becomes the computed
av at u:=y+1, {y+1, x+1}, while av(f2) is computed as {z+1, x+1, z}. The element
y+1 is deleted in av′(f1), since it is flow dependent on the operation y:=w*w, while
the element x+1 is substituted at x:=y, and the substituted RHS, y+1, is included
in av′(f1). av′(f2) is similarly obtained. Assume that ΥV LIW = y+1 is selected as
the best operation among the union of av′(f1) and av′(f2). Then, both ΥSeq(f1)
and ΥSeq(f2) become {x+ 1}.

Each ΥSeq(xi) includes the operation that will be actually scheduled in each
group boundary xi although all of them correspond to the final VLIW operation
ΥV LIW . In Figure 11(a), for example, x + 1 is scheduled at the boundary f113

and f2 as in Figure 11(c), and they will be converted to y+ 1 in the corresponding
VLIW tree instruction. That is, according to our method for scheduling VLIW
operations in a group, the selection of the best RHS is based on the VLIW RHS,
while the actual scheduling is based on the sequential RHS. It should be noted that
even though the best operation has multiple copies in the parallel group (even in
different sequential RHS forms), it becomes only one operation in the final tree
instruction.

A software lookahead window can be used in the first computation of av(group)
such that only the RHS of operations within a specific distance from the empty
parallel group will show up in the av set at bb headers. The purpose of this window
is twofold. First, it reduces code expansion and the scheduling time. Second,

13If z’:=y+1 were created at f1 instead of z’:=x+1, it will read the wrong value of y, computed
at y:=w*w. Whereas both forms can be scheduled in f2. To be conservative, the sequential RHS
is scheduled instead of the VLIW RHS.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

872 · Soo-Mook Moon and Kemal Ebcioğlu

av(f1)={y+1, x+1}

av’(f2)={z+1, y+1, z}
av’(f1)={y+1}

av(f2)={z+1, x+1, z}

dummy node

x:=y

if cc0

y:=z

u:=y+1

z:=x+1

y:=w*w

av={y+1, x+1}

f1

f2

av={z, z+1, x+1}

dummy node

x:=y

if cc0

y:=z

u:=y+1

y:=w*w
f2

av={z, z+1, x+1}z’:=x+1

z:=z’

av={y+1, z’}

dummy node

x:=y

if cc0

u:=y+1

y:=w*w

z’:=x+1

z:=z’

av={y+1, z’}

z’:=x+1

y:=z

VLIW RHS

Seq. RHS

z’:=x+1

Best RHS_VLIW = y+1

(a)

(b) (c)

: bookkeeping copy

Best RHS_Seq(f1) = {x+1}
Best RHS_Seq(f2) = {x+1}

(3)

(4)

(5) (6)

(7)

(8)

(3)

(4)

(5)

(5’)

(6)

(6’)

(7)

(8)

(3)

(4)

(5)

(5’)

(4’)

(6)

(7)

(8)

Fig. 11. A code motion into the parallel group.

it prevents code motion over long distances that can increase register pressure
and cause the scheduler to run out of registers in subsequent stages. The current
implementation uses a window size of 16 operations in all paths from the empty
parallel group based on the results in Nakatani and Ebcioğlu [1993], which indicates
that the window size of 16 is “enough” to extract most ILP in integer code.

5.2 Code Motion Step

For each boundary xi where there is a nonempty set of RHS ΥSeq(xi) corresponding
to the chosen ΥV LIW , the algorithm traverses the sub-DAG rooted at xi to look
for the original operations matching ΥSeq(xi). The traversal is performed twice:
first to compute the suitable target registers of the operation to be created at xi,
then to actually move up the original operations into xi. During the code motion
step, the generation of bookkeeping code and the recomputation of av and lv sets
on the current moving path are performed on-the-fly.

5.2.1 Search for Original Operations. The traversal algorithm for finding the
original operations that are being moved up is based on depth-first search. During
the traversal on a path, the algorithm backtracks when an instance of the original
operation is found. At a conditional branch, both paths of the branch are traversed
to find the original operations before the algorithm backtracks. The algorithm also
backtracks when the av set at a basic block header indicates that the operation is
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 873

not available after that point in the DAG. Due to the time and complexity concerns,
only the first original operation on each path will be searched and moved up.

During the depth-first traversal from a boundary xi, the simplest method to
determine if a given operation n is the original operation is by checking if rhs(n) is
included in the given ΥSeq(xi). Since an operation in ΥSeq(xi) has possibly been
substituted to a new form on the way up to xi, it should be converted back during
the traversal.

Let Σ be the set of original RHS that we are looking for during the traversal. In
Figure 11(a), if z+ 1 were selected as the best ΥV LIW , the traversal starts from f2
with Σ = {z+1}. Σ is “unsubstituted” at y:=z as Σ = {y+1, z+1}, and both y+1
and z+1 will be searched for after passing y:=z, because either RHS can be possibly
moved up above y:=z as z+1. Note that moveup rhs(y+1,y:=z) =moveup rhs(z+
1,y:=z) =z + 1. We have to look for more RHS than necessary, since there exists
no single inverse for substitution. If Σ were {x+x} when we pass y:=x, Σ becomes
{x+ x, x+ y, y+ x, y+ y}. If nontrivial substitution [Nakatani and Ebcioğlu 1989]
is allowed, the complexity of traversal might be increased more. Therefore, in this
article we restricted the substitution in moveup rhs(Υ,Θ) to happen only when the
Θ is a copy operation.

Fortunately, bb headers encountered on the traversal include the valid av sets,
and Σ can be filtered correctly by intersecting with them. In Figure 11(a), Σ
becomes {y+ 1} after intersecting with av(u := y + 1), which is correct since z + 1
does not exist below the bb header. If the resulting Σ after intersecting with av(n)
is null, no original operation exists below the bb header n, and the path below n
is not traversed any more. Since the traversal is guided by av sets, the complexity
of traversal is reduced, which is one of the reasons why we do recomputation to
maintain valid av sets during code motion. The size of Σ is reduced further when
any operation Θ which sets a register r is encountered during the traversal; all RHS
using r are removed from Σ, since an RHS including r could not have been moved
up above Θ (e.g., moveup rhs(r + 1, r := x ∗ x) = NULL, moveup rhs(r + 1, r := s)
= s + 1). In Figure 11(a), the original operation is finally found at z:=y+1 whose
RHS is included in Σ={y + 1}.

Here is why we do not simply attach to each RHS in av(group) pointers to the
original operations that derived this RHS and then look for operations matching
these pointers in order to find the original operations to move up. We not only need
to know which original operations correspond to an RHS, but also which specific
paths to follow to get to them from the parallel group. There are cases where an
operation that derived the chosen RHS in av(group) has to be moved up on one
path to the parallel group, but should not be moved on another. Consider again the
CFG shown earlier in Figure 3(a), where both y+1 and z+1 are computed from the
same operation across T and F paths, respectively. If z+1 is chosen as the best RHS,
the traversal of the T path should fail, yet we cannot tell this only by comparing
pointers. Our method of comparing RHS with unsubstitution correctly identifies
original operations according to the path being traversed, without actually saving
the path information in each RHS.

5.2.2 Choosing the Target Register. Based on above methods, the sub-DAG
rooted at xi is traversed to find suitable target registers for the operation to be

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

874 · Soo-Mook Moon and Kemal Ebcioğlu

created at xi, unless ΥSeq(xi) consists of a branch or a store operation. It should
be a register that is

(1) not set or read on any path from xi to an instance of the original operation,
(2) not among the live registers of the point immediately following the first original

operation on a given downward path, except for the original target register of
the operation, and

(3) not live on the other path of any conditional branch that is passed by the
operation, in case original operations are not present on both paths of the
conditional branch.

After the set of suitable target registers is determined for each boundary xi, the
algorithm takes the intersection of them and chooses the target register. We prefer
a target register d’ equal to the original target register d of one of the original
operations, since this will eliminate the need for leaving a copy operation d:=d’
in place of the original operation. If the original target registers cannot be used,
and renaming is required, we look for a suitable target register. If a suitable target
register cannot be found, the next best RHS is selected, and the process is repeated.
Let us call the chosen target register τ . In the example of Figure 11(a), the original
target register z for the selected best ΥV LIW=y+1 is used at y:=z; if z:=x+1 were
created at f2, y:=z would read the wrong value of z. Therefore, a new target
register, τ (equal to z’ in this case), must be introduced.

5.2.3 Scheduling Best Operations. In order to schedule an operation at the
group boundary xi, the sub-DAG rooted at n is traversed again. When an original
operation n is found during the traversal, and n is not a conditional branch, its
operation “dest(n) := rhs(n)” is replaced by “dest(n) := τ” using the chosen tar-
get register τ . If dest(n) and τ are the same (i.e., renaming is not required), this
operation is deleted. The algorithm backtracks from n, and the traversal continues.
Before backtracking from conditional branches, both paths are traversed to find
and schedule original operations if they are available.

Bookkeeping copies are made on-the-fly for edges that are not on the current
moving path, yet that are joining the current moving path from outside. Each
bookkeeping copy may be of a different form depending on the copy operations
that were passed on the way up. For the correct generation of bookkeeping copies,
the algorithm returns the current RHS (C RHS) when it backtracks, which has the
current form of the RHS of the moving operation. When backtracking from an
original operation n, the C RHS becomes rhs(n). When backtracking from a copy
operation x:=y, y is substituted for x in C RHS, if C RHS uses x as a source register.
After backtracking from both targets of a conditional branch, if the two targets
returned two different C RHS expressions, one among them is chosen arbitrarily
(at this conditional branch, the two expressions must be equal). If there is a joining
edge to n before backtracking from n, the algorithm generates a bookkeeping copy
“τ := Υ” at the join point (where Υ is C RHS), for semantic correctness of joining
paths. If multiple edges are joining n from outside, only one bookkeeping copy is
generated, and all edges are made to point it.

The algorithm will not visit the same node twice during code motion for the
following reasons: bookkeeping copies of the original operation are placed at the
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 875

Moving Σ= { x+1 } to boundary f1:

---Visit 7: u:=y+1, av(7)= { x+1,y+1 }, Σ= { x+1 }. Set Σ=(Σ ∩ av(7)). Σ is

not null so do not backtrack: an operation from Σ must be reachable from 7.

u:=y+1 does not set a source register of a RHS in Σ (otherwise that RHS would be

deleted). So Σ is unchanged.

