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The high cost and growing importance of interprocedural data flow analysis have led to an in-
creased interest in demand-driven algorithms. In this article, we present a general framework
for developing demand-driven interprocedural data flow analyzers and report our experience in
evaluating the performance of this approach. A demand for data flow information is modeled as
a set of queries. The framework includes a generic demand-driven algorithm that determines the
response to a query by iteratively applying a system of query propagation rules. The propaga-
tion rules yield precise responses for the class of distributive finite data flow problems. We also
describe a two-phase framework variation to accurately handle nondistributive problems. A perfor-
mance evaluation of our demand-driven approach is presented for two data flow problems, namely,
reaching-definitions and copy constant propagation. Our experiments show that demand-driven
analysis performs well in practice, reducing both time and space requirements when compared
with exhaustive analysis.
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ers;optimization; D.2.2 [Software Engineering]: Tools and Techniques; H.3.4 [Information

Storage and Retrieval]: Systems and Software—question-answering

General Terms: Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Copy constant propagation, data flow analysis, def-use chains,
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1. INTRODUCTION

Data flow analysis has become a mandatory component of today’s optimizing and
parallelizing compilers. In addition, data flow analysis is increasingly used to im-
prove the capabilities and performance of software development tools such as editors
[Reps et al. 1983], debuggers [Weiser 1984], and testing tools [Duesterwald et al.
1992; Frankl and Weyuker 1988]. Along with the growing use of data flow anal-
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ysis comes an increased concern about the high time and space requirements of
computing and maintaining the data flow information that is needed. Computing
data flow solutions, especially if interprocedural analysis is involved, can be very
costly [Griswold and Notkin 1993]. Moreover, costly analysis phases may have to
be applied more than once for several reasons:

Multiple Optimizations. Optimizing compilers typically perform a number of in-
dependent optimizations, and each optimization may require a distinct data flow
analysis to be performed.

Invalidated Information. If code transformations are applied to a program, the
data flow in the program changes, and previously computed data flow solutions
may no longer be valid. As a consequence, data flow must be either updated or
recomputed following the application of code transformations.

User Edits. Data flow information may be invalidated through program edits
by the user. During program development, program edits are to be expected and
should be efficiently handled. The respective analysis may have to be repeated to
provide the new data flow solution.

Although the need for efficient data flow analysis algorithms continues to increase,
current data flow applications still rely on exhaustive algorithms. Phrased in the
traditional framework [Kam and Ullman 1977], the solution to a data flow problem
is expressed as the fixed point of a system of data flow equations. Each equation
expresses the solution at one program point in terms of the solutions at immediately
preceding (or succeeding) points. As a result, data flow solutions are computed in
an inherently exhaustive fashion: information is computed at all program points.
Such an exhaustive solution definition is likely to result in very large equation
systems limiting both the time and space efficiency of even the fastest fixed-point
evaluation algorithm.

This article presents an alternative approach to data flow analysis that avoids
the costly computation of exhaustive solutions through the demand-driven retrieval
of information. Demand-driven analysis provides a promising approach to improve
the performance of data flow analyses for several reasons:

Selective Data Flow Requirements. Several code transformations in optimizing
compilers are applicable to only certain components of a program, such as loops.
Even if optimizations are applicable everywhere in the program, the compilation
time overhead can be reduced by optimizing only the most frequently executed
regions of the program (e.g., frequently called procedures or inner loops). Demand-
driven analysis provides an efficient way for computing all relevant information
that affects the code inside the selected code region without having to analyze the
complete program.

User Queries in Interactive Tools. In an interactive tool, the user issues specific
information requests with respect to selected program points rather than inquiring
about the entire program. For example, when debugging, a user may want to
know what statements have an impact on the value of a variable at a certain point.
The extent of data flow information requested by the user is not fixed before the
debugging tool executes, but may vary depending on the user and the program.
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Demand-driven algorithms compute only what is necessary to service user queries.

Avoiding Incremental Solution Updates. Using an exhaustive analysis approach
either requires costly recomputations of the exhaustive solution each time a change
is made to the program, or it requires the storage and incremental update of the ex-
haustive solution throughout program development [Burke 1987; Pollock and Soffa;
Ryder 1989; 1983; Ryder 1983]. Maintaining exhaustive solutions throughout pro-
gram development can be costly but it can be avoided entirely if a demand-driven
approach is used to compute data flow information as it is needed, based on the
current version of the program.

In this article we present a general framework for deriving demand-driven inter-
procedural analysis algorithms [Duesterwald et al. 1995]. A demand for a specific
subset of the exhaustive solution is formulated as a set of queries. Queries are
issued by the application and may be generated automatically (e.g., for compiler
optimizations) or manually by the user (e.g., for an interactive tool). A query is
a pair q = 〈y, n〉 that raises the question as to whether a set of data flow facts y
is part of the exhaustive solution at a program point n. A response (true or false)
to the query q is determined by propagating q from point n in the reverse direc-
tion of the original exhaustive analysis until all points have been encountered that
contribute to the determination of the response for q. This query propagation is
formally modeled as a partial reversal of the original exhaustive data flow analysis.
The framework includes a generic algorithm that implements the partial reversal
and provides the demand-driven analysis routine.

The framework is applicable to interprocedural data flow problems with finite lat-
tices. The derived demand-driven algorithms are as precise as their exhaustive coun-
terparts if the data flow problem is distributive. The class of distributive problems
includes, among others, the four classical bit vector problems (i.e., reaching-definit-
ions, available expressions, live variables, and very busy expressions), restricted
versions of constant propagation (e.g., copy constant propagation), and interproce-
dural problems such as procedure side-effect analysis [Cooper and Kennedy 1988].
If the problem is monotone but not distributive, precision of the demand-driven
algorithm may be lost with respect to a standard exhaustive algorithm. We out-
line a framework variation that is less efficient but enables the precise handling of
nondistributive monotone data flow problems.

The practical benefits of the demand-driven framework are demonstrated through
experimentation. An experimental study of demand-driven algorithms for two prob-
lems, namely, def-use chain computation based on reaching-definitions and copy
constant propagation, was conducted to evaluate the performance of our demand-
driven approach. The experimental results for the def-use chain analyzer show that
demand-driven analysis is more efficient than exhaustive analysis for computing def-
use chains in the majority of test programs. In copy constant propagation, which is
a more expensive data flow analysis, demand-driven analysis performs even better
and outperforms standard exhaustive analysis in all test programs.

The remainder of this article is organized as follows. Section 2 presents the perti-
nent background in interprocedural data flow analysis. The demand-driven analysis
framework is presented in Section 3. This section first considers procedures without
parameters and then discusses extensions to handle procedures with parameters.
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Section 4 discusses the framework variation for handling nondistributive data flow
problems. Section 5 describes instances of the demand-driven analysis framework
for reaching-definitions and copy constant propagation. An experimental evalua-
tion of the performance of the demand-driven analyzers is presented in Section 6.
Section 7 discusses related work, and concluding remarks are given in Section 8.

2. BACKGROUND

A program consisting of a set of possibly recursive procedures p1, . . . , pk is repre-
sented by an interprocedural control flow graph (ICFG). An ICFG is a collection
of distinct control flow graphs G1, . . . , Gk where Gi = (Ni, Ei) represents proce-
dure pi. The nodes in Ni represent the statements in procedure pi, and the edges
in Ei represent the transfer of control among the statements in pi. Two distin-
guished nodes entryi and exiti represent the unique entry and exit nodes of pi.
The set E = ∪{Ei | 1 ≤ i ≤ k} denotes the set of all edges in the ICFG, and
N = ∪{Ni | 1 ≤ i ≤ k} denotes the set of all nodes. The complexity analysis of
our algorithms assumes that |E| = O(|N |).1 The sets pred(n) = {m|(m,n) ∈ Ei}
and succ(n) = {m|(n,m) ∈ Ei} contain the immediate predecessors and successors
of node n, respectively. For a call site node s, call(s) denotes the procedure called
from s.

We assume that each procedure is reachable from a series of calls starting from
the main procedure. Furthermore, we assume the program contains no infinite
loops and no interprocedural branching other than procedure calls and returns. A
sample program and its ICFG are shown in Figure 1.

An execution path is a sequence of nodes π = n1 . . . nk such that for 1 ≤ i < k (i)
(ni, ni+1) ∈ E, where ni is not a call site (intraprocedural control), (ii) call(ni) = p
for some procedure p and ni+1 = entryp (procedure invocation), or (iii) ni = exitp
for some procedure p, and there exists an m ∈ pred(ni+1) such that call(m) = p
(procedure return). An execution path that has correctly nested call and return
nodes is called a valid execution path. To be a valid execution path, a procedure
that returns must return to the site of its most recent call. Consider the example
in Figure 1. The path 1, 2, 10, 11, 12, 13, 7, 8, 9 that returns to the incorrect call site
after the execution of procedure p is not valid. Invalid paths violate the calling
context of procedures and may lead to imprecise information if considered dur-
ing the analysis. The demand-driven analysis described in this article propagates
information only along valid execution paths.

A finite data flow framework is a pair D = (L,F ), where

—(L,v,⊥,>) is a finite lattice. The finite set L represents the universe of program
facts with a partial order v, a least bottom element ⊥, and a greatest top element
>. The partial order v defines a meet operator u and a dual join operator t as
the greatest lower bound and the least upper bound, respectively.

—F ⊆ {f : L 7→ L} is a set of monotone flow functions (i.e., x v y =⇒ f(x) v f(y))
that contains the identity function and that is closed under composition and
pointwise meet (i.e., f, g ∈ F =⇒ f · g ∈ F and f u g ∈ F ).

1This assumes that switch statements have been transformed into a sequence of conditionals. A
similar transformation is assumed for indirect function invocation through function variables.
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Fig. 1. The ICFG for a sample program.

If all functions in F are distributive (i.e., f(x u y) = f(x) u f(y)), D is called a
distributive finite data flow framework.

A data flow framework models a particular analysis problem. To describe the
analysis problem for a particular program, we consider an instance of the respective
framework.

An instance of a finite framework D = (L,F ) is given by an ICFG G = (N,E)
and a mapping that maps each node n ∈ N in the ICFG to a function fn ∈ F .
The function fn models the data flow when execution passes through node n. If
x ∈ L holds on entry of a node n, then fn(x) ∈ L holds on exit from node n. The
demand-driven concepts and techniques presented in this article apply equally well
to frameworks with flow functions associated with edges.

According to their analysis direction, data flow problems are classified as either
forward or backward problems. In this article we focus on frameworks for forward
data flow problems. However, the concepts and techniques apply equally well to
backward problems by representing a backward problem on the reverse control flow
graph and by replacing call nodes with return nodes [Marlowe and Ryder 1990b].

