

Avoiding Object Misconceptions

Simon Holland, Robert Griffiths, Mark Woodman
The Open University

Faculty of Mathematics and Computing
Walton Hall, Milton Keynes, MK76AA, United Kingdom

s.holland@open.ac.uk

r.w.griffiths@open.ac.uk
m.woodman@open.ac.uk

Abstract
This paper identifies and describes a number of
misconceptions observed in students learning about object
technology. It identifies simple, concrete, measures course
designers and teachers can take to avoid these
misconceptions arising. The context for this work centres
on an introductory undergraduate course and a postgraduate
course. Both these courses are taught by distance
education. These courses both use Smalltalk as an
introduction to object technology. More particularly, the
undergraduate course uses Smalltalk as a first programming
language.

Distance education can limit the amount and speed of
individual feedback that can be given in the early stages of
learning. For this reason, particular attention has been paid
to characterizing measures for avoiding elementary
misconceptions seen in beginning learners. At the same
time we also address some misconceptions observed in
postgraduate students. The pedagogical issues discussed are
of particular importance when devising an extended series
of examples for teaching or assessment, or when designing
a visual microworld to be used for teaching purposes.

Introduction
Object concepts are often taught, especially in the first few
lessons, with a great deal of practical demonstration during
lectures, and with a lot of expert help on hand for lab work.
This is not because object concepts are intrinsically
difficult, but because the subject does offer many
opportunities, especially in the early stages, for students to
develop misconceptions, which can be hard to shift later.
Such misconceptions can act as barriers through which
later all teaching on the subject may be inadvertently
filtered and distorted.

If teachers have sufficient preparation time, if there are
adequate practical demonstrations, and if expert advice of
sufficient quality is on tap during practical sessions, these
problems can often be avoided. However, teaching
conditions are not always ideal; there is not always

sufficient practical help of an adequate kind; and even in
the best circumstances, some students are likely to acquire
some misconceptions.

The problem of avoiding object concept
misconceptions can be potentially particularly acute in the
case of distance education. In this context it is often
impractical to give frequent demonstrations or to provide
immediate feedback to student queries during such
demonstrations. The problem is made more acute when the
student population necessarily includes a mixture of arts
students with no programming experience, and computing
students with previous experience of a procedural
programming language.

For these reasons we are identifying misconceptions in
the learning of basic object concepts. Such knowledge
could be used by teachers writing or reviewing teaching
material to ensure that the choice of examples, problems,
terminology, and teaching sequence does not inadvertently
foster common object misconceptions. This work has
arisen while developing two Open University courses on
object technology, the postgraduate course Object-oriented
Software Technology (M868), and the undergraduate
introductory computing course Computing: an Object-
oriented approach (M206).

Although this work was carried out in the context of a
distance education course, we believe it is applicable
whatever teaching style or medium is used. In this work we
concentrate almost entirely on the elementary, early parts
of the curriculum. We believe, in the light of our
experience of using some of these patterns in postgraduate
teaching, that it is equally important to get these basic
points right in postgraduate or more advanced courses.

Avoiding object/variable conflation
Many early teaching examples feature classes with a single
instance variable. There is a danger that some students with
previous experience of procedural programming may
generalize prematurely from these examples to develop the
misconception that objects are in some sense mere
wrappers for variables. It is trivially easy to avoid this
misconception by the simple discipline of ensuring that all
introductory object examples make prominent use of
classes with more than one instance variable. For example,
the classic bank account example can be very useful, but

there are dangers in introductory teaching in using an
Account class that is limited to a sole instance variable
balance. There should be at least two instance variables to
avoid the “object as a kind of variable” misconception.