---Visit 8: z:=x+1, Σ= { x+1 }. RHS of z:=x+1 is included in Σ (found

operation!). Replace 8 by z:=z’, where z’ is the previously chosen target

register. Now backtrack: 8 is not a bb header so do not recompute av(8), lv(8).

Set C RHS=x+1.

---Backtrack to 7: u:=y+1, C RHS=x+1. No substitutions occur to C RHS since u:=y+1

is not a copy operation. Node 7 has a second predecessor 6 not on the current

path, so create the bookkeeping copy z’:=x+1 (x+1= C RHS) at a new node 6’ on the

edge 6->7. 7 is a bb header through which we are moving code, so recompute av(7)

as { y+1,z’ }, and lv(7). Backtrack with C RHS = x+1.

---Backtrack to boundary f1: C RHS=x+1. Create a new operation z’:=x+1 (x+1=

returned C RHS) at boundary f1, at a new node 5’.

Moving Σ = { x+1 } to boundary f2:

---Visit 6: y:=z, av(6)= { z,z+1,x+1 }, Σ= { x+1 }. Set Σ=(Σ ∩ av(6)). Σ is

not null so do not backtrack: an operation from Σ must be reachable from 6.

y:=z does not set a source register of a RHS in Σ (otherwise that RHS would

be deleted). y:=z is a copy operation but it does not use the same source

register as the source register of a RHS in Σ (otherwise that RHS would be

"un-substituted"). So Σ is unchanged.

---Visit 6’: z’:=x+1, Σ= { x+1 }. RHS of 6’ is included in Σ (found operation!).

Replace 6’ by z’:=z’ (which is later deleted). Backtracking now: 6’ is not a

bb header, so av(6’), lv(6’) are not recomputed. Set C RHS=x+1.

---Backtrack to 6: y:=z, C RHS=x+1. y:=z is a copy operation, but it does not set

a source register in C RHS=x+1 (otherwise C RHS would be substituted). Backtrack

with C RHS unchanged.

---Backtrack to boundary f2: C RHS=x+1. In boundary f2, insert a new node 4’ with

operation z’=x+1 (where x+1=C RHS).

Fig. 12. Steps of the move op code motion algorithm.

edges that join the current path being traversed, and when the algorithm arrives
at the join point for a second time from a different path, it will first find the
original operation Υ in the bookkeeping copy “τ := Υ” that it left previously and
will backtrack immediately.14 This generation of bookkeeping code in our depth-
first traversal gives the maximum opportunity for nonspeculative code motion by
unifying multiple copies of the same operation below join points.

In Figure 11(a), the traversal from f1 finds the original operation z:=x+1 and
replaces its operation by z:=z’ as shown in Figure 11(b). The C RHS, x+1, is
moved up, and a bookkeeping copy z’:=x+1 is generated at the edge joining the
current moving path. Finally, z’:=x+1 is created at f1. In Figure 11(b), the
traversal from f2 also finds x+ 1 at the bookkeeping copy operation z’:=x+1 and
replaces it by z’:=z’, which is immediately deleted in Figure 11(c). z’:=x+1 is

14Even if the RHS Υ of this bookkeeping copy does not match any of the RHS that the algorithm
is currently looking for, because of various unsubstitutions that occurred on the way, the algorithm
will backtrack immediately anyway. An example of this subtle case is given in the Appendix.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

876 · Soo-Mook Moon and Kemal Ebcioğlu

if cc0

y:=w*2

w:=v+v

z:=y+1

y:=w*4

x:=w+1 z:=w+2

if cc0
w:=v+v

y:=w*2

z:=y+1

y:=w*4

x:=w+1 z:=w+2

y:=w*2

z:=y+1

dummy node dummy node

(a) (b)

if cc0

Fig. 13. Code motion of a conditional branch; one copy of z:=y+1 in (b) can be deleted because it
becomes dead after duplication; code expansion in branch code motion can be controlled in this
way.

also created at f2. Figure 12 shows, in more detail, the step-by-step operation of
the code motion algorithm move op of the Appendix, on Figure 11.

A conditional branch if ccj is moved up to a group boundary by making two
copies of the operation stream between the group boundary and the original location
of if ccj . One copy ends at the T target of if ccj , and the other ends at the F target
of if ccj . Therefore, the algorithm (see procedure move cj() in the Appendix)
returns ins T and ins F as well as C RHS, which are the starting operations of these
two operation streams. When if ccj is included in the parallel group or is inserted
as a bookkeeping copy, the T and F targets of it are connected to ins T and ins F,
respectively. Figure 13 shows an example of branch code motion. A bookkeeping
copy of if cc0 has been made on the edge joining the moving path. Conditional
branches are rarely on the critical path of execution, since the compiler performs
speculative code motion and since the machine is capable of executing multiple
branches per cycle. Nevertheless, moving them up is useful, because the sooner
the branch is performed, the sooner the machine can stop executing speculative
operations from untaken paths, thus conserving resources.

5.2.4 Recomputation of av and lv Sets. On the paths that were traversed by the
move, the av and lv sets at bb headers may be invalidated, since some operation on
downward paths starting from them either disappeared or was replaced. However,
the av and lv sets that are not located on the current moving path are unaffected.
After the bookkeeping copy is generated in Figure 11(b), the av and lv sets at
y:=z are still correct even though x+1 on its downward path has moved up. First,
{z+1,x+1,z} is still the correct av because x+1 still comes from the bookkeeping
copy, and the RHS of the new copy operation, z’, cannot be included due to the true
dependence on the bookkeeping copy. Second, no new live variables are introduced
at y:=z. Due to this property, we need to update the av and lv sets only on the
current moving path as we move up operations, and the update is based on the
incremental computation described previously. Note that during a code motion
some bb headers might disappear, and new bb headers might be created; yet they
are identified on-the-fly, and bb headers always retain correct av and lv sets.

After the best RHS is scheduled, the next av(group) is computed incrementally
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 877

PROCEDURE fill_ins(oper)
/* gather a parallel group before "oper" on the rooted DAG, G_"oper" */

WHILE (true) DO

FOR each group boundary x on p s , where p is inside and s is outside of the group

av(x) = compute_av(s, path=NULL, ws=0); /* ws is lookahead window length so far */

av’(x) = moveup_set_path(av(x), path(root, p));

av_VLIW = union(av_VLIW, av’(x));

END FOR

(RHS_VLIW, dest_reg) = find_best_RHS_and_dest_reg_that_fits(word, av_VLIW);

RHS_Seq = (Elements r in av(x) satisfying moveup_path(r, path(root,p))=RHS_VLIW);

END FOR
word = add_to_vliw_word(word, RHS_VLIW);

END WHILE

END PROCEDURE

word = make_empty_vliw_word();
root = create_dummy_root(oper);
av_VLIW = { }

IF (RHS_Seq == {if cc})
(C_RHS, Ins_T, Ins_F) = move_cj(s, RHS_Seq, path = NULL);
Schedule "if C_RHS goto Ins_T else goto Ins_F" at x

ELSE
C_RHS = move_op(s, RHS_Seq, dest_reg, path=NULL);
Schedule "dest_reg = C_RHS" at x

ENDIF

IF (RHS_VLIW, dest_reg) is undefined THEN { delete_dummy_root(root); break;}

FOR each group boundary x on p s whose av’(x) includes RHS_VLIW DO

/* If there are no more ready operations that meet resource requirements, return */

Fig. 14. Algorithm to fill a parallel group.

based on av sets saved at the neighbor bb headers of the parallel group; during
the code motion, they have either remained untouched if they were not on the
path of code motion; otherwise they must have already been updated. The routine
fill ins() in the Figure 14 describes the filling process, and the Appendix includes
pseudocode for compute av(), move op(), and move cj(). The correctness of the
algorithm has been proved in Moon [1993a].

5.3 Comparison with Other DAG-Based Approaches

Our measure of speculativeness is different from that given in Bernstein and Rodeh
[1991], which defines the degree of speculativeness of an operation as the number
of conditional branches it is control dependent on. In fact, an operation can be
control dependent on zero conditional branches yet still be speculative, as depicted
in Figure 15. The operation z:=x+y can be scheduled speculatively before if cc0
across the F path after generating a bookkeeping copy at the T path. Selective
scheduling correctly computes the spec of x+y to be one above the branch as shown
in the av(if cc0) in Figure 15, even though this operation is control dependent on
no branches. A control dependence graph alone is not precise enough for estimating
speculativeness.

Another DAG-Based approach in Nakatani and Ebcioğlu [1993] uses greedy sched-
uling which, unlike the conventional two-step (computation and code motion) plat-
form, performs local code motion repetitively starting from the bottom of a DAG
toward the root; it moves all movable operations from the bottom tree instruction
to the one before that, then all movable operations from that instruction to the

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

878 · Soo-Mook Moon and Kemal Ebcioğlu

if cc0

x:=x+1

z:=x+y

av={if cc0(0), x+1(1), x+y(1)}

av={x+1(0)}

av={x+y(0)}

T F

Fig. 15. A speculative RHS that is not control dependent on any branch.

one before that, and so on in reverse topological order of the DAG. When the al-
gorithm arrives at a conditional branch, maximal upward code motion has already
been performed at both targets of the branch, and thus the same computations
on both targets can be easily unified and scheduled before the branch as a single
computation. Consequently, all nonspeculative code motions in the DAG can be
performed before the root tree instruction is scheduled.

Unfortunately, greedy scheduling is not appropriate for finite-resource scheduling,
because it generates a large number of speculative operations and speculative book-
keeping codes that cannot be accommodated with finite resources; the speculative
operations either slow down program execution if their original paths are not taken,
or their code motions might be undone in later stages [Nakatani and Ebcioğlu 1993].
Selective scheduling is an approach to enhance greedy scheduling on the efficient
two-step platform. Instead of greedy and local code motions, selective scheduling
computes available operations first. Unlike other two-step scheduling techniques,
our computation is greedy, in that all candidate operations across all paths are
computed and that the computation is repeated after each code motion for at-
taining a precise knowledge of available operations. In addition, the usefulness of
each operation is estimated during computation to find the most useful one. The
code motion for the selected operation is performed globally without resorting to
any intermediate steps as in Nakatani and Ebcioğlu [1993] and Aiken and Nicolau
[1988].

