
ar
X

iv
:1

41
0.

12
09

v1
 [

cs
.D

C
]

 5
 O

ct
 2

01
4

Necessary and Sufficient Conditions on Partial Orders for
Modeling Concurrent Computations

Himanshu Chauhan
The University of Texas at Austin

himanshu@utexas.edu

Vijay K. Garg
The University of Texas at Austin

garg@ece.utexas.edu

ABSTRACT
Partial orders are used extensively for modeling and ana-
lyzing concurrent computations. In this paper, we define
two properties of partially ordered sets: width-extensibility
and interleaving-consistency, and show that a partial order
can be a valid state based model: (1) of some synchronous
concurrent computation iff it is width-extensible, and (2) of
some asynchronous concurrent computation iff it is width-
extensible and interleaving-consistent. We also show a dual-
ity between the event based and state based models of con-
current computations, and give algorithms to convert models
between the two domains. When applied to the problem of
checkpointing, our theory leads to a better understanding
of some existing results and algorithms in the field. It also
leads to efficient detection algorithms for predicates whose
evaluation requires knowledge of states from all the processes
in the system.

1. INTRODUCTION
The ‘happened-before’ relation introduced by Lamport [14]
is a prevalent technique for modeling executions of distributed
as well shared memory concurrent programs. The relation
models causality and imposes a partial order on the set of
events that occur in a computation. For a large number
of applications, models based on events of the computation
provide adequate basis for analysis. But for many appli-
cations such as global predicate detection [10] and check-
pointing [15], it is beneficial to model a distributed com-
putation as a partial order on states of the involved pro-
cesses. Events and states, however, are fundamentally dif-
ferent concepts. Events are instantaneous and states have
duration. A state captures values of all the variables (in-
cluding program counter) at a process, whereas an event
captures the transition of the system from one state to the
other1. Although, there are multiple papers [10, 11, 7] that

1Alternatively, one may model states as instantaneous and
events with duration. The point is that either the state or
the event must be modeled with duration.

model computations as partially ordered sets (posets), there
is no clear theory that brings out the distinction between
posets used for modeling event based executions and those
used for modeling state based executions. This paper’s first
contribution is in establishing such a theory. For example,
consider the posets in Fig. 3. Are they valid event based
(or state based) models for some computation? What is the
class of posets that characterize event based and state based
models — specifically, can every poset be a model for some
computation or there exist some restrictions on posets that
model the computations in event based or state based mod-
els? Additionally, any model of a concurrent computation
must define the notion of a consistent global state. Are the
definitions different in state based and event based models?
One of the main goals of this paper is to establish results
that form a basis to answer all these questions in a defini-
tive manner. We study the relationship between the event
based models and state based models, and characterize the
exact class of posets that can be used to model computa-
tions in either framework. We show a duality between the
two models that allows easy translation of algorithms from
one model to the other. In short, the key contributions
of this paper are the following:

• we define two properties on posets: width-extensibility,
and interleaving-consistency, and show that they are
necessary and sufficient conditions for posets modeling
states of concurrent computations.

• we give algorithms to translate event based models to
state based models and vice-versa. We establish the
correspondence between the notions of the consistent
global states in these two models.

• we show applications of our theory to the areas of
checkpointing and predicate detection (in Section 6).

The rest of this paper is organized as follows. Section 2
covers the background concepts about modeling the concur-
rent computations as posets, and well-established concepts
of event based models of computations. Section 3 defines
the state based models, and shows how to generate them
from event based models. Sections 4 and 5 give complete
characterization of state based models for synchronous and
asynchronous concurrent computations. We conclude in Sec-
tion 6 by discussing the applications of our theory to the
fields of checkpointing and predicate detection.

http://arxiv.org/abs/1410.1209v1

2. BACKGROUND & TERMINOLOGY
We use the term program to represent a finite set of in-
structions, and computation to represent an execution of a
program. In this paper, we restrict our focus to finite com-
putations — computations that terminate within bounded
time. An event (of a computation) is a term that denotes
— depending on the context of the problem — the execu-
tion of a single instruction or a collection of instructions
together. A concurrent computation is a computation in-
volving more than one processes/threads — it is possible
that the instructions executed by different processes/threads
are different. Hence, a distributed computation is a con-
current computation without shared memory processes in
which inter-process communication is possible only through
message-passing. For modeling concurrent computations,
the happened-before relation (→) is defined as follows. The
relation → on the set of events of a computation is the small-
est relation that satisfies the following three conditions: (1)
If a and b are events in the same process and a occurs before
b, then a→ b. (2) For a distributed system, if a is the send-
ing of a message and b is the receipt of the same message,
then a→ b. For a shared memory system, if a is the release
of a lock by some thread and b is the subsequent acquisition
of that lock by any thread then a → b. (3) If a → b and
b → c then a→ c.

Formally, a finite partially ordered set (poset in short) is
a pair P = (E,→) where E is a finite set and → is an
irreflexive, antisymmetric, and transitive binary relation on
E [5]. We obtain a poset when we apply the happened-
before (→) on the set of events of a finite computation. Let
E be the set of events. Consider two events a, b ∈ E. If
either a → b or b → a, we say that a and b are comparable;
otherwise, we say a and b are incomparable or concurrent (in
the context of concurrent computations), and denote this
relation by a || b. Observe that a || b ∧ b || c 6⇒ a || c.

It is important to note that multiple computations could
have the identical posets as their model.

2.1 Concepts on Posets
Let P = (E,→) be a finite poset as defined above. A subset
Y ⊆ E is called an chain (antichain), if every pair of dis-
tinct points from Y is comparable (incomparable) in P . The
height of a poset is defined to be the size of a largest chain
in the poset. The width of a poset is defined to be the size of
a largest antichain in the poset. All antichains of size equal
to the width of the poset are called width-antichains in this
paper. Let A(P) denote the set of all width-antichains of P .
Order ≤ is defined over A(P) as:
A ≤ B (A,B ∈ A(P)) iff ∀a ∈ A,∃b ∈ B : a ≤ b in P .

We model processes/threads as chains of posets, and thus
events/states of every process/thread form a totally ordered
chain. A family π = (Ci | i = 1, 2 . . . , n) of chains of P is
called a chain partition of P if

⋃
Ci | i = 1, 2 . . . , n) = P .

Given a subset Y ⊆ E, the meet of Y , if it exists, is the
greatest lower bound of Y and the join of Y is the least upper
bound. A poset P = (X,≤) is a lattice if joins and meets
exist for all finite subsets ofX. Let P be a poset with a given
chain partition of width w. In a concurrent computation,
P is the set of events executed under the happened-before

partial order. Each chain would correspond to a total order
of events executed on a single process. In such a poset,
every element e can be identified with a tuple (i, k) which
represents the kth event in the ith process; 1 ≤ i ≤ w.

A subset Q is a downset (also called order ideal), of P if it
satisfies the constraint that if f is in Q and e is less than
or equal to f , then e is also in Q. When a computation is
modeled as a poset of events, the downsets are called con-
sistent cuts, or consistent global states [4]. Throughout this
paper, we use the term consistent cut. The set of downsets
is closed under both union and intersection and therefore
forms a lattice under the set containment order [5].

2.2 Event based Model of Concurrent Com-
putations

As discussed earlier, a concurrent computation is usually
modeled as a set of events, E, together with a partial order
happened-before [14], denoted by→. Implicit in this model is
the partition of E into chains corresponding to the processes
on which the events are executed. This partition is called
a chain partition. We make this partition explicit in our
model because the translation of the event based model into
the state based model depends upon it.

Definition 1 (Event based model of computation). A con-

current computation on n processes is modeled by Ê = (E,→
, π), where E is the set of events, → is the happened-before
relation on E, and π maps every event to a subset of pro-
cesses from {1..n} such that for all i ∈ {1..n} : Ei = {e ∈
E | i ∈ π(e)} is totally ordered under →.

Here, π is a chain partition of poset defined by (E,→). Intu-
itively, in the context of concurrent computations, π maps
events executed on a single process to a total order such
that Ei is the totally ordered set of events executed on pro-
cess/thread Ci. Note that an event, such as execution of a
barrier, could be assigned to multiple processes. If an event
e ∈ Ei ∩ Ej , then e is a ‘shared’ event for processes Ci and
Cj . Fig. 1b shows the event based model
of a distributed computation resulting from the execution
of the pseudocode instructions listed in Fig. 1a. Fig. 2b
shows the event based model of a concurrent computation
on two processes that synchronize using a barrier (as per
the instructions listed in Fig. 2a). Note that the model of
Fig. 2b allows us to represent synchronous messages where
the sender blocks for the receiver to be ready. Such syn-
chronous messages are represented by a single event e such
that π(e) includes the sender as well as the receiver. The
model also allows us to represent barriers which require mul-
tiple processes to wait until all the processes participating
in the barrier execute it. It can also model behavior of finite
communicating sequential processes [3].

Note: In all the figures throughout this paper, events are
depicted with dark filled circles, and states are depicted with
empty circles.

Generally, the analysis of concurrent computations requires
reasoning over the valid states of the system that could occur
in these computations. These states are commonly called
consistent global states or consistent cuts.

Proc. 1 Proc. 2
1: local event (a) 1: local event (e)
2: send msg (b) 2: receive msg (f)
3: local event (c) 3: local event (g)

(a) Pseudocode of instructions

a b c

e f g

(b) Event Based Model

a0

a

a′

b

b′

c

c′

e0

e

e′

f

f ′

g

g′

(c) State Based Model

Figure 1: An example distributed computation and its patial order models

Proc. 1 Proc. 2
1: local event (op1) 1: local event (op3)
2: execute barrier 2: execute barrier
3: local event (op2) 3: local event (op4)

(a) Pseudocode of instructions

op1

barrier

op2

op3 op4

(b) Event based model

op1 barrier op2

op3 barrier op4

(c) State based model

Figure 2: A computation with a barrier and its partial order models

Definition 2 (Consistent cut in event based model). Given
an event based model (E,→, π) of a computation, G ⊆ E

is a consistent cut of the computation if ∀e, f ∈ E : (f ∈
G) ∧ (e→ f) ⇒ (e ∈ G).

Note that this definition is independent of π and coincides
with the definition of a down-set of a poset [5]. It is well
known that the set of downsets forms a distributive lattice.
Conversely, Birkhoff showed that every finite distributive
lattice can be generated as the set of downsets of a poset
[2]. Thus, finite distributive lattices completely characterize
the set of consistent cuts in the event based model.

The consistent cuts of the event based model in Fig. 1b are:
{}, {a}, {e}, {a, b}, {a, e}, {a, b, c}, {a, b, e}, {a, b, c, e},
{a, b, e, f}, {a, b, c, e, f}, {a, b, e, f, g}, {a, b, c, e, f, g}.

3. MODELING COMPUTATIONS USING
STATES

For many applications in concurrent debugging [16], and
predicate detection in distributed systems it is more natural
to model a computation using states rather than events. For
example, we may be interested in the cut (global state) in
which all processes have taken their local checkpoint. We
first give an intuition for state based model of concurrent
computations. An event is always executed in some state,
and the state before the event’s execution ‘existed-before’
the state resulting from the execution. The existed-before
relation between states is denoted using “<”. The diagram
(denoting the happened-before relation) of the model based
on events in Fig. 1b corresponds to the state based model
shown in Fig. 1c. In this figure, the execution of event a gets
translated into an edge between two states: initial state a0
(that existed before a was executed), and state a′ (the state
immediately after a’s execution). Thus, we have a0 < a′ in
the state based model.

Although some concepts carry over from events to states,
there are some important differences. For example, any
poset of events in which all events on a single process are

totally ordered can be a model of some concurrent compu-
tation in the happened-before model. But, not every poset
of states is a valid concurrent computation. Consider the
poset in Fig. 3a. If this poset were to be used as a state
based model of a computation, the model would be incor-
rect — because even if the modeled states form a poset, the
equivalent event based model would have a cycle (as shown
in Fig. 5b)2. Thus, we can allow only those partial orders
on states that do not induce cycles on the order on events.

We claim that a poset can only be a valid state based model
of a concurrent computation if it satisfies a notion called
width-extensibility.

Definition 3 (Width-extensible Poset). A poset (X,<) is
width-extensible if and only if for every antichain A ⊆ X,
there exists a width-antichain W containing A.

a b c

d e

(a) Not width-extensible: no width-antichain for {b}

a b c

d e f

g h i

(b) Not width-extensible: no width-antichain for {b, i}

Figure 3: Invalid posets under the state based model

Informally, when states of a concurrent computation are
modeled as a poset, this property requires that for any set

2The techniques involved in generating event based model
from state based model are in the next section.

of incomparable local states there is a possible consistent
cut that includes these local states. We will show later that
in the state based model, the consistent cuts correspond to
width-antichains (and not down-sets). The poset in Fig. 3a
is not width-extensible because there is no width-antichain
that contains b.

In the above definition of width-extensible posets, we can
not substitute“for all antichains”by“for all antichains of size
1”. In the example of Fig. 3b, there is a width-antichain for
every individual element a to i. This can be easily verified
as {a, d, g}, {b, e, h}, and {c, f, i} are all width-antichains.
But there is no width-antichain that contains {b, i}. Hence,
the poset is not width-extensible.

We now show a surprising result: it is sufficient to restrict
our attention to antichains of size two for checking width-
extensibility.

Theorem 1. A poset (X,<) is width-extensible if and only
if for every antichain A of size at most two, there exists a
width-antichain W containing A.

Proof. The necessity is obvious — the definition of width-
extensibility demands that every antichain is contained in
some width-antichain. Hence, for (X,<) to be width-extensible,
antichains of size at most two must also be contained in a
width-antichain. We now prove sufficiency. We want to
prove that if every antichain of size at most two is contained
in a width-antichain, then every antichain (of any size) is
also contained in a width-antichain. Let w be the width of
the poset (X,<) and {C1, C2, ..., Cw} be a chain partition
of size w. Consider an antichain A of size k, 3 ≤ k ≤ w. If
w = k, then A itself is a width-antichain, and we have the
result. Suppose w > k, and A is not contained in any width-
antichain. Hence, there is some chain Ci such that A does
not have any elements from Ci. We know that for any pair of
elements a, b ∈ A, with a 6= b, the antichain {a, b} is width-
extensible. Let Ii(a, b) denote the maximal interval on Ci

that contains all the elements that are incomparable to both
a and b. As {a, b} is width-extensible, we know that Ii(a, b)
is non-empty. Now consider a, b, c ∈ A, where all three are
distinct. The width-extensibility of size two antichains guar-
antees that Ii(a, b), Ii(b, c), and Ii(a, c) are all non-empty.
Since every pair of these intervals have non-empty intersec-
tion, and all intervals are sets of one or more consecutive
states in Ci, we get that Ii(a, b)∩Ii(b, c)∩Ii(a, c) 6= φ. This
means that ∃d ∈ Ci : (d || a) ∧ (d || b) ∧ (d || c), i.e. d is
concurrent to a, b, and c. Hence, d can be added to A. By
repeating this argument for all chains that do not have any
element in A, we can extend A to a width-antichain.

We can now define the state based model of a concurrent
computation as follows:

Definition 4 (State based model of concurrent computa-
tions). A concurrent computation on n processes is modeled

by Ŝ: a tuple (S,<, τ), where S is the set of local states,
(S,<) is a width-extensible poset, and τ is a map from S

to {1..n} such that for all distinct states s, t ∈ S for all
i ∈ {1..n}, Si = {s ∈ S | i ∈ τ (s)} is totally ordered under
<. i.e., τ (s) = τ (t) ⇒ (s < t) ∨ (t < s).

Thus, τ partitions S such that every block of the partition
Si is totally ordered. The relation < between states captures
the ‘existed-before’ notion discussed in the first para of Sec-
tion 3. Fig. 1c and 2c, are corresponding state based models
of event based models shown in Fig. 1b and 2b. Note that in
these figures (of state based models), the events are shown as
edge labels above the edges that capture < (existed-before)
relation on the states.

We now show the difference in the definitions of consistent
cuts in the state based and event based model.

Definition 5 (Consistent cut in state based model). Under
the state based model, (S,<, τ), of a concurrent computation
, a subset T ⊆ S of size equal to the width of poset (S,<) is
a consistent cut if ∀s, t ∈ T : s || t.

The order “<” over consistent cuts is defined using the “≤”
relation defined over width-antichains in Section 2. Under
the state based model, for any two consistent cuts A,B we
have: A < B iff A ≤ B ∧ A 6= B. Hence, A < B ⇒ ∃a ∈
A,∃b ∈ B : a < b in (S,<). It is clear that the consistent
cuts in state based model correspond to width-antichains of
the poset.

The consistent cuts of the state based model of Fig. 1c are:
{a0, e0}, {a

′, e0}, {a0, e
′}, {b′, e0}, {a

′, e′}, {c′, e0},
{b′, e′}, {c′, e′}, {b′, f ′}, {c′, f ′}, {b′, g′}, {c′, g′}.

At this point we have two notions of a consistent cut of
a concurrent computation: one in the event based model
(Defn. 2) and the other in the state based model (Defn. 5).
Dilworth [6] proved that the set of all width-antichains also
forms a distributive lattice, and Koh [13] showed that ev-
ery finite distributive lattice can be generated as the set of
width-antichains of a poset. The lattice of width-antichains
is in general a sublattice of the lattice of downsets. Thus, the
notion of consistent global states is different in event based
and state based models, a distinction that has not been ex-
plored in distributed computing literature. It is also impor-
tant to question that what is the relationship between these
two definitions? In the next section, we show that there is a
‘one-to-one’ correspondence between consistent cuts in the
event based and the state based models.

3.1 Translation between event based and state
based models

Let Ê = (E,→, π) be an event based model of a compu-
tation on n processes/threads. Let π partition E into n

chains: (Ei | i = 1, 2, . . . n). For each i = 1, 2, . . . n, let
|Ei| = ni(≥ 1). Suppose the elements of Ei are named as
follows: Ei : (i, 1) → (i, 2) → . . . → (i, ni − 1) → (i, ni).
Note that if an event is ‘shared’ between two processes i
and j, then it will have two labels (i, x) and (j, y), with
1 ≤ x ≤ ni, and 1 ≤ y ≤ nj .

3 We generate a state based

model Ŝ = (S,<, τ) from Ê using the following function.

3By extension of this rule, an event that is ‘shared’ between
k processes would have k labels.

Function ES Transform:
For each i = 1, 2, . . . n, let Si be an |ni+1| element chain
where ni = |Ei| as above. Define the elements in Si as
follows:

Si : [i, 0] < [i, 1] < ... < [i, ni − 1] < [i, ni].

Let S =
⋃n

i=1
Si and define a binary relation “<” on S

by putting [i, r] < [j, s] in S (i, j = 1, 2, . . . , n; 0 ≤ r ≤
ni, 0 ≤ s ≤ nj) iff:

• r < s, if i = j

• (i, r + 1) and (j, s) are both present in E

• and (i, r + 1) < (j, s) in E if i 6= j.

A special case of this transform, on disjoint chain partitions,
was used by Koh in [13] to prove properties of lattice of
width-antichains.

Fig. 4 gives illustrations of the application of this transform.

In the generated Ŝ, τ is dependent on the chain partition
π in Ê. Intuitively, every state chain Si contains the states
of process i, such that event (i, k) in Ei, here 1 ≤ k ≤ ni,
causes a transition from state [i, k − 1] to [i, k]. On chain
Si, the state [i, 0] represents the initial state of the process
i, and [i, ni] represents the final state of the process i. The
worst-case complexity of the ES transform is O(|E|2).

We show that this Ŝ, generated by applying the ES trans-
form on Ê, is a valid state based model of the concurrent
computation, i.e., it is a width-extensible poset. We first
show that it is a poset.

Lemma 1. If Ŝ is the result of applying ES transform on
an event based model Ê = (E,→, π) of a concurrent compu-

tation then Ŝ is a poset under the “<” relation.

Proof. We show that the relation “<” on S is transitive and
antisymmetric, and thus irreflexive.

• Claim (i) The relation “<” is asymmetric.
Proof: Let [i, r], [j, s] ∈ S such that [i, r] < [j, s].
Clearly, [j, s] 6< [i, r] if i = j; