
A curriculum that integrates calculus, computer science, physics, engineering

design, chemistry, engineering statics, and engineering graphics into a year-

long sequence of three 12-credit courses was introduced at Rose-Hulman

Institute of Technology during the 1990–1991 school term. The  Integrated

First-Year Curriculum in Science,

Engineering, and Mathematics (IFYC-

SEM), taught by an interdisciplinary

team of eight faculty members [2–4],

was designed from the outset with

extensive availability and use of com-

puters as a cornerstone [3].
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computing power through student-owned laptops.
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During the period of 1990–95, stu-
dents in IFYCSEM shared the Insti-
tute’s primary academic computing
resource: six networked classrooms,
each equipped with 30 NeXT work-

stations, together with about 15 NeXT workstations
in a computer lab. Since all calculus and differential
equations courses at Rose-Hulman were taught in
those classrooms, over 700 students were competing
for computer time.

Since 1995–96, all entering students have pur-TE
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chased laptop computers equipped with a software
suite including a word processor, spreadsheet, com-
puter algebra system, programming language, and
several additional tools. The ubiquitous presence of
computers, in the classroom and in the dormitory,
has changed the way computers are viewed and used.
Instead of making occasional excursions into a labo-
ratory with computers, students are in the computer

laboratory all the time. In
IFYCSEM, computers
strengthen existing con-
nections between disci-
plines, forge new links,
and change the way in
which students learn to
solve problems.

Why Computer
Use is Different in
IFYCSEM
In a mathematics course,
the computer tool of
choice is generally a com-
puter algebra system such
as Maple or Mathematica.
In a computer science
class, students learn to
program in Pascal or
C++. Laboratory courses
often require that stu-
dents become familiar
with a spreadsheet pro-
gram. AutoCad or Cad-
Key might be the tool 
of choice for engineering
graphics. Just as the 
artificial boundaries
between disciplines are
broken down, distinc-
tions between the differ-
ent tools are blurred in
IFYCSEM. A student is
encouraged to use the
computer as a Swiss army
knife in which each tool
is a blade.

This is practical
because the interdiscipli-
nary team can determine
that while Excel, for

example, may not be of sufficient value for mathe-
matics, physics, or chemistry alone, its value across
the curriculum justifies its use. In an integrated cur-
riculum, no single discipline bears the burden of
introducing the tools. Further, each instructor on the
team knows (and influences) what tools are intro-
duced when and, hence, can plan accordingly. In
addition, the standardization of hardware helps pro-
mote this integrated view of the computer (see arti-
cle by Brown et al. in this issue).

The ubiquitous presence of computers implies a
paradigm shift in the way students work—instead of
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Figure 1. An exploratory style of learning.  Black text is our
commentary.  Green text is the problem statement.  Red
text is the student’s work, with Maple’s responses in blue.



calculating at the end of a problem, students calcu-
late as they solve a problem. For example, students
see this problem early in the fall term: Consider a
right triangle whose perimeter is 100 inches. Construct a
function which provides the area of the triangle as a func-
tion of its hypotenuse h. Initially, students believe they
have insufficient information to solve the problem.
As they work, however, students formulate and eval-
uate intermediate expressions, which then guide
their problem-solving process (see Figure 1). When
these intermediate expressions yield nonsense, stu-
dents are prompted to rethink the problem.

The extensive use of the computer also facilitates
integration of separate disciplines. For example,
when Maple [1] is used as a tool for mathematics,
concepts from computer science arise quickly and
naturally:

•It is convenient to give names to Maple expres-
sions (as in Expression1 := x + 3*y), so that the
expressions can be reused easily. This is the com-
puter science concept of a variable and can be

explained nicely against the (different) concept of
an indeterminate (as in the traditional x and y of
mathematics).

•It is easy in Maple to calculate π to N decimal
places for any given value of N. Students discover
that the calculation is almost instantaneous for 
N ≤ 10,000, but is considerably longer for larger
values of  N. This naturally leads to a discussion
of run-time analysis and alternative implementa-
tions. (Our version of Maple calculates π by
a lookup table for N ≤ 10,000 and uses 
Chudnovsky’s formula thereafter.1)

Indeed, sometimes the material is integrated so
smoothly that students don’t notice the integration.
For example, somewhere in the introduction of
Maple for the purpose of doing mathematics, com-
puter programming concepts appear: lists and itera-
tion. These concepts sometimes look like
mathematics and sometimes looks more like com-
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Figure 2. The extensive use of computers facilitates integration across disciplines. The black text is our 
commentary, while red text is the student’s work, with Maple’s responses in blue. 

