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ABSTRACT 
By combining the strengths of multiple interaction tech- 
niques and inferencing algorithms, Gamut can infer behav- 
iors from examples that previously required a developer to 
annotate or otherwise modify code by hand. Gamut is a pro- 
gramming-by-demonstration (PBD) tool for building whole 
applications. It revises code automatically when new exam- 
ples are demonstrated using a recursive procedure that effi- 
ciently scans for the differences between a new example and 
the original behavior. Differences that cannot be resolved by 
generating a suitable description are handled by another AI 
algorithm, decision tree learning, providing a significantly 
greater ability to infer complex relationships. Gamut’s inter- 
action techniques facilitate demonstrating many examples 
quickly and allow the user to give the system hints that show 
relationships that would be too time consuming to discover 
by search alone. Altogether, the concepts combined in 
Gamut will allow nonprogrammers to build software they 
never could before. 
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INTRODUCTION 
Much of the intellectual effort that goes into producing a 
game or an educational tool is not in programming the 
game’s logic but in providing the engaging background, art- 
work, and gameplay that keeps players interested. Artists 
and educators that have the talent and ideas to produce good 
material are often unable to program computers. Therefore, 
providing tools which eliminate the burden of programming 
while still maintaining the ability to build interesting soft- 
ware is desirable. 

‘Baditional methods for producing interactive software 
require extensive programming knowledge. Programming 
graphics in common environments like Visual C++ or Motif 
require great effort even from seasoned programmers. Tools 
like interface builders facilitate the design of the layout and 
the look of some parts of the program, but still require pro- 
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gmmming to make the interface actually work. Authoring 
tools like HyperCard [5] and Director 173 provide more sup- 
port, but require the developer to learn baroque program- 
ming languages to produce anything beyond simple 
interactions. Application builders such as Klik & Play [6] 
which do eliminate progmrnming also impose severe limits 
on the kinds of programs one can make. 

A typical solution has been to simplify the language with 
which one programs. KidSim [ 151 (now called Cocoa) uses a 
notably simple language with pictures that show how objects 
change from one state to another. However, when the lan- 
guage is simplified this much, the tool often loses generality: 
KidSim requires an application to be constructed from the 
same rectangular tiles from which the language’s pictures are 
made. Furthermore, even in KidSim, the developer must 
learn and use a separate annotation language to form condi- 
tional phrases required by all but the most basic applications. 

We have applied programming-by-demonstration (PBD) 
techniques that change the process of programming alto- 
gether. In PBD, the user shows the system what to do by giv- 
ing it examples of the desired behavior. By analyzing the 
examples and generalizing them using inductive learning 
techniques such as heuristic search and decision tree leam- 
ing, the system can create code that performs the same 
behavior. We seek to improve PBD techniques in order to 
build a broader class of applications. 

Our research shows that many behaviors requiring code 
annotation or that are not possible in other PBD systems can 
be generated entirely by demonstration. In fact, we have 
made complete applications such as Tic-Tat-Toe, a ‘Bning 
machine simulation, and several maze games entirely with 
demonstration. Soon, we will be able to make even more 
advanced games like Chess, Reader Rabbit, and PacMan. 

What Gamut Can Do 
Gamut is designed to build applications like video games, 
simulations, and educational software. We are focusing on 
games which resemble board games that possess two-dimen- 
sional graphics and behaviors that involve how “pieces” 
interact with one another and interact with a background 
“board.” By our definition, PacMan is a “board game” with a 
background maze with dots and pieces for the PacMan and 
monsters. Monsters, bullets, and other moving pieces use 
timers to control their actions. In this paper, we will call 
graphical pieces and items in the background “objects” in the 
standard object-oriented sense. We will also introduce other 
objects later to represent non-graphical concepts. 
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Gamut can infer complex, conditional relationships between 
objects without requiring the developer to write any code. 
Like other PBD systems, Gamut can infer behaviors that cre- 
ate, modify, and destroy objects as one does in a graphical 
editor. But Gamut infers relationships that others cannot: 

l Objects involved in a behavior can be independent from 
the objects modified by the behavior. In other words, the 
effect of a behavior can be independent from the reason 
the behavior occurred. For instance, in PacMan, the mon- 
sters turn blue when the PacMan eats a big dot. Other PBD 
systems require the developer to create such relationships 
by editing a code-like description of the inferred rules. 

l An object’s description can form an arbitrarily long chain 
of relationships. For example, Gamut can infer a legal 
move in a Monopoly game: “the square which is the dice’s 
number of squares away from the initial position of the 
current player’s piece.” This one description combines 
objects such as the dice, the player turn indicator, as well 
as the board configuration, into one expression chain. 

