
Compiling: A High-level Introduction Using Scheme*

Christopher T. Haynes
Computer Science Department

Indiana University
Bloomington, IN 47405
chaynes@ indiana.edu

Abstract

Traditional compilation courses use formal methods for
parsing, but treat the more important semantic aspects infor-
mally. We present a one semester course in which compiler
development is reduced to a number of transformation steps,
each of which is formally specified, easily tested, and clearly
motivated by semantic considerations. The source language
is substantial (essentially the host language of the compiler)
and the target is a popular RISC architecture.

Introduction

It is customary for a compilation course to begin with sub-
stantial application of formal methods to the well-understood
parsing problem. Unfortunately code generation has re-
mained ad hoc. Though devices such as attribute grammars
may be carefully described, their application to the compi-
lntion of practical source languages is quite complex, and
the connection between their use and the semantics of the
source language is unclear. (Indeed, establishing this con-
nection has been a major topic of research for some time and
results of general utility have been elusive.) Furthermore, the
complexity of code generation is such that if a compiler is to
be completed in one semester, either the source or target lan-
guage must be simplified to such an extent that the compiler
no longer represents a practical tool [l].

In this paper we present an alternative approach, inspired
by recent research. It rests on two key elements, First, the
host language is Scheme [2]. A very-high level symbol-
mnnipulntion language such as Scheme provides a critical
advantage that allows a compiler with both source and tar-
get languages that are realistic to be implemented in one
semester. (It also happens that our source language is a sub-
stantial subset of Scheme, but this is not critical. The ap-

PermIssIon to make digital/hard copy of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial advantage, the copyright notice, the
title of the
cop

Y g
ing is

ubllcation and its date appear, and notice is given that
y permisslon of ACM, Inc. To copy otherwise, to republish, to

pos on servers, or to redistribute to lists, requires prior specific permission
and/or a fee.

SIGCSE ‘97 .CA, USA
Q 1997 fm o-a979+aa9-4~97~0002...$3.50

preach proposed here would, with minor modification, work
for a variety of source languages.)

Second, compilation is broken into a series of transforma-
tions. Each transformation step is formally specified, easily
tested, and clearly motivated by the source language seman-
tics. Students are thus able to focus on conceptually man-
ageable units. By representing the output of each transfor-
mation in an executable form, the homomorphic (meaning-
preserving) character of each transformation is readily un-
derstood and tested. The homomorphism requirement, to-
gether with formal syntactic specification of the input and
output of each transformation, provide a formal basis for
compiler development that is comprehensible by average un-
dergraduates.

The general approach to teaching compilers outlined here
builds upon more than a decade of course development, pri-
marily by R. KentDybvig [7]. This paper emphasizes a num-
ber of recent developments not previously reported, includ-
ing the pedagogic use of executable intermediate languages,
a single collection pass, and destination-driven code genera-
tion. These developments have been tested both in class and
in a summer workshop attended by college teachers, who
were uniformly enthusiastic about this appr0ach.l

The use of executable intermediate languages was inspired
by Clinger’s TwoBit Scheme compiler [3]. The destination-
driven code generation technique used in the final step is
that of Dybvig, Hieb, and Butler [4], who use it in the Chez
Scheme compiler. In general, the techniques employed in
this course are representative of those used in industrial-
quality compilers.

The next section reviews our general approach and consid-
ers the benefits of formal methods in this context. Following
sections review in some detail the transformations that form
the basis for all but the parsing assignments, briefly review
our approach to teaching parsing technique, indicate possi-
ble extensions and optimizations that may be used if time
permits, and provide concluding remarks. Familiarity with
traditional compilation technique is assumed. Some famil-

*This research supported by NSFgrant CDA-9312614.
l’I%is brief paper gives a general impression of our approach, but must

necessarily omit many details that are documented in the workshop vleb
strncture [q.

253

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268085.268181&domain=pdf&date_stamp=1997-03-01

iarity with Scheme is helpful, but not necessary.

