
- -- -,
-cl---

Building Applications Using Only Demonstration
Richard G. McDaniel and Brad A. Myers
HCI Institute, School of Computer Science

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213, USA
Tel: l-412-268-3066

E-mail: { richm, barn } @cs.cmu.edu

ABSTRACT
By combining the strengths of multiple interaction tech-
niques and inferencing algorithms, Gamut can infer behav-
iors from examples that previously required a developer to
annotate or otherwise modify code by hand. Gamut is a pro-
gramming-by-demonstration (PBD) tool for building whole
applications. It revises code automatically when new exam-
ples are demonstrated using a recursive procedure that effi-
ciently scans for the differences between a new example and
the original behavior. Differences that cannot be resolved by
generating a suitable description are handled by another AI
algorithm, decision tree learning, providing a significantly
greater ability to infer complex relationships. Gamut’s inter-
action techniques facilitate demonstrating many examples
quickly and allow the user to give the system hints that show
relationships that would be too time consuming to discover
by search alone. Altogether, the concepts combined in
Gamut will allow nonprogrammers to build software they
never could before.

Keywords
End-User Programming, User Interface Software, Applica-
tion Builders, Programming-by-Demonstration, Program-
ming-by-Example, Inductive Learning, Gamut

INTRODUCTION
Much of the intellectual effort that goes into producing a
game or an educational tool is not in programming the
game’s logic but in providing the engaging background, art-
work, and gameplay that keeps players interested. Artists
and educators that have the talent and ideas to produce good
material are often unable to program computers. Therefore,
providing tools which eliminate the burden of programming
while still maintaining the ability to build interesting soft-
ware is desirable.

‘Baditional methods for producing interactive software
require extensive programming knowledge. Programming
graphics in common environments like Visual C++ or Motif
require great effort even from seasoned programmers. Tools
like interface builders facilitate the design of the layout and
the look of some parts of the program, but still require pro-

petition to make dkitalhrd copies of all or part ofc maeal for
P~Onal Ord~m use is granted without fee provided &at the copies
a not made or distributed for profit or commercial advantage. ee copy-
right notiC& the title of the publication and ifs date appear, and notice k
avm that mPY@Jt is by permission of the ACM, I~c. ‘fo copy ofiese.
to republish, to post on servers or to rediibute to lists, requires v~c
pemhion and/or fee.
RB98 SanFranciscoCA USA

109

gmmming to make the interface actually work. Authoring
tools like HyperCard [5] and Director 173 provide more sup-
port, but require the developer to learn baroque program-
ming languages to produce anything beyond simple
interactions. Application builders such as Klik & Play [6]
which do eliminate progmrnming also impose severe limits
on the kinds of programs one can make.

A typical solution has been to simplify the language with
which one programs. KidSim [151 (now called Cocoa) uses a
notably simple language with pictures that show how objects
change from one state to another. However, when the lan-
guage is simplified this much, the tool often loses generality:
KidSim requires an application to be constructed from the
same rectangular tiles from which the language’s pictures are
made. Furthermore, even in KidSim, the developer must
learn and use a separate annotation language to form condi-
tional phrases required by all but the most basic applications.

We have applied programming-by-demonstration (PBD)
techniques that change the process of programming alto-
gether. In PBD, the user shows the system what to do by giv-
ing it examples of the desired behavior. By analyzing the
examples and generalizing them using inductive learning
techniques such as heuristic search and decision tree leam-
ing, the system can create code that performs the same
behavior. We seek to improve PBD techniques in order to
build a broader class of applications.

Our research shows that many behaviors requiring code
annotation or that are not possible in other PBD systems can
be generated entirely by demonstration. In fact, we have
made complete applications such as Tic-Tat-Toe, a ‘Bning
machine simulation, and several maze games entirely with
demonstration. Soon, we will be able to make even more
advanced games like Chess, Reader Rabbit, and PacMan.

What Gamut Can Do
Gamut is designed to build applications like video games,
simulations, and educational software. We are focusing on
games which resemble board games that possess two-dimen-
sional graphics and behaviors that involve how “pieces”
interact with one another and interact with a background
“board.” By our definition, PacMan is a “board game” with a
background maze with dots and pieces for the PacMan and
monsters. Monsters, bullets, and other moving pieces use
timers to control their actions. In this paper, we will call
graphical pieces and items in the background “objects” in the
standard object-oriented sense. We will also introduce other
objects later to represent non-graphical concepts.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268389.268409&domain=pdf&date_stamp=1998-01-01