Consider the computation of the solution for a problem modeled in the pre-
ceding framework. During intraprocedural analysis the propagation of informa-
tion is restricted to the control flow paths within each procedure. Interprocedural
analysis considers also the propagation of information across procedure boundaries
at call and return points. Our demand-driven analysis framework is a demand-
driven variant of Sharir and Pnueli’s functional approach to interprocedural anal-
ysis [Sharir and Pnueli 1981]. Similar to the interprocedural framework by Knoop
and Steffen [1992] our extension to the Sharir and Pnueli framework handles pro-
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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For each procedure p: X(entryp) = u
call(m)=p

X(m)

For nonentry nodes n: X(n) = u
m∈pred(n)

 fm(X(m)) if m not a call site

φ(entryq,exitq)(X(m)) if call(m)=q

(a)

φ(entryp,entryp)(x) = x

φ(entryp,n)(x) = u
m∈pred(n)

 fm · φ(entryp,m)(x) if m not a call site

φ(entryq,exitq) · φ(entryp,m)(x) if call(m)=q

(b)

Fig. 2. Exhaustive interprocedural data flow equation system.

grams with local variables and procedures with parameters. We briefly review the
Sharir and Pnueli approach in the remainder of this section.

Sharir and Pnueli present a two-phase functional approach to interprocedural
analysis that ensures that the calling context of each procedure is preserved. During
the first phase each procedure is analyzed independently of its calling context. The
results of this phase are procedure summary functions as defined by the equation
system in Figure 2(b). The summary function φ(entryp,exitp) : L 7→ L for procedure
p maps data flow facts from the entry node entryp to the corresponding set of facts
that hold upon procedure exit. The summary functions are defined inductively by
computing for each node n in p the function φ(entryp,n) such that if x ∈ L holds
upon procedure entry, the corresponding element φ(entryp,n)(x) ∈ L holds on entry
to node n.

The actual calling context of a procedure is propagated during the second phase,
based on the summary functions. The data flow solutionX(n) at a node n expresses
the set of facts that holds on entry to node n. X(n) is computed by mapping
the solution X(entryp), which holds on entry to p, to node n using the summary
function φ(entryp,n). Figure 2(a) shows the equation system that defines the solution
X(n).

For finite lattices, Sharir and Pnueli propose a work list algorithm to solve the
equation system in Figure 2 in two phases. The algorithm requires O(MaxCall ×
height(L)× |L| × |N |) time, where height(L) denotes the height2 of the lattice L
and where MaxCall is the maximal number of call sites calling a single procedure.

2The height of a lattice L denotes the number of elements in the longest chain in L.
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any integer

undefined
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Fig. 3. The lattice for copy constant propagation.

3. A FRAMEWORK FOR DEMAND-DRIVEN ANALYSIS

Before formally describing our demand-driven framework we first illustrate the
demand-driven approach using the problem of copy constant propagation (CCP).
CCP is a distributive variation of constant propagation. Unlike the more general
constant propagation analysis, CCP does not evaluate arithmetic expressions. A
variable v is a copy constant at a node n if v is assigned a constant value at node n
or if v is always assigned the value of another variable that is a copy constant prior
to reaching node n.

The CCP lattice for a program with k variables is the product lattice Lk, where
the component lattice L is defined as shown in Figure 3. The component lattice in
CCP is finite, since the only possible values for a copy constant are the literals that
occur in the program text. Each lattice element is a k-tuple x = (x1, . . . , xk) with a
component xi ∈ L for variable vi. The meet operator u denotes the greatest lower
bound of two elements according to the partial order depicted in Figure 3 and is
defined pointwise. The dual join operator t denotes the least upper bound.

A base element [vi = c] is a tuple with a single nonbottom component: [vi = c] =
(⊥, . . . ,⊥, xi = c,⊥, . . . ,⊥). Furthermore, any element that results as a finite join
of base elements is written as [v1 = c1] t . . . t [vl = cl] = [vi = ci, . . . , vl = cl].
If the particular constant value is irrelevant, it is omitted, i.e., [vi] describes that
variable vi has a fixed but unknown constant value.

The distributive flow functions in CCP are defined pointwise for each compo-
nent. Consider the control flow graph in Figure 1. Each lattice element is a triple
(xa, xb, xc) such that the components xa, xb, and xc denote the lattice values for
the three variables a,b, and c, respectively. The flow function for node 12 is defined
as f12(xa, xb, xc) = (xa, xb, 1) indicating that variable c has the constant value 1
after the execution of node 12, and node 12 has no effect on the values of variables
a and b.

We now take a close look at how data flow analysis provides the answer to the
following sample question: “ Is variable b in Figure 1 a copy constant at the write
statement in node 8?” Standard analysis provides the answer by an exhaustive
forward propagation determining copy constant information for all variables at all
nodes in the graph. At each node n the least solution is computed in a vector
X(n) = (xa, xb, xc), where xa, xb, and xc are the lattice values for variables a, b,
and c at node n. The solution vectors are computed by propagating a program
entry value throughout the program, as described in Section 2. This propagation
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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involves the repeated application of the flow functions to the current solution vector
values. Note that during a forward propagation all available information must be
collected, since prior to reaching node 8, information at a preceding node cannot
be ruled out as irrelevant. In particular, when encountering a call to procedure p
(at nodes 2 and 6) the procedure must be fully analyzed in order to ensure that
the complete information that may reach node 8 has been collected.

Now consider how a demand-driven analysis determines whether variable b is a
copy constant at node 8. Unlike exhaustive analysis, demand-driven analysis is
goal-directed. A solution to the question is determined by a partial search that
is started at node 8 and proceeds backward along each path that in the forward
direction leads to node 8. Note that this direction is the reverse of the direction
of the exhaustive analysis. During this backward search only information that is
actually relevant for the current query is collected. The search terminates as soon as
the gathered information implies a solution to the initial query. In this case, upon
encountering the read statement at node 11 (via the call at node 6), the backward
search will establish that b cannot be a copy constant at node 8 and terminate.

Generally, there are three ways in which demand-driven analysis avoids unneces-
sary computations that must be performed in the exhaustive analysis. First, early
termination is achieved by terminating the demand-driven analysis algorithms as
soon as the relevant information has been obtained, possibly leaving large portions
of the program that are not needed to obtain the demanded solution unvisited.
Second, when visiting a node, the information that is not needed to resolve the
current demand at that node is not collected. Finally, nodes/procedures are ana-
lyzed only if needed, i.e., only if it has been determined that information from the
node/procedure may affect the demanded solution. For example, in Figure 1, the
demand-driven analysis computes summary information for procedure q only with
respect to the call site at node 6. Summary information with respect to the call
site at node 2, which is never reached during the search, is not considered.

The demand-driven analysis framework provides a generalization of the preceding
backward search that formally defines the search characteristics. Such generaliza-
tion is obtained by providing answers to the following questions:

—What kind of information can be collected in a demand-driven way?

—What are the search operations performed at each node and when does the search
terminate?

—Are there efficient algorithms to implement the backward search?

The demand-driven analysis framework contains a component to answer each of
these questions. The first component provides the formal definition of a data flow
query expressing the type of information that is the subject of the search. The
second framework component formally models the search procedure as the backward
propagation of data flow queries. The third framework component describes a
generic iterative query propagation algorithm.

For ease of presentation, we first consider procedures without parameters. The
extension to procedures with parameters is described in Section 3.7.
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3.1 Data Flow Queries

A data flow query specifies the kind of information that can be determined in a
demand-driven fashion at a given program node. Consider an instance G = (N,E)
of a finite data flow framework (L,F ) with a solution vector X , and let y ∈ L and
n ∈ N . A data flow query q is specified by a pair

q = 〈y, n〉

that denotes the truth value of the term: y v X(n). In other words, query q
raises the question as to whether a specific set of data flow facts y is implied by
the exhaustive solution at a selected program node n. For example, the question
as to whether variable b in Figure 1 is a copy constant at node 8 corresponds to
the query q = 〈[b], 8〉.

3.2 Query Propagation Rules

Consider now the problem of determining the answer (true or false) for a query q
without completely evaluating the exhaustive solution equation system from Figure
2. Informally, the answer to q = 〈y, n〉 is obtained by propagating q from node n in
the reverse direction of the original analysis until all nodes have been encountered
that contribute to the answer for q. This propagation process is modeled as a
partial reversal of the original data flow analysis. To define the analysis reversal,
the following cases are examined in the propagation of a query q = 〈y, n〉:

—q = 〈y, entryp〉 for some procedure p (procedure entry node) Query q raises the
question as to whether y holds on entry to every invocation of procedure p. It
follows that q can be translated into the Boolean conjunction of queries 〈y,m〉 for
every call site m calling procedure p. If p is the main program then q evaluates
to true if y = ⊥, since by definition X(entrymain) = ⊥. Otherwise, q evaluates
to false.

—q = 〈y, n〉, where node n is some arbitrary nonentry node For simplicity, assume
first that n has a single predecessor m. The exhaustive equation system from
Figure 2(a) shows that y v X(n) if and only if y v h(X(m)), where h is either a
node flow function or a summary function. In either case h is monotone such that
h(⊥) v h(X(m)) v h(>), and the following two special cases result for query q:

y v h(⊥) =⇒ q evaluates to true

y 6v h(>) =⇒ q evaluates to false

If neither of these two cases applies, the query q translates into a new query
q′ = 〈z,m〉 for node m. The lattice element z to be queried on entry to node m
should be the least element z (i.e., smallest set of facts), such that z v X(m)
implies y v h(X(m)). The appropriate query element z for the new query
q′ can be determined using the function hr which is the reverse of function h
[Hughes and Launchbury 1992].
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(i) 〈⊥, n〉 ⇐⇒ true

〈>, n〉 ⇐⇒ false

(ii) For each procedure p :

〈y, entryp〉 ⇐⇒
∧

call(m)=p

〈y,m〉

(iii) For a nonentry node n:

〈y, n〉 ⇐⇒
∧

m∈pred(n)

{
〈frm(y), m〉 if m is not a call site

〈φr
(entryp,exitp)

(y), m〉 if call(m) = p

Fig. 4. Query propagation rules.

3.3 Reverse Flow Functions

Assume a finite lattice L and a monotone function h : L 7→ L. The reverse function
hr : L 7→ L is defined as

hr(y) =u {x ∈ L : y v h(x)}.
The reverse function hr maps an element y to the least element x, such that y v
h(x). Note that if no such element exists, hr(y) = > (undefined). Furthermore,
the definition of hr implies hr(⊥) = ⊥.

Example. Consider the reverse flow function f rn in CCP for a node n. By
the distributivity of the reverse functions, it is sufficient to define f rn only for
base elements.3 The reverse function value f rn ([vi=const]) denotes the least lattice
element, if one exists, that must hold on entry to node n in order for variable vi to
have the constant value const on exit of n. If f rn ([vi=const]) = ⊥, the trivial value
⊥ is sufficient on entry to node n (i.e., variable vi always has value const on exit).
For example, consider node 3 in Figure 1 with the assignment a := 0. The reverse
function f r3 is defined such that f r3 ([a = 0]) = ⊥, indicating that a always has the
value 0 on exit of node 3, and f r3 ([a = 1]) = >, indicating that there exists no
entry value which would cause variable a to have the value 1 on exit. For a variable
v not equal to a and any constant value c, the reverse flow function is simply the
identity f r3 ([v = c]) = [v = c].