However, many early teaching examples also feature
classes in which all instance variables are expected to hold
objects of the same class. For example an introductory
Account class in the early stages should not be limited to
instance variables that hold objects which are all number
objects, e.g. balance and limit. Some students may be
influenced by such examples to develop the misconception
that instance variables of objects of a given class must all
refer to objects of a single class. Therefore as a remedial
measure, classes in early teaching examples should have at
least two instance variables, which expect objects of
different classes. An introductory account class, for
example, could have two instance variables, e.g. balance
and name. Care should be taken that the use of an instance
variable such as name does not lead to confusion between
object identity and object attributes—which we deal with
below.

Objects are not simple records
Many students, and indeed some instructors creating
teaching and assessment examples focus on examples
where an object behaves essentially like a database record,
or repository for inert data. A case in point might be a
music CD class, in which each object represents a music
CD, and stores information on the title, artist, tracks, etc.
This overemphasizes the data aspect of objects at the
expense of the behavioral aspect. The practical danger is
that students may come to tacitly assume that all objects are
simple, inert records. They may fail to realize that the
behavior of some objects may alter substantially depending
on their state. This misconception can be avoided by using
introductory object examples that prominently feature
classes where the response to a message is substantially
altered depending on the state of the object. A simple
example object whose behavior is affected by its state
might be an Account object that refuses a debit request
when an overdraft limit is reached. Debit requests are not
accepted until the limit is changed, or until more money is
credited.

Work in methods is not all done by
assignment
The kind of code that students see in the first methods they
look at can be very influential on their thinking. This is
particularly true when the course is an introduction to
programming. For example, in many introductory teaching
examples, using an Account object, the instance variables
recording balance, etc., refer to immutable objects such as
numbers. For this reason, the Account methods that
manipulate such instance variables tend to use assignment
rather than method passing.

As a piece of programming, of course, and as a single
teaching example, there is nothing in the least wrong with
this. However, there is a danger that exclusive exposure to
this way of changing state can foster the impression that
work in methods is exclusively done by assignment (and
not by message passing). If early teaching examples happen
to be chosen so that all state is represented by immutable
objects, such as number objects, it is hard to avoid this
danger.

We have observed that even very experienced students
pick up this impression from such examples and that this
misconception can lead to an over reliance on assignment
and a procedural style of coding. To avoid the problem one
should use examples where the values of instance variables
are not invariably immutable objects. A simple example
teaching domain that avoids this problem might involve a
business that buys and sells various products which
themselves have state.

Object/class conflation
When presenting a series of examples in the early stages, it
is easy to find oneself using examples in which only a
single instance of each class is used. At some stage or
another, some students tend to become confused between
classes and their instances. Indeed, in some object-oriented
languages there is no distinction. So as to not foster this
misconception, it is good practice to always work with
several instances of each class in any given teaching
example.

Identity/attribute confusion
In the traditional bank account example, frequently just two
instance variables are used, name and balance. This is
admirable in that there are at least two instance variables,
that are not of the same type, and the example is intuitively
clear and familiar to most people. However, in the minds of
students with previous exposure to database concepts, the
name instance variable in this example (whatever that
variable is called) can give rise to anxiety and
misconceptions. There is a tendency to confuse the name
instance variable with the identity of the object, or with a
variable that refers to the object (e.g. myAccount). These
confusions can lead to further misconceptions, some of
which are itemized below:
• only one variable can reference to a given object at a

given time;
• once a variable references a given object, it will always

reference that object;
• a variable that refers to an object uniquely specifies it

for all time;
• if you have two different variables, they must refer to

two different objects;
• you can ask an object what variables refer to it;
• two objects of the same class with the same state are the

same object;
• two objects with the same value for the name attribute

are the same object.

Rather than try to deal with these misconceptions by
arguing or talking about them, the easiest approach is to
immediately let the students experiment with a set of
counter examples (no pun intended). These counter
examples can be summarized as follows:
Multiple assignments: get students to assign a single

object to three variables at once. Demonstrate that each
variable references the same object by showing that
state changes effected via any one reference can be
inspected immediately via all of the other variables.

