
Content + Experiences = Curriculum

Judith L. Gersting
Department of Computer Science

University of Hawaii at Hilo
Hilo, Hawaii 96720 USA

gersting@hawaii.edu

1. Introduction

The academic curriculum in computer science has
been proposed, reviewed, and modified in an on-going
process for years [I, 2, 3, 41. The resulting curricula have
packaged the subject matter of computer science in many
ways. The end result of these studies has been a carefully
designed coverage of academic material in a fashion that
requires students to master core material and guarantees
student exposure to appropriate additional material that
insures both breadth and depth of knowledge.

We suggest that describing the “material that must
be covered” is an inadequate approach to curriculum
design, necessary but not sufficient. Whether one is
teaching in a liberal arts environment or in a more pre-
professional environment, there are more aspects to an
education than the content that is covered in required and
elective courses.

In this paper we propose an experiential aspect of
the computer science curriculum as a complement to the
content aspect. We urge those who are designing new
curricula or revising existing ones to consider this aspect
and evaluate their curricula with regard to experiences as
well as the more usual content evaluation.

2. The Case for Experiences

Academic content defines the structure of a
computer science curriculum. But in addition to academic
content, there are a number of experiences that an
undergraduate computer science student should have
somewhere during the course of his or her program. These
experiences are important, we believe, because (as with
acndemic content) they will better prepare the student for
both initial and long-range success in the workplace
environment. However, a list of appropriate required
experiences has not received the scrutiny that the list of
required content has. Few departments have formalized
such a list. Even if we were all to agree on the
experiences

permission to make digital/hard copy of part or all this work for
personol or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, ond notice is given that copying is by permission of ACM,
Inc. To copy otherwise, to republish, to post on servers, or to
redfatribute to lists, requires prior specific permission and/or a fee.
SIGCSE ‘97 CA,tJSA

Q 1997 ACM O-89791-88%4/97/0002...$3.50

Frank H; Young
Department of Computer Science

Rose-Hulman Institute of Technology
Terre Haute, Indiana 47803 USA

young@cs.rose-hulman.edu

to include, their placement in the academic curriculum is
not well-defined. As a consequence, it is easy for them to
fall through the cracks with the result that a student may
graduate minus most of them.

The purpose of this paper is to stimulate
discussion about desirable experiences for the
undergraduate computer science major by proposing a
draft list (Section 3). Depending on the requirements of a
particular degree program, students will already have some
of these experiences, many in a software engineering
course. Some experiences may be found in courses outside
of the department. A few items on the list may even be
somewhat controversial, or difficult to arrange.

The items on this list sound like assignments.
However, unlike ordinary academic assignments, the
process of undertaking them is more important than their
successful completion. Students will change as a result of
these experiences, and that change measures the value of
the experience more so than the quality of the product or
outcome. This means that when items on the list are
assigned, there should be time reserved to reflect on and
evaluate the experience. Assessment of a student’s
participation in the experience should include
consideration of the student’s own reflections and
evaluations. This represents, to most of us as educators in
the sciences, a rather novel approach to “grading.”

As you read the following draft list, consider
those experiences you believe to be important, or others
you would add to this list. Think of where they are now
being met or where they could be included in your own
degree program. Some suggestions follow in Section 4.

3. A Draft List of Experiences

Experiences that develop evaluative abilities.
Read code written by another person and evaluate its

internal documentation, test whether it satisfies
stated specifications, determine whether stated
code standards were observed, and prepare a
written summary evaluation of the code.

Critique another student’s resume,

325

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268084.268207&domain=pdf&date_stamp=1997-03-01

Critique the documentation of a commercial software
application.

Edit/review/referee/analyze/annotate someone else’s
written work.

Analyze competing hardware or software products for
possible purchase and evaluate some possible
vendors.

Analyze the social, economic, and legal impact of a
proposed project upon a community and write a
position paper based upon this analysis.

Study a failed real-world project and attempt to
pinpoint the cause(s) of failure: technical,
economic, human, etc., making suggestions that
might prevent such a failure in the future.

Evaluate the user interface of a commercial product,
of a program written for another course, and of a
system produced as a student project.