6. SOFTWARE PIPELINING AND MEMORY DISAMBIGUATION

The previous section described selective scheduling that schedules a parallel group
at the root of a DAG. This section shows how we software pipeline a loop by
repetitively applying selective scheduling. Our compiler uses a modified version
of the enhanced pipeline scheduling algorithm15 [Ebcioğlu and Nakatani 1989]. We
first describe the software pipelining process for innermost loops and then show
how nested loops for general procedures are software pipelined. Our techniques
for handling memory disambiguation and multilatency operations are also briefly
described. Finally, the generation of tree instructions from the parallelized program
is discussed.

15A special case of this algorithm was independently developed later for pipelining of innermost
loops with no branches [Jain 1991].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 879

(2)

(3)

r0:=f(r0)

cc0:=r0<C

if cc0

Stage 1 Stage 2

entry

Stage 3

entry

(2)

(3)

(4)

cc0:=r0<C

if cc0

r0:=f(r0)(1)

(2)

(3)

r0:=f(r0)

cc0:=r0<C

if cc0

entry

(a) (b) (c)

entry

(3)

(4)
r1:=f(r0)

r0:=r1

cc0:=r0<C

if cc0

r1:=f(r0)S.

(d)

(3)

(4)

(5)

(5)

cc0:=r0<C

if cc0

r1:=f(r0)

r0:=r1

r1:=f(r0)

entry

(e)

(5)

(5)

cc0:=r0<C

if cc0

r1:=f(r0)

r1:=f(r0)

r0:=r1

entry

r0:=r1

(f)

if cc0

r1:=f(r0)

r0:=r1

cc0:=r0<C

r1:=f(r0)S.

r0:=r1

cc0:=r0<C

r1:=f(r0)S.

entry

(g)

[n]

[n]

[n]

[n]

[n]

[n]

[1]

[1]

[1]

[1]

[n]

[n+1]

[n+1]

[n+1]

[2]

[n+2]

pipeline kernel

r0 is live

Fig. 16. Software pipelining process for an example loop; brackets after each operation in (b), (d),
and (g) show the iteration number, and speculative operation is marked with “S.”.

6.1 Software Pipelining of the Innermost Loop

Our software pipelining process is illustrated using an example in Figure 16 where
the loop described in Figure 6 is software pipelined. To keep our description man-
ageable, we used a loop with a single execution path as an example, yet our tech-
nique is applicable to general loops with multiple execution paths.

Basically, the algorithm repetitively applies two actions: first, cut some edges of
the given cyclic graph of a loop to yield an acyclic graph; then, schedule the acyclic
graph and generate a parallel group on each edge that was cut. This process is
repeated in such a way that parallel groups generated later become increasingly
compact, since they can absorb parallel groups generated earlier, achieving tighter
schedules for the pipeline kernel. An attractive feature of this algorithm is that the
problem of software pipelining is reduced to the simpler problem of global schedul-
ing, so that the repetitive scheduling of DAGs automatically generates the schedules
of the pipelined loop kernel, the startup code, and the drain code. More impor-
tantly, loops with conditional branches can be pipelined with a variable initiation
interval so that a variable cycles/iteration rate can be achieved depending on which
path through the loop is followed at execution time (see the example in Figure 2).

As shown in Figure 16, three stages are required to pipeline the given innermost
loop; at each stage, the cyclic graph is cut at certain edges to define a DAG. Those
edges that are cut at each stage are called backward edges whereas other edges are
called forward edges. Backward edges are depicted as dotted lines in Figure 16.
Our algorithm creates an empty parallel group just before the target node of each
backward edge (which we call a fence group) and schedules the parallel group using
selective scheduling.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

880 · Soo-Mook Moon and Kemal Ebcioğlu

The distinction between backward and forward edges in each stage is made by
manipulating the sequence number (seqno) of each operation, which is initially set
to the depth-first ordering number (topologically sorted) of the operation assigned
from the loop entry [Aho et al. 1986, p. 660]. The edge from a higher to a lower
seqno in each stage becomes a backward edge; in Figure 16(a), the edge from the
seqno (3) to (1) becomes the first backward edge on which an empty fence group
is created. The fence group is scheduled by code motion across paths of forward
edges whose seqno are nondecreasing. After the parallel group is scheduled, all
scheduled operations in the group are assigned a new seqno which is unique and
greater than the maximum seqno used so far. Consequently, previous backward
edges become forward edges and are available for code motion, and new backward
edges are defined starting a new stage.

In Figure 16(b), the fence group is filled with r0:=f(r0) and is assigned a new
seqno, 4 (see Figure 16(c)); the successor edge of r0:=f(r0) becomes a new back-
ward edge on which a new fence group is created. During the scheduling of the
fence group in Figure 16(d), the RHS f(r0) moves into the group speculatively
ahead of the loop exit branch, after renaming its target register with r1 since r0
is live at the exit. This operation r1:=f(r0) is scheduled as a next ((n+1)st)
iteration operation and is scheduled concurrently with the current (nth) iteration
operation cc0:=r0<C, thus allowing software pipelining. During the code motion,
a bookkeeping copy is “popped out” at the loop entry which belongs to the first
iteration and comprises the pipeline startup code. In the third stage, r1:=f(r0)
is again scheduled into the fence group as an (n+2)nd iteration operation, after
popping out its copy of the second iteration at the loop entry (see Figure 16(g)).
Consequently, an operation scheduled in the previous stage as an mth iteration
operation is available for code motion in the current stage as an (m+1)st iteration
operation. Finally, a pipelined loop kernel performing at the rate of one cycle per
iteration is obtained in Figure 16(g), where the executions of nth, (n+1)st, and
(n+2)nd iterations are overlapped (see the corresponding tree instruction in Figure
6).

In Figure 16, parts (b), (d), and (g), each operation is assigned its iteration
number (within brackets) and is marked with “s.” if it is speculative. Since
the pipelined code is obtained by legal code motions, it should produce the same
execution results as the original code. If the original loop in Figure 16(b) iterates
C times (i.e., 1 ≤ n ≤ C), the operation if cc0 in the pipelined kernel in Figure
16(g) also executes exactly C times because it is nonspeculative. Consequently, all
operations in the kernel excluding if cc0 execute C-1 times. Now, if we sum up
how many times each RHS in the original code is executed in the pipelined code, we
can find that all RHS are executed C times excepting f(r0), which is executed C+1
times (i.e., two before entering the kernel and C-1 times in the kernel), yet the last
execution result is discarded (actually, no further operation uses the result, since
r1 is not live at the loop exit). This is due to the speculative execution involved in
r1:=f(r0) that was scheduled ahead of the loop exit branch, thus being useful only
when the following loop exit branch does not exit and the copy r0:=r1 is executed.
The speculative code motion ahead of loop exit branches is the fundamental means
of achieving software pipelining in our compiler.

If the loop body includes multiple conditional branches, there may exist more
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 881

than one fence group at a stage. Each fence group is scheduled separately by selec-
tive scheduling and is assigned a unique seqno. All selective scheduling processes in
the same stage can share the av sets at the bb headers because all of them are per-
formed on the same DAG. Therefore, valid av sets must be saved at the bb headers
after the scheduling of each parallel group, which is another reason for our recom-
putation of av sets. However, the av sets are computed from scratch when a new
stage starts because a new DAG is defined.16

The pipeline startup code is generated automatically as bookkeeping code when
operations are scheduled before the join point at the loop entry. Similarly, the
pipeline drain code is generated automatically if the loop exit branch is moved up
and if operations on its way are duplicated; those duplicates located in the exit
comprise the drain code. The particular example in Figure 16 does not generate
any drain code.

The procedure pipeline() in Figure 17 describes the driver routine for software
pipelining, which repetitively calls selective scheduling to schedule fence groups
in each stage. The pipelining process repeats until all operations in the current
iteration are scheduled. In order to make pipeline() finish, selective scheduling
prefers operations that belong to earlier iterations. The current implementation
relies on three heuristic attributes of a RHS to prioritize av(group): iteration
number, degree of speculativeness (spec), and original depth-first ordering number
in the original loop, with their importances in this order. To encourage software
pipelining, the spec attribute of a RHS is not incremented when it is computed
ahead of a loop exit branch, yet in the final code speculative operations are marked
precisely for correct exception handling.

The tree VLIW architecture can mimic the exact exception behavior of the origi-
nal user program, since it has hardware support for speculation; see Ebcioğlu [1988],
Silberman and Ebcioğlu [1993], and Ebcioğlu and Groves [1990]. The discussion of
the machine hardware and the compilation support for precise speculative exception
handling is beyond the scope of this article.

6.2 Software Pipelining of Nested Loops

Our software-pipelining method described above extends directly to nested loops.
The nested loop hierarchy of a procedure is first determined using an interval analy-
sis technique [Schwartz and Sharir 1979]. After the inner loop is software pipelined,
the operations that were “popped-out” from the strongly connected part of the in-
ner loop (i.e., the startup and drain code of the software-pipelined loop) are merged
with the outer loop, and the outer loop is software pipelined. The strongly con-
nected part of the inner loop is treated specially, as if it were a superinstruction
that reads and writes multiple registers and memory locations and that branches
to multiple targets. The av and lv sets are computed in a similar way as in the
innermost loops, and operations under an inner loop can be scheduled above the
inner loop if dependences permit. In this manner, all loops in the procedure are
software pipelined, starting from innermost loops and working toward outer loops
in the nested loop hierarchy in reverse topological order of the loop hierarchy tree.

16In order to invalidate av sets saved in the previous stage, the pseudocode in the Appendix uses
global level variable that is incremented after each stage (see also Figure 17).

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

882 · Soo-Mook Moon and Kemal Ebcioğlu

END WHILE

END PROCEDURE

END FOR

PROCEDURE pipeline(loop_entry_oper)

FOR each operation n in the loop DO

seqno(n) = depth_first_ordering_number(n);

orig_max_seqno = max({seqno(n)| n is an operation in the loop});

fence = {loop_entry_oper}; global_level = 0;

WHILE (fence is not empty) DO

let max_f and min_f be the maximum and minimum seqno used in the current fence

FOR each operation n in fence (in descending seqno) DO

fill_ins(n);
/* Operations are moved up into R across edges with non−decreasing seqnos */
/* Create an empty group R before n with seqno(R)= seqno(n) − max_f −1 */

/* All operations in the group R now have the same sequence number, seqno(R) */

new_fence = { s | a predecessor p of s such that seqno(p) is the same as the seqno(R) of

 one of filled fence groups R AND 0 < seqno(s) <= orig_max_seqno}

FOR each filled fence group R DO

increase the seqno of all operations in R by highest_seqno_in_use + 1 + (max_f − min_f + 1)

END FOR

fence = new_fence; /* Start a new stage */

global_level++; /* Invalidate av sets saved in the previous stages (see Appendix B) */

Fig. 17. Algorithm for software pipelining of the innermost loop.