To make Gamut easier to use, we have assembled interaction 
techniques that simplify and streamline the demonstration 
process. First, the developer uses hints to point out important 
objects that guide the construction of new relationships. Sec- 
ond, Gamut uses efficient interaction techniques called 
nudges to make examples easier to generate and more 
numerous. These nudges can produce negative examples as 
easily as positive examples. 

Gamut uses a recursive searching technique to ican a behav- 
ior and find how it differs from a newly demonstrated exam- 
ple. The algorithm combines two forms of learning to 
generate new expressions: heuristic search and decision 
trees. Heuristic search uses rules to examine the context of a 
demonstration. It can learn complicated expressions quickly 
by recognizing common situations. A decision tree is a sta- 
tistical learning algorithm that can learn arbitrary boolean 
expressions using examples. Gamut uses decision tree learn- 
ing to form the predicates of conditional statements. 

What Gamut Cannot Do 
Gamut’s most serious flaw is a lack of feedback which is dis- 
cussed in future work. Since Gamut cannot infer when the 
developer is making a mistake, the developer may be 
unaware when there is a problem. If the developer discovers 
a problem, though, Gamut’s interaction techniques make 
repairing the bug quite easy. 

Gamut also has domain restrictions. For instance, presently 
Gamut’s graphics editor cannot rotate objects. A developer 
wanting to construct the game Asteroids, which involves a 
small space ship that rotates, cannot use Gamut because it 
does not support a necessary operation. Making Gamut sup- 
port a larger domain is possible by adding more features. 

Gamut also does not infer application state. Gamut infers 
relationships between state objects, but cannot generate new 
state objects by itself. So, if a behavior has to repeat five 
times, part of the state the user must provide is the counter 
which says how many times the behavior has left to go. 
Though some application state can be derived from existing 

objects (like the position of squares on a Chess board which 
represent where a piece is allowed move), the developer 
must often create extra objects to represent counters, 
switches, and other state variables. 

Finally, Gamut can only create algorithms that the developer 
understands. For instance, many computer games like com- 
puterized Chess use sophisticated algorithms to model strate- 
gies in order to make a good move. Demonstrating such a 
strategy requires more state variables and demonstrations 
than any developer will be able to perform. Any algorithm 
beyond the developer’s understanding cannot be magically 
inferred by Gamut. The Gamut version of Chess will not 
have a computer opponent, but it will keep human players 
from making illegal moves because the rules to Chess use 
state that is mostly available from the board and can be dem- 
onstrated in a reasonable number of examples. 

EXAMPLE 
We will use a simple example to show how to make a Gamut 
application. The object of the game is to steer a droplet of 
water into a bucket by selecting which color pipe the droplet 
will follow. Figure 1 shows the main Gamut window in 
which is drawn the game board. The background consists of 
a pyramid of pipes. Some are painted green and the others 
are painted red. At the bottom of the pyramid is a bucket. To 
switch colors, the player clicks the mouse button. 

Figure 1: The main drawing window showing the final game. 

This game is certainly simple, and variants of it can be cre- 
ated with other tools. But because the game has an element 
of user input (clicking to steer), and because the direction the 
drop chooses depends on state set by that user input, there is 
no prior tool that can build this game without requiring the 
developer to write code or annotate rules by hand. 

The first step is to draw the parts of the game. Like most 
application builders, Gamut’s primary interface consists of a 
graphical drawing editor/interface builder. The developer 
chooses graphical primitives and widgets from the drawing 
palette and lays them out in the work area. A simulated win- 
dow pane (titled “Waterfall” in Figure 1) divides the working 
area into portions visible to the player and an offscreen area 
where the developer can put objects which store state. (This 
game needs no offscreen objects.) The developer draws 
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images for the background pipes, the water droplet, and the 
catch bucket. 