Gamut can infer complex, conditional relationships between
objects without requiring the developer to write any code.
Like other PBD systems, Gamut can infer behaviors that cre-
ate, modify, and destroy objects as one does in a graphical
editor. But Gamut infers relationships that others cannot:

l Objects involved in a behavior can be independent from
the objects modified by the behavior. In other words, the
effect of a behavior can be independent from the reason
the behavior occurred. For instance, in PacMan, the mon-
sters turn blue when the PacMan eats a big dot. Other PBD
systems require the developer to create such relationships
by editing a code-like description of the inferred rules.

l An object’s description can form an arbitrarily long chain
of relationships. For example, Gamut can infer a legal
move in a Monopoly game: “the square which is the dice’s
number of squares away from the initial position of the
current player’s piece.” This one description combines
objects such as the dice, the player turn indicator, as well
as the board configuration, into one expression chain.

To make Gamut easier to use, we have assembled interaction
techniques that simplify and streamline the demonstration
process. First, the developer uses hints to point out important
objects that guide the construction of new relationships. Sec-
ond, Gamut uses efficient interaction techniques called
nudges to make examples easier to generate and more
numerous. These nudges can produce negative examples as
easily as positive examples.

Gamut uses a recursive searching technique to ican a behav-
ior and find how it differs from a newly demonstrated exam-
ple. The algorithm combines two forms of learning to
generate new expressions: heuristic search and decision
trees. Heuristic search uses rules to examine the context of a
demonstration. It can learn complicated expressions quickly
by recognizing common situations. A decision tree is a sta-
tistical learning algorithm that can learn arbitrary boolean
expressions using examples. Gamut uses decision tree learn-
ing to form the predicates of conditional statements.

What Gamut Cannot Do
Gamut’s most serious flaw is a lack of feedback which is dis-
cussed in future work. Since Gamut cannot infer when the
developer is making a mistake, the developer may be
unaware when there is a problem. If the developer discovers
a problem, though, Gamut’s interaction techniques make
repairing the bug quite easy.

Gamut also has domain restrictions. For instance, presently
Gamut’s graphics editor cannot rotate objects. A developer
wanting to construct the game Asteroids, which involves a
small space ship that rotates, cannot use Gamut because it
does not support a necessary operation. Making Gamut sup-
port a larger domain is possible by adding more features.

Gamut also does not infer application state. Gamut infers
relationships between state objects, but cannot generate new
state objects by itself. So, if a behavior has to repeat five
times, part of the state the user must provide is the counter
which says how many times the behavior has left to go.
Though some application state can be derived from existing

objects (like the position of squares on a Chess board which
represent where a piece is allowed move), the developer
must often create extra objects to represent counters,
switches, and other state variables.

Finally, Gamut can only create algorithms that the developer
understands. For instance, many computer games like com-
puterized Chess use sophisticated algorithms to model strate-
gies in order to make a good move. Demonstrating such a
strategy requires more state variables and demonstrations
than any developer will be able to perform. Any algorithm
beyond the developer’s understanding cannot be magically
inferred by Gamut. The Gamut version of Chess will not
have a computer opponent, but it will keep human players
from making illegal moves because the rules to Chess use
state that is mostly available from the board and can be dem-
onstrated in a reasonable number of examples.

EXAMPLE
We will use a simple example to show how to make a Gamut
application. The object of the game is to steer a droplet of
water into a bucket by selecting which color pipe the droplet
will follow. Figure 1 shows the main Gamut window in
which is drawn the game board. The background consists of
a pyramid of pipes. Some are painted green and the others
are painted red. At the bottom of the pyramid is a bucket. To
switch colors, the player clicks the mouse button.

Figure 1: The main drawing window showing the final game.

This game is certainly simple, and variants of it can be cre-
ated with other tools. But because the game has an element
of user input (clicking to steer), and because the direction the
drop chooses depends on state set by that user input, there is
no prior tool that can build this game without requiring the
developer to write code or annotate rules by hand.

The first step is to draw the parts of the game. Like most
application builders, Gamut’s primary interface consists of a
graphical drawing editor/interface builder. The developer
chooses graphical primitives and widgets from the drawing
palette and lays them out in the work area. A simulated win-
dow pane (titled “Waterfall” in Figure 1) divides the working
area into portions visible to the player and an offscreen area
where the developer can put objects which store state. (This
game needs no offscreen objects.) The developer draws

110

-. . -- ~--- ~-- __-.-

images for the background pipes, the water droplet, and the
catch bucket.

Guide Objects
In the next step, the developer draws objects into the scene
that control state, but are not part of the visible elements of
the game. In Gamut, we call these guide objects because they
are meant to “guide” the actions of other objects. Guide
objects are graphical objects that are visible only when the
application is being built and are made invisible when the
game is played. Using guide objects is not new. Metamouse
[8] and Demo II [l] use a nearly identical abstraction, and
Rehearsal World [3] developed “offstage actors” as its term
for offscreen objects.