Design an interface to a tool or system.
Analyze and critique the methodology used to solve a

specific problem.
Prepare a written performance evaluation of a co-

worker and/or an employee.
Perform some audience analyses, e.g., for some

documentation, for a proposal.
Perform a market analysis for a new product.
Summarize a technical article.
Review a request for funding, e.g., a research

proposal, a request for additional staff.

Experiences that develop writing abilities.
Prepare an assignment description, -a laboratory

writeup and several examination questions.
Compare and contrast some related technical articles.
Prepare a memo that presents basic information about

a topic, for example, what is known, what is
current practice, what changes are likely soon.

Write a paper describing where you hope to be in your
work environment ten years after graduation and
what you think it will probably take to get there.

Write a memo comparing and contrasting some
possible solutions to a problem.

Write a technical recommendation supporting a course
of action such as the purchase of a product, a
decision to continue or drop a project, etc.

Write a paper that tracks the “soft requirements” that
will impact the success or failure of some
proposed project: the company policy, the
“political” lay of the land with respect to the
project, who must approve it and their biases, etc.

Prepare a report on accepted professional
procedures/conduct when working as a
consultant.

Write a letter to the editor that involves the
presentation of some technical information.

Translate some verbal instructions into written form.

Write instructions for using a tool/machine/program to
do a given task.

Prepare a set of standards to be used in some context,
Create some advertising copy and/or a press release

for a product.
Prepare a poster presentation about a

project/assignment.
Prepare a technical paper for submission to a

publication.
Prepare a progress report for a superior, e.g., a short

memo, a formal report, a final report.
Prepare a job description.

Experiences that develop abilities in group and project
work.

Work on a team project.
Serve as team leader for a team project.
Coordinate the activities of two or more teams

working on different parts of a single project.
Lead/facilitate a group discussion.
Prepare the agenda for a meeting,
Preside at a meeting.
Take and prepare minutes of a meeting.
Present a position paper to a meeting.
Prepare an RPP.
Prepare a project proposal.
Prepare a feasibility study and a budget estimnte for n

proposed project.
Prepare a schedule or work plan for a project,

including all needed resources.
Interview a customer/client to determine what the

customer/client wants, prepare a written
summary, and have the summary reviewed by the
customer/client for correctness.

Divide a task up into parts, assign the parts to different
members of a team, monitor the progress of the
work, and make sure that the completed parts can
be combined to accomplish the original task.

Experiences that develop respect for the work and skills
of other people.

Perform routine system maintenance tasks for I PC
and a workstation, e.g., install an operating
system from scratch, upgrade an operating
system, install a large application, upgrade a large
application, uninstall an application.

Open up a PC and a workstation to see what the
components actually look like.

Clean accumulated dust and grime from the inside of
an old computer.

Upgrade the memory of a computer including
determining the kind of memory needed,
identifying possible vendors, obtaining prices,
arranging for purchase, and actually installing the

---_ .-.- ____~

memory (both with an old machine and a new
one).

Replace and/or upgrade a computer’s hard drive
including evaluating the appropriate size in light
of available funds, identifying possible vendors,
investigating the appropriateness of used
equipment, obtaining prices, arranging for
purchase, and actually installing the drive in the
machine.

Actually run some networking wire from one place to
another, e.g., between buildings (through a
conduit), between offices (through walls and
ceilings).

Network two computers, including determining,
installing, and configuring necessary hardware;
determining, obtaining, and installing necessary
software; and verifying the correct behavior of the
resulting nehvork.

Write a shell script or a batch file.

Experiences that foster personal development and
mnturity.

Attend a formal dinner (menus/ordering, dining
etiquette, tipping...),

Host a formal dinner at a good quality restaurant.
Arrange and coordinate a telephone conference call.
Plan for and take a business trip involving air travel

and a hotel stay.
Have a practice job interview.
Have work performance reviewed by a supervisor (or

equivalent).
Prepare a resume for submission to a group of

evaluators.
Do something completely, 100% correctly - pass a

test, write a program, prove a theorem, etc.
Do something that is initially believed impossible to

accomplish - solve a problem, write a program,
etc.

Attend a local meeting of a professional society.
Attend a national technical conference (better yet, help

host one).
Spend at least one week working on a job with

uncooperative and antagonistic coworkers.
Spend at least one week working under an

incompetent and unreasonable boss.
Prepare a professional development plan, including

continuing education activities.