In the outermost interval of the entire procedure, only DAG compaction occurs,
unless the entire procedure is itself a loop.

6.3 Memory Disambiguation

We briefly describe how dependences due to memory references are determined
and resolved in the context of software pipelining. A memory load/store operation
includes an address derivation (aderiv) attribute describing the memory location
accessed, which is a symbolic linear expression possibly including the induction
variables of the enclosing nested loops, other variables, constant base addresses
of external data structures, and integer constants. During the computation of
moveup rhs(Υ,Θ), store-after-load, load-after-store, and store-after-store depen-
dences are checked if Υ and Θ are memory operations. To decide if Υ and Θ can
refer to overlapping locations, our memory disambiguation technique symbolically
subtracts their aderiv expressions and tests whether the subtraction result can be
zero within the given data sizes. If it is guaranteed not to be zero, two memory
accesses are independent, and moveup rhs(Υ,Θ) returns Υ; otherwise it returns
NULL. Whenever a memory operation in a filled fence group is made to belong to the
next iteration, its aderiv equation is appropriately modified to perform the correct
memory disambiguation between iterations. Our technique contains improvements
over the one used in the Bulldog compiler [Ellis 1985], in the sense that we redis-
cover the induction variables from the assembly code where the original induction
variables have been eliminated and that we update aderivs to deal with the code
motions of software pipelining. More details about our memory disambiguation
algorithms can be found in Moon and Ebcioğlu [1993].
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 883

6.4 Multilatency Operations

Pipelined operations such as memory loads or divide operations are scheduled by
the compiler such that their target registers are not set or used for at least their
latencies, n (> 1). This can be accomplished by adding n-1 delay operations,
x:=delay(x), after each pipelined operation x:=oper in the sequential program,
and the code scheduling is performed as usual. Delay pseudo-operations have the
same semantics as copy operations, yet do not take resources and are not subjected
to any optimizations of copies such as forward substitution or copy propagation.
Renamed delay operations during software pipelining are removed through coalesc-
ing after unrolling the loop kernel [Moon et al. 1997]. The final VLIW code does
not include any delay operations, and if a VLIW instruction contains only delay
operations it is converted into a no-op VLIW. If the machine detects stall conditions
automatically, the no-op VLIWs can be removed.

The above technique for dealing with multilatency operations with delay is suf-
ficient for pipelined functional units that can accept a new operation every cycle,
yet where each operation, once issued, takes n cycles to complete without further
contention for resources. This is the case for most operations on modern micro-
processors such as RS/6000 [IBM 1990]. That is, when a load or a floating-point
operation in RS/6000 whose latency is l is issued in cycle n, it will complete without
encountering any resource constraints, and its result register is usable by other op-
erations in cycle n+l and later. This is guaranteed since each functional unit has its
own result bus and register write port. The Intel i860 also has pipeline constraints
similar to the RS/6000 for load-use and compare-branch delays [Atkins 1991], and
the same scheduling method could be applied.

Some older VLIW architectures may involve further contention for resources be-
yond the issue cycle (e.g., there may be a result bus shared by both an adder and
a multiplier). This scheduling problem has been solved using reservation tables in
the context of scheduling loops with a single basic block [Dehnert and Towle 1993;
Lam 1988]. Extending the concept of reservation tables to general loops with con-
ditional branches and control join points is also possible in the context of our
scheduling algorithms, yet it is the beyond the scope of this article.

6.5 Generation of VLIW Tree Instructions

The VLIW program is obtained from the parallelized program through local trans-
formation. Since a parallel group is a maximal connected subgraph having the same
seqno, a VLIW tree instruction can be generated by collecting operations starting
from each entrance of a parallel group. If a path in a parallel group includes a copy
operation and an operation that is data dependent on the copy, the operation is
substituted to obtain ΥV LIW from each ΥSeq(x). Similarly, if a path in a group
includes an operation “τ := Υ”, and a copy “dest(n) := τ ,” the copy is merged
into “dest(n) := Υ” to obtain the original operation, when the C RHS = Υ was
moved out of a scheduled fence group and generated a bookkeeping copy at the
group entrance in Section 5.2.3 (we assign the bookkeeping copy the same seqno
of the group). We check data dependences and resource constraints conservatively
when collecting operations in a group and putting them in a tree instruction.

A peephole compaction technique is performed to merge adjacent VLIW instruc-
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

884 · Soo-Mook Moon and Kemal Ebcioğlu

tions, if the resource constraints are not exceeded and if there are no data depen-
dences between their operations. This is implemented in the code transformation
as follows: operations are collected into an empty VLIW tree instruction starting
from an entrance of a parallel group; when a current group boundary x is met,17

additional operations after x are conditionally included such that if the whole next
group starting from x can be accommodated in the current VLIW instruction, they
are included; otherwise none of them are included, and a new VLIW instruction
starts from x. This conditional inclusion guarantees not to increase the number
of VLIW instructions in the final code. Also, the merging process allows putting
operations both inside and outside of a loop into the same VLIW, thus exposing
further parallelism not exposed during the parallelization phase where the strongly
connected part of an inner loop is not touched once it is software pipelined.

7. EXPERIMENTAL RESULTS

The previous sections provided the details of our compilation techniques. In this
section, we describe our experimental results performed on selected integer bench-
marks using the selective scheduling compiler. The objective of this experiment
is to examine the performance and the efficiency of the compiler for its practical
applicability to ILP scheduling; it is not intended to evaluate the effectiveness of
our scheduling algorithms compared to others. Since most ILP compilation tech-
niques are quite sophisticated, it is generally difficult to implement other schedul-
ing techniques completely and to make a fair and detailed comparison in the same
framework. The experimental results in this section give an abstract measure of
the value of our compilation techniques.

7.1 VLIW Environment

The experiments have been performed as follows. The input C code is first compiled
using the PL.8 optimizing compiler [Warren et al. 1986], which performs the tra-
ditional code optimizations including register allocation and generates our version
of RISC assembly code (basically similar to the 801 instruction set, but with only
simple addressing modes such as absolute and register indirect); each operation
is assumed to take a single cycle.18 This sequential code is then parallelized into
VLIW code. Finally, the VLIW code is executed on a VLIW simulator, producing
outputs and execution statistics.

The benchmarks used are the four SPEC 89 integer benchmarks and five AIX
utilities (listed in Table I). For the SPEC 89 integer benchmarks, the official input
files were used. For AIX utilities, we used our own test files. In all cases, programs
were simulated to completion.

Our model of the tree VLIW machine is based on the parametric resource con-
straints of n-ALUs and n-way branching. Each ALU can perform only one operation

17A boundary is detected when the seqno of x differs from the seqno of the entrance or when x
has multiple predecessors.
18Most operations in integer code take a single cycle. Since only a register-indirect mode is
used, no address addition is involved in memory load/store; for example, our memory load is
performed through [r1:=r2+4; r3:=load(r1)], which is equivalent to r3:=load(4, r2) with a
two-cycle latency as in IBM RS/6000, in terms of the length of critical paths.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 885

Table I. Benchmarks Used in the Experiment

Benchmarks Number of Instructions Input Data Files
Static Dynamic

eqntott 7,665 1,378,107,572 int pri 3.eqn

SPEC espresso 61,204 2,972,579,201 bca.in,ti.in,tial.in,cps.in

Integer li 25,314 8,634,011,086 9 queens

gcc 192,116 1,473,787,410 19 C files

sort 2,818 3,005,512 phone directory

AIX yacc 9,350 893,737 grammar of calculator

Utility sed 5,197 1,185,023 phone directory

compress 2,481 173,049 a small test file

fgrep 1,233 1,045,600 phone directory

Table II. The Resource Constraints of the Four VLIW Machines

Machine ALU ops mem ops ALU ops + mem ops n-way branching

16-ALU 16 8 16 16

8-ALU 8 4 8 8

4-ALU 4 2 4 4

2-ALU 2 1 2 2

in each cycle. All ALUs can perform ALU operations, and half of them can per-
form memory operations. (This model corresponds to the integer unit of RS/6000
[IBM 1990], which can perform either an integer operation or a memory operation
in a cycle.) Multiway branching is assumed to be handled by a dedicated branch
unit without using ALUs. Therefore, a VLIW tree instruction on an n-ALU and
n-way branching machine should satisfy the following resource constraints.

num ALU ops ≤ n num memory ops ≤ n
2 num test nodes in the tree < n

num ALU ops + num memory ops ≤ n

We have evaluated four machines, with n = 2, 4, and 8, 16; all these machines
have 128 general-purpose registers19 and 16 condition registers, whereas the object
code generated by PL.8 is based on 32 general-purpose registers and one condition
register. The four machines are summarized in Table II, and thereafter are re-
ferred to as 16-ALU machine, 8-ALU machine, 4-ALU machine, and 2-ALU machine,
respectively.

During our experiments, we have simulated several billion VLIW instructions.
We have obtained correct results on all benchmarks in all machines. A compiled
simulation technique is used to reduce the simulation time on these benchmarks.
Each tree instruction generated by the parallelizer is translated into dedicated C
code. The code first updates statistics and histogram tables according to the prop-
erties of the tree instruction. Then, it executes the specific arithmetic operations,
load/stores and tests required by the tree instruction, and updates the machine
registers and memory. Finally, it branches to the label of another similar piece of
dedicated code for the next tree instruction. I/O is performed within all of these
benchmarks in a memory-mapped fashion, by detecting loads and stores to certain

19The final VLIW code rarely includes a register that is in the range of between r64 and r127.
This is due to the routine for the selection of a target register in fill ins(), which searches a
suitable one starting from r0 for conserving reuse.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

886 · Soo-Mook Moon and Kemal Ebcioğlu

2

3

4

5

6

7

10

2

3

4

5

6

7

10

eqntott espresso li gcc sort yacc sed compress fgrep

Speedup

Geometric
Mean

Harmonic
Mean

16 ALU 16−way
8 ALU 8−way
4 ALU 4−way
2 ALU 2−way

VLIW Resource Constraints

5.0

4.5

3.9
3.6

2.9 2.8

1.9 1.9

Fig. 18. VLIW performance of four machines over the sequential RISC on the benchmarks.

fixed addresses in the simulator and by interpreting the I/O request in the host file
system.