1Bruce Char, personal communication.



puter science, as shown in Figure 2.
The extended examples that follow illustrate the

impact of the laptop computer in several aspects of
IFYCSEM.

Mathematics/Physics Laboratory:
Programming in Maple
In parallel with the mathematics and computer sci-
ence instruction, traditional physics topics are intro-
duced, such as the motion of a particle in the
presence of gravity. 

Later in the first term, this physics concept,
already closely linked to mathematics, is integrated
with computer science in the form of a program-
ming laboratory2 in which the motion of a particle is
simulated, incorporating air resistance. Students
know the physics of falling bodies without air resis-
tance and can describe this motion mathematically.
They incorporate air resistance by assuming constant
acceleration over a very short time interval and using
the mathematics they already know. Then they write
a program, applying ideas like functions, parame-
ters, loops, assignment, and local variables, to simu-
late projectile motion, using the equations they
developed. Thus the laboratory integrates physics,
mathematics, and computer science and enables stu-
dents to understand the impact of a phenomenon—
air resistance—whose discussion usually must be
delayed until students have taken a course in differ-
ential equations. All this is made practical by the
fact that students have used a common set of com-
puter tools throughout an integrated course in sci-
ence, engineering, and mathematics.

Mathematics/Physics Laboratory
Using Excel and Maple

By the winter term, students have devel-
oped the concept of conservation of
energy and they know how to solve sep-
arable differential equations. In class,
Torricelli’s Law for the velocity of water

draining from a tank (under ideal conditions, 
v =Ïw2gh where v is the discharge velocity, g is the
gravitational constant, and h is the height of the
water above the discharge orifice) is derived from
conservation-of-energy principles. The class is then
asked to speculate what discharge velocity might be
achieved under real (less than ideal) conditions. Typ-
ically, students propose two or more models: that
discharge velocity will be proportional to that pre-
dicted by Torricelli’s Law and that the discharge
velocity will be modified by some function of the

height of the water in the tank. A laboratory setup is
described in which the height of water in the tank
can be measured and recorded electronically, and the
students participate in the development of the
experiment they will conduct to determine which, if
any, of the models they have proposed is valid.

A small tank is filled with water, and the dis-
charge orifice is equipped with one of several differ-
ent nozzles, all having the same cross-sectional area,
but inducing different amounts of friction and tur-
bulence. The height of the water in the tank is mea-
sured electronically using a pressure sensor.
Therefore, students first need to construct a function
that relates the height of the water to the voltage
output of the sensor. Students drain the water from
the tank, stopping the flow periodically and record-
ing the height of the water and the voltage output of
the sensor. Then they use Excel to fit a function to
the data, so that they can relate the voltage output to
the height of the water in the tank. Then they refill
the tank and drain it while the computer records the
voltage output from the pressure sensor every two
seconds. Students finish the lab by using Excel to fit
a polynomial curve to their height-vs-time data.

Meanwhile, the students set up and solve the dif-
ferential equation 

dt a a– = – v(t)= – kÏw2gh(t),
dt A A

where a is the cross-sectional area of the discharge
orifice, A is the cross-sectional area of the tank, and
k is the postulated constant or function of propor-
tionality. This differential equation can be solved
(by hand or by using Maple, depending on the
function k). The solution to the differential equa-
tion is not a polynomial, but by using the labora-
tory data, the students are able to determine the
function k and plot the resulting curve h(t) against
the data.

This laboratory experience is often the first one in
which the students do not know in advance what the
results should be and in which their results are sup-
posed to be different from those of their neighbors.
This forces the students to rely on their tools for data
analysis (Excel) and mathematical analysis (Maple),
as well as their common sense.

This laboratory was initially developed by Roger
Lautzenheiser at a time when the students were
using NeXT workstations. Because of the limited
amount of time the students were able to spend
actually using the computer to do their data and
mathematical analyses, it was not possible to allow
the students to consider multiple models. In addi-
tion, it was necessary to tell students to use, for
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2The laboratory was originally developed by Claude Anderson.



example, a linear fit for the voltage-to-water-height
conversion. The ubiquitous availability of the com-
puter makes it possible for students to continue their
work after the laboratory. In addition, it supports the
experiment/refine style of learning in which students
consider multiple models and a variety of solution
methods. Finally, the students’ comfort with the
entire suite of computer tools (instead of just “the
tool for the subject being taught”) facilitates this
experiment/refine style of learning.