Re-assignment: get students to assign a different object
(ideally of an altogether different class) to one of the
variables, and then show by sending messages and
inspecting the result that the variable now refers to a
different object, whilst the other variables still refer to
the original object.

Swapping: swap the variables that refer to two objects,
using an intermediate holding variable.

Instance variables with the same value: show that
two demonstrably different instances may have the
same value for the same instance variable.

Objects with identical state: prove that two instances
with identical state are not the same object by sending
messages that make their states diverge.

Conflation of textual representation of
objects and references to objects
One of the earliest expressions evaluated by many students
using show it is typically something like.
 2 + 2

Students are told that every message returns a message
reply object, and students see the textual representation 4
on the screen. It is natural (and correct!) to identify the
textual representation 4 on the screen as a reference to the
message reply object. On the other hand when an
expression such as:
 myAccount:= Account new

is evaluated using show it, students see a textual
representation such as anAccount. In this case, it is natural
(and incorrect) to identify the textual representation
anAccount as a reference to the message reply object. If
this confusion is acquired and not addressed, it can be easy
for the student to conflate a reference to an object with its
printString. (This confusion has been seen in assorted
postgraduates, and programmers coming from a LISP or
functional programming background.)

The cleanest way to defuse this misconception is to
teach reference as a first class concept of equal important to
the concepts of object, message and class. In particular, the
concept of variable is treated as a special case of the more
general concept of reference. Other examples of valid
references are number, string, character and array literals
and message expressions (i.e. message replies). In concrete
terms, students are asked to cut and paste textual
representation of message replies for various classes, and to
evaluate expressions that treat these textual representations
as references to objects. Based on the results, they are
asked to decide whether, in general, textual representations
produced by show it are valid references to objects. They
are also asked to give example classes for which the textual
representation produced by show it are valid references to
objects.

Limitations
The misconceptions and practices described here are ones
that have been seen in tutoring postgraduates, or during
developmental testing of the undergraduate course (M206)
and its associated CD ROM. Some of the measures to avoid
the misconceptions have been tried out on postgraduate
students, and others on developmental testers for the
undergraduate course. Clearly no claim is made of formally

provable links between bad practices and corresponding
misconceptions, nor between suggested measures and
avoidance of misconceptions. Links are based on personal
experience of teaching and broad support from the results
of developmental tests. All of these misconceptions, and
the measures to avoid them could probably be usefully
treated as pedagogical patterns, in contrast to the discursive
treatment given here.

Conclusions
This paper has identified and characterized several
misconceptions observed in students learning about object
concepts, and has described simple teaching measures to
avoid them. Pedagogical issues have been discussed of
particular importance when constructing teaching or
assessment examples.

The paper presents six out of a larger number of
misconceptions that we have investigated from our work on
the undergraduate and postgraduate courses dealing with
object technology. Two useful extensions of the work,
would be to characterize more misconceptions and
measures, and to recast them as patterns.

References
1. Beck, K. Smalltalk Best Practice Patterns Volume 1:

Coding (pre-publication draft) First Class Software
Inc., Boulder Creek, CA., 1996.

2. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.
Design Patterns, Addison Wesley, New York, 1995.

3. Prieto, Maximo. The importance of learning Object-
oriented thinking, Proceedings of W orkshop on
Learning, Training and Teaching in Object
Technology, part of European Conference on Object
Oriented Programming, Aarhus, Denmark, 1995.

4. Leonardi, C., Prieto, M., Rossi, G., Levato, A., Echarri,
F., Maciel, R. Micro-worlds: A tool for learning object-
oriented modeling and problem solving. Proceedings of
Educators Symposium, OOPSLA '94, Portland Oregon
(October 1994).

5. Woodman, M and Holland, S. From software user to
software author: an initial pedagogy for introductory
object-oriented computing. Proceedings
SIGCSE/SIGCUE '96, Barcelona , Spain (June1996).