7.2 Experimental Results

We parallelized each benchmark, based on the different resource constraints listed
in Table II, and compared the VLIW code with the sequential code generated by
the PL.8 compiler to compute the VLIW speedup. Both codes have been simulated
on the same VLIW simulator. For sequential simulation, each instruction in the
original sequential code became a tree instruction with either a single data operation
or a single branch. We assumed perfect caches in both simulations.20 The utilization
of ALUs and the parallelization overhead were also examined.

7.2.1 Performance. Figure 18 shows the speedup of VLIW code over sequential
code. The speedup of each benchmark is computed by dividing the sequential
execution count (the number of single-operation tree instructions in the sequential
execution trace) by the VLIW execution count (the number of tree instructions in
the VLIW execution trace) of the benchmark. The speedup in this experiment is
computed by comparing only the execution counts in order to measure the static
performance advantage of code scheduling, independent of dynamic factors such as
cache misses or memory traffic.

Figure 18 includes both the geometric mean and the harmonic mean of speedups.
The 2-ALU machine, which can execute a maximum of two data operations and one
conditional branch in a single cycle, obtains a geometric mean of 1.9x speedup. The
speedup increases almost linearly when the number of ALUs and the number of test
nodes are doubled in each step, thus showing a logarithmic speedup increase. The

20For some cache studies with VLIW tree instructions, the reader is referred to Moon [1997].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 887

Specified Ops :

Performed Ops :

Useful Ops :

op1 op2 op3 op4

op1 op2 op4

op1 op4

if cc0 if cc1 if cc2

if cc0 if cc1

if cc0 if cc1

op1

op2 op4op3 op4

op2

L0

if cc0

if cc1 if cc2

Fig. 19. Classification of operations in a dynamic tree instruction.

16-ALU machine obtains a geometric mean of 5x speedup.21 Our results show that
the selective scheduling compiler is useful for the code optimization of machines
with many resources as well as machines with few resources22

7.2.2 ALU Utilization. We also measured how the given ALUs are utilized in
each cycle to achieve the speedup. The operations in a tree instruction are classi-
fied into three categories. The entire set of operations in a tree instruction is called
specified operations, whereas those on the taken path of the tree are called per-
formed operations. Among the performed operations in each cycle, the execution
of some operations does not contribute to the final performance because they are
either speculative operations from untaken paths or copy operations that have not
been eliminated after partial renaming. Those operations that are used to actually
increase the speedup are referred to as useful operations.

Figure 19 describes the specified and performed operations when the path of
cc0 ·cc1 is taken in the tree instruction L0. Let us assume that op2 is a speculative
operation from some untaken path. Then, the useful operations do not include op2.
It should be noted that all performed conditional branches are useful, because no
speculative conditional branches are generated by the selective scheduling compiler.

Figure 20 shows the ALU utilization of the experiments in Figure 18. There
are four bars in each benchmark that correspond to the four machines. Each bar
includes the average number of specified, performed, and useful ALU or memory
operations executed per cycle. The average number of specified and performed op-
erations has been obtained by averaging the number of operations present in each
cycle in the dynamic execution trace. The average number of useful operations
is computed approximately from the speedup and from the number of performed
operations. That is, the difference between the speedup and the average number
of total performed operations (ALU+memory+branch) in each cycle is the average
number of useless operations executed in each cycle. Since all performed branch
operations should contribute to the final performance, all the useless operations
come from the performed ALU or memory operations. If this difference is sub-

21eqntott shows a higher speedup due to a highly compacted tree instruction in the subroutine
“cmppt”; the critical inner loop executes at a rate of one cycle/iteration. The higher speedup in
compress is due to a loop in the inlined subroutine “cl hash” which is frequently executed. The
loop is software pipelined into a highly compacted tree instruction. fgrep has the lowest speedup.
One of the reasons is that its frequent execution path is an outer loop where the enclosed inner

loop acts as a coarse-grain serializing operation, and its pipeline startup and drain codes slow
down the execution of the outer loop.
22A recent implementation of the compiler for the SPARC instruction set has achieved similar
speedup curves [Park et al. 1997].

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

888 · Soo-Mook Moon and Kemal Ebcioğlu

Geometric Meaneqntott espresso li gcc sort yacc sed compress fgrep

2

3

4

5

6

7

10

1

9

8

2

3

4

5

6

7

10

1

9

8

11 11Specified ops

Performed ops

Useful ops

ALU Utilization

+

+ +

Average # of ops / VLIW

9.2

7.4

3.9

6.1

5.2

3.4

3.0

2.3

1.8
1.7
1.4

3.1

Fig. 20. ALU utilization of the benchmarks in the four machines.

tracted from the average number of performed operations on ALUs, we can obtain
the average number of useful operations in each cycle.

In Figure 20, the 16-ALU machine specifies a geometric mean of 9.2 operations
in each cycle, yet only 7.4 operations among them are actually performed. Among
the 7.4 operations, only 3.9 operations actually increase the speedup. This can be
rephrased as follows:

—9.2 ALUs out of 16 start execution at the beginning of the cycle;
—7.4 ALUs out of 9.2 commit their execution results; and

—3.9 ALUs out of 7.4 are actually used to increase speedup.

The machines with fewer ALUs obtain better utilization and waste fewer ALUs.
The reason we achieve better performance when there are more ALUs is that the
number of useful ALUs still increases, even though the number of wasted ALUs also
increases.23 The first waste factor among specified and performed ALUs comes from

23The higher speedups in eqntott and compress are associated with good utilization of ALUs. In

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 889

the artifact of conditional execution, which helps to reduce the cycle time. The sec-
ond waste factor between performed and useful ALUs mainly comes from schedul-
ing speculative operations on untaken paths. It should be noted that these results
were obtained without using any branch probabilities during selective scheduling.
If branch probabilities were used to distinguish the priority of speculative code
motion, this waste factor would be reduced, and the speedup would increase.

7.2.3 Code Expansion. The average code expansion ratios of VLIW code over
the original sequential code in the four machines are as follows: 1.0 (2-ALU), 1.3
(4-ALU), 1.8 (8-ALU), 2.1 (16-ALU). The code expansion ratio is computed by com-
paring the number of operations in the original unparallelized code and the number
of operations in the final VLIW trees. Multiple occurrences of the same opera-
tion in a given VLIW tree are counted as a single operation, and no-ops are not
counted. (This is a reasonable estimate for a compacted representation of VLIW
code in memory. Additional no-ops would have to be recreated when fetching in-
structions back into the instruction cache to fill the unused slots in each VLIW
word [Colwell et al. 1988].)

The average code expansion ratio decreases in machines with fewer ALUs be-
cause the number of code motion decreases, thus requiring fewer bookkeeping codes.
There is some code reduction when the sequential code is converted into the se-
quential program, since the unconditional branch instructions disappear in the lat-
ter representation. In addition, speculative code motion along with unification and
substitution may result in opportunities of common-subexpression elimination or
copy propagation that the conservative sequential optimizations missed. This re-
duces the code expansion somewhat in the benchmarks, and the 2-ALU machine
incurs almost no code expansion even though there still is code duplication during
code scheduling.

7.2.4 Parallelization Time. Table III shows the parallelization time (from the
sequential object code to the VLIW code) of the benchmarks in the four VLIW
machines. We compare the parallelization time with the original C compilation
time of the PL.8 compiler (from C source code to the object code) to determine the
parallelization overhead. The computer used in the compilation is the IBM 9021.

The parallelization time decreases when the amount of resources decreases due
to fewer number of code motions. All the machines have been parallelized with
the software lookahead window size equal to 16 on all execution paths. If we use a
smaller lookahead window size when the number of ALUs is small, the paralleliza-
tion time would be reduced without affecting the performance, since most of the
scheduled operations will come from the close neighborhood of a parallel group.

Our parallelization time is consistently smaller than the C compilation time of
the PL.8 compiler on all benchmarks, even for the most relaxed 16-ALU machine.
Based on this result, we claim that one can expect to obtain the speedup depicted
in Figure 18 by increasing the original compilation time at most twice (and in
probably less time with further tuning).

fgrep, the average number of specified and performed ALUs in each cycle is not significantly less
than that of other benchmarks, yet it has the smallest speedup since most of them are wasted.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

890 · Soo-Mook Moon and Kemal Ebcioğlu

Table III. Parallelization Time and PL.8 C Compilation Time of
Benchmarks on the IBM 9021 in the Four Machines

Benchmarks PL.8 Parallelization Time (seconds)
Time 16-ALU 8-ALU 4-ALU 2-ALU

eqntott 50.29 11.47 8.59 5.46 4.14
espresso 168.96 107.44 81.72 49.55 33.74
li 94.75 26.47 21.64 16.36 13.19
gcc 435.87 344.88 238.54 151.53 113.94
sort 7.59 5.84 4.14 2.75 1.81
yacc 21.18 17.26 13.15 7.93 5.56
sed 12.57 7.23 5.77 3.92 2.67
compress 6.21 3.02 2.33 1.71 1.35
fgrep 4.21 1.86 1.31 0.99 0.70

Total 801.63 525.47 377.19 240.20 177.10

8. SUMMARY

This article has introduced selective scheduling to exploit irregular ILP in nonnu-
merical code and has examined the performance and efficiency of statically sched-
uled machines using the selective scheduling compiler. Selective scheduling is based
on three concepts: (1) greedy computation based on renaming, substitution, and
all-path speculation, (2) selective global code motion based on estimated usefulness
rather than branch profiling, and (3) scheduling of conditional branches. Selective
scheduling combined with software pipelining can generate high-performance code
with a reasonable amount of scheduling overhead. Consequently, the approach of
compile-time scheduling is shown to improve previously known characteristics of
irregular ILP.