If the function h is distributive, the following inequalities hold and establish a Ga-
lois connection between the function h and its reverse hr [Cousot 1981; Hughes and
Launchbury 1992]:

(h r · h)(x) v x and (h · h r)(x) w x (1)

We now show how the relationship between a flow function and its reverse can be
exploited during query propagation. First, consider the following properties of the

3For each element [v1 = c1, . . . , vl = cl] that is obtained as a finite join over base elements, the
reverse function is fr([v1 = c1, . . . , vl = cl]) = fr([v1 = c1]) t . . . t fr([vl = cl]).
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function reversal. It can be easily shown that the distributivity of h with respect
to the meet u implies the distributivity of the reverse function hr with respect to
the join t:

hr(x t y) = hr(x) t hr(y) (2)

Furthermore, the following properties hold with respect to the composition, the
meet, and the join of functions [Hughes and Launchbury 1992]:

(g · h)r = hr · gr
(g u h)r = gr t hr (3)

Using the reverse functions, the complete set of query propagation rules can be
established as shown in Figure 4. The operator ∧ denotes Boolean conjunction.
If node m is not a call site, the reverse function f rm can be determined by locally
inspecting the flow function fm. Otherwise, if node m calls procedure p, the reverse
summary function φr(entryp,exitp) is determined.

3.4 Reverse Summary Functions

A straightforward but inefficient way for computing reverse summary functions is
to first determine all original summary functions by solving the equation system
from Figure 2 and then reversing each function. A more efficient approach is to
directly compute the reverse function values. By reversing the order in which
summary functions are defined and by taking advantage of properties concerning
the meet and composition of reverse functions, the following definition of the reverse
summary function φr(entryp,exitp) results for each procedure p:

φr(exitp,exitp)(y) = y

φr(n,exitp)(y)= t
m∈succ(n)

 f rm · φr(m,exitp)(y) if m is not a call site

φr(entryq ,exitq) · φ
r
(m,exitp)(y) if call(m) = q

(4)
The propagation rules are now completely specified. Next we consider algorithms

that implement these rules in an efficient way.

3.5 Generic Demand-Driven Algorithm

The framework contains, as a third component, a generic demand-driven algorithm.
Procedure Query, shown in Figure 5, implements the query propagation rules and
takes as its input a query and returns the answer true or false. When a procedure
call is encountered, procedure Computeφr (Figure 6) is invoked to provide the
reverse procedure summary information for the called procedure. In the worst case
where the amount of information demanded is equal to the exhaustive solution,
the asymptotic time and space complexities of the demand-driven algorithm are no
worse than for the corresponding iterative exhaustive algorithm in the Sharir/Pnueli
interprocedural analysis framework [Sharir and Pnueli 1981].

Procedure Query uses a work list that is initialized with the node from the input
query q. At any step during the computation, the answer to q is equivalent to the
Boolean conjunction of the answers to the queries currently in the work list. A
variable query[n] is used at each node n to store the queries raised at n. During
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Procedure Query(y, n)
input: a lattice element y ∈ L and a node n
output: the answer true or false to the query 〈y, n〉
begin:
1. for each m ∈ N do query[m]← ⊥
2. query[n]← y; worklist← {n};
3. while worklist 6= ∅ do
4. remove a node m from worklist;
5. case m = entrymain:
6. if query[m] = ⊥ return(false);
7. case m = entryq for some procedure q:
8. for each call site m′ such that call(m′) = q do

9. query[m′]← query[m′] t query[m];
10. if query[m′] changed then add m′ to worklist;
11. endfor;
12. otherwise:
13. for each m′ ∈ pred(m) do

14. new ←

{
f r
m′ (query[m]) if m′ is not a call site

φr
(entryq,exitq)

(query[m]) if call(m′)=q

15. if (new = >) then return( false )
16. else
17. query[m′]← query[m′] t new;
18. if query[m′] changed then add m′ to worklist;
19. endif;
20. endfor;
21. endwhile;
22. return(true);
end

Fig. 5. Generic demand-driven analysis procedure.

each step a node n is removed from the work list, and the query 〈query[n], n〉
is translated according to the propagation rule that applies to node n. The new
queries resulting from this translation are merged with the previous queries at the
respective nodes. A node n from a newly generated query is added to the work list
unless the newly generated query was previously raised at node n (lines 9,10,17, and
18). Note that procedure Query terminates immediately after a query evaluates to
false. If a query evaluates to false, it is not necessary to evaluate all remaining
queries in the work list, since the overall answer to the input query must also be
false. Thus, procedure Query can terminate early, and the remaining contents of
the work list are simply discarded. Otherwise, procedure Query terminates with
the answer true when the work list is exhausted and all queries have evaluated to
true.

To determine the complexity of the query algorithm the number of join operations
and reverse function applications is considered. A join/reverse function application
is performed at a node n in lines 9, 14, and 17 only if the query at a successor of n
has changed (or at the entry node of a procedure p if n is a call site of p), which
can happen at most O(height(L)) times. Hence, procedure Query requires in the
worst case O(height(L)×|N |) join operations and/or reverse function applications.
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Procedure Computeφr(p, y)
input: lattice element y ∈ L, procedure p and table M that is initialized with

element ⊥ prior to the first invocation of Computeφr

output: the reverse summary function value φr
(entryp,exitp)

(y)

begin
1. if M [exitp, y] = y then /* result previously computed */
2. return(M [entryp, y]);
3 worklist ← {(exitp, y)}; M [exitp, y] = y;
4. while worklist 6= ∅ do
5. remove a pair (n, x) from worklist and let z ←M [n, x];
6. case n is a call site and call(n) = q:
7. if M [exitq, z] = z then
8. for each m ∈ pred(n) do
9. Propagate(m, x,M [entryq, z]);
10. else /* trigger computation of φr

(entryq,exitq)
(z) */

11. M [exitq, z]← z and add (exitq , z) to worklist;
12. case n = entryq for some procedure q:

/* Propagate z to call sites if needed */
13. for each call site m such that call(m) = q and M [m,x′] = x for some x′ do
14. for each m′ ∈ pred(m) do Propagate(m′, x′, z);
15. otherwise:

/* n is not a call site and not an entry node */
16. for each m ∈ pred(n) do Propagate(m, x, f rn (z));
17. endwhile;
18. return(M [entryp, y]);
end

/* propagate new to M [n, y] */
Procedure Propagate(n, y, new)
input: a node n, lattice elements y and new
begin
1. M [n, y]←M [n, y] t new;
2. if M [n, y] changed then add (n, y) to worklist;
end

Fig. 6. Procedure Computeφr to compute reverse summary functions.

If the program under analysis consists of only a single procedure (i.e., intra-
procedural analysis), procedure Query provides a complete implementation of the
demand-driven data flow analysis. The interprocedural case requires an efficient
algorithm to compute the reverse summary functions. The algorithm to compute
reverse summary function values is obtained as a variation of the Sharir and Pnueli
work list algorithm for computing the forward summary functions in the exhaustive
framework presented in Section 2. However, here summary functions are computed
in the reverse direction. Assuming that (1) the asymptotic cost of a meet and a
join are same and that (2) the asymptotic cost of flow function application and
of reverse flow function application are the same, the algorithm presented in this
section has the same worst-case complexity as Sharir and Pnueli’s algorithm for the
original summary functions.

Figure 6 shows procedure Computeφr which is invoked with a pair (p, y) specifying
a procedure p and a lattice element y. Procedure Computeφr returns the summary
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function value φr(entryp,exitp)(y) after evaluating the necessary subsystem of the
reverse equation system (4). Individual function values are stored in a table M :
N×L 7→ L such that M [n, y] = φr(n,exitq)(y), where q is the procedure that contains
node n. The table is initialized with the value ⊥, and its contents are assumed to
be preserved between subsequent calls to procedure Computeφr. Thus, results of
previous calls are reused, and the table is incrementally computed during a sequence
of calls. After calling Computeφr with a pair (p, y), the work list is initialized with
the pair (exitp, y). The contents of the work list indicate the table entries whose
values have changed but whose new values have not yet been propagated. During
each step a pair is removed from the work list; its new value is determined, and all
other entries whose values might have changed as a result are added to the work
list.

Consider the cost of k calls to Computeφr. Storing the table M requires space
for |N | × |L| lattice elements. To determine the time complexity consider the
number of join operations (in procedure Propagate) and of reverse flow function
applications (at the call to Propagate in line 16). The loop in lines 4–17 is executed
O(height(L)× |L| × |N |) times, which is the maximal number of times the lattice
value of a table entry can be raised, i.e., the maximal number of additions to
the work list. In the worst case, the currently inspected node n is a procedure
entry node. Processing a procedure entry node results in calls to Propagate for
each predecessor of a call site for that procedure. Thus, the k calls to Computeφr

require in the worst case O(max(k,MaxCall × height(L)× |L| × |N |)) join and/or
reverse function applications, where MaxCall is the maximal number of call sites
calling a single procedure. Procedure Computeφr requires O(|N | × |L|) space to
store lattice elements.

3.6 Caching

Processing a sequence of k queries requires k separate invocations of procedure
Query, which may result in the repeated evaluations of the same intermediate
queries. Repeated query evaluation can be avoided by maintaining a cache. En-
hancing procedure Query to include caching requires only minor extensions. The
cache consists of entries cache[n, y] for each node n and lattice element y. Each
entry contains the previous result, if any, of evaluating the query 〈y, n〉. The query
propagation is modified such that each time before a newly generated query q is
added to the work list, the cache is consulted. The query q is added to the work
list only if the answer for q is not found in the cache.

Entries are added to the cache after the termination of a query evaluation in
a single pass over the visited nodes. The inclusion of caching has the effect of
incrementally building the data flow solution during a sequence of calls to Query.
Caching does not increase the asymptotic time or space complexity of procedure
Query. Storing the cache requires O(|N |×|L|) space, and updating the cache can at
most double the amount of work performed during the query evaluation. Moreover,
the asymptotic worst-case complexity of k invocations of Query, if caching is used,
is the same for any k distinct queries.
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3.7 Procedures with Parameters

This section extends the query propagation rules to handle procedures with pa-
rameters and local variables. For simplicity, we consider programs with global and
local scoping. Hence, the address space Addr(p) of a procedure p is defined as

Addr(p) = GV ∪ LV(p) ∪ PV(p),

where GV is the set of global variables; LV(p) is the set of variables local to proce-
dure p; and PV(p) is the set of formal parameters of p. The parameters of p may
be either value or reference parameters.

To describe the data flow effects of parameter passing we define a binding function
bs for each call site s. The binding function bs models the binding of a set of
variables V from the calling procedure (caller) to the set of variables bs(V ) in the
called procedure (callee) according to the parameters passed at s. The binding
function bs also expresses the implicit binding of every global variable to itself:

∀v ∈ GV : bs({v}) = {v}

Except for variables in GV, the only variables from the address space of a caller
that are accessible in a callee are the variables that are explicitly passed as reference
parameters. Let ap be an actual parameter that is bound at call site s to the formal
reference parameter fp in the called procedure q:

bs({ap}) = {fp}

Local variables in the caller that are passed by value or that are passed as part
of an expression to a value parameter are not bound to any variable in the callee.
Hence bs({v}) = ∅ if v 6∈ GV and if v is not passed to a reference parameter at s.
The bindings for a set V of variables are determined as the union of the bindings
for each variable in V :

bs(V ) = {v ∈ V | bs({v})}

In addition we need to describe the data flow effects on global and local variables
that result after returning from a called procedure. These data flow effects have
previously been described by specific return functions [Knoop and Steffen 1992].
Similarly, we define for our analysis the reverse binding b−1

s that binds variables
from the called procedure to the corresponding variables in the calling procedure.
Specifically, let fp be a formal reference parameter of the callee that was passed at
call site s as the actual parameter ap from the address space of the caller. Then we
have

b−1
s ({fp}) = {ap}.