Figure 2: Guide objects for the water droplet game.

Next to the pyramid, the developer draws a rectangle to act
as a state variable to show which path the droplet follows and
adds a timer to make the droplet move independently. Since
the pipe images are bitmaps, and the computer cannot inter-
pret the image inside them, the developer draws arrow lines
on the diagram one along each pathway. The developer uses
a dotted line to show moving right and a solid line to move
left, The completed picture is shown in Figure 2.

Demonstrating Behavior
With all the graphics drawn, the developer next demonstrates
the game’s behavior. Gamut essentially uses the Stimulus/
Response style of demonstration as pioneered in Demo [17].
In object-oriented terms, a stimulus is represented by an
event object, and the response is represented by actions.
Events come from external sources such as pushing a button,
moving the mouse, or a ticking of a timer. Actions are pieces
of code which change the state of the application. Moving an
object or setting the score are actions.

Gamut uses a simplified demonstration technique which we
call nudges. A nudge is a correction that the developer gives
the system when it is not behaving correctly. Gamut defines
two nudges: the Do Something! nudge and the Stop That!
nudge.

The developer uses Do Something! to add new behavior.
First, the developer causes an event to occur like pushing a
button. When an object does not respond, the developer
selects the object and pushes the Do Something! button. This
tells the system that the developer is ready to show a new
example concerning the selected object. Stop That! is a

means for demonstrating negative examples. The developer
selects objects that did the wrong thing and presses the Stop
That! button. Stop That! performs undo on actions that affect
the selected objects. One complication is that actions which
perform their work on multiple objects sometimes need to be
split up to affect only selected items.

In the water droplet example, the developer wants to make
the droplet follow the arrow lines each time the timer ticks.
The droplet begins at the top of the pyramid (see Figure 2).
Pressing the Step button on the timer provides the timer
event. At this point, the system does nothing because no
behavior has yet been demonstrated. The developer selects
the droplet and pushes the Do Something! button. The sys-
tem changes the state to Response mode and brings up a dia-
log asking the developer what to do next.

Response Mode
The, developer uses Response mode to demonstrate new
behavior. In this phase, Gamut acts like any other PBD sys-
tem and records all modifications the developer makes to the
state of the application. During Response mode, Gamut adds
demonstration interactions to the interface (see Figure 3):

l Gamut shows the differences in all modified objects by
making “temporal ghosts.” Temporal ghosts are shown as
dimmed versions of objects as they originally appeared.

l Hint highlighting is activated. The developer may high-
light objects pertinent to the example that may not be
apparent to the system by selecting them with the right
mouse button. Highlighted objects become important hints
that direct the inferencing. The hint highlighting interac-
tion is separate from the selection widget interaction in
Gamut to make highlighting easier and because selection
is needed for other operations such as moving objects and
changing their colors.

-------- I I I I I I I I I I t - - - - - - - 1

r3

LIti

Figure 3: State showing the temporal ghost of the droplet at the top
and a highlighted arrow.

Continuing with the example, the developer moves the drop-
let to the end point of the dotted arrow line. The system cre-
ates a ghost of the droplet at the beginning of the arrow (see
Figure 3). The developer highlights the path that the droplet
follows and presses Done to complete the response. Let us
suppose that the developer did not highlight the dotted rect-
angle. When important state is not highlighted, the system
must eventually query the developer.

111

Figure 4: Using the mouse icons to show a click event. The circles
indicate the palette choice and the click icon.

The developer next changes the style of the rectangle to solid
and begins to demonstrate moving the droplet along the
opposite path. When the timer Step button is pushed, the sys-
tem (not knowing any better) moves the droplet along the
dotted path. The developer selects the droplet and pushes the
Stop That! button. Immediately, all actions performed on the
droplet are undone moving it back one step to where it
started. The developer corrects the action by dragging the
water droplet to the solid side and presses Done. This con-
fuses the system because it has no criteria to choose between
the two paths and it asks the developer for a hint. Gamut
stays in Response mode until the developer satisfies all of its
questions. The developer is no longer allowed to make
changes in the recorded response, but ghost objects and hint
highlighting remain as a way to answer the dialog queries.

The developer has three ways to answer a question dialog:

. Highlight one or more objects and press the Learn button.
This builds the highlighted objects into new relationships.

l Press the Replace button to eliminate the original response
and replace it with the current response. This is used to
correct mistakes.

l Press the Wrong button to skip the question. Since the sys-
tem uses heuristics, it can sometimes create erroneous
questions. The Wrong button forces the system to choose a
different question which will hopefully be better.