Formal Methods in Compilation

The core of the course is a cumulative series of assignments.
This breaks the work into moderate-sized chunks, while
maintaining the experience of completing a large project: A
solution to each assignment is provided when it is due so that
students are not penalized repeatedly for failure to complete
an assignment.

Compilers of modem design, especially those for lau-
guages amenable to global optimization, are typically orga-
nized in a sequence of stages. The stages progressively trans-
form intermediate representations of the program being com-
piled into increasingly low-level forms. The assignments in
this course each represents a transformation step of the com-
piler under construction.

With the exception of a parsing assignment or two (de-
scribed in a later section), each assignment is to write a
Scheme program that takes a datum satisfying an input gram-
mar and transforms it into a datum satisfying an output gram-
mar. The output grammar of each transformation is the input
grammar of the next. The formal specification of each as-
signment is completed with the requirement that each trans-
formation be value preserving.

For the final assembly form, evaluation is by the target
machine or an emulator that is provided. For all other forms,
evaluation is performed by the host Scheme implementation.
All but the last form are subsets of the set of Scheme expres-
sions (with the addition of three simple syntactic extensions
in the case of code-generation form). Thus a highly-useful
check on the correctness of the output of each transformation
is provided by evaluating for a number of test cases both the
input and the output, and verifying that the same result is
obtained in both cases.

Value preserving transformations are of course much used
in the formal study of programming languages. They are,
however, very seldom used in practice with well-specified
correctness criteria or convenient means of testing. This is
perhaps the single most unique and valuable aspect of the
approach taken in this course:

This is a powerful example of how formal methods, when
applied in a natural way, can greatly enhance learning. Be-
yond classical parsing theory, traditional compiler writing
technique is notoriously informal. This leaves the connec-
tion between language semantics and compilation unclear,
which by extension leaves the meaning of source language
programs unclear. Students are typically shown examples
of traditional compilation techniques and then asked to fig-
ure out the application of these techniques to an assigned
problem on their own. The lack of systematic understanding
leads both to bugs and discomfort. The weaker students are
often those who most appreciate the security and guidance
afforded by the suitable application of formal methods.

This great advantage has its (small) costs. For example,

the embedding of quoted lists of free and assigned varinbles
in lambda-expression bodies is admittedly at contrivance.
By referring to the attempt to keep each form executable ns
“playing the game,” it is not hard to convince students that it
is worth playing along.

Fully-formal compiler development would require thnt
each transformation be proved correct in general, not just for
test examples. This is a research topic well beyond the scope
of this course. To the author’s knowledge, only one practicnl
compiler has been proved correct in this (or any other) way:
that of the VLISP2 project [S]. Nonetheless, this course is
believed to make much more use of practical formal tech-
niques than other approaches to teaching compilation.

Transformations

The outermost structure of each transformation program is
a dispatch over each expression form of the input grammar
(with the last transformation including a dispatch over the
primitive procedures). It is recommended that programs be
developed and tested incrementally, adding additional cases
a few at a time. This allows progress to be measured, pro-
vides early recognition of general conceptual difficulties, nnd
assures that weaker students produce some working code,

The transformation assignments are described in the fol-
lowing subsections. The figures contain extended BNF
grammars defining each of the transformation input and out-
put forms (except for assembly form, which is omitted for
lack of space). The first grammar assumes the entire R4RS3
Scheme grammar, to which only the indicated modifications
are made. Each of the subsequent forms is assumed to inherit
the grammar of the preceding form, to which the specified
modifications are made.

Core Form

This assignment is to write a program that accept a program
in source form and returns an equivalent program in core
form. Programs not in source form should be rejected,

Source form (Figure 1) defines a subset of Scheme thnt
is sufficiently powerful to reasonably write programs such
as the compiler itself. One requirement is not reflected in the
grammar: variables that occur free in programs are restricted
to primitive procedure references in operator position. The
other differences from full R4RS Scheme syntax are:

There are no top-level definitions: hence interactive
program development is not supported.

Only integer numbers are supported: integers suffice for
programs such as compilers.