Experiences that develop presentation and interaction
abilities.

Prepare and give several types of formal presentations,
e.g., using PowerPoint or an equivalent, using a
blackboard or whiteboard, using poster sheets,
using a hand-out, using no presentation aids at all.

Present an outline/explanation of a problem solution
for review.

Present a report on a project/assignment to a group of
outside visitors.

Present a formal lecture on a technical topic to a
technical class.

Present a formal lecture on a technical topic to a non-
technical audience.

Mentor a beginning student.
Read and present the results of a technical paper.
Read a group of technical papers on one topic and

give a presentation that summarizes and evaluates
their contribution to the topic.

Train a novice user to use the basic user interface of
an operating system.

Train a novice user to use software the student knows
well.

Train a non-technical person to use a somewhat
technical software package.

Attempt to convince a dyed-m-the-wool FORTRAN
programmer of the benefits of the object-oriented
approach. :)

Document someone else’s product (perhaps not CS-
related).

Write instructions for doing a standard system
maintenance task (backing up the hard disk,
changing the hard disk partitioning, reinstalling
the operating system, recovering files from an old
backup, etc.) and have someone else (a novice!)
do the task by following the instructions. Then
revise the instructions as needed!

Plan an employment interview.
Interview a candidate for employment.
Conduct a face-to-face review of the work

performance of a person you have supervised.
Make an extemporaneous progress report to a

supervisor, e.g., in the hallway on the way back
from the coffee machine.

Teach something to a coworker/peer.
Learn something Tom a coworker/peer.
Participate in a meeting run under “Robert’s Rules of

Order”, including making a motion, arguing for a
motion, arguing against a motion, and making an
amendment to a motion.

Experiences that develop the ability to obtain and use
resources.

Search for the answer to a technical question using the
World Wide Web.

Search for the answer to a technical question using
usual library resources.

Search for the answer to a software question using the
documentation that was provided with the
software.

327

Research technical information in an application area
somewhat removed from CS.

Prepare an annotated bibliography on a certain topic.

4. Integrating Experiences into the Curriculum.

Once a list of required experiences is developed,
attention must be given to actually fitting these experiences
into the academic framework. Faculty will be unwilling to
sacrifice much time in an already crowded syllabus. Some
practical suggestions follow.

Suggestion 1: Don’t try to put all of these
experiences into the software engineering course. Many of
the experiences listed above are appropriate for software
engineering classes. Instructors who teach software
engineering have little problem incorporating these
experiences into their courses. Their only difficulty is that
there are too many experiences to incorporate into that one
course.

Suggestion 2: Introductory courses need
experiences too. Curriculum designers who are considering
integrating experiences into an undergraduate curriculum
should attempt to distribute the experiences over the whole
curriculum. Many of the experiences we have suggested
will help introductory students develop attitudes that will
facilitate their success in upper division courses as well as
their workplace environment after graduation. These
experiences are too important to be saved until the
upperclass years of an undergraduate program. For some
institutions, introductory computer science courses serve
both majors and nomnajors, but students in other majors
will also benefit from taking part in these sorts of
experiences.

Suggestion 3: Build on previous experiences. For
example, reading and presenting the results of a technical
paper (a presentation experience) can precede summarizing
a technical article (an evaluation experience). A student
who works on a team project can serve as a team leader in
a later project.

Suggestion 4: Use extracurricular venues for
some experiences. A student club or student professional
society, for example, can provide a setting for group
experiences, hardware repair projects, etc.

The following is an account of some of the ways
these experiences can be incorporated into introductory
computer science courses.

A. Have a final project in CSl and/or CS2 that is
a group project. Include as part of the project both an oral
presentation and some form of advertising. The oral
presentation is to be a sales presentation that describes the
advantages and special features of the product. The
advertisement can be posted on the instructor’s office door
or bulletin board (this will stimulate student creativity!).
This will encourage introductory students to incorporate
interesting user interfaces and optional features into their

products. Thus, beginning students are encouraged to think
in terms of the total quality of the product and also must
evaluate the effort required to incorporate that quality into
the product.