Guide Objects 
In the next step, the developer draws objects into the scene 
that control state, but are not part of the visible elements of 
the game. In Gamut, we call these guide objects because they 
are meant to “guide” the actions of other objects. Guide 
objects are graphical objects that are visible only when the 
application is being built and are made invisible when the 
game is played. Using guide objects is not new. Metamouse 
[8] and Demo II [l] use a nearly identical abstraction, and 
Rehearsal World [3] developed “offstage actors” as its term 
for offscreen objects. 

Figure 2: Guide objects for the water droplet game. 

Next to the pyramid, the developer draws a rectangle to act 
as a state variable to show which path the droplet follows and 
adds a timer to make the droplet move independently. Since 
the pipe images are bitmaps, and the computer cannot inter- 
pret the image inside them, the developer draws arrow lines 
on the diagram one along each pathway. The developer uses 
a dotted line to show moving right and a solid line to move 
left, The completed picture is shown in Figure 2. 

Demonstrating Behavior 
With all the graphics drawn, the developer next demonstrates 
the game’s behavior. Gamut essentially uses the Stimulus/ 
Response style of demonstration as pioneered in Demo [17]. 
In object-oriented terms, a stimulus is represented by an 
event object, and the response is represented by actions. 
Events come from external sources such as pushing a button, 
moving the mouse, or a ticking of a timer. Actions are pieces 
of code which change the state of the application. Moving an 
object or setting the score are actions. 

Gamut uses a simplified demonstration technique which we 
call nudges. A nudge is a correction that the developer gives 
the system when it is not behaving correctly. Gamut defines 
two nudges: the Do Something! nudge and the Stop That! 
nudge. 

The developer uses Do Something! to add new behavior. 
First, the developer causes an event to occur like pushing a 
button. When an object does not respond, the developer 
selects the object and pushes the Do Something! button. This 
tells the system that the developer is ready to show a new 
example concerning the selected object. Stop That! is a 

means for demonstrating negative examples. The developer 
selects objects that did the wrong thing and presses the Stop 
That! button. Stop That! performs undo on actions that affect 
the selected objects. One complication is that actions which 
perform their work on multiple objects sometimes need to be 
split up to affect only selected items. 

In the water droplet example, the developer wants to make 
the droplet follow the arrow lines each time the timer ticks. 
The droplet begins at the top of the pyramid (see Figure 2). 
Pressing the Step button on the timer provides the timer 
event. At this point, the system does nothing because no 
behavior has yet been demonstrated. The developer selects 
the droplet and pushes the Do Something! button. The sys- 
tem changes the state to Response mode and brings up a dia- 
log asking the developer what to do next. 

Response Mode 
The, developer uses Response mode to demonstrate new 
behavior. In this phase, Gamut acts like any other PBD sys- 
tem and records all modifications the developer makes to the 
state of the application. During Response mode, Gamut adds 
demonstration interactions to the interface (see Figure 3): 

l Gamut shows the differences in all modified objects by 
making “temporal ghosts.” Temporal ghosts are shown as 
dimmed versions of objects as they originally appeared. 

l Hint highlighting is activated. The developer may high- 
light objects pertinent to the example that may not be 
apparent to the system by selecting them with the right 
mouse button. Highlighted objects become important hints 
that direct the inferencing. The hint highlighting interac- 
tion is separate from the selection widget interaction in 
Gamut to make highlighting easier and because selection 
is needed for other operations such as moving objects and 
changing their colors. 
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Figure 3: State showing the temporal ghost of the droplet at the top 
and a highlighted arrow. 

Continuing with the example, the developer moves the drop- 
let to the end point of the dotted arrow line. The system cre- 
ates a ghost of the droplet at the beginning of the arrow (see 
Figure 3). The developer highlights the path that the droplet 
follows and presses Done to complete the response. Let us 
suppose that the developer did not highlight the dotted rect- 
angle. When important state is not highlighted, the system 
must eventually query the developer. 
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Figure 4: Using the mouse icons to show a click event. The circles 
indicate the palette choice and the click icon. 