2VLISP is a dialect of Scheme.
3R4RS refers to the unofficial Scheme standard [2], Students benefit

from exposure to the entire specification of a practical language, which in
this case is only 46 pages long and freely available,

IE’lRS grammar, but with:
(program) -+ (expression)
(expression) -+ (reference) 1 (literal) 1 (procedurecall)

1 (lambda expression) 1 (conditional) 1 (assignment)
I (begin expression) I (derived expression)

(reference) -+ (variable)
(begin expression) ----f (begin (sequence))
(body) + (sequence)
(formals) -+ ((variable)*)
(number) -+ (sign) (digit)+
(derived expression) ----t

(l&t ((bindingspec)*) (body))
1 (letrec ((bindingspec)*) (body))

Figure 1: Source Form

Source form, but with:
(begin expression) + (begin (expression) (expression))
(alternate) 3 (expression)
(body) 3 (expression)
(literal) -+ (quotation)
(derived expression) --t (empty)

Figure 2: Core Form

l Variable-arity procedures are not supported: they are
sometimes convenient, but not necessary.

l Only the most useful derived forms are supported: oth-
ers may be added with low to moderate difficulty.

l Begin expressions are not treated as derived forms and
a new syntactic category is created for references: these
grammaf variations do not effect the core-form lan-
guage and suit our purposes.

Core fomt (Figure 2) eliminates derived expressions, be-
gin expressions with other than two subexpressions, and one-
armed conditionals, This is accomplished via simple syntac-
tic transformations which students are shown both by exam-
ples and as abstract pattern transformations.

Analyzed Form

This transformation performs all the bottom-up propagation
of information required by later steps. (This information
corresponds to derived attributes.) Specifically, in analyzed
fornz (Figure 3) each lambda expression is annotated with a
list of the variables that occur free in its body and a list of
the variables that are bound in its formals list and assigned
in its body. Also, all literals other than immediate values are
replaced by newly-generated variables referring to bindings
that are provided by an outermost let expression.

The need to return multiple values makes the “boiler
plate” structure of a transformation that propagates informa-
tion upward somewhat cumbersome. It would be concep-

Core form, but with:
(lambda expression) +

(lambda (formals)
(quote (assigned (variable)*) 1
(quote (free (variable)*) 1
(body) I

(literal) --f (quote (immediate datum))
(immediate datum) + () I (boolean) I (number)

I (character)
(program) -+ (expression)

I (let ((quotation binding)* 1 (expression) 1
(quotation binding) +

((variable) (quote (heap datum)))
(heap datum) ----f (symbol) I (string) I ((datum)+)

I ((datum)+ . (datum)) I # ((datum)*)

Figure 3: Analyzed form

Analyzed form, but with:
(assignment) + (empty)
(lambda expression) +

(lambda (formals) (quote (free (variable)* 1)
(body) 1

Figure 4: Assignment-less form

tually simpler if each form of information collection were
performed in a separate transformation, but in that case this
boiler plate would have to be repeated for each pass, result-
ing in a considerable volume of code. Hence our decision to
combine them in one transformation.

A production compiler would probably also combine sev-
eral of the other transformation passes outlined here (though
keep them separate from the analyzed-form transformation).
In those cases, however, the gains in code reduction and ef-
ficiency do not, for our purposes, compensate adequately for
the loss of conceptual clarity.

Assignment-less Form

In this transformation to assignment-less form (Figure 4),
variable assignments are eliminated. This is done by cre-
ating new bindings that associate previously assigned vari-
ables with heap-allocated cells containing the variable val-
ues. References to these variables are replaced by expres-
sions that dereference the cells, and variable assignment ex-
pressions are replaced by cell-assignment expressions.

This is necessitated by the display representation of clo-
sures in the run-time model. The general outlines of the nm-
time model (see [7]) are presented prior to this point in the
course to motivate this transformation.