For a global variable v ∈ GV we have

b−1
s ({v}) = {v}.

Finally, for variables v local to the callee, including formal value parameters we
define

b−1
s ({v}) = ∅.
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procedure main procedure p(f)
begin begin

call(p(x)); if (cond) then
end f:=5;

else
read(f);
call p(f);
write(f);

endif;
end

Fig. 7. A recursive procedure with parameters.

Binding functions are defined over sets of variables. However, data flow analysis
requires the binding of lattice elements at call sites. Thus, for each data flow prob-
lem it is assumed that two functions b̃s and b̃−1

s are defined to be the corresponding
counterparts of bs and b−1

s that are applicable to the lattice elements in the data
flow problem.

Example. We illustrate the use of the binding functions in CCP for the program
fragment shown in Figure 7. Consider the query that raises the question as to
whether variable f is a copy constant at the write statement. How this query is
propagated across the recursive call depends upon whether f is a value parameter
and thus local to the caller or whether it is a reference parameter for which a binding
relation to a variable in the called procedure exists.

First assume that f is a value parameter and thus that bs({f}) = ∅, expressing
that no summary information for the callee is needed and that the query can simply
be copied across the call. At the read statement the query can then be falsified,
establishing that f is not a copy constant.

Now assume that f is a reference parameter. In this case bs({fcaller)} = {fcallee}.
Note that this equation refers to two distinct instances of variable f as noted by
the subscripts. This binding relation indicates that summary information concern-
ing the formal parameter f is required. Thus, a procedure summary computation
is triggered to determine the procedure entry query that results when querying
whether the formal f is a copy constant on procedure exit. The summary compu-
tation determines along one branch of the if statement that the query resolves to
true with the value 5. This value will eventually stabilize at the procedure entry
node indicating that the formal parameter f will always have value 5 on procedure
exit independently of the procedure entry value of f . Using this summary informa-
tion at the recursive call causes the initial query to resolve to true indicating that
every instance of the formal f always has constant value 5 at the write statement.

3.8 Aliasing

The presence of reference parameters causes an additional complication for data
flow analysis by introducing the potential of aliasing. As for standard exhaustive
analysis, ignoring the potential of aliasing may lead to unsafe information during
query propagation.

Two variables x and y are aliases in a procedure p if x and y may refer to the same
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location during some invocation of p. One source of aliasing in a program results
from reference parameters. Reference parameters may introduce aliases through
the binding mechanisms between actual and formal parameters. For example, if
a global variable x is passed to a formal parameter f , then the alias pair (x, f) is
created in the called procedure. Similarly, passing the same variable to two distinct
formal parameters f1 and f2 creates the alias pair (f1, f2) in the called procedure.

Approximate alias information can be expressed in the form of the two summary
relations MayAlias(p) and MustAlias(p) for each procedure p [Cooper 1985]. A pair
(x, y) is contained in MayAlias(p) if x is aliased to y in some invocation of p. A pair
(x, y) is in MustAlias(p) if x is aliased to y in all invocations of p. The computation
of alias relations induced by reference parameters can be modeled as a data flow
problem over a program’s call graph [Cooper 1985]. An exhaustive algorithm for
computing the alias sets iterates over the program’s call graph to compute the
potential alias pairs for all procedures prior to the analysis [Cooper 1985]. However,
the data flow problem to compute the alias sets MayAlias(p) and MustAlias(p) is
a distributive problem with a finite lattice. Thus, the demand-driven analysis
concepts from the previous sections can be employed to compute the alias pairs as
needed during query propagation.

The presence of aliasing is handled in data flow analysis by refining the flow
functions to safely reflect the potential alias relationships. Consider, for example,
how alias information is used to refine CCP analysis. A variable x is considered a
constant at node n if either x or one of x’s must aliases is assigned a constant value.
A potential constant value of variable x is assumed to be destroyed if x or any of x’s
may aliases is assigned a nonconstant expression. For example, consider a variable
v and the refinement of the CCP flow function component fv (i.e., the projection
of the flow function f to the component for v) at an assignment statement w := 0.
Let l be a CCP lattice value, and let lv be the component of l that denotes the
lattice value for variable v:

fv(l) =


0 if (v, w) ∈ MustAlias(p)

lv u 0 if (v, w) ∈ (MayAlias(p)−MustAlias(p))
lv otherwise

The refined reverse flow function for the assignment is defined as

f r([v=const]) =

 ⊥ if (v, w) ∈ MustAlias(p) and const = 0
> if (v, w) ∈ MayAlias(p) and const 6= 0

[v=const] otherwise.

The analysis refinements are also applicable and safe if aliasing results from
sources other than reference parameters. Other sources of aliasing in a program
include pointer variables and array references. For example, the execution of the C
statement a := &b creates the alias pair (∗a, b). Several techniques have been
developed to approximate alias information in programs with pointer variables
[Choi et al. 1993; Emami et al. 1994; Landi and Ryder 1992]. Aliasing introduced
by pointer variables is more complicated than reference parameter aliasing, since
the alias relationships change intraprocedurally, and aliases may be introduced by
arbitrary levels of indirection. As long as approximate but safe alias information
for pointer variables is available, the information can be used to refine the analysis
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(−−| , −−| , −−| )

(−−| , 1, 4)(−−| , 2, 3)

a := b +c

Fig. 8. Expression node in constant propagation.

as described in this section.

4. A FRAMEWORK VARIATION FOR NONDISTRIBUTIVE PROBLEMS

The demand-driven framework from the previous section assumes that data flow
problems are distributive. The distributivity of the flow functions is necessary to
ensure that the query propagation rules yield as precise information as the original
exhaustive analysis does. This section considers demand-driven analysis for data
flow problems with nondistributive flow functions. First, we show that the demand-
driven framework is approximate if applied to a nondistributive data flow problem.
Section 4.2 outlines a two-phase framework variation that provides precise query
responses, even for nondistributive problems.

4.1 Approximate Demand-Driven Analysis

If applied to distributive data flow problems, the query propagation rules are pre-
cise; given a data flow query q = 〈y, n〉, q evaluates to true if and only if element y
is part of the solution at node n. In the presence of nondistributive flow functions
information may be lost during query propagation. If a flow function f is monotone
but not distributive, the relation between f and its reverse f r is weaker than in
the distributive case.

Recall that the distributivity of the flow functions establishes a relationship (1)
between a function and its reverse that is expressed by the following two inequalities:

(f r · f)(x) v x and (f · f r)(x) w x

The relationship can equivalently be expressed for lattice elements x and y as
[Cousot 1981; Hughes and Launchbury 1992]:

y v f(x)⇐⇒ x w f r(y)

If the function f is not distributive and merely monotone, the preceding relationship
between f and its reverse may no longer hold. Specifically, if f is monotone and
not distributive, only the following can be established:

(f r · f)(x) v x

And equivalently only one direction of the above equivalence holds:

y v f(x) =⇒ x w f r(y)

Example. We illustrate the loss of precision that results from nondistributive
flow functions using the example of constant propagation for the expression node

ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.



1010 · Evelyn Duesterwald et al.

shown in Figure 8. Unlike CCP, regular constant propagation (CP) includes the
evaluation of arithmetic expressions. Consider the flow function for the node in
Figure 8. Each lattice element is a triple (xa, xb, xc) with one component for each
of the three variables a, b, and c. The flow function fcp for the assignment is of the
form:

fcp(xa, xb, xc) =
{

(xb + xc, xb, xc) if both xb and xc denote constant values
(⊥, xb, xc) otherwise

We first show that fcp is not distributive, and then we show that relationship (1)
does not hold for fcp and its reverse f rcp.

Claim 1: Function fcp is Not Distributive. Consider the situation where el-
ement (⊥, 2, 3) is propagated to the node along the left incoming branch and
element (⊥, 1, 4) is propagated along the right incoming branch. Applying the
flow function fcp to each incoming value in isolation yields fcp(⊥, 2, 3, ) = (5, 2, 3)
and fcp(⊥, 1, 4, ) = (5, 1, 4). Thus, with respect to each branch, the lattice value
on exit of the node indicates correctly that variable a has the constant value 5:
fcp(⊥, 2, 3, ) u fcp(⊥, 1, 4, ) = (5,⊥,⊥). However, if the information that reaches
the node along the two incoming paths is merged prior to applying the flow func-
tion, it will not be discovered that variable a has value 5: fcp((⊥, 2, 3, )u (⊥, 1, 4, ))
= fcp(⊥,⊥,⊥) = (⊥,⊥,⊥). Hence, fcp is not distributive.

Claim 2: Relationship (1) is Violated for fcp and Its Reverse f−rcp . Consider the
reverse function f rcp, and assume it is applied to the lattice element [a = 5] that
denotes that variable a has value 5. By definition f rcp([a = 5]) is the meet over all
elements (xa, xb, xc) such that fcp(xa, xb, xc) w [a = 5]. There are infinitely many
values for variables b and c that would result in a constant value 5 for variable
a when executing the assignment a := b + c. Since the meet over this infinite
set of possible constant values is bottom, it follows that f rcp([a = 5]) = (⊥,⊥,⊥),
incorrectly suggesting that the value (⊥,⊥,⊥) on node entry is sufficient for a to
have value 5 on node exit. Thus, the relationship fcp · f rcp(x) w x does not hold for
the nondistributive function fcp.

As a result of the weaker relationship between a nondistributive flow function
and its reverse, the query propagation rules no longer provide equivalent transla-
tions. One direction of the equivalence in the propagation rule definition is violated.
Specifically, consider the propagation rule for translating a query at node n to a
corresponding query at n’s predecessor m assuming n has only a single predecessor.
From the rules in Figure 4 we obtain for a distributive function fm:

〈y, n〉 ⇐⇒ 〈f rm(y),m〉

If fm is not distributive the implication

y v f(x) ⇐= x w f r(y)

may not hold. As a result of this, the implication “⇐=” in the preceding query
propagation rule may not hold, and only the following implication remains:

〈y, n〉 =⇒ 〈f rm(y),m〉
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With only an implication in the query translation the rules no longer provide reliable
answers. The preceding implication still ensures that if query q = 〈y, n〉 evaluates
to false, then it must be that y 6v X(n). However, if the propagation rules yield a
true answer nothing can be said. If appropriate worst-case assumptions are made
for true responses in the query propagation, the query algorithm may still be used
to provide approximate information in the presence of nondistributive functions.