The developer next changes the style of the rectangle to solid 
and begins to demonstrate moving the droplet along the 
opposite path. When the timer Step button is pushed, the sys- 
tem (not knowing any better) moves the droplet along the 
dotted path. The developer selects the droplet and pushes the 
Stop That! button. Immediately, all actions performed on the 
droplet are undone moving it back one step to where it 
started. The developer corrects the action by dragging the 
water droplet to the solid side and presses Done. This con- 
fuses the system because it has no criteria to choose between 
the two paths and it asks the developer for a hint. Gamut 
stays in Response mode until the developer satisfies all of its 
questions. The developer is no longer allowed to make 
changes in the recorded response, but ghost objects and hint 
highlighting remain as a way to answer the dialog queries. 

The developer has three ways to answer a question dialog: 

. Highlight one or more objects and press the Learn button. 
This builds the highlighted objects into new relationships. 

l Press the Replace button to eliminate the original response 
and replace it with the current response. This is used to 
correct mistakes. 

l Press the Wrong button to skip the question. Since the sys- 
tem uses heuristics, it can sometimes create erroneous 
questions. The Wrong button forces the system to choose a 
different question which will hopefully be better. 

The correct choice in this case is to highlight the rectangle 
and press Learn. Testing further, the developer finds the 
droplet now moves as desired. 

Mouse Input 
The developer now demonstrates how to toggle the rectan- 
gle. Assume that the rectangle begins in the dotted style. The 
desired interaction is to have the player click the mouse to 
switch the rectangle’s style, so the developer drops a “mouse 
click” icon onto the window (shown in Figure 4). The mouse 
icons are used to show what the player will do with the 
mouse at run-time. Nothing happens originally so the devel- 
oper pushes the Do Something! button, and changes the rect- 
angle’s style to solid. After pressing Done, the developer 
drops another click icon, and the system responds by setting 
the rectangle to solid (making it appear to do nothing). The 
developer selects the rectangle, presses Do Something! and 
changes the style back to dotted. This causes the system to 

question the developer asking what the style of the rectangle 
depends on. The developer highlights the ghost of the rectan- 
gle indicating that its previous style is the state that matters 
and presses Learn. Dropping further click icons causes the 
rectangle to act correctly. 

Finishing up, the developer moves the water droplet back to 
the top of the pyramid. The guide objects are made invisible 
using a menu command. The droplet is started animating by 
pressing the play button on the timer widget. And finally, the 
mouse interaction is enabled by pressing a toggle button on 
the simulated window. The developer can click the mouse 
and see that the droplet follows the correct path. 

GAMUT’S INJ?ERENC!ING ALGORITHM 
Most previous PBD systems have used very simple algo- 
rithms for inferring behavior, but these are not sufficient to 
handle the behaviors needed by real applications. There are a 
rich variety of algorithms developed by AI researchers and 
Gamut adapts two of them. Gamut uses heuristic search as 
the backbone of its inferencing. Heuristic search learns 
behavior quickly because rules encode useful features of the 
domain. Gamut also uses decision free learning [14] which 
we describe later, but Gamut does not use the decision tree 
algorithm to produce code directly. Expressions which use a 
boolean test encode the test as a decision tree. 

Gamut uses three kinds of objects to represent application, 
behavior: events, actions, and descriptions. These compo- 
nents are similar to the language invented by Halbert in his 
SmallStar system [4]. An event object is the same as an 
Amulet “command object” [12]. Command objects are 
stored in widgets and input objects (called interactors). In 
some systems, a command object would be likened to a 
“callback procedure.” A command object stores just enough 
state to implement Undo and Redo for the operation it per- 
forms which the system then copies to the undo history. 
Gamut augments command objects (a.k.a. events) by adding 
actions demonstrated by the developer, and then events 
become behaviors. As previously mentioned, actions are 
objects whose methods change the state of the application. 
Gamut defines six actions which are listed in Table 1. . 

Create Object: Creates one or more graphical objects from a 
prototype. 

Delete Object: Removes graphical objects from their window. 

Move/Grow: Moves or resizes graphical objects. 

Change Property: Changes one property of one or more 
graphical objects. 

Reparent: Moves one or more graphical objects from one 
window or group to another. 

Change Z-Order: Changes the stacking order of one or more 
graphical objects (like To Top or To Bottom). 

Table 1: List of all actions defined in Gamut. 