Immediate-literal Form

All non-immediate literals are eliminated in this transforma-
tion to immediate-literalform (Figure 5). They are replaced

255

Assignment-less form, but with:

{program) --) (symbol-less program)
I ((lambda ((variable)+) (symbol-less program))

(symbol expression)+)
(symbol expression) +

(string-suninterned-symbol
(string (character)+))

(symbol-less program) + (expression)
I ((lambda ((variable)+) (expression))

(expression))

Figure 5: Immediate-literal form

Immediate literal form, but with:
(reference) --t (bound (number) (variable))

I (free (number) (variable))
(lambda expression) -

(build-closure
(lambda (formals) (body) 1
(reference)*)

Figure 6: Code-generation form

with expressions that build their structures in the heap using
immediate literals and calls to data-construction primitives.

Symbols are represented by boxed values that refer-
ence strings. It is critical that all symbols with the same
name reference the same string. This is called interning
the symbols and is arranged by building a symbol table.
Symbols may then be created using the simple primitive
string->uninterned-symbol.

Code-generation Form

In this pass, with output in code-generationfinn (Figure 6),
variable references are replaced by expressions indicating
whether the reference is locally bound or free, and the po-
sition of the reference in the local lambda expression’s for-
mal parameter list or free variable list, respectively. Variable
names are retained only for debugging purposes.

Lambda expressions are
also replaced by build-closure expressions that con-
tain the lambda expression and a sequence of references to
its free variables. The syntax of the new expressions closely
resembles the run-time structure of display closures.

For test purposes, the new bound, free, and
build-closure forms are easily defined in the host lan-
guage using whatever form of syntactic extension is sup-
ported. The patterns of these extensions are shown to the
students and are a great aid in their understanding.

Assembly Form

The assemblyfonn of this transformation’s output is a repre-
sentation of assembler input as structured Scheme data. De-

tails are omitted in the interest of space. They vary somewhat
depending on the target architecture, but are straightforward.

By transforming the original source program into code-
generation form, we have done everything possible to make
this, the final transformation step, as easy as possible. It is
still perhaps the most challenging step. It certainly requires
the largest volume of code for its solution, but thanks to the
previous transformations, this step is conceptually straight-
forward and clearly connected with the semantics of the
source language.

Having tried several approaches with students, we feel that
the little-known destination-driven technique [4] is the most
satisfactory. The code-generation procedure is passed both
control and data destinations, as well as an expression in
code-generation form.

There are three possible data destinations: a register, a
memory location specified by a register and offset, or a to-
ken indicating that the result need not be stored. There are
also three possible control destinations: a label to jump to,
a pair of labels indicating jump locations for true and false
values, or a token indicating that control is to continue with
a procedure-call return.

Four of the nine possible combinations of control and data
destinations are not possible, leaving five combinations to be
addressed for each type of expression and each primitive.
This results in a large amount of code unless functional ab-
straction is used effectively to isolate recurring patterns.

Coding requires considerable attention to detail, but the
destination-driven approach provides detailed guidance. It is
not hard to teach if a couple examples of each primary type
are provided.

Though not our motivation for choosing to use
destination-driven code generation, it is a pleasure to dis-
cover that a great many local optimizations are performed
automatically by following this approach. This is a major
advantage in a production compiler.

Running the Object Code

A simple procedure (supplied to the students) may be used
to translate assembly-form code into a form suitable for the
standard target machine assembler. A startup program writ-
ten in C is linked to the assembler output to create an exe-
cutable object file.

Several RISC architectures have been used: 68030, Alpha,
and Spare. Advantage is taken of only a relatively small set
of instructions, for which the differences between these and
similar architectures are minimal. Unfortunately, the lack of
a general-purpose register file makes the Intel architectures
much less satisfactory targets.

It is valuable for the students to see the result of their
efforts run on stock hardware, but debugging at this level
is very difficult. Thus we provide an emulator, written in
Scheme, that executes programs in our assembly form di-
rectly. (The emulator is a straightforward program, compli-

cated only by the need to do exact 32-bit arithmetic and log-
ical operations in Scheme.)

Parsing

Roughly a quarter of popular compiler texts, and often half
or more of a compiler course, is devoted to parsing. Though
context-free parsing theory was one of the earliest and most
successful applications of formal methods in computer sci-
ence, it is not felt to be as instructive as the use of formal
methods practiced in this course.