B. Ask students to modify code written by another
student. This requires students to read code written by
another person as well as determine whether it actually
works and find any errors. In our experience students will
complain loudly about the quality of the code they must
read and will be much more receptive to suggestions about
improving the quality of their own code.

C. In those institutions where introductory courses
are reasonably small (25-30 students) it is possible to
handle the introduction to a project design as a group
discussion. It can be useful for such a discussion to be led
by a student.

D. In some beginning courses there are closed
laboratories. In such a laboratory it is very useful to have
periodic checks of student work. When students reach a
certain point they are asked to have their work reviewed to
make sure that they have done things correctly. One can
adopt the practice of having these reviews done by
students whose work has previously been reviewed. This is
an excellent experience for the reviewing students.

E. In introductory courses one can create a local
newsgroup so that students can engage in discussion and
get questions answered using a newsreader. This makes it
very easy to use newsgroup and world wide web resources
in later courses.

5. Don’t Forget the Classics!

As educators we are transmitting a culture to our
students, the culture of computer science. One part of that
culture is awareness of the “classical” literature of the
field. One experience that we did not mention above is the
experience of doing some background reading in computer
science. Certain books have become so distinguished that
they are part of the culture of computer science just as
Shakespeare is part of the culture of English literature. All
computer science students should have the experience of
reading them. Fortunately, even beginning students will
find these books quite understandable as well as quite
interesting.

Computer science instructors have an obligation
to’prepare an appropriate list of these classics, make sure
their students have the list, and encourage students to read
these books. We have included below a short list of some
of our favorites, with apologies for what are no doubt
notable omissions.

ACM Turing Award Lectures, The First Tweny Years
1966-1985, ACM Press, New York, 1987.

Human Interface Guidelines: The Apple Desktop
Intefice, Addison-Wesley, Reading, MA, 1987.

328

Abelson, H. and Sussman, G. J. with Sussman, J.
Structure and Interpretation of Computer
Programs, The MIT Press, Cambridge, MA,
1985.

Bentley, J. Programming Pearls, Addison-Wesley,
Reading, MA, 1986.

Bentley, J. More Programming Pearls, Addison-Wesley,
Reading, MA, 1988.

Brooks, F. P., Jr. The Mythical Man-Month,
(Anniversary Edition), Addison-Wesley, Reading,
MA, 1995.

Dijkstra, E. W. A Discipline of Programming, Prentice-
Hall, Englewood Cliffs, NJ, 1976.

Dewdney, A. K. The Turing Omnibus, Computer
Science Press, Rockville, MD, 1989.

Goldstine, H. H. The Computer porn Pascal to von
Neumann, Princeton University Press, Princeton,
NJ, 1972.

Gries, D. The Science of Programming, Springer-Verlag,
New York, 198 1.

Kemighan, B. W. and Plauger, P. J. Software Tools,
Addison-Wesley, Reading, MA, 1976.

Neumann, P. G. Computer Related Risks, The ACM
Press, New York, 1995.

Polya, G. How to Solve It, Doubleday & Company, New
York, 1957.

Randell, B. (ed.) The Origins of Digital Computers:
Selected Papers, Springer-Verlag, New York,
1973.

Weinberg, G. M. The PsychoZogv of Computer
Programming, Van Nostrand Reinhold, New
York, 1971.

Wirth, N. Algorithms + Data Structures = Programs,
Prentice-Hall, Englewood Cliffs, NJ, 1976.

6. Conclusion

Again the purpose of this paper, and our proposed
list of experiences, is to stimulate thinking and promote
further discussion. We hope that other faculty will examine
this list, modify it, add to it, and share their thoughts. We
hope they will judge what best serves the goals of their
own students, and will then map any missing experiences
into appropriate places in their curricula. And we hope to
begin to encourage an environment where providing and
evaluating experiences is considered a major activity and
responsibility of the faculty.

7. Bibliography

1. Curriculum 68, Commun. ACM II, 3 (Mar. 1968),
151-197.

2. Curriculum 78, Commum. ACM 22, 3 (Mar. 1979)
147-166.

3. Gibbs, N. E., and Tucker, A. B. Model Curriculum for
a liberal arts degree in computer science, Commum.
ACM29,3 (Mar. 1986), 202-210.

4. Computing Curricula 1991, Commun. ACM34,6 (Jun.
1991), 68-84.

329