The parameters of actions are called descriptions which are 
named after Halbert’s “data descriptions.” A description can 
be a constant value like a number or a color, or it can be a 
short, composable expression which is represented by an 
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object, Description objects can have parameters which them- 
seIves arc descriptions. For instance, “the color of the object 
to which the arrow points” is a Get Property description 
whose object parameter is a Connect description. Descrip- 
tions have two significant methods. One is a computation 
method which evaluates the description’s expression. The 
other is the “recursive difference” method which is used for 
revising the description. Gamut presently defines 11 descrip- 
tions which are listed in Table 2. 

Get Property: Returns the value of a single property from a 
graphical object. 

Align: Returns a graphical location based on connections to 
other objects and locations. 

Select Object: Picks one or more objects from a set of objects 
according to a boolean expression. 

Choice: Picks one value from a set of several values according 
to a boolean expression. This is Gamut’s form for an if- 
then or case statement. 

Equal: Tests if two values are equal. 

Number Test: Tests two numerical values for equality, lesser, 
or greater than. 

Connect: Given a location, return the objects that are con- 
nected to that location. 

Chain: A Connect that is repeated an integer number of times 
and returns the last set of objects. 

Count Objects: Returns the number of objects in a set. 

Add: Returns the sum of two numerical values. 

Get Prototype: Returns the base type of a graphical object. 

Table 2: List of all descriptions presently implemented in Gamut. 

The Shges of Inferencing 
The steps in Gamut’s inferencing are shown in Figure 5. In 
the first stage, actions from the original behavior and the 
developer’s manipulations are converted into new actions. 
The second stage compares the new actions with the actions 
in the original behavior and generates a data structure that 
captures the differences between the two. In the final stage, 
the differences found in stage two are resolved to create a 
new behavior. 

Staee 1 Staee 2 Stage 3 

Task Convert to Match original and Assemble 
actions example actions behavior 

Data 

Figure 5: The stages GamuErcate new behavior. 

Two actions are considered identical if all of their parameters 
match. If all but one parameter matches, the actions are con- 
sidered similar. Identical actions are ignored since they 
already do what is required. Similar actions are recorded as 
having changed the one parameter. Unmatched actions from 
the new example are considered to be new, and unmatched 
actions from the original behavior are considered not to have 
been executed. 

Stnge One 
The first step converts the developer’s response into a list of 
actions, Gamut reads the undo history to extract the new 
example as a list of command objects (or events). The Do 
Something! and Stop That! commands along with the dia- 
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There are a few complications to consider. The first concerns 
actions that operate on sets of objects. In this case, example 
actions which act on single objects must be coalesced with 
original actions which have that object as a member of its 
set. Only after all actions are matched can the system deter- 

log’s Done button form the boundaries. If there was an origi- 
nal behavior, its actions are added to the list. Many graphical 
operations are complicated. For example, grouping objects 
creates a new group object, changes the selected objects’ 
positions, and reparents the selected objects into the group. 
Gamut therefore translates the raw Amulet events into more 
primitive actions to make them easier to manipulate. 

Stage Tbvo 
In this stage, Gamut compares the newly formed example 
actions with the actions found in the original stimulus event. 
This stage performs the bulk of the inferencing work. There 
are two parts to this stage. The first part matches the actions 
in the new example to the original actions. This will deter- 
mine which changes were made to the original actions’ 
parameters, which original actions did not execute, and 
which example actions are new. Of course, if there are no 
actions in the original stimulus, stage two is skipped and the 
system moves to stage three. 

‘Ihe second part of stage two propagates the changes found 
in the original actions’ parameters to the description objects 
contained within. Each description determines how its 
parameters change using its diference method. This is recur- 
sively repeated for the whole tree of descriptions. The final 
result of this stage is a set of changes one might make to the 
parameters of the original actions and descriptions in order 
to make it perform the same operation as the actions in the 
example. The algorithm Gamut is using is a heuristic search, 
and the object-oriented design provides a good framework to 
apply heuristics efficiently and allows extensibility. 

Matching Actions 
Here Gamut matches actions in the new example to actions 
in the original behavior. We intentionally designed Gamut’s 
actions to be unordered. Most systems use temporal order to 
represent constraints between actions. Tire result of one 
action feeds into the next to provide a combined result. 
Instead, Gamut uses explicit descriptions where what could 
be the resuIt of another action is described fully by the action 
that actually needs it. Whether the actions execute before or 
after each other does not matter. Gamut prevents code dupli- 
cation by sharing common descriptions. By being unordered, 
actions can be easily matched by looping through all the 
actions and comparing them. In our experience with Gamut, 
all behaviors contain very few actions (usually two or three), 
so the time to compare them is insignificant. 



mine if all objects in the original action are accounted for 
and whether the original action is identical to the example. 