The Scheme read procedure is a parser for the Scheme
datum syntax (which properly contains the Scheme language
syntax), The regular syntax is approximately as complex as
that of other general-purpose languages. For this we teach
scanner construction in the traditional way, deriving an NFA
and DFA from regular BNF productions. Rather than using
a traditional table-driven DFA implementation, we suggest
students translate the DFA directly into a set of mutually-
recursive procedures (a well-known approach made possible
by proper tail-recursion). The read procedure is completed
with a very simple recursive-descent parser.

More complicated LL(1) recursive-descent parsing is also
taught with an added assignment. Students are asked to write
a parser for an alternate Pascal-like syntax for Scheme, with
output in our source form. (This assignment also serves to
emphasize that the techniques taught in the course are not
peculiar to the Scheme language.)

Altogether, parsing and scanning issues consume less than
a quarter of the course. Only brief mention is made of LR
parsing technique. We strongly believe the other topics in
this course are of more value. In the unlikely event that they
are needed, LR techniques can be learned through self-study,
while students are unlikely to learn semantics-based formal
methods on their own.

Extensions and Optimizations

A number of extensions and optimizations are possible if
time permits in a one semester course, or in the context of
a second course. The most important optimization is for the
code generator to recognize calls in which the operator is a
lambda expression. It is then possible to avoid closure cre-
ation and call, as when let expressions are in the core [7].

For a fully-functional run-time environment capable of,
say, running the compiler itself, it is necessary to implement
a garbage collector and the procedures read and write.
The code for the read procedure developed in the parsing
section of the course may be converted into source form and
compiled to obtain a preamble for future compilation. A
similar process may be used to implement write (which
is considerably simpler than read). The garbage collector
may also be written in Scheme (with a few hidden memory
access hooks) and similarly bootstrapped.

Constant folding and copy propagation optimization are
natural as core-form to core-form transformations. Lambda-
lifting optimization may be done with the help of the infor-
mation available in analyzed form.

Conclusion

A compilation course is widely regarded as an effective cap-
stone of computer science education. This is especially true
with the approach outlined here. The simple yet powerful
techniques employed span, with comprehension, the chasm
between high-level abstraction (a very-high-level language)
and the nitty-gritty of assembly language, while employing
formal methods in major system development.

Acknowledgment

Eric Hilsdale provided creative assistance in developing this
course.

References

111

[21

131

[41

[51

@I

171

AIKEN, A. Cool: a portable project for teaching com-
piler construction. SZGPLAN Notices 31,7 (July 1996),
19-24.

CLINGER, W., AND REES, J. (EDITORS) Revised4 re-
port on the algorithmic language Scheme. Lisp Pointers
5,3 (July-September 1991), l-55.

CLINGER, W. D., AND HANSEN, L. T. Lambda,
the ultimate label, or a simple optimizing compiler for
Scheme. In Proceedings of the 1994 ACM Conference
on LISP and Functional Programming (1994), pp. 128-
139.

DYBVIG, R. K., HIEB, R., AND BUTLER, T.
Destination-driven code generation. Tech. Rep. 302, In-
diana University, February 1990.

GUTTMAN, J. D., AND WAND, M., Eds. VLISP: A
Verified Implementation of Scheme. Kluwer, Boston,
1995. Originally published as a special double issue of
the journal Lisp and Symbolic Computation (Volume 8,
Issue l/2).

HAYNES,
C. T., AND HILSDALE, E. Compiling Scheme work-
shop. http://www.cs.indiana.edu/eip/compile, 1996.

HILSDALE, E., ASHLEY, J. M., DYBVIG, R. K.,
AND FRIEDMAN, D. P. Compiler construction using
scheme. In Functional programming languages in ed-
ucation (FPLE), LNCS 1022 (Nijmegen, The Nether-
lands, Dee 1995), P. H. Hartel and M. J. Plasmeijer, Eds.,
Springer-Verlag, Heidelberg, pp. 251-268.

257