APPENDIX

A. A PARALLELIZATION EXAMPLE IN THE 16-ALU MACHINE

A.1 Input C Code

/* procedure to search through a linked list for a matching item x */

struct recrd *srch(x,l)

struct recrd *l;

{

register struct recrd *p;

for(p=l;p!=NULL && p->data!=x;p=p->link);

return p;

}

A.2 Sequential Code (with Comments)

;Most operations have the form (opcode src1 ... srcn dest)

;Offset of link field=0, offset of data field=4

;in struct recrd

(PROC srch) ;x is r2, l is r3

(EQ $r3 0 cc$4) ;cc4=(l==NULL)

(IF cc$4 (GOTO $$L9)) ;if (l==NULL) return l

(ADD $r3 4 $r0) ;r0= &(l->data)

(LOAD _M$MEMORY_data_1365 $r0 $r0) ;r0=(l->data)

(EQ $r0 $r2 cc$4) ;cc4=(l->data==x)

(IF cc$4 (GOTO $$L9)) ;if (l->data==x) return l

$$L7 (LOAD _M$MEMORY_link_1364 $r3 $r3) ;r3=(l->link)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 891

(EQ $r3 0 cc$4) ;cc4=((l->link)==NULL)

(IF cc$4 (GOTO $$L9)) ;if ((l->link)==NULL)

;return (l->link)

(ADD $r3 4 $r0) ;r0= &((l->link)->data)

(LOAD _M$MEMORY_data_1365 $r0 $r0) ;r0=((l->link)->data)

(EQ $r0 $r2 cc$4) ;cc4=((l->link)->data==x)

(IF (NOT cc$4) (GOTO $$L7)) ;if ((l->link)->data!=x)

;set l:=(l->link), loop back

;else return (l->link)

$$L9 (COPY $r3 $r2) ;r2=return value register

(GOTO $$ENDLABEL) ;means return to the caller

(PEND srch)

A.3 VLIW Code Generated by Our Compiler (with Comments)

(PROC srch) ;x is r2, l is r3

(srch

((EQ $r3 0 cc$4) ;cc4=(l==NULL)

(ADD $r3 4 $r0) S.;r0=&(l->data)

(LOAD _M$MEMORY_link_1364 $r3 $r1) S.;r1=(l->link)

(GOTO srch_$$4))) ;goto next VLIW

(srch_$$4

((IF cc$4 ;if (l==NULL)

((COPY $r3 $r2) ;return l

(GOTO $$ENDLABEL)) ;r2 = return value register

ELSE ;if (l!=NULL)

((LOAD _M$MEMORY_data_1365 $r0 $r0) ;r0=(l->data)

(EQ $r1 0 cc$0) S.;cc0=((l->link)==NULL)

(ADD $r1 4 $r4) S.;r4=&((l->link)->data)

(LOAD _M$MEMORY_link_1364 $r1 $r5) S.;r5=(l->link->link)

(GOTO srch_$$3))))) ;goto next VLIW

(srch_$$3

((EQ $r0 $r2 cc$4) ;cc4=((l->data)==x)

(LOAD _M$MEMORY_data_1365 $r4 $r0) S.;r0=((l->link)->data)

(EQ $r5 0 cc$1) S.;cc1=((l->link->link)==NULL)

(ADD $r5 4 $r4) S.;r4=&((l->link->link)->data)

(LOAD _M$MEMORY_link_1364 $r5 $r6) S.;r6=(l->link->link->link)

(GOTO srch_$$2))) ;goto next VLIW

(srch_$$2

((IF cc$4 ;if ((l->data)==x)

((COPY $r3 $r2) ;return l

(GOTO $$ENDLABEL)) ;r2 = return value register

ELSE ;if ((l->data)!=x)

((COPY $r1 $r3) ;r3=l->link

(IF cc$0 ;if ((l->link)==NULL)

((COPY $r1 $r2) ;return (l->link)

(GOTO $$ENDLABEL))

ELSE ;if ((l->link!=NULL)

((EQ $r0 $r2 cc$4) ;cc4=(((l->link)->data)==x)

(COPY $r5 $r1) S.;r1=(l->link->link)

(COPY cc$1 cc$0) S.;cc0=((l->link->link)==NULL)

(LOAD _M$MEMORY_data_1365 $r4 $r0)

S.;r0=((l->link->link)->data)

(COPY $r6 $r5) S.;r5=(l->link->link->link)

(EQ $r6 0 cc$1) S.;cc1=((l->link->link->link)==NULL)

(ADD $r6 4 $r4) S.;r4=&((l->link->link->link)->data)

(LOAD _M$MEMORY_link_1364 $r6 $r6)

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

892 · Soo-Mook Moon and Kemal Ebcioğlu

S.;r6=(l->link->link->link->link)

(GOTO srch_$$1))))))) ;goto next VLIW

;srch_$$1 is the steady state of the software pipelined loop,

;executes original loop at a rate of 1 cycle/iteration

(srch_$$1

((IF (NOT cc$4) ;if ((l->link)->data!=x)

((COPY $r1 $r3) ;r3=(l->link->link)

(IF cc$0 ;if (l->link->link==NULL)

((COPY $r1 $r2) ;return r2=(l->link->link)

(GOTO $$ENDLABEL))

ELSE ;if (l->link->link!=NULL)

((EQ $r0 $r2 cc$4) ;cc4=((l->link->link)->data)==x)

(COPY $r5 $r1) S.;r1=(l->link->link->link)

(COPY cc$1 cc$0) S.;cc0=((l->link->link->link)==NULL)

(LOAD _M$MEMORY_data_1365 $r4 $r0)

S.;r0=((l->link->link->link)->data)

(COPY $r6 $r5) S.;r5=(l->link->link->link->link)

(EQ $r6 0 cc$1) S.;cc1=((l->link->link->link->link)==NULL)

(ADD $r6 4 $r4) S.;r4=&((l->link->link->link->link)->data)

(LOAD _M$MEMORY_link_1364 $r6 $r6)

S.;r6=(l->link->link->link->link->link)

(GOTO srch_$$1)))) ;set l:=(l->link) and loop back

ELSE ;if (l->link)->data==x

((COPY $r3 $r2) ;return (l->link)

(GOTO $$ENDLABEL)))))

(PEND srch)

B. PARALLELIZATION SUBROUTINES

For an operation Θ in a sequential program,
oper(Θ): operation of Θ dest(Θ): target register of Θ when opcode(Θ) /∈ {if,store}
s(Θ, T): successor operation of Θ; TRUE successor when opcode(Θ)≡ if

s(Θ, F): the test-FALSE successor operation of Θ when opcode(Θ) ≡ if

av(Θ): the av set saved in Θ av level(Θ): an integer showing the validity of av(Θ)
/* av(Θ) is valid only when av level(Θ) ≡ global level. When a new stage of enhanced
pipeline scheduling starts, a new global level is defined by incrementing it (see Figure
17) to invalidate av(Θ) saved in the previous stages. */
lv(Θ): the lv set saved in Θ num preds gt 1(Θ): TRUE if Θ is a control join point
preds(Θ): the set of predecessor edges, {(θ, γ)|s(θ, γ) ≡ Θ}, where θ is an operation and
γ ∈ {T, F}

compute av(Θ,Ψ, ws)
Θ: the current operation Ψ: the current path, which is list of edges traversed so far
ws: the length of the path Ψ (software lookahead window size)
::: Incrementally compute the av(Θ) and leaves it at Θ if bb header(Θ) is true.
::: Return the av(Θ)
/* Return NULL if Θ is not on the legitimate downward path */
IF (is ineligible successor(Θ,Ψ)) return(NULL);

/* If a valid av(Θ) is already at Θ, just return av(Θ) */
IF (av level(instr)==global level) return(av(Θ));
/* If the window size exceeds at Θ during the first computation of av(group), leave a
window boundary mark at Θ, so further update data sets calls do not compute past Θ.*/
IF (ws ≥ MAX WS) { av(Θ) = NULL; av level(Θ) = global level; return(NULL);}
/* First, recursively compute av under Θ */

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 893

av1 = compute av(s(Θ, T), add path((Θ, T),Ψ), ws+ 1);
IF (opcode(Θ) ≡ if) av1 = [av1∪ compute av(s(Θ, F), add path((Θ, F),Ψ), ws+
1))] - All Conditional Branches;

/* Then, compute av1 above Θ */
av1 = moveup set rhs(av1,Θ) ∪ {rhs(Θ)};
/* If Θ is a bb header, leave a copy of av1 here; otherwise erase leftovers (av level ≡ 0
means it is not valid) */
IF (bb header(Θ)) { av(Θ) = av1; av level(Θ) = global level; }
ELSE {av(Θ) = NULL; av level(Θ) = 0;}
return (av1);
End compute av

compute live(Θ)
::: Compute the set of all live registers at the point before Θ and leave it at Θ
if bb header(Θ) is true
/* The ignore first flag is employed to compute lv correctly during a code motion. In
the following loop, (L: z:=z’; ...; if cc goto L ELSE goto exit), z:=x+1 is just re-
placed by z:=z’ in move op() and the new lv(z := z′) must be recomputed using lv(z:=x+1)
that was valid before the move op(). The ignore first flag is set to TRUE at move op()

before recomputation to ignore the lv when encountered first */
IF (lv(Θ) 6= NULL && !ignore first) return(lv(Θ));
ignore first = FALSE;

/* First, recursively compute lv under the Θ */
lv1 = compute live(s(Θ, T));
IF (opcode(Θ) ≡ if) lv1 = lv1 ∪ compute live(s(Θ, F));
/* Then, compute lv above the Θ */
IF (has dest(Θ)) lv1 = lv1− {dest(Θ)}; /* Subtract the target register of Θ */
lv1 = lv1 ∪ sources(Θ); /* Include the source registers of Θ */
IF (bb header(Θ)) lv(Θ) = lv1; /* If Θ is a bb header, leave a copy of lv1 here */
return(lv1);
End compute live

move op(Θ,Σ, τ,Ψ)
Θ: the current operation Σ: the set of original RHS that we are looking for
τ: the chosen target register Ψ: the current path (list of edges traversed so far)
::: Traverse the DAG starting from Θ and move up the RHS of original op-
erations of Σ if they exist. Generate a bookkeeping copy if Θ is a join point.
Return the C RHS
IF (Σ ≡ φ || is ineligible successor(Θ,Ψ)) return(NULL);

/* No original operations exist below Θ */
IF (av level(Θ) ≡ global level) {

/* If av(Θ) is valid, Σ is filtered by intersecting with av(Θ)*/
IF (Σ ∩ av(Θ) ≡ φ) return(NULL); /*No original ops below Θ*/
ELSE Σ = {choose one(Σ ∩ av(Θ))}; /* For correct traversal, choose one */