Curve-Fitting with Excel and Maple
Throughout the year, students use Excel to fit curves
to data collected in their chemistry and physics lab-
oratories. In the spring, the students learn multi-
variate calculus and therefore gain the ability to fit
more complex curves than Excel will permit. At
that time, we provide the students with weight-
versus-age data for a large dog and ask them to fit
several curves. In a calculus class, the students
would fit all the curves using their computer alge-
bra system, but the IFYCSEM students, with no
prompting, immediately begin by using Excel.
However, one of the curves, ultimately the best one,
is too complex for Excel to handle: w = k1 – k2
exp(–k3t), where w is the weight of the dog in
pounds and t is the age of the dog in days. Indeed,
the resulting system of three equations in three
unknowns is sufficiently messy that even Maple has
a hard time, so that the students have to invoke a
numerical equation-solving routine (fsolve) in which
they provide Maple with ranges for each of the con-
stants. Determining these ranges requires that the
students iteratively refine their estimates, building
not only on their understanding of exponential
functions but also on their understanding of the
algorithm Maple uses to solve systems of equations
numerically.

Note how this example shows that the use of com-
puters in IFYCSEM forges new links between math-
ematics (exponential functions) and computer
science (numerical algorithms). As in previous exam-
ples, the students’ comfort with the entire suite of
computer tools facilitates this integration.

Conclusion
The ubiquitous presence of computers in IFYCSEM:

Strengthens existing connections between disciplines as in
the laboratory on Torricelli’s Law, where the com-
puter tools clarify natural connections between
mathematics and physics.
Forges new links between disciplines as in the early use of
Maple for mathematics, in which links to computer

science arise simply because Maple is a programming
language.
Changes the way in which students learn to solve problems
(as in all the examples, in which students use their
computer to explore the problems, rather than
merely solve them).

Some of the ideas in this article translate from IFYC-
SEM’s integrated curriculum to a traditional, course-
based curriculum. For example, if all departments
devote and coordinate resources to help students
learn relevant applications, all departments benefit.
If computer scientists assist the introduction of
Maple in a mathematics class, or if mathematicians
assist a physics or chemistry laboratory involving
modeling and curve-fitting, the computer tools they
share will facilitate exposition of interdisciplinary
connections. And the ubiquitous presence of com-
puters in any curriculum will lead naturally to stu-
dents’ adopting a more exploratory style of
problem-solving.  

References
1. Char, B.W., Fee, G.J., Geddes, K.O., Gonnet, G.H., and Monagan, M.B.

A tutorial introduction to Maple. J. Symb. Comput. 2, 2 (1986), 179–200.
2. Froyd, J.E. Integrated, first-year curriculum in science, engineering, and

mathematics—A ten-year process. In Proceedings of the 1995 Frontiers in
Education Conference (Atlanta, Nov.1–4 1995). ETP/Harrison, Salt Lake
City, 1995, pp. 4d4.16–4d4.20.

4. Rogers, G.J., and Winkel, B.J. Integrated, first-year curriculum in sci-
ence, engineering, and mathematics at Rose-Hulman Institute of Tech-
nology: Nature, evolution, and evaluation. In Proceedings of the 1993
Conference of the American Society for Engineering Education (Champaign, Ill.,
June 20–24, 1993). American Society for Engineering Education, Wash-
ington, D.C., 1993, pp. 186–191.

3. Froyd, J.E. and Winkel, B.J. A new integrated first-year core curriculum
in engineering, mathematics and science: A proposal. In Proceedings of the
1988 Frontiers in Education Conference (Santa Barbara, Calif., Oct. 22–25,
1988). IEEE Education Society and ASEE Educational Research and
Methods Division, New York, 1988, pp. 92–97.

Lynn Kiaer (kiaer@Rose-Hulman.Edu) is Assistant Professor
of Mathematics at the Rose-Hulman Institute of Technology in
Terre Haute, IN.
David Mutchler (mutchler@Rose-Hulman.Edu) is Associate
Professor of Computer Science at the Rose-Hulman Institute of
Technology in Terre Haute, IN.
Jeffrey Froyd (froyd@Rose-Hulman.Edu) is Professor of 
Electrical and Computer Engineering at the Rose-Hulman 
Institute of Technology in Terre Haute, IN.

Permission to make digital/hard copy of part or all of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage, the copyright notice, the title of the publication and
its date appear, and notice is given that copying is by permission of ACM, Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior spe-
cific and/or a fee.

© ACM 0002-0782/98/0100 $3.50

c

COMMUNICATIONS OF THE ACM January 1998/Vol. 41, No. 1 49