A second complication concerns the Create Object action. If 
the developer demonstrates creating graphical objects, those 
objects will not be the same as objects created by the original 
Create Object action. Furthermore, objects created by a Cre- 
ate Object action might be deleted by the developer and 
replaced by identical objects. Instead of matching the param- 
eters of Create Object actions, the system examines the 
graphical objects created by the developer to see if they 
“look the same” as the prototype objects from which a Cre- 
ate Object action instantiates new objects. This involves 
examining the graphical object’s properties and type to see if 
they match. The prototype parameters of Create Object 
actions match when they produce objects which look alike. 

Propagating Changes To Descriptions 
Once a potential change to a parameter is determined, it is 
propagated to the description stored in that parameter. If the 
old description is constant, Gamut records that the constant 
may have changed to the new value. Otherwise, the system 
calls the description’s d@rence method. 

The difference method takes the new value and tries to find a 
way to modify the description to generate that value. Each 
type of description has its own heuristic difference method, 
but most simply apply what we call the “one change” rule. 
Using the one change rule, an algorithm only tries to change 
one thing. This is similar to Winston’s concept of a “near 
miss” for training examples [16]. The difference method 
tries changing one of the description’s parameters at a time 
leaving the others the same. For instance, the Get Property 
description retrieves a property from a graphical object. It 
has two parameters, the object and the name of the property 
to get. Using the “one change” rule, the difference method 
will first search for a different object whose property has the 
right value. Next, it will look for different properties in the 
original object to find the value. All matches that it finds are 
added to the set of changes. The new values are then recur- 
sively propagated to the Get Property description’s parame- 
ters. A few descriptions such as Align (which computes the 
location of graphical objects) use more complicated heuris- 
tics, but they achieve similar results. Propagating new values 
through the original behavior is common in AI techniques 
like reinforcement learning and neural networks but has not 
been previously applied to a PBD tool. 

The developer is normally not queried during the search pro- 
cess. Also, most difference methods do not use hinted 
objects because they are sufficiently constrained by the “one 
change” rule not to produce too many results. An exception 
to this is the Count Objects description which returns the 
number of graphical objects in a set. This description cannot 
be computed in reverse since knowing that the description is 
supposed to compute 5 instead of 3 does not tell the descrip- 
tion which 5 objects to count. Instead, it asks the developer 
to highlight the objects and proceeds using that answer. 

If the difference methods are poorly designed, there is a 
potential for a combinatorial explosion. The depth of the 
search is fixed to be the depth of the description hierarchy, 

but the number of changes that each descrintion can find 
could be high. The one change rule and the shucture of the 
application will normally restrict the search space ade- 
quately. However, some difference methods must cull the 
amount of changes they find to only those most likely to be 
the ones the developer means. Because each description has 
its own difference method, it can be tailored to meet the spe- 
cific needs of that expression. 

Because the parameters of Gamut’s descriptions are not 
independent, the result of the difference methods form an 
And-Or tree. The leaves of the tree are the parameter 
changes found by the methods. And-nodes indicate when all 
changes must be made to correct the description and Or- 
nodes choose among a set of optional changes. Note that this 
And-Or tree is not related to the decision tree algorithm that 
is discussed later. 

Stage Three 
After completing the analysis stage, the system is ready to 
assemble the new behavior. Actions that were judged identi- 
cal or similar to the example are kept. New actions are added 
in and since order does not matter they can be appended to 
the end of the list. Unmatched actions are enclosed in a 
Choice description (see Table 2) to indicate that there is a 
condition. If the behavior already contained Choice descrip- 
tions, Gamut uses the matching results to pick the best 
branch and proceeds to modify that. 

What remains is to resolve the set of changes found by the 
difference methods, and to replace the constant parameters 
of new actions with descriptions if warranted. First, Gamut 
will search the old behavior for descriptions that already pro- 
duce the desired result. Descriptions are often shared among 
actions and searching prevents the system from having to 
learn descriptions twice. If the search fails, Gamut will try to 
create a new description. Gamut uses the same algorithm as 
Marquise [13] to accomplish this task. However, instead of 
using only heuristics to find matching descriptions, Gamut 
focuses attention on the highlighted objects. 