4.2 Framework Variation

We extend demand-driven analysis algorithms to nondistributive problems by de-
parting from the concepts of precise analysis reversal. The loss of information
that results from reversing a nondistributive function f occurs if the inequality
f · f r(x) w x is violated. In this case a query q cannot be safely propagated across
the node because it is no longer possible to translate q into an equivalent set of new
queries at preceding nodes. However, it may be possible to “guess” the new queries
that would be sufficient to provide the answer for q. The new queries must be cho-
sen such that, given their answers, the answer for q can be found. However, unlike
the distributive case, the relationship between the answers for the new queries and
the answer for q is left unspecified. To illustrate this strategy consider again the
assignment statement a := b + c in constant propagation. Assume that the query
q = 〈[a = 0], n〉 is raised on exit of this statement. The answer for q directly results
once it has been determined whether the two operands b and c are constants. Thus,
the new queries generated at predecessors m of n are of the form q′ = 〈[b, c],m〉.
Note that these new queries are merely approximate, since no specific constant val-
ues for variables b and c are established. Thus, the lattice element [b, c] expresses
that variables b and c have constant but unknown values. After all guessed queries
for constants have been identified during the backward propagation, an additional
analysis phase is performed in a forward direction to determine the actual constant
values for the identified queries. Thus, if b and c are indeed constants, the second
phase provides their values, and the original query q can be resolved.

The complete two-phase analysis variation operates as follows. The first phase,
called the marking phase, is a backward analysis during which all guessed queries
are marked. The guessed queries are marked by identifying the portion of the
solution at each node that would be sufficient to answer the current query. The
marked portion of the solution is then formulated as a corresponding query for the
predecessor node. In the constant propagation example the marking phase identifies
at each node the variables for which a solution would be needed in order to answer
the input query. The marked queries describe the set of data flow queries whose
answers provide an answer for the original input query. If during the marking phase
a procedure call is encountered, marking within the called procedure is performed
by a summary computation in the same style as described for the distributive case
(i.e., by means of explicitly computed summary functions).

The second phase is essentially a partial version of the original exhaustive for-
ward analysis that is a result of performing the forward analysis on only the solution
elements marked during the first marking phase. In the constant propagation exam-
ple, the second phase performs a limited version of traditional constant propagation
analysis. However, unlike exhaustive constant propagation analysis that starts at
program entry and propagates all constants throughout the entire program, the sec-
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ond phase only propagates the subset of the constants needed to resolve previously
guessed queries by considering only the marked portion of the program.

The preceding strategy of using a preparatory backward analysis in order to
reduce the analysis effort of the original forward analysis is not limited to the
problem of constant propagation. The preparatory marking phase can be thought
of as a filter that is applied in order to identify some portions of the solution that
are guaranteed to be irrelevant and therefore can be ignored during the actual
analysis (second phase). However, in general, it cannot be guaranteed that the
preparatory phase actually leads to a reduction in the second phase. In the worst
case, the entire program is marked during the first phase, in which case the complete
exhaustive original analysis would be performed during the second phase. Thus, if
the data flow problem is distributive, the demand-driven approach of choice is the
reversal-based analysis framework developed in Section 3.

5. APPLICATIONS

We presented a framework for demand-driven data flow analysis that includes a
generic demand-driven algorithm. It remains to be shown that demand-driven
algorithms have efficient implementations in practice. Since the generic algorithm is
expressed in general terms, a straightforward implementation may not be the most
efficient one for a given data flow problem. This section considers two analysis
problems—namely, reaching-definition analysis and copy constant propagation—
and shows that it is possible to efficiently implement the generic algorithm by
exploiting the specific properties of these data flow problems.

5.1 Demand-Driven Reaching-Definition Analysis

Reaching-definition analysis is one of the classical bit vector problems. The alge-
braically simple definition of bit vector problems allows for efficient implementa-
tions of the lattice elements and lattice operations using Boolean operations on bit
vectors.

A definition of a variable v is any statement that assigns a value to a. A definition
d is a reaching-definition at a program point n if there exists a valid execution path
from definition d to n along which the defined variable is not redefined. The lattice
elements in reaching-definition analysis are subsets of the set Def of definitions in
the program, and the meet operator is set union (∪). We use Def (v) to denote the
definitions of variable v.

A specialized instance of the general framework for computing reaching-definit-
ions is obtained by specializing the individual components of the framework: (1)
the query definition, (2) the query propagation rules, and (3) the generic analysis
algorithm. The specialization presented here assumes C-style programs with local
and global scoping and procedures with value parameters. Extensions for handling
reference parameters are straightforward and based upon the handling of procedure
parameters as described in Section 3.7.

5.2 Specialized Queries and Propagation Rules

The generic framework from Section 3 assumes queries in a true/false format. While
it is generally possible to gather reaching-definition information using true/false
queries only, it may not be the most efficient way. Consider, for example, the
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For each procedure p:

{〈v, entryp〉} =

 {true} if b−1
m (v) = ∅⋃

call(m)=p

〈b−1
m (v), m〉 otherwise

For a nonentry node n that is not a call site:

{〈v, n〉} =
⋃

m∈pred(n)

{
{〈v, m〉} if Presn(v) = true

{true } otherwise

}
{

Action:

Solution = Solution ∪Defm(v)

}

(a)

Pres r
(exitp,exitp)

(v) = true

Pres r
(n,exitp)

(v) =∨
m∈succ(n)

{
Pres r

(entryq,exitq)
(bm(v)) ∧ Pres r

(m,exitp)
(v) if m ∈ call(q)

Presm(v) ∧ Pres r
(m,exitp)

(v) otherwise

}

{Action: if Pres r
(m,exitp)

(v) = true then Def rp (v) = Def rp (v) ∪Defm(v)}

(b)

Fig. 9. (a) Specialized propagation rules and (b) summary computation for reaching-definitions.

problem of determining the set of definitions that reach a selected variable at a
selected point. Using true/false queries, a separate query would have to be raised
for each definition of the selected variable. The propagation of multiple queries for
definitions of the same variables can easily be combined and resolved during a single
propagation. To accommodate such a combined query propagation, we consider a
specialized format for reaching-definition queries of the form q = 〈v, n〉 asking for
all reaching-definitions of variable v that reach node n.

Adjusting the query propagation rules to resolve the specialized reaching-definit-
ions queries results in a number of simplifications. Unlike the general case, the
reverse flow functions for reaching-definitions can be determined statically based
on locally determined information about the definitions contained at each node.
This information is expressed in two variables Presn(v) and Defn(v)

—Presn(v) = true if the execution of node n preserves the value of variable v, i.e,
if every definition of v that reaches the entry to node n also reaches the exit of
node n.

—Defn(v) is the set of definitions of variable v that are generated when executing
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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node n. Note that unless node n is a call site, Defn(v) is a singleton.

Figure 9(a) shows the resulting propagation rules. Note that the specialized query
format 〈v, n〉 describes a set of queries and therefore no longer represents a single
truth value. To accommodate the new format the propagation rules in Figure 9 are
displayed using set notation. During the propagation of a query 〈v, n〉 all definitions
that are encountered are collected in the solution set.

To determine Presn(v) and Defn(v) if node n contains a call site we define the
specialized instances of the procedure summary functions. Corresponding to the
general summary function φr(entryp,exitp) from Section 3, a Boolean summary func-
tion Pres r(entryp,exitp) is defined for each procedure p as shown in Figure 9(b) such
that

—Pres r(n,exitp)(v) = true if there exists a path in procedure p from node n to pro-
cedure exit that preserves the definitions of variable v, i.e., a path that does not
contain a definition of variable v.

While computing these reverse summary functions, the definitions that are encoun-
tered and that reach procedure exit are collected in a set Def rp (v) as stated in the
equation system in Figure 9(b). Thus, Def rp (v) contains the definitions of variable
v that are generated along some path from the entry to the exit of procedure p
without being subsequently redefined. Note that Def rp (v) not only contains the
definitions directly contained in p but may also contain definitions that are gener-
ated by procedures subsequently called from p. Based on the summary functions,
the query propagation rules can be extended to include the propagation across
a call site s ∈ call(p) by setting the variables Press(v) and Defs(v) as follows:
Press(v) = Pres r(entryp,exitp)(v) and Defs(v) = Def rp (v). To illustrate the definit-
ions of these variables, we show in Table II the definition sets for the program
example from Figure 1.

5.3 Demand-Driven Algorithm

The instance of the generic demand-driven procedures Query and Computeφr for
reaching-definition analysis can be derived from the specialized propagation rules
in a straightforward way. The query algorithm takes as its input a query of the
form 〈v, n〉 for a variable v and a node n and returns the set of definitions of v that
interprocedurally reach node n.

The query format limits the number of queries that may be raised to one query
per variable at each node. The maximal number of queries that may be generated
when processing an input query q = 〈v, n〉 depends upon whether v is a local
variable, a global variable, or a formal parameter. In the worst case, v is a formal
parameter such that the initial query may change when propagating it through
a procedure entry node to call sites. The initial query can generate additional
queries with respect to all other variables. Hence, up to MaxVar × |N | queries
may be generated, where MaxVar is the maximal size of the address space in any
procedure and where each generation of a query results in the inspection of at
most MaxCall other queries. The costs of propagating k queries, excluding the
cost of computing summary information, is therefore O(max(k,MaxVar × |N | ×
MaxCall)). Next, consider the cost of k requests for summary computations. Unlike
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Table I. Data Flow Variables for Reaching-Definitions in Figure 1

Presn(v) Defn(v)

Proc. Node n a b c a b c

main 2 false false false a11 b12 c12

3 false true true a3 - -
4 true false true - b4 -
5 true true false - - c5
6 false false false a11 b12 c12

7 false true true a7 - -
8 true true true - - -

p 10 true true true - - -
11 false false true a11 b11 -
12 true true false - - c12

13 true true true - - -

Table II. Summary Computation for Procedure p in Figure 1

Pres r
(n,13)

(v) Def rp (v)

Node n a b c a b c

10 false false false a11 b11 c12

11 false false false
12 true true false
13 true true true

the general case in which reverse summary computations may be triggered for each
lattice element, the specialized summary computation from Figure 9 only considers
summary computation with respect to individual variables. Thus, at most |GV | ×
|N | entries may be generated, and each entry may require the inspection of at most
MaxCall other entries. The overall cost of k summary requests is O(max(k, |GV | ×
|N |)×MaxCall).4 It follows that the total worst-case time for processing k queries
is O(max(k,MaxVar×MaxCall × |N |)).

5.4 Demand-Driven Copy Constant Propagation

Copy constant propagation (CCP) analysis is more complex than reaching-definition
analysis. Like reaching-definitions, CCP is a distributive problem. However, unlike
reaching-definitions, CCP cannot be broken into a separate analysis for each vari-
able. This property of reaching-definitions analysis, which simplifies the analysis
algorithm, was termed partitionable [Zadeck 1984] or locally separable [Reps et al.
1995].

5.5 Specialized Queries and Propagation Rules

An instance of the demand-driven framework for CCP is obtained by specializing
the three framework components: (1) the query definition, (2) the query propaga-
tion rules, and (3) the generic analysis algorithm.