The correct choice in this case is to highlight the rectangle
and press Learn. Testing further, the developer finds the
droplet now moves as desired.

Mouse Input
The developer now demonstrates how to toggle the rectan-
gle. Assume that the rectangle begins in the dotted style. The
desired interaction is to have the player click the mouse to
switch the rectangle’s style, so the developer drops a “mouse
click” icon onto the window (shown in Figure 4). The mouse
icons are used to show what the player will do with the
mouse at run-time. Nothing happens originally so the devel-
oper pushes the Do Something! button, and changes the rect-
angle’s style to solid. After pressing Done, the developer
drops another click icon, and the system responds by setting
the rectangle to solid (making it appear to do nothing). The
developer selects the rectangle, presses Do Something! and
changes the style back to dotted. This causes the system to

question the developer asking what the style of the rectangle
depends on. The developer highlights the ghost of the rectan-
gle indicating that its previous style is the state that matters
and presses Learn. Dropping further click icons causes the
rectangle to act correctly.

Finishing up, the developer moves the water droplet back to
the top of the pyramid. The guide objects are made invisible
using a menu command. The droplet is started animating by
pressing the play button on the timer widget. And finally, the
mouse interaction is enabled by pressing a toggle button on
the simulated window. The developer can click the mouse
and see that the droplet follows the correct path.

GAMUT’S INJ?ERENC!ING ALGORITHM
Most previous PBD systems have used very simple algo-
rithms for inferring behavior, but these are not sufficient to
handle the behaviors needed by real applications. There are a
rich variety of algorithms developed by AI researchers and
Gamut adapts two of them. Gamut uses heuristic search as
the backbone of its inferencing. Heuristic search learns
behavior quickly because rules encode useful features of the
domain. Gamut also uses decision free learning [14] which
we describe later, but Gamut does not use the decision tree
algorithm to produce code directly. Expressions which use a
boolean test encode the test as a decision tree.

Gamut uses three kinds of objects to represent application,
behavior: events, actions, and descriptions. These compo-
nents are similar to the language invented by Halbert in his
SmallStar system [4]. An event object is the same as an
Amulet “command object” [12]. Command objects are
stored in widgets and input objects (called interactors). In
some systems, a command object would be likened to a
“callback procedure.” A command object stores just enough
state to implement Undo and Redo for the operation it per-
forms which the system then copies to the undo history.
Gamut augments command objects (a.k.a. events) by adding
actions demonstrated by the developer, and then events
become behaviors. As previously mentioned, actions are
objects whose methods change the state of the application.
Gamut defines six actions which are listed in Table 1. .

Create Object: Creates one or more graphical objects from a
prototype.

Delete Object: Removes graphical objects from their window.

Move/Grow: Moves or resizes graphical objects.

Change Property: Changes one property of one or more
graphical objects.

Reparent: Moves one or more graphical objects from one
window or group to another.

Change Z-Order: Changes the stacking order of one or more
graphical objects (like To Top or To Bottom).

Table 1: List of all actions defined in Gamut.

The parameters of actions are called descriptions which are
named after Halbert’s “data descriptions.” A description can
be a constant value like a number or a color, or it can be a
short, composable expression which is represented by an

112

object, Description objects can have parameters which them-
seIves arc descriptions. For instance, “the color of the object
to which the arrow points” is a Get Property description
whose object parameter is a Connect description. Descrip-
tions have two significant methods. One is a computation
method which evaluates the description’s expression. The
other is the “recursive difference” method which is used for
revising the description. Gamut presently defines 11 descrip-
tions which are listed in Table 2.

Get Property: Returns the value of a single property from a
graphical object.

Align: Returns a graphical location based on connections to
other objects and locations.

Select Object: Picks one or more objects from a set of objects
according to a boolean expression.

Choice: Picks one value from a set of several values according
to a boolean expression. This is Gamut’s form for an if-
then or case statement.

Equal: Tests if two values are equal.

Number Test: Tests two numerical values for equality, lesser,
or greater than.

Connect: Given a location, return the objects that are con-
nected to that location.

Chain: A Connect that is repeated an integer number of times
and returns the last set of objects.

Count Objects: Returns the number of objects in a set.

Add: Returns the sum of two numerical values.

Get Prototype: Returns the base type of a graphical object.

Table 2: List of all descriptions presently implemented in Gamut.

The Shges of Inferencing
The steps in Gamut’s inferencing are shown in Figure 5. In
the first stage, actions from the original behavior and the
developer’s manipulations are converted into new actions.
The second stage compares the new actions with the actions
in the original behavior and generates a data structure that
captures the differences between the two. In the final stage,
the differences found in stage two are resolved to create a
new behavior.

Staee 1 Staee 2 Stage 3

Task Convert to Match original and Assemble
actions example actions behavior

Data

Figure 5: The stages GamuErcate new behavior.

Two actions are considered identical if all of their parameters
match. If all but one parameter matches, the actions are con-
sidered similar. Identical actions are ignored since they
already do what is required. Similar actions are recorded as
having changed the one parameter. Unmatched actions from
the new example are considered to be new, and unmatched
actions from the original behavior are considered not to have
been executed.

Stnge One
The first step converts the developer’s response into a list of
actions, Gamut reads the undo history to extract the new
example as a list of command objects (or events). The Do
Something! and Stop That! commands along with the dia-

113

There are a few complications to consider. The first concerns
actions that operate on sets of objects. In this case, example
actions which act on single objects must be coalesced with
original actions which have that object as a member of its
set. Only after all actions are matched can the system deter-

log’s Done button form the boundaries. If there was an origi-
nal behavior, its actions are added to the list. Many graphical
operations are complicated. For example, grouping objects
creates a new group object, changes the selected objects’
positions, and reparents the selected objects into the group.
Gamut therefore translates the raw Amulet events into more
primitive actions to make them easier to manipulate.

Stage Tbvo
In this stage, Gamut compares the newly formed example
actions with the actions found in the original stimulus event.
This stage performs the bulk of the inferencing work. There
are two parts to this stage. The first part matches the actions
in the new example to the original actions. This will deter-
mine which changes were made to the original actions’
parameters, which original actions did not execute, and
which example actions are new. Of course, if there are no
actions in the original stimulus, stage two is skipped and the
system moves to stage three.

‘Ihe second part of stage two propagates the changes found
in the original actions’ parameters to the description objects
contained within. Each description determines how its
parameters change using its diference method. This is recur-
sively repeated for the whole tree of descriptions. The final
result of this stage is a set of changes one might make to the
parameters of the original actions and descriptions in order
to make it perform the same operation as the actions in the
example. The algorithm Gamut is using is a heuristic search,
and the object-oriented design provides a good framework to
apply heuristics efficiently and allows extensibility.

Matching Actions
Here Gamut matches actions in the new example to actions
in the original behavior. We intentionally designed Gamut’s
actions to be unordered. Most systems use temporal order to
represent constraints between actions. Tire result of one
action feeds into the next to provide a combined result.
Instead, Gamut uses explicit descriptions where what could
be the resuIt of another action is described fully by the action
that actually needs it. Whether the actions execute before or
after each other does not matter. Gamut prevents code dupli-
cation by sharing common descriptions. By being unordered,
actions can be easily matched by looping through all the
actions and comparing them. In our experience with Gamut,
all behaviors contain very few actions (usually two or three),
so the time to compare them is insignificant.

mine if all objects in the original action are accounted for
and whether the original action is identical to the example.

A second complication concerns the Create Object action. If
the developer demonstrates creating graphical objects, those
objects will not be the same as objects created by the original
Create Object action. Furthermore, objects created by a Cre-
ate Object action might be deleted by the developer and
replaced by identical objects. Instead of matching the param-
eters of Create Object actions, the system examines the
graphical objects created by the developer to see if they
“look the same” as the prototype objects from which a Cre-
ate Object action instantiates new objects. This involves
examining the graphical object’s properties and type to see if
they match. The prototype parameters of Create Object
actions match when they produce objects which look alike.

Propagating Changes To Descriptions
Once a potential change to a parameter is determined, it is
propagated to the description stored in that parameter. If the
old description is constant, Gamut records that the constant
may have changed to the new value. Otherwise, the system
calls the description’s d@rence method.

The difference method takes the new value and tries to find a
way to modify the description to generate that value. Each
type of description has its own heuristic difference method,
but most simply apply what we call the “one change” rule.
Using the one change rule, an algorithm only tries to change
one thing. This is similar to Winston’s concept of a “near
miss” for training examples [16]. The difference method
tries changing one of the description’s parameters at a time
leaving the others the same. For instance, the Get Property
description retrieves a property from a graphical object. It
has two parameters, the object and the name of the property
to get. Using the “one change” rule, the difference method
will first search for a different object whose property has the
right value. Next, it will look for different properties in the
original object to find the value. All matches that it finds are
added to the set of changes. The new values are then recur-
sively propagated to the Get Property description’s parame-
ters. A few descriptions such as Align (which computes the
location of graphical objects) use more complicated heuris-
tics, but they achieve similar results. Propagating new values
through the original behavior is common in AI techniques
like reinforcement learning and neural networks but has not
been previously applied to a PBD tool.

The developer is normally not queried during the search pro-
cess. Also, most difference methods do not use hinted
objects because they are sufficiently constrained by the “one
change” rule not to produce too many results. An exception
to this is the Count Objects description which returns the
number of graphical objects in a set. This description cannot
be computed in reverse since knowing that the description is
supposed to compute 5 instead of 3 does not tell the descrip-
tion which 5 objects to count. Instead, it asks the developer
to highlight the objects and proceeds using that answer.

If the difference methods are poorly designed, there is a
potential for a combinatorial explosion. The depth of the
search is fixed to be the depth of the description hierarchy,

but the number of changes that each descrintion can find
could be high. The one change rule and the shucture of the
application will normally restrict the search space ade-
quately. However, some difference methods must cull the
amount of changes they find to only those most likely to be
the ones the developer means. Because each description has
its own difference method, it can be tailored to meet the spe-
cific needs of that expression.

Because the parameters of Gamut’s descriptions are not
independent, the result of the difference methods form an
And-Or tree. The leaves of the tree are the parameter
changes found by the methods. And-nodes indicate when all
changes must be made to correct the description and Or-
nodes choose among a set of optional changes. Note that this
And-Or tree is not related to the decision tree algorithm that
is discussed later.

Stage Three
After completing the analysis stage, the system is ready to
assemble the new behavior. Actions that were judged identi-
cal or similar to the example are kept. New actions are added
in and since order does not matter they can be appended to
the end of the list. Unmatched actions are enclosed in a
Choice description (see Table 2) to indicate that there is a
condition. If the behavior already contained Choice descrip-
tions, Gamut uses the matching results to pick the best
branch and proceeds to modify that.

What remains is to resolve the set of changes found by the
difference methods, and to replace the constant parameters
of new actions with descriptions if warranted. First, Gamut
will search the old behavior for descriptions that already pro-
duce the desired result. Descriptions are often shared among
actions and searching prevents the system from having to
learn descriptions twice. If the search fails, Gamut will try to
create a new description. Gamut uses the same algorithm as
Marquise [13] to accomplish this task. However, instead of
using only heuristics to find matching descriptions, Gamut
focuses attention on the highlighted objects.

Creating a new description involves picking one whose type
can evaluate to the correct kind of value. Beyond that, the
system uses heuristic rules to pick highlighted objects that
can be used as parameters. When Gamut replaces the origi-
nal description, it creates a Choice description and stores
both the new and old description together. By not referring to
the old value’s branch in the Choice’s boolean expression, it
remains uncomputed, but is available for comparison with
new descriptions. Gamut uses these “dead” branches to pre-
vent itself from repeating incorrect inferences.

If Gamut cannot create a new description using the high-
lighted objects, it asks the developer to highlight different
objects. Gamut uses the context of the change including the
affected action, the description that is actually modified, and
the old and new values, to form an English sentence. From
this sentence, the developer can choose to highlight new
objects (which are processed as before), or choose to replace
the changed value with the new value (without creating a
new description), or move on to another question. Any
choice the developer makes serves to eliminate items from

114

the set of changes. The system will continue posing ques-
tions until the set is empty.

DECISION TREE LEARNING
So far, we have only mentioned the decision tree algorithm
in passing. In Gamut, decision trees are used to represent
boolean expressions in two kinds of descriptions: the Choice
description and the Select Object description. Each of these
descriptions keeps data to support its own local decision tree.

The decision tree algorithm was invented by Quinlan [14] as
a form of inductive learning (Gamut uses the generic ID3
version of the algorithm). The data from which a decision
tree learns has a database-like structure. Each row of the
database provides an example of the concept to be learned,
and each column represents an attribute of the concept. For
instance, the concept might be whether the weather is good
for a picnic, Attributes of the weather might be the tempera-
ture, whether it is raining, and the humidity. The diagram in
Figure 6 shows a possible result of converting a database
containing these data into a decision tree.

Figure 6: Decision tree to gauge picnic weather conditions.

The decision tree algorithm uses a statistical measure called
“entropy” that relates how well an attribute corresponds with
a result, The algorithm chooses the attribute with the best
entropy value to be the root of the tree, eliminates that
attribute from the database, and recurses for each branch of
the tree. In Gamut, decision trees learn which objects the
Select Object description and which branch the Choice
description should pick. Gamut’s decision trees never grow
very big because most boolean expressions it needs combine
only a few attributes. An example attribute might be “an
object has a dotted line style.”

When a Select Object or Choice description is first created,
Gamut creates attributes for its database. The attributes are
just descriptions and are constructed from highlighted
objects as described above. Gamut scans the highlighted
objects to create predicates from their properties and posi-

’ tions. Gamut adds new predicates whenever it finds that two
examples in the database contradict each other.

Each time a Select Object or Choice description is revised,
the system will first try to add a new example row to the
decision tree database. New examples are formed by evaluat-
ing the set of predicates and pairing that with the new result

indicated by the revision. If the new example is different
from the other examples, a new decision tree can be gener-
ated which will distinguish the new case. If the new example
contradicts another, though, more predicates will need to be
created.

Gamut’s use of decision trees is considerably different from
the standard practice. Normally, decision trees use hand-
crafted attributes and hundreds of examples to learn a com-
plicated expression. Gamut uses automatically generated
attributes and a few examples to learn simple expressions.
The entropy measure serves as a good way to pick out the
one or two attributes that matter out of a set of dozens.

RELATED WORK
A number of other systems build programs by demonstra-
tion. Previous systems have always relied on the developer to
manually edit the inferred code in order to add conditions
and correct mistakes that the system could not handle.

The system probably the most like Gamut is our earlier sys-
tem, Marquise [13] which was designed to build graphical
editors such as node and line diagrams. Gamut’s behavior
structure as well as the means for generating descriptions
were taken from Marquise. Also, Gamut’s mouse arrow
icons for demonstrating mouse events came from Marquise.
The guide object ideas in Gamut were first used in Demo II
[l], Metamouse [8], and Rehearsal World [3] as was previ-
ously mentioned.

Grizzly Bear [2] has a good inferencing system for finding
linear constraints and some forms of conditions. It also had
an algorithm for recognizing certain groups of objects. For
instance, it could learn the set of all objects whose color is
blue. Moving beyond that level of description, though, was
not possible. Furthermore, behaviors could not be refined
through demonstration. Grizzly Bear required all examples
for a given behavior to be demonstrated at once forcing the
developer to devise examples very carefully. Grizzly Bear’s
inferencing was primarily for learning linear constraints
between the positions of objects which, for instance, could
not learn to make an object follow a chain of lines. The Pav-
lov [18] system also inferred linear constraints, and it also
had a partial guide object mechanism for making behaviors
where objects move and turn. However, conditional relation-
ships such as modes and input events could only be added by
annotating the code.

The Cima [9] system was one of the first PBD systems to
incorporate inductive learning algorithms designed by Al
researchers. Cima was designed to learn word and letter
combinations that are commonly found in word processing
tasks. It used hints (but no guide objects), and it also used
positive and negative examples. Unfortunately, Cima was
never truly finished. It was never applied to actually perform
word processing tasks and could not infer actions or behav-
ior. Furthermore, the manner in which Cima’s inferencing
was applied to its textual domain makes it difficult to re-
engineer for another domain.

.

liwruREwoRK
Gamut is implemented using Amulet [l l] and runs on Unix,
Windows, and the Macintosh. Ar the time of this writing,

115

Gamut is still not quite complete. We have made significant
progress and can now create many complex applications, but
it still lacks the polish developers need to make a system
usable. The current work involves improving Gamut’s feed-
back and filling out the features to make more applications
possible. We want potential developers and our eventual test
subjects not to find implementation holes too easily.

A major unanswered issue is how to properly display behav-
iors that the developer demonstrates. Even though the devel-
oper can completely test and revise behaviors through
demonstration, it is still important that the developer be able
to examine what the system has learned. People may be able
to see gaps and mistakes in the behavior even if they do not
know how to write code in the system’s language. The feed-
back used by other systems such as the comic book meta-
phor used in Pursuit [lo], are not applicable to Gamut
because they are meant to display behaviors with many
actions but simple parameterization. Gamut’s behaviors have
few actions but complex parameterization.

Finally, we need to complete a formal user test. We have
been performing informal tests to find the larger usability
bugs and to help steer the project, but as a final step, we
intend to show that nonprogrammers can actually build com-
plete games using Gamut.

CONCLUSION
We are quite excited about the potential shown by Gamut’s
inferencing algorithm. Gamut can already make whole appli-
cations solely through programming by demonstration. So
far, the applications are at the level of Tic-Tat-Toe and a Tur-
ing machine, and we have created behaviors such as a mon-
ster that moves like a monster in PacMan. Soon, Gamut will
have enough features to build even more games.