Creating a new description involves picking one whose type 
can evaluate to the correct kind of value. Beyond that, the 
system uses heuristic rules to pick highlighted objects that 
can be used as parameters. When Gamut replaces the origi- 
nal description, it creates a Choice description and stores 
both the new and old description together. By not referring to 
the old value’s branch in the Choice’s boolean expression, it 
remains uncomputed, but is available for comparison with 
new descriptions. Gamut uses these “dead” branches to pre- 
vent itself from repeating incorrect inferences. 

If Gamut cannot create a new description using the high- 
lighted objects, it asks the developer to highlight different 
objects. Gamut uses the context of the change including the 
affected action, the description that is actually modified, and 
the old and new values, to form an English sentence. From 
this sentence, the developer can choose to highlight new 
objects (which are processed as before), or choose to replace 
the changed value with the new value (without creating a 
new description), or move on to another question. Any 
choice the developer makes serves to eliminate items from 
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the set of changes. The system will continue posing ques- 
tions until the set is empty. 

DECISION TREE LEARNING 
So far, we have only mentioned the decision tree algorithm 
in passing. In Gamut, decision trees are used to represent 
boolean expressions in two kinds of descriptions: the Choice 
description and the Select Object description. Each of these 
descriptions keeps data to support its own local decision tree. 

The decision tree algorithm was invented by Quinlan [14] as 
a form of inductive learning (Gamut uses the generic ID3 
version of the algorithm). The data from which a decision 
tree learns has a database-like structure. Each row of the 
database provides an example of the concept to be learned, 
and each column represents an attribute of the concept. For 
instance, the concept might be whether the weather is good 
for a picnic, Attributes of the weather might be the tempera- 
ture, whether it is raining, and the humidity. The diagram in 
Figure 6 shows a possible result of converting a database 
containing these data into a decision tree. 

Figure 6: Decision tree to gauge picnic weather conditions. 

The decision tree algorithm uses a statistical measure called 
“entropy” that relates how well an attribute corresponds with 
a result, The algorithm chooses the attribute with the best 
entropy value to be the root of the tree, eliminates that 
attribute from the database, and recurses for each branch of 
the tree. In Gamut, decision trees learn which objects the 
Select Object description and which branch the Choice 
description should pick. Gamut’s decision trees never grow 
very big because most boolean expressions it needs combine 
only a few attributes. An example attribute might be “an 
object has a dotted line style.” 

When a Select Object or Choice description is first created, 
Gamut creates attributes for its database. The attributes are 
just descriptions and are constructed from highlighted 
objects as described above. Gamut scans the highlighted 
objects to create predicates from their properties and posi- 

’ tions. Gamut adds new predicates whenever it finds that two 
examples in the database contradict each other. 

Each time a Select Object or Choice description is revised, 
the system will first try to add a new example row to the 
decision tree database. New examples are formed by evaluat- 
ing the set of predicates and pairing that with the new result 

indicated by the revision. If the new example is different 
from the other examples, a new decision tree can be gener- 
ated which will distinguish the new case. If the new example 
contradicts another, though, more predicates will need to be 
created. 

Gamut’s use of decision trees is considerably different from 
the standard practice. Normally, decision trees use hand- 
crafted attributes and hundreds of examples to learn a com- 
plicated expression. Gamut uses automatically generated 
attributes and a few examples to learn simple expressions. 
The entropy measure serves as a good way to pick out the 
one or two attributes that matter out of a set of dozens. 

RELATED WORK 
A number of other systems build programs by demonstra- 
tion. Previous systems have always relied on the developer to 
manually edit the inferred code in order to add conditions 
and correct mistakes that the system could not handle. 

The system probably the most like Gamut is our earlier sys- 
tem, Marquise [13] which was designed to build graphical 
editors such as node and line diagrams. Gamut’s behavior 
structure as well as the means for generating descriptions 
were taken from Marquise. Also, Gamut’s mouse arrow 
icons for demonstrating mouse events came from Marquise. 
The guide object ideas in Gamut were first used in Demo II 
[l], Metamouse [8], and Rehearsal World [3] as was previ- 
ously mentioned. 