4In programs that contain reference parameters, summary information is needed for global vari-
ables and formal reference parameters. The asymptotic complexity for k requests changes to
O(max(k, (|GV |+MaxFP )× |N | ×MaxCall)) where MaxFP is the maximal number of formal
parameters in any procedure.
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(i) 〈⊥, n〉 ⇐⇒ true and 〈>, n〉 ⇐⇒ false

(ii) For each procedure p:

〈[v], entryp〉 ⇐⇒

 false if b−1
m (v) = ∅∧

call(m)=p

〈[b−1
m (v)], m〉 otherwise

(iii) For each nonentry node n:

〈[v], n〉 ⇐⇒
∧

m∈pred(n)

{
〈frm([v]), m〉 if m is not a call site

〈φr
(entryq,exitq)

([v]), m〉 if call(m) = q

{Action: Solution = Solution uValn(v) }

(a)

φr
(exitp,exitp)

([v]) = [v]

φr
(n,exitp)

([v]) = t
m∈succ(n)

{
f rm · φr(m,exitp)

([v] ) if m is not a call site

φr
(entryq,exitq)

([v]) · φr
(m,exitp)

([v] ) if call(m) = q

{Action: if φr
(m,exitp)

([v]) 6∈ {⊥,>} then Val rp (v) = Val rp (v) uValm(v)}

(b)

Fig. 10. (a) Specialized propagation rules and (b) reverse summary functions for CCP.

According to the general framework, a query requests a specific lattice element,
i.e., a specific constant value c of a variable v at a node n. For example, the
query q = 〈[v = 0], n〉 raises the question “Is variable v a copy constant at node
n with value 0?” Using this true/false query format, queries with respect to each
constant literal may be necessary to determine whether a variable is a constant.
Generating such a potentially high number of queries is not only costly, it is actually
unnecessary. The propagation of multiple queries with respect to the same variable
that only differ in their constant value is identical except for the response upon
termination. Thus, as in reaching-definition analysis, these queries can be combined
into a single query of the form 〈[v], n〉 = “Is variable v a copy constant at node
n?” As in the example of reaching-definitions, the query propagation is enhanced
with actions to collect information during the query resolution. The information
collected are the actual constant values that are encountered when resolving the
query as stated in the rules in Figure 10(a). Similar to the Defn(v) sets in reaching-
definitions, we define a set Valn(v) that contains the constant value, if any, that v
is assigned locally when executing node n.

The definition of the reverse summary functions for CCP is shown in Figure 10
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Table III. CCP Reverse Flow Functions for Figure 1

Proc. main frn([v]) Proc. p frn([v])

Node n a b c Node n a b c

2 − − − 11 > > [c]
3 ⊥ [b] [c] 12 [a] [b] ⊥
4 [a] [a] [c]
5 [a] [b] [b]
6 − − −
7 > [b] [c]
8 [a] [b] [c]

Table IV. CCP Summary Computation for Procedure p in Figure 1

φ r
(n,13)

([v]) Val rp (v)

Node n a b c a b c

10 > > ⊥ - - 1
11 > > ⊥
12 [a] [b] ⊥
13 [a] [b] [c]

(b). The reverse summary function provides the necessary information to determine
the sets Vals(v) at call sites s ∈ call(p) such that

Vals(v) =
{

Val rp (v) if φ(entryp,exitp)([v]) 6= >
⊥ otherwise.

The reverse flow functions and summary functions are illustrated in Tables III
and IV for the program example from Figure 1.

5.6 Demand-Driven Algorithm for CCP

The CCP instance of the generic query algorithm Query takes as input a query of
the form 〈[v], n〉. The propagation of each query of the form 〈[v], n〉 combines the
propagation of the set of queries (i.e., {〈[v = 0], n〉, 〈[v = 1], n〉, . . . }) by keeping
track of all constant values that are encountered as specified by the propagation
rules from Figure 10. The maximal number of queries that can be generated at each
node is MaxVar. Thus, a total of O(MaxVar× |N |) queries can be generated, each
requiring the inspection of at most MaxCall other nodes. Now consider the cost
of computing the reverse summary functions as defined in Figure 10(b). Summary
table entries are computed only for the base elements and are needed only with
respect to one specific constant value c, since the result for one constant value
implies the results for other values. Thus, at most |GV |×|N | entries are computed.5

Each entry may contain a set of base elements and is therefore of size MaxVar. The
computation of table entries requires in the worst case O(|GV |×MaxVar×|N |) table
updates, and each table update may trigger up to MaxCall other table updates.
Assuming join and reverse function applications are performed pointwise, each join
or function application requires O(|MaxV ar|) time, resulting in the total time of

5In programs that contain reference parameters, summary information is needed for both global
variables and formal reference parameters resulting in O((|GV | + MaxFP) × |N |) entries, where
MaxFP is the maximal number of formal parameters in any procedure.
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entry

exit

entry
1

2

3

4

7

8
exit

5

6
b:=a−c

proc1

call proc2

proc2

entry

proc3

c:=a+b

exitwrite(x)

call proc3
10

11

9

Fig. 11. Query advancing.

O(max(k,MaxCall × |GV | × MaxVar2 × |N |)) for k requests of reverse summary
function evaluations. Thus, the overall time requirements are O(MaxCall× |GV | ×
MaxVar2 × |N |).6

5.7 Optimization

This section describes a simple but effective optimization of the query propagation
algorithm through query advancing. We illustrate query advancing using the ex-
ample of reaching-definitions in Figure 11. The same advancing optimizations may
be used for shortening the propagation paths of CCP queries.

There are two types of opportunities for query advancing:

—Advancing across call: Consider the query for reaching-definitions 〈x, 7〉 request-
ing the reaching-definitions of the global variable x at node 7 in Figure 11. Prop-
agating the query across the call site at node 6 would require the computation
of summary information about the called procedure. However, if it is known
that the called procedure p (and procedures subsequently called from p) does not
contain a node with a definition of variable x (or any of x’s aliases) no summary
computation is necessary, since all definitions of x must be preserved. Thus,
the summary computation can be skipped, and the query 〈x, 7〉 can directly be
forwarded across the procedure call as shown by the dashed arrow.

—Advancing to entry: Consider the propagation of the query 〈x, 5〉 from the entry
of procedure proc2 to the call site in procedure proc1. Based on the propagation
rules from Section 3 the query would be translated into a new query at node 3.
However, if it is known that procedure proc1 (and any procedure subsequently
called from proc1) does not contain a node with a definition of variable x (or any
of x’s aliases), it is not necessary to propagate the new query through procedure
proc1. Instead the query can be directly forwarded to the entry node of proc1 as
shown by the dashed arrow.

The additional information needed for query advancing are the flow-insensitive
procedure summary sets Mod(p) [Cooper and Kennedy 1988]. Mod(p) contains the

6For programs with reference parameters the overall time requirements are O(MaxCall ×
MaxVar3 × |N |).
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variables that may be modified by the execution of procedure p because they are
modified either directly in p or in a procedure subsequently called by p. Cooper
and Kennedy presented a simple iterative work list algorithm that operates on the
program’s call graph to compute the Mod sets [Cooper and Kennedy 1988].

The summary information Mod(p) is called flow-insensitive, since determining
this information does not require flow analysis and the control flow within each
procedure can be ignored. In contrast, the summary information expressed by the
reverse functions φ r is called flow-sensitive, since it does require the control flow
in each procedure to be analyzed.

6. PERFORMANCE EVALUATION

An experimental study was carried out to evaluate the practical benefits of the
demand-driven approach. The study’s primary objective was to compare the per-
formance of demand-driven analysis algorithms with that of standard exhaustive
algorithms. Additional experiments were carried out to evaluate the benefits of
caching. The study examined analyzers for two analysis problems:

(1) interprocedural def-use chains based on reaching-definitions and
(2) interprocedural copy constant propagation as described in Section 5.

Computing def-use chains is a fundamental problem in most compiler optimizations.
A def-use chain connects the definition of a variable with one of the uses of the
defined value. Using reaching-definitions information, def-use chains are computed
by pairing each use of a variable with each of the variable’s definitions that reach the
use. The demand-driven def-use chains analysis is based on the reaching-definitions
analyzer from Section 5.

For each analysis problem, three analyzer versions were implemented:

—a caching version of the demand-driven analysis algorithm,
—a noncaching version of the demand-driven analysis algorithm, and
—an exhaustive analysis algorithm. The exhaustive algorithms for reaching-definit-

ions and copy constant propagation are based on the functional approach to
interprocedural analysis by Sharir and Pnueli [1981]. Since the Sharir/Pnueli
framework also serves as the basis for the demand-driven analysis framework, it
provides a natural exhaustive counterpart to the demand-driven algorithms.

The three algorithms were implemented in C as part of the PDGCC compiler
project at the University of Pittsburgh. The PDGCC system contains a C front
end that provides statement-level control flow graphs. The implemented algorithms
assume programs that are free of pointer-induced aliasing. Pointer references in C
are handled by assuming that the address operator “&” destroys the value of the
variables to which it is applied. Future versions will incorporate separately com-
puted alias information into the analysis as described in Section 3 to safely handle
aliasing without having to make overly conservative worst-case assumptions. An
important aspect of the compiler front end that has direct implications on analy-
sis performance is the treatment of temporary variables. The PDGCC front end
generates single-assignment temporary variables. The use of single-assignment tem-
poraries avoids the creation of artificial data dependencies among statements which
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Table V. The Test Suite

Program Lines Nodes Proc. Calls MaxVar

queens 84 150 4 4 38 (8)

heapsort 99 173 2 1 72 (24)

nsieve 115 192 2 2 40 (18)

cat 240 377 5 4 61 (15)

calendar 352 731 10 14 53 (10)

getopt 395 739 5 6 80 (12)

linpack 564 686 12 30 140 (17)

diff 818 899 12 33 211 (41)

patch 753 1316 14 13 141 (38)

tar 1214 1451 27 68 182 (49)

gzip 1245 2495 37 97 173 (48)

grep 1488 2906 32 72 127 (29)

sort 1528 3554 35 145 151 (19)

dc 1576 3298 67 230 91 (19)

may be beneficial for tasks such as register allocation. However, the generation of
single-assignment temporaries also increases the size of the address space. Single-
assignment temporaries are typically used in a fairly controlled way such that their
uses and definitions are in nearby statements. Thus, temporaries may not actually
require global analysis and could instead be analyzed locally. For example, it may
be possible to determine the def-use chains for a temporary variable immediately
after the temporary has been created. However, if the program changes, the lo-
cality property of references to temporaries may be destroyed, and a subsequent
reanalysis of the program may have to consider temporary variables. In order to
avoid a bias in the experimental results toward a particular strategy for handling
temporary variables, the experiments are conducted in two versions. One version
considers the complete address space in each procedure, including all compiler-
generated temporaries, and the other version considers only source-level variables
in the analysis.

The experiments were run on a SUN SPARCstation 5 with 32MB of RAM. Table
V lists the 14 C programs that were used during the study and shows for each
program the number of code lines, the number of control flow graph nodes, the
number of procedures and call sites, and the maximal number of variables in any
one procedure. Parentheses indicate the number of source-level variables. In the
following tables we use parentheses to indicate the results with respect to the source-
level variable space that excludes compiler-generated temporaries.