The algorithm works through a combination of several inter-
woven features. First, the developer can create guide objects
which make visible the factors that influence behaviors. Sec-
ond, the developer can point out objects as hints during dem-
onstration to tell the system on which objects a behavior
depends. This significantly reduces the amount of search the
system must perform to generate and revise the inferred
code. Third, the system uses a straightforward “one change”
heuristic to find the differences between a new example and
the behavior it is meant to revise. The difference methods
can find specific changes deep inside the behavior which will
make it produce the right results. Finally, the algorithm
incorporates decision tree learning to handle concepts that its
heuristic search portions cannot understand. This algorithm
makes it possible to infer conditions with objects that are not
directly affected by the actions which depend on them.

We think that the kinds of learning performed in Gamut
could find uses outside of the board game domain. The Stop
That! and Do Something! style of interaction seem to be
quite intuitive and could be used to perform other tasks such
as programming macros. The inferencing algorithm could be
extended to different domains by changing the description
language to include different concepts. We believe that
Gamut even in its current, unpolished, state shows a signifi-
cant improvement in PBD methods. This system will help

bring computing power ever closer to those nonprogrammers
who want to apply their skills to make software.

ACKNOWLEDGEMENTS
This research was partially sponsored by NCCOSC under Contract
No. N66001-94-C-6037, Arpa Order No. B326, and partially by
NSF under grant number IRI-9319969. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed
or implied, of the U.S. Government.

REFERENCES
1. G.L. Fisher, D.E. Busse, D. A. Wolber. Adding Rule-Based Rea-

soning to a Demonstrational Inter&e Builder. Proceedings of
uIST’92, pp. 89-97.

2. M. Frank. Model-Based User Interjace Design by Demonstration
and by Interview. Ph.D. thesis. Graphics, Visualization, &
Usability Center, Georgia Inst. of Tech., Atlanta, GA, 1996.

3. L. Gould, W. Finzer. Programming by Rehearsal. Palo Alto
Research Center, Xerox Corporation, 1984.

4. DC. Halbert. Programming by Example. Ph.D. thesis, Computer
Science Division, EECS Department, University of California,
Berkeley, CA, 1984.

5. HyperCard. Apple Computer Inc., Cupertino, CA, 1993.
6. E Lionet, Y. Lamoureux. Klik & Play. Europress software, 1996.
7. Macromedia. Director. 600 Townsend Street, San Francisco, CA

94103, macropr@macromedia.com, http://www.macrome-
dia.cotnll996.

8. D. Maulsby. Inducing Procedures Interactively: Adventures with
Metamouse. Masters thesis. Research Rept. 88/335/47. Univer-
sity of Calgary, December, 1988.

9. D. Maulsby. Instructible Agents. Ph.D. thesis. Dept. of Computer
Science, University of Calgary, Calgary, Alberta, June 1994.

10.F. Mudugno, T.R.G. Green, B.A. Myers. Usual Programming in
a visual Domain: A Case Study of Cognitive Dimension. Pro-
ceedings Human-Computer Interaction’94, People and Comput-
ers, Glasgow, August, 1994.

1l.B.A. Myers, R.G. McDaniel, R.C. Miller, A. Ferrency, A. Faul-
ring, B.D. Kyle, A. Mickish, A. Klimovitski, P. Deane. ‘The
Amulet Environment: New Models for Effective User Interface
Software Development,” IEEE Transactions on Sofnvare Engi-
neering, to appear. http://www.cs.cmu.edul-amulet

12.B.A. Myers, D.S. Kosbie. Reusable Hierarchical Command
Objects. Human Factors in Computing Systems, Proceedings
SIGCHI’96, Denver, CO, April, 1996, pp. 260-267.

13.B.A. Myers, R.G. McDaniel, D.S. Kosbie. Murquise: Creating
Complete User Interfaces by Demonstration. Proceedings of
INTERCHI’93: Human Factors in Computing Systems, 1993,
pp. 293-300.

14.J.R. Quinkm. Induction of Decision Trees. Machine Learning,
KIuwer Academic Publishers, Boston, Vol. 1,1986, pp. 81-106.

15.D.C. Smith, A. Cypher, J. Spohrer. KidSim: Programming
Agents Without a Programming Language. CACM, Vol. 37, No.
7, July 1994, pp 54-67.

16.P.H. Winston. Learning Class Descrtptions From Samples. Artl-
ficial Intelligence, Chapter 11, Addison-Wesley Publishing Com-
pany, Reading, MA, 1984, pp 385-408

17.D. Wolber. Developing User Interfaces By Stimulus Response
Demonstration. Ph.D. Thesis, Computer Science Department,
University of California, Davis, 1992.

18.D. Wolber. Pavlov: Programming By Stimulus-Response Dem-
onstration. Human Factors in Computing Systems, Proceedings
SIGCHI’96, Denver, CO, April 1996, pp. 252-259.

116