} /* if there is more than one RHS after the intersection */
IF (rhs(Θ) ∈ Σ) { /* Found an original operation at Θ; replace rhs(Θ) by τ */

C RHS = rhs(Θ); oper(Θ) = "dest(Θ) = τ";
IF (dest(Θ) ≡ τ) /* No renaming is required; remember to delete Θ later */
{mark for deletion(Θ)=TRUE; oper(Θ) = NULL;}

}

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

894 · Soo-Mook Moon and Kemal Ebcioğlu

ELSE { /* Need to search deeper recursively after unsubstituting the Σ if necessary */
IF (has dest(Θ) && τ ≡ dest(Θ)) Σ = φ;/* do not pass bookkeeping code24 */
ELSE Σ = un substitute(Σ,Θ);

/* unsubstitution removes those elements of Σ whose sources are set by Θ; and then,
if Θ is a copy x:=y and if there is a RHS r in Σ using y, it adds all variants of r to Σ
obtained by replacing one or more occurrences of y by x*/
C RHS = move op(s(Θ, T),Σ, τ, add path((Θ, T),Ψ));
IF (opcode(Θ) ≡ if) {

C RHS’ = move op(s(Θ, F),Σ, τ, add path((Θ, F),Ψ));
IF (C RHS ≡ NULL) C RHS = C RHS’; /* Merge C RHS and C RHS’ into one */

}
C RHS = substitute(C RHS,Θ);/* if Θ is a copy x:=y, substitute y for x in C RHS */

} /* END IF (rhs(Θ) ∈ Σ) */
IF (C RHS ≡ NULL) return(NULL);

/* generate a bookkeeping copy of C RHS with τ if Θ is a join point */
IF (num preds gt 1(Θ)) {

Θ’ = make new operation(); /* Create a new operation whose fields are NULL */
(Θprev, γprev)= last element(Ψ);

/* (Θprev, γprev) is the edge where we came from to Θ */
FOR each (θ, γ) ∈ preds(Θ) such that (θ, γ) 6= (Θprev, γprev)
s(θ, γ) = Θ’; /* Connect all predecessor edges except for (Θprev, γprev) to Θ’*/

End FOR

s(Θ’, T) = Θ; /* The successor edge of Θ’ is connected to Θ */
oper(Θ’) = "τ = C RHS"; /* The operation of the bookkeeping copy */
/* If Θ’ is a bb header, it is safe to transfer the flow sets of Θ to Θ’ */
IF (bb header(Θ’)) { av(Θ’) = av(Θ); lv(Θ’) = lv(Θ);}

} /* End IF (num preds gt 1(Θ)) */
IF (bb header(Θ)) update data sets(Θ); /* Need to update av and lv sets */
IF (mark for deletion(Θ) { /* We need to delete Θ */

IF (bb header(Θ) && !bb header(s(Θ, T)) {av(s(Θ, T))=av(Θ);lv(s(Θ, T))=lv(Θ)}
/* Transfer data flow sets before deletion; otherwise might delete the only sets left*/
delete operation(Θ);

} /* END IF (mark for deletion) */

24For example, consider the following code fragment and try to move the RHS x+1 to the point
just before if (cc0), in order to see why this check is needed:
[if (cc0) {y:=x+x;} else {y:=x; x:=load(u);} z=x+1; w:=y+1;]

Although x+1 is derived from both z:=x+1 and w:=y+1, one application of move op will move only
z:=x+1 due to this check, since the bookkeeping z’:=x+1 will block further traversal to w:=y+1:
[z’:=x+1; if (cc0) {y:=x+x;} else {y:=x; x:=load(u); z’:=x+1;} z:=z’; w:=y+1;]

A second application of move op can reach w:=y+1 and complete the move of the RHS x+1:
[z’:=x+1; w’:=x+1 /* equalt to z’*/; if (cc0) {y:=x+x; w’:=y+1;} else {y:=x /* dead

*/; x:=load(u); z’:=x+1;} z:=z’;w:=w’;]

If the first move op did not stop at the bookkeeping z’:=x+1 (which was generated by the first
move op itself), it would yield the wrong result:
[z’=x+1; if (cc0) {y:=x+x;z’=y+1;} else {y:=x; x:=load(u); z’:=x+1;} z:=z’; w:=z’] ,
(this is wrong because w, z can have different values at the exit in the original code, yet are equal
at the exit in the transformed code.) The reason is that, when a RHS to be moved is derived

from different operations, a single target register z’ cannot be used to represent the value of the
RHS (in the context of z:=z’; w:=z’) for both operations, since even though RHS of different
operations are equal and identical when moved to the parallel group, they might not be equal in
their original locations.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 895

return(C RHS);

End move op

is ineligible successor(Θ,Ψ)
::: Return TRUE if Θ is not a downward continuation of the given path Ψ in
the current stage
IF (Ψ ≡ NULL) return(FALSE); IF (Θ is outside of DAG) return(TRUE);

(Θprev, n) = last element(Ψ);

IF (seqno(Θ) < seqno(Θprev) || /* a backward edge */
seqno(Θ) ≡ seqno(Θprev) && in path(Θ,Ψ) || /* Θ is already visited */
seqno(Θ) > seqno(Θprev) && in current fence(Θ)) return (TRUE); ELSE return(FALSE);

End is ineligible successor

move cj(Θ,Σ,Ψ)
Θ: the current operation Σ: the set of original RHS that we are looking for
Ψ: the current path, which is the list of edges traversed so far
::: Traverse the DAG from Θ and move up the cond. branch in Σ. Create two
copies of the sequence of nonbranch operations seen until the branch is found,
one (ins T) which leads to the T target of the original branch, and another
(ins F) which leads to the F target of it. Return (C RHS, ins T, ins F)
IF (oper(Θ) ≡ "if cc") { /* Found the original operation */

/* Since reordering of branch is not allowed, "if cc" must be in Σ */
(Θprev, T) = last element(Ψ); /* (Θprev, T) is the edge where we came from to Θ */
s(Θprev, T) = s(Θ, T);
/* Connect the successor edge of Θprev to the TRUE successor of the branch Θ */
IF (has no preds(Θ)) delete operation(Θ); /* if no other predecessors exist */
return ("IF cc", s(Θ, T), s(Θ, F));
}
ELSE { /* search deeper for the branch after unsubstituting if necessary */

Σ = un substitute(Σ,Θ);

(C RHS, ins T, ins F)= move cj(s(Θ, T),Σ, add path((Θ, T),Ψ));

/* substitute C RHS if Θ is a copy and there is a substitutable dependence. */
C RHS = substitute(C RHS, Θ);

/* create a copy Θ” of Θ and add it to the stream ins F that leads to the FALSE target
of the original branch. Θ itself is already added to the stream ins T that leads to the
TRUE target. */
Θ" = make new operation(); oper(Θ") = oper(Θ);
s(Θ",T) = ins F; /* The successor edge of Θ” is connected to ins F */
/* Two operation streams, ins T and ins F, now start from Θ and Θ”, respectively*/
ins T= Θ; ins F= Θ";

/* If Θ is a control join point, generate a bookkeeping copy */
IF (num preds gt 1(Θ)) {

Θ’=make new operation(); oper(Θ’)=C RHS;

s(Θ’,T)=ins T; s(Θ’,F)=ins F;

/* The TRUE and FALSE targets of Θ’ become ins T and ins F, respectively. */
(Θprev, T) = last element(Ψ); /* It is the edge where we came from to Θ */
FOR each (θ, γ) ∈ pred(Θ) such that (θ, γ) 6= (Θprev, T)

s(θ, γ) = Θ’; /*Connect all predecessor edges except for (Θprev, T) to Θ’ */
End FOR

IF (bb header(Θ’)) { lv(Θ’)= lv(Θ); av(Θ’)= av(Θ);}
} /* End IF (num preds gt 1(Θ)) */

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

896 · Soo-Mook Moon and Kemal Ebcioğlu

} /* av and lv at ins T and ins F need to be updated. */
IF (bb header(ins T)) update data sets(ins T);

IF (bb header(ins F)) update data sets(ins F);

return(C RHS, ins T, ins F);

End move cj

update data sets(Θ)
::: Θ is a bb header and its data sets have just become incorrect since an op-
eration was moved through it. Incrementally recompute the av(Θ) and lv(Θ)
using the correct sets at other bb headers
ignore first = TRUE; /*If oper(Θ) ≡ NULL, the recomputation correctly disregards Θ*/
compute live(Θ);

compute av(Θ, NULL, 0);

/* compute av correctly stops at the original window boundary b where av(b) ≡ NULL and
av level(b) ≡ global level */
End update data sets

ACKNOWLEDGMENTS

The memory disambiguation, interval analysis, live-variable analysis, and final code-
printing stages of the compiler were implemented by Manoj Franklin. The VLIW
simulator and the PL.8 front-ends were implemented by Arkady Polyak and Toshio
Nakatani, respectively. Jaime Moreno carefully reviewed the initial draft of this
article, and Mike Schlansker provided helpful comments on the article. We are also
grateful to Gabby Silberman and Ashok Agrawala for helpful discussions. We thank
three anonymous referees whose detailed comments were very helpful in improving
the paper.

REFERENCES

Aho, A., Sethi, R., and Ullman, J. 1986. Compilers: Principles, Techniques and Tools. Addison-
Wesley, Reading, Mass.

Aiken, A. and Nicolau, A. 1988. A development environment for horizontal microcode. IEEE
Trans. Softw. Eng. 14, 5 (May), 584–594.

Atkins, M. 1991. Intel i860 processor. IEEE Micro 11, 24–28.

Bernstein, D. and Rodeh, M. 1991. Global instruction scheduling for superscalar machines. In
Proceedings of the SIGPLAN 1991 Conference on Programming Language Design and Imple-
mentation. ACM Press, New York, 241–255.

Colwell, R., Nix, R., O’Donnel, J., Papworth, D., and Rodman, P. 1988. A VLIW architec-
ture for a trace scheduling compiler. IEEE Trans. Comput. 37, 8 (Aug.), 967–979.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, F. 1991. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Trans. Program.

Lang. Syst. 13, 4 (Jan.), 451–490.

Dehnert, J. and Towle, R. 1993. Compiling for cydra 5. J. Supercomput. 7, 1/2, 181–228.

Ebcioğlu, K. 1988. Some design ideas for a VLIW architecture for sequential natured soft-
ware. In Parallel Processing (Proceedings of IFIP WG 10.3 Working Conference on Parallel

Processing). North Holland, Amsterdam, 3–21.

Ebcioğlu, K. and Groves, R. 1990. Some global compilation optimizations and architectural
features for improving performance of superscalars. Res. Rep. RC-16145, IBM T. J. Watson
Research Center, Yorktown Heights, N.Y.

Ebcioğlu, K., Groves, R., Kim, K.-C., Silberman, G., and Ziv, I. 1994. VLIW compilation
techniques in a superscalar environment. In Proceedings of the SIGPLAN 1994 conference on
Programming Language Design and Implementation. ACM Press, New York, 36–48.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

http://www.acm.org/pubs/citations/proceedings/pldi/113445/p241-bernstein/
http://www.acm.org/pubs/citations/proceedings/pldi/113445/p241-bernstein/
http://www.acm.org/pubs/citations/journals/toplas/1991-13-4/p451-cytron/
http://www.acm.org/pubs/citations/journals/toplas/1991-13-4/p451-cytron/
http://www.acm.org/pubs/citations/proceedings/pldi/178243/p36-ebcioglu/
http://www.acm.org/pubs/citations/proceedings/pldi/178243/p36-ebcioglu/

Parallelizing Nonnumerical Code with Selective Scheduling and Software Pipelining · 897

Ebcioğlu, K. and Nakatani, T. 1989. A new compilation technique for parallelizing loops with
unpredictable branches on a VLIW architecture. In Languages and Compilers for Parallel
Computing. MIT Press, Cambridge, Mass., 213–229.

Ebcioğlu, K. and Nicolau, A. 1989. Percolation scheduling with resource constraints. Tech.
Rep. 89-31, Univ. of California, Irvine, Calif.

Ellis, J. 1985. Bulldog: A compiler for VLIW architecture. Ph.D. thesis, Yale Univ., New Haven,

Conn.

Ferrante, J., Ottenstein, K., and Warren, J. 1987. The program dependency graph
and its use in optimization. ACM Trans. Program. Lang. Syst. 9, 3, 319–349.

Fisher, J. and Freudenberger, S. 1992. Predicting conditional branch directions from previous
runs of a program. In Proceedings of the 5th International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM Press, New York, 85–95.

Freudenberger, S. M., Gross, T. R., and Lowney, P. 1994. Avoidance and suppression
of compension code in a trace scheduling compiler. ACM Trans. Program. Lang. Syst. 16, 4,
1156–1214.

Gloy, N., Smith, M., and Young, C. 1995. Performance issues in correlated branch schemes.
In Proceedings of the 28th Annual International Symposium on Microarchitecture. IEEE Com-
puter Society Press, Los Alamitos, Calif., 3–14.

Gupta, R. and Soffa, M. 1990. Region scheduling: An approach for detecting and redistributing
parallelism. IEEE Trans. Softw. Eng. 16, 4 (Apr.), 421–431.

Hwu, W.-M., Mahlke, S., Chen, W., Chang, P., Warter, N., Bringmann, R., Ouellete, R.,
Hank, R., Kiyohara, T., Haab, G., Holm, J., and Lavery, D. 1993. The superblock: An
effective technique for VLIW and superscalar compilation. J. Supercompt. 7, 1/2, 229–248.

IBM. 1990. A special issue on IBM RISC System/6000. IBM J. Res. Devel. 34, 1 (Jan.).

Jain, S. 1991. Circular scheduling: A new technique to perform software pipelining. In Proceed-
ings of the SIGPLAN 1991 Conference on Programming Language Design and Implementation.
ACM Press, New York, 219–228.

Jouppi, N. and Wall, D. 1989. Available instruction-level parallelism for superscalar and super-
pipelined machines. In Proceedings of the 3rd International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ACM Press, New York, 272–282.

Lam, M. 1988. Software pipelining: An effective scheduling technique for VLIW machines. In
Proceedings of the SIGPLAN 1988 Conference on Programming Language Design and Imple-
mentation. ACM Press, New York, 318–328.

Moon, S.-M. 1993. Compile-time parallelization of non-numerical code; VLIW and superscalar.
Ph.D. thesis, Univ. of Maryland, College Park, Md.

Moon, S.-M. 1997. Increasing cache bandwidth using multiport caches for exploiting ILP in
non-numerical codes. IEEE Proceedings - Computers and Digital Techniques 144, 5 (Sept.),
295–303.

Moon, S.-M. and Carson, S. 1995. Generalized multiway branch unit for VLIW microprocessors.
IEEE Trans. Parall. Distrib. Syst. 6, 8 (Aug.), 850–862.

Moon, S.-M. and Ebcioğlu, K. 1993. A study on the number of memory ports in multiple
instruction issue machines. In Proceedings of the 26th Annual International Symposium on
Microarchitecture. IEEE, New York, 49–58.

Moon, S.-M. and Ebcioğlu, K. 1997. Performance analysis of tree VLIW architecture for exploit-
ing branch ILP in non-numerical code. In Proceedings of the 1997 International Conference on
Supercomputing. ACM, New York, 301–308.

Moon, S.-M., Kim, S., Park, J., and Ebcioğlu, K. 1997. Unrolling-based copy coalescing. Tech.
Rep. SNU-EE-TR-1997-7, Seoul National Univ., Seoul, Korea.

Nakatani, T. and Ebcioğlu, K. 1989. Combining as a compilation technique for a VLIW
architecture. In Proceedings of the 22nd Annual Workshop on Microprogramming. IEEE, New
York, 43–55.

Nakatani, T. and Ebcioğlu, K. 1993. Making compaction based parallelization affodable. IEEE
Trans. Parall. Distrib. Syst. 4, 9 (Sept.), 1014–1529.

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

http://www.acm.org/pubs/citations/journals/toplas/1987-9-3/p319-ferrante/
http://www.acm.org/pubs/citations/journals/toplas/1987-9-3/p319-ferrante/
http://www.acm.org/pubs/citations/proceedings/asplos/156835/p85-fisher/
http://www.acm.org/pubs/citations/proceedings/asplos/156835/p85-fisher/
http://www.acm.org/pubs/citations/journals/toplas/1994-16-4/p1156-freudenberger/
http://www.acm.org/pubs/citations/journals/toplas/1994-16-4/p1156-freudenberger/
http://www.acm.org/pubs/citations/proceedings/pldi/113445/p219-jain/
http://www.acm.org/pubs/citations/proceedings/asplos/70082/p272-jouppi/
http://www.acm.org/pubs/citations/proceedings/asplos/70082/p272-jouppi/
http://www.acm.org/pubs/citations/proceedings/pldi/53990/p318-lam/

898 · Soo-Mook Moon and Kemal Ebcioğlu

Padua, D. and Wolfe, M. 1986. Advanced compiler optimizations for supercomputers. Com-
mun. ACM 29, 12 (Dec.), 1184–1201.

Park, S., Shim, S., and Moon, S.-M. 1997. Evaluation of scheduling techniques on a SPARC-

based VLIW testbed. In Proceedings of the 30th Annual International Symposium on Microar-
chitecture. IEEE, New York.

Patterson, D. 1985. Reduced instruction set computers. Commun. ACM 28, 1 (Jan.), 8–21.

Rau, B. 1989. The Cydra 5 departmental supercomputer: Design philosophies, decisions, and
trade-offs. IEEE Comput. 22, 1 (Jan.), 12–34.

Rau, B. and Fisher, J. 1993. Instruction-level parallel processing: History, overview, and per-
spective. J. Supercomput. 7, 1/2, 9–50.

Rau, B. and Glaeser, C. 1981. Some scheduling techniques and an easily schedulable horizontal
architecture for high performance scientific computing. In Proceedings of the 14th Annual
Workshop on Microprogramming. IEEE, New York, 183–198.

Schwartz, J. and Sharir, M. 1979. A design for optimizations of the bit vectoring class. Tech.
Rep. 17, Courant Inst. of Computer Science, New York Univ., New York.

Silberman, G. and Ebcioğlu, K. 1993. An architectural framework for supporting heterogeneous
instruction set architectures. IEEE Comput. 26, 6 (June), 39–56.

Sites, R. 1993. Alpha AXP architecture. Commun. ACM 36, 2 (Feb.), 33–44.

Smith, M., Horowitz, M., and Lam, M. 1992. Efficient superscalar performance through boost-
ing. In Proceedings of the 5th International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ACM Press, New York, 248–259.

Smith, M., Johnson, M., and Horowitz, M. 1989. Limits on multiple instruction issue. In
Proceedings of the 3rd International Conference on Architectural Support for Programming
Languages and Operating Systems. ACM Press, New York, 290–302.

Warren, H., Auslander, M., Chaitin, G., Chibib, A., Hopkins, M., and MacKay, A. Jun 1986.
Final code generation in the PL.8 compiler. Res. Rep. RC 11974, IBM T.J. Watson Research
Center, Yorktown Heights, N.Y.

Received June 1994; revised August 1995; accepted October 1995

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.

http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/
http://www.acm.org/pubs/citations/journals/cacm/1985-28-1/p8-patterson/
http://www.acm.org/pubs/citations/journals/cacm/1993-36-2/p33-sites/
http://www.acm.org/pubs/citations/proceedings/asplos/143365/p248-smith/
http://www.acm.org/pubs/citations/proceedings/asplos/143365/p248-smith/
http://www.acm.org/pubs/citations/proceedings/asplos/70082/p290-smith/

	Introduction
	Features of Selective Scheduling
	Intermediate Representation of Code
	Tree Representation
	Sequential Representation

	NonTrue Data Dependences
	Partial Renaming and Forward Substitution
	The Functions {tt moveup()}

	Description of Selective Scheduling
	Computation Step
	Code Motion Step
	Comparison with Other DAG-Based Approaches

	Software Pipelining and Memory Disambiguation
	Software Pipelining of the Innermost Loop
	Software Pipelining of Nested Loops
	Memory Disambiguation
	Multilatency Operations
	Generation of VLIW Tree Instructions

	Experimental Results
	VLIW Environment
	Experimental Results

	Summary
	A Parallelization Example in the 16-ALU machine
	Input C Code
	Sequential Code (with Comments)
	VLIW Code Generated by Our Compiler (with Comments)

	Parallelization Subroutines