Except for the first three, the programs are core routines of Unix utility sources.
All reported analysis times are user CPU times in seconds determined using the
Unix library routine getrusage. The reported analysis times reflect the mean value
over five test runs. If query advancing was enabled in the demand-driven analyzer,
the measured analysis times include the time to compute the Mod sets. All reported
space measurements include only the amount of memory that is allocated for data
flow vectors, cache memory, and other auxiliary structures that are needed for
analysis purposes, such as the storage of the Mod sets if query advancing was
enabled.
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Table VI. Exhaustive Analysis Times for Def-Use Chains

Program Time Tex in sec. Space Sex in Kbytes

queens 0.04 (0.02) 15.348 (13.548)

heapsort 0.09 (0.06) 22.756 (18.604)

nsieve 0.03 (0.04) 20.196 (20.196)

cat 0.20 (0.08) 43.424 (34.376)

calendar 0.17 ( 0.08) 82.164 (64.620)

getopt 0.98 (0.39) 105.372 (78.768)

linpack 0.53 (0.30) 227.312 (171.872)

diff 6.85 (2.26) 311.135 (180.012)

patch 2.05 (0.75) 230.424 (167.256)

tar 4.28 (2.12) 326.072 (220.712)

gzip 1.64 (0.91) 525.136 (405.376)

grep 4.56 (1.36) 437.704 (333.088)

sort 5.91 (1.85) 531.744 (361.720)

dc 1.11 (0.66) 416.508 (337.356)

Table VII. Exhaustive Analysis Times for Copy Constant Propagation (CCP)

Program Time Tex in Sec Space Sex in Kbytes

queens 0.10 (0.04) 145.324 (41.068)

heapsort 0.71 (0.10) 382.340 (69.220)

nsieve 0.33 (0.18) 282.756 (125.780)

cat 0.25 (0.10) 334.800 (110.400)

calendar 0.26 (0.09) 463.432 (119.144)

getopt 2.44 (0.71) 2,003.272 (338.648)

linpack 2.80 (0.61) 3,556.032 (469.520)

diff 3.88 (0.99) 5,344.124 (1,342.140)

patch 93.53 (51.96) 24,459.728 (7,691.752)

tar 13.44 (6.91) 9,518.464 (4,813.808)

gzip 62.16 (31.55) 49,777.040 (21,696.240)

grep 3.45 (1.52) 4,277.056 (1,679.680)

sort 19.93 (7.20) 12,541.632 (2,854.096)

dc 14.35 (9.69) 10,296.716 (3,673.300)

6.1 Experiment 1: Demand-Driven Versus Exhaustive Analysis

The first experiment compares the performance of the exhaustive analyzers with
the performance of the caching demand-driven analyzers. The exhaustive analysis
time Tex and space consumption Sex for each program are listed in Table VI for
def-use chains and in Table VII for CCP. The caching demand-driven analyzers for
both def-use chains and CCP analysis were executed with query advancing for a
set of queries that contains one query for each use of a variable. Thus, the query
responses of the def-use chain analyzer provide the set of all interprocedural def-
use chains in the programs, and the responses of the CCP analyzer determine copy
constant information at every use of a variable. The queries were generated in
random order over the program.

The demand-driven analysis time T opt
cache accumulated over all queries is shown in

Table VIII for def-use chains and in Table IX for CCP analysis. The tables show the
accumulated demand-driven analysis time and space (T optcache and Soptcache). Tables
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Table VIII. Demand-Driven Versus Exhaustive Analysis with Caching for Def-Use Chains

Program Time (secs) Space Cache Fill Speedup Space

T opt
cache

S opt
cache

% Tex
T
opt
cache

S
opt
cache

×100

Sex

queens 0.05 (0.04) 15.492 17 (41) 0.8 (0.5) 100.9

heapsort 0.12 (0.10) 22.436 25 (49) 0.75 (0.6) 98.6

nsieve 0.05 (0.04) 21.152 17 (28) 0.6 (1.0) 104.7

cat 0.09 (0.07) 41.924 16 (35) 2.2 (1.1) 96.5

calendar 0.08 (0.03) 69.900 7 (19) 2.1 (2.6) 85.1

getopt 0.32 (0.28) 99.988 16 (44) 3.1 (1.3) 94.9

linpack 0.49 (0.33) 222.716 13 (51) 1.1 (0.9) 97.9

diff 0.60 (0.48) 249.712 7 (18) 11.4 (4.7) 80.3

patch 1.01 (0.93) 201.884 19 (31) 2.0 (0.8) 87.6

tar 1.29 (1.20) 266.684 17 (23) 3.3 (1.7) 81.8

gzip 1.82 (1.62) 419.292 15 (20) 0.9 (0.5) 79.8

grep 0.84 (0.67) 365.152 12 (21) 5.4 (1.7) 83.4

sort 1.03 (0.94) 443.880 13 (35) 5.7 (1.9) 83.5

dc 0.71 (0.61) 373.460 9 (14) 1.6 (1.1) 89.7

Table IX. Demand-Driven Versus Exhaustive Analysis with Caching for CCP

Program Time (secs) Space Cache Fill Speedup Space

T opt
cache

S opt
cache

% Tex
T
opt
cache

S
opt
cache

×100

Sex

queens 0.07 (0.03) 92.904 12 (43) 1.4 (1.3) 63.9

heapsort 0.18 (0.13) 238.672 18 (54) 3.9 (0.7) 62.4

nsieve 0.08 (0.06) 101.672 15 (37) 4.1 (3.0) 35.9

cat 0.11 (0.09) 192.308 10 (28) 2.2 (1.1) 57.4

calendar 0.15 (0.04) 324.276 4 (16) 1.7 (2.2) 69.9

getopt 0.80 (0.29) 1,608.344 4 (25) 3.0 (2.4) 80.2

linpack 0.80 (0.47) 1,577.688 6 (50) 3.5 (1.2) 44.3

diff 1.03 (0.62) 3,108.972 4 (17) 3.7 (1.5) 58.1

patch 2.11 (1.16) 4,206.108 5 (12) 44.3 (44.7) 17.1

tar 1.89 (1.16) 4,180.120 8 (13) 7.1 (5.9) 43.9

gzip 4.97 (2.83) 9,333.080 4 (7) 12.5 (11.1) 18.7

grep 1.21 (0.78) 2,483.448 6 (16) 2.8 (1.9) 58.0

sort 1.45 (0.82) 3,252.552 5 (21) 13.7 (8.7) 25.9

dc 1.58 (0.74) 2,944.576 5 (12) 9.0 (13.1) 128.5
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VIII and IX also show the cache fill, which is the percentage of the exhaustive
solution that has been accumulated in the cache at the end of the demand-driven
analysis. Thus, the cache fill indicates the portion of the exhaustive solution that
is actually needed to answer all queries. The cache fill values show that actually
only a small portion of the exhaustive solution is relevant. The remaining portion of
the solution consists of useless reaching-definitions or copy constant information for
variables that are no longer live in the current procedure. Demand-driven analysis
naturally suppresses the computation of the useless information of dead variables,
since this information is not queried.7

For the complete variable space including temporaries, the relevant portion ranges
from 7% to only 25%. As expected, when temporaries are excluded, the relevant
portion is higher, ranging from 14% to 51%. Temporary variables are likely to gen-
erate large portions of unneeded information, since temporary variables are usually
defined and used at nearby points and are dead in the remaining portion of the
containing procedure. However, Tables VIII and IX show that even after excluding
temporaries from the analysis, on an average more than half of the solution is not
needed.

Tables VIII and IX also display the speedups (Tex/T
opt
cache) of the demand-driven

analyzer with caching over the exhaustive analyzer. The demand-driven analyzer
computes def-use chains faster than the exhaustive analyzer by factors ranging from
1.1 up to 11.4 in 10 out of 14 test programs. In CCP, the demand-driven analysis
outperforms the exhaustive analysis in all programs with speedup factors ranging
from 1.4 up to 44.3. The exclusion of temporaries causes a larger portion of the
exhaustive solution to be computed (i.e., a higher cache fill) and therefore results
in slightly lower speedups.

Tables VIII and IX also show the space savings of the demand-driven analyzer
as a percentage of the exhaustive space. The worst-case space requirements of
the demand-driven analysis are higher than for standard exhaustive analysis by
a small constant amount, since in addition to data flow solutions a “visited” flag
needs to be stored at every node in the graph. However, the tables show that in
practice demand-driven analysis requires less space in almost all programs. The
lower space requirements are expected, since demand-driven analysis computes less
information than exhaustive analysis. The space savings are primarily due to the
fact that demand-driven analysis permits the suppression of unnecessary procedure
summary computations.

6.2 Experiment 2: Noncaching Versus Exhaustive

A second experiment was conducted to determine the effect of caching on the per-
formance of the demand-driven analyzers. The noncaching demand-driven analysis

7Note that the same redundancies in the exhaustive solution would result if, instead of reaching-
definition analysis, the directional dual live-use analysis were used to compute the def-use chains.
In exhaustive live-use analysis, the uses of variables may be propagated past the points where the
respective variable is live. Avoiding the propagation of live-use information through the program

portion where the respective variables are dead would require dynamically changing the bit vector
sizes during the analysis each time a variable becomes dead. The overhead of changing bit vector
sizes is likely to quickly outweigh the savings that may result from avoiding the useless information
propagation.
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Table X. The Benefits of Caching for Def-Use Chain Analysis

Noncaching Demand-Driven Analysis Caching vs. Noncaching

Program Time (secs) Space Speedup Space %

T opt S opt Topt

T
opt
cache

(S
opt
cache

×100)

Sopt

queens 0.06 (0.02) 14.612 1.2 (0.5) 106.0

vheapsort 0.17 (0.15) 20.196 1.4 (1.5) 111.0

nsieve 0.10 (0.05) 19.304 2.0 (1.2) 109.6

cat 0.11 (0.10) 37.060 1.2 (1.4) 113.1

calendar 0.07 (0.05) 64.684 0.9 (1.6) 108.1

getopt 0.64 (0.60) 82.468 2.0 (2.1) 121.2

linpack 0.86 (0.73) 203.756 1.8 (2.2) 109.3

diff 1.09 (0.90) 184.856 1.8 (1.8) 135.1

patch 1.58 (1.43) 159.548 1.6 (1.5) 126.5

tar 1.87 (1.75) 200.204 1.5 (1.4) 133.2

gzip 2.84 (2.52) 336.348 1.5 (1.5) 124.6

grep 1.16 (1.05) 289.552 1.4 (1.3) 126.1

sort 1.27 (1.08) 352.600 1.2 (1.1) 125.9

dc 1.04 (0.80) 326.940 1.5 (1.3) 114.2

(with query advancing) was executed with the same set of queries as in the first
experiment. The accumulated analysis times T opt and space consumption S opt are
shown in Table X for def-use chains and in Table XI for CCP. The tables show
the accumulated analysis time T opt and the amount of space used (Sopt) for the
noncaching analyzers. Tables X and XI also show the speedup (T opt/T optcache) of
the demand-driven analyzer with caching over the demand-driven analyzer without
caching and the space usage of the caching demand-driven analyzer as a percentage
of the space used by the non-caching analyzer. Except for one of the short pro-
grams (queens) in the def-use chain analyzer, adding the caching capability resulted
in moderate speedup factors of up to 2.2. The analysis of program queens resulted
in too few cache hits, causing the savings to be less than the overhead of the cache
management.

6.3 Experimentation Summary

The experimental results demonstrate that demand-driven analysis performs well in
practice. The first experiment indicated that demand-driven analysis computes def-
use chains and copy constant information faster and uses less space than exhaustive
analysis in the majority of cases. Importantly, the speedups and space savings of the
demand-driven analysis over the exhaustive analysis result even when def-use chains
or copy constant information are computed over the entire program. Naturally, the
benefits of using a demand-driven approach would be even higher if the amount
of requested information were lower. The second experiment showed that, except
for very short programs, demand-driven analysis benefits from caching. Again, the
reported benefits result if demand-driven analysis is used to service demands that
ACM Transactions on Programming Languages and Systems, Vol. 19, No. 6, November 1997.
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Table XI. The Benefits of Caching for CCP

Noncaching Demand-Driven Analysis Caching vs. Noncaching

Program Time (secs) Space (Kbytes) Speedup Space %

T opt S opt Topt

T
opt
cache

(S
opt
cache

×100)

Sopt

queens 0.09 (0.03) 87.448 1.2 (1.0) 106.2

heapsort 0.20 (0.14) 232.336 1.1 (1.1) 102.7

nsieve 0.12 (0.09) 88.680 1.5 (1.5) 114.6

cat 0.17 (0.09) 161.396 1.5 (1.0) 119.1

calendar 0.14 (0.08) 289.360 0.9 (2.0) 112.0

getopt 1.10 (0.55) 1,438.120 1.3 (1.8) 111.8

linpack 1.09 (0.69) 1,418.448 1.3 (1.4) 111.2

diff 1.39 (0.94) 2,360.244 1.3 (1.5) 131.7

patch 2.55 (1.55) 3,887.372 1.2 (1.3) 108.1

tar 2.70 (1.57) 3,734.432 1.4 (1.3) 111.9

gzip 5.14 (3.04) 8,815.544 1.0 (1.1) 105.8

grep 1.52 (1.08) 1,899.440 1.2 (1.3) 130.7

sort 1.99 (0.96) 2,378.416 1.3 (1.1) 136.7

dc 1.71 (0.90) 2,606.608 1.1 (1.2) 112.9

are raised throughout the program. If fewer demands are raised, caching is likely
to be less beneficial, since there may not be enough cache hits to compensate for
the cache management overhead.

An additional inspection of the benchmark programs with the highest and lowest
speedups was carried out in order to identify the program characteristics that affect
the analyzers’ performance. In general, the speedups of the demand-driven analyzer
over the exhaustive analyzer are highest if the lengths of the propagation paths for
the individual queries are the shortest. The length of query propagation paths
depends primarily on reference locality properties. If variables are defined and
used in nearby statements, the propagation paths are short. A number of program
characteristics may have a direct impact on the length of propagation paths and
analyzers’ performance. These characteristics include program size, nesting depth
of control structures, number of global variables, number and size of procedures,
and the structure and density of the call graph. Exceptionally high speedups of
demand-driven analysis over exhaustive analysis result in programs that combine
several of these program characteristics.

7. RELATED WORK

Numerous analysis algorithms have been presented that utilize some form of delayed
or demand-driven evaluation to allow for efficient analysis implementations. Among
others, the concepts of deriving data flow information by backward propagation of
assertions was used in a debugging system for Pascal-like programs with higher-
order functions [Bourdoncle 1993] and in an analysis for discovering linked condi-
tions in programs [Stoyenko et al. 1993]. A types-based framework was developed
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the analysis of functional programs provides efficient analysis algorithms through
the demand-driven “lazy” evaluation of properties [Hankin and LeMetayer 1994].

Our algorithm to compute the relevant reverse summary function values is es-
sentially a reversed version of Sharir and Pnueli’s tabulation algorithm [Sharir and
Pnueli 1981] to compute the original forward summary functions. The table-driven
approach for computing procedure summaries pioneered by Sharir and Pnueli has
also been used in various other interprocedural analyses [Landi and Ryder 1992;
Marlowe and Ryder 1990a; Reps et al. 1995; Steensgaard 1996; Wilson and Lam
1995]. A similar partial fixed-point computation of only relevant equations was
also described in the chaotic iteration algorithms [Cousot and Cousot 1978] and
the minimal function graphs for applicative programs [Jones and Mycroft 1986].
Reverse flow functions have previously been discussed to demonstrate that an ab-
stract interpretation may be performed in either a forward or a backward direction
[Cousot 1981; Hughes and Launchbury 1992].

7.1 Demand-Driven Analysis

Closely related to our demand-driven framework are the approaches to demand-
driven interprocedural analysis presented by Reps et al. [Horwitz et al. 1995a; Reps
1994;Reps et al. 1995; Sagiv et al. 1995]. In the first approach by Reps [1994], a
limited class of data flow problems, the locally separable problems, is encoded as logic
programs. Demand algorithms are then obtained by utilizing fast logic program
evaluation techniques developed in the logic-programming and deductive-database
communities. In more recent work [Horwitz et al. 1995a; Reps et al. 1995], the
first approach is generalized to the larger class of interprocedural finite distributive
subset (IFDS) problems. The class of IFDS problems is the subset of the distributive
data flow problems that contains only problems with a finite subset lattice, i.e., the
lattice is the powerset of a finite set. In this second approach, a data flow problem
is transformed into a special kind of graph-reachability problem. The graph for
the reachability problem, the exploded supergraph, is obtained as an expansion of
a program’s control flow graph by including an explicit graphical representation of
each node’s flow function.

The graph-reachability approach and our approach are closely related, as both
provide an extension and variant of the classical functional approach to interproce-
dural analysis pioneered by Sharir and Pnueli [1981]. However, there are a number
of important distinctions. Our approach is more general than the graph-reachability
approach because our framework is precise for any distributive problem with a finite
lattice, while their approach requires the lattice to be a finite subset lattice. Fur-
thermore, our framework can still provide approximate information for monotone
nondistributive problems, while their approach is not applicable to nondistributive
problems.

Furthermore, their approach is graph-based, while our framework models demand-
driven analysis using fixed-point computations. As a result the two approaches
differ in how and when flow functions are evaluated. The graph-based approach
explicitly represents the flow functions as part of the exploded supergraph. Thus,
flow functions are evaluated as the graph is constructed prior to the actual analysis.
In our approach flow functions are evaluated during the actual analysis traversal as
needed.
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The graph-reachability approach yields polynomial-time analysis algorithms even
if the lattice is of exponential size, as is the case for a powerset lattice. The analysis
examples presented in this article show how our framework is used to provide ef-
ficient specializations for problems with powerset lattices (i.e., reaching-definitions
and copy constant propagation), also yielding polynomial-time algorithms.

An important overhead of the graph-reachability approach results from the need
to construct a complete exploded supergraph for each data flow problem, indepen-
dently of the actual number of demands that need to be satisfied. The overhead
of constructing the exploded supergraph can be substantial, since the graph is of
size O(E × D2), where E is the number of control flow graph edges, and D is
the number of finite data flow elements (e.g., the number of variables in copy con-
stant propagation). Sagiv et al. [1995b] report that during experimentation with
the graph-reachability analyzer for CCP, the analyzer exceeded the virtual mem-
ory limit when run on a Sun SPARCstation 20 with 64MB of RAM for some C
programs of about 1300 lines.

Experiments for the graph-reachability approach have been conducted for prob-
lem of comparable complexity as reported in this article (i.e., live variables and
truly live (nonfaint) variables, uninitialized variables, and constant predicates)
[Horwitz et al. 1995b]. The performance of the demand-driven analysis algorithm
is evaluated by comparison with an exhaustive algorithm that also operates on the
exploded supergraph. Similar to our experimental results, their performance study
makes a strong point for demand-driven analysis in that speedups of the demand-
driven analyzer over the exhaustive analyzer could be achieved in most cases.

Recently, Sagiv et al. [1995a] presented a new variation of the graph-reachability
approach that uses a two-phase algorithm. This new approach can handle a larger
class of distributive data flow problems than our framework in that it also permits
infinite lattices if the distributive function space does not contain infinite descending
chains. This new variation also results in a more compact version of the exploded
supergraph for CCP. However, for the classical Gen-Kill problems the size of the
exploded supergraph is the same as in their previous approach.

The utility of demand-driven analysis has also been demonstrated in a number of
algorithms that have been developed for specific analysis problems. A more general
demand-driven algorithm was presented for intraprocedural live variable analysis
based on attribute grammars [Babich and Jazayeri 1978]. A demand-based analysis
for typestate checking was presented in Strom and Yellin [1993]. The authors ex-
perimentally demonstrated that a goal-directed backward analysis is more efficient
than an eager forward analysis for typestate checking. Question propagation, a
phase in the algorithm for global value numbering [Rosen et al. 1988], performs
a demand-based backward search in order to locate redundant expressions. A
demand-driven algorithm has been developed for range propagation [Blume and
Eigenmann 1995]. Range propagation is performed only over the portion of the
program that is relevant for the current information request. In procedure cloning
[Cooper et al. 1992], procedure clones are created during the analysis on demand
whenever it is found that an additional clone will lead to more accurate informa-
tion. An algorithm for the incremental incorporation of alias information into static
single-assignment (SSA) form was presented in Cytron and Gershbein [1993]. The
actual optimization problem to be performed on the SSA form triggers the expan-
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sion of the SSA form to include only the necessary alias information. Similar ideas
have also been implemented in the demand-based expansion algorithm of factored
def-def chains [Choi et al. 1992].

8. CONCLUDING REMARKS

We presented in this article a new demand-driven approach which has been devel-
oped through a general framework. The framework is applicable to the class of
distributive and finite data flow problems. To precisely handle the nondistributive
case, this work also outlines a two-phase framework variation. The practical benefits
of the demand-driven approach have been demonstrated through experimentation.

Using a demand-driven approach to data flow analysis in compilers and software
tools results in a considerable change in their overall design, since demand-driven
analysis does not obey the classical, strict, phased design of a compiler or software
tool. In the phased design, data flow analysis is performed in isolation indepen-
dently of its context and, in particular, independently of the application phase that
follows the analysis. While such a strict separation into phases may simplify the
overall design and implementation of a compiler or software tool, it also limits the
information available to each individual phase and may thereby render the phases
unnecessarily inefficient. Since nothing is known about the actual information de-
mands of the application, the analysis must consider all possibly relevant data flow
facts and is therefore necessarily exhaustive. In contrast, demand-driven analysis is
directly interleaved with the application such that analysis is performed only if trig-
gered by a demand. If caching is used, repeated invocations of the demand-driven
analyzer result in the subsequent accumulation of the data flow solution. Thus,
if exhaustively many demands are issued by the application, the demand-driven
analyzer eventually accumulates the complete exhaustive solution.

As an additional benefit, our demand-driven algorithms have a natural paral-
lelization. Individual queries can be propagated and resolved in parallel without
requiring a separate phase to explicitly uncover parallelism [Duesterwald 1996]. Fu-
ture investigation will further consider the utility of our demand-driven algorithms
for the parallelization of data flow analysis.
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