Grizzly Bear [2] has a good inferencing system for finding 
linear constraints and some forms of conditions. It also had 
an algorithm for recognizing certain groups of objects. For 
instance, it could learn the set of all objects whose color is 
blue. Moving beyond that level of description, though, was 
not possible. Furthermore, behaviors could not be refined 
through demonstration. Grizzly Bear required all examples 
for a given behavior to be demonstrated at once forcing the 
developer to devise examples very carefully. Grizzly Bear’s 
inferencing was primarily for learning linear constraints 
between the positions of objects which, for instance, could 
not learn to make an object follow a chain of lines. The Pav- 
lov [18] system also inferred linear constraints, and it also 
had a partial guide object mechanism for making behaviors 
where objects move and turn. However, conditional relation- 
ships such as modes and input events could only be added by 
annotating the code. 

The Cima [9] system was one of the first PBD systems to 
incorporate inductive learning algorithms designed by Al 
researchers. Cima was designed to learn word and letter 
combinations that are commonly found in word processing 
tasks. It used hints (but no guide objects), and it also used 
positive and negative examples. Unfortunately, Cima was 
never truly finished. It was never applied to actually perform 
word processing tasks and could not infer actions or behav- 
ior. Furthermore, the manner in which Cima’s inferencing 
was applied to its textual domain makes it difficult to re- 
engineer for another domain. 

. 

liwruREwoRK 
Gamut is implemented using Amulet [l l] and runs on Unix, 
Windows, and the Macintosh. Ar the time of this writing, 
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Gamut is still not quite complete. We have made significant 
progress and can now create many complex applications, but 
it still lacks the polish developers need to make a system 
usable. The current work involves improving Gamut’s feed- 
back and filling out the features to make more applications 
possible. We want potential developers and our eventual test 
subjects not to find implementation holes too easily. 

A major unanswered issue is how to properly display behav- 
iors that the developer demonstrates. Even though the devel- 
oper can completely test and revise behaviors through 
demonstration, it is still important that the developer be able 
to examine what the system has learned. People may be able 
to see gaps and mistakes in the behavior even if they do not 
know how to write code in the system’s language. The feed- 
back used by other systems such as the comic book meta- 
phor used in Pursuit [lo], are not applicable to Gamut 
because they are meant to display behaviors with many 
actions but simple parameterization. Gamut’s behaviors have 
few actions but complex parameterization. 

Finally, we need to complete a formal user test. We have 
been performing informal tests to find the larger usability 
bugs and to help steer the project, but as a final step, we 
intend to show that nonprogrammers can actually build com- 
plete games using Gamut. 

CONCLUSION 
We are quite excited about the potential shown by Gamut’s 
inferencing algorithm. Gamut can already make whole appli- 
cations solely through programming by demonstration. So 
far, the applications are at the level of Tic-Tat-Toe and a Tur- 
ing machine, and we have created behaviors such as a mon- 
ster that moves like a monster in PacMan. Soon, Gamut will 
have enough features to build even more games. 

The algorithm works through a combination of several inter- 
woven features. First, the developer can create guide objects 
which make visible the factors that influence behaviors. Sec- 
ond, the developer can point out objects as hints during dem- 
onstration to tell the system on which objects a behavior 
depends. This significantly reduces the amount of search the 
system must perform to generate and revise the inferred 
code. Third, the system uses a straightforward “one change” 
heuristic to find the differences between a new example and 
the behavior it is meant to revise. The difference methods 
can find specific changes deep inside the behavior which will 
make it produce the right results. Finally, the algorithm 
incorporates decision tree learning to handle concepts that its 
heuristic search portions cannot understand. This algorithm 
makes it possible to infer conditions with objects that are not 
directly affected by the actions which depend on them. 

We think that the kinds of learning performed in Gamut 
could find uses outside of the board game domain. The Stop 
That! and Do Something! style of interaction seem to be 
quite intuitive and could be used to perform other tasks such 
as programming macros. The inferencing algorithm could be 
extended to different domains by changing the description 
language to include different concepts. We believe that 
Gamut even in its current, unpolished, state shows a signifi- 
cant improvement in PBD methods. This system will help 

bring computing power ever closer to those nonprogrammers 
who want to apply their skills to make software. 
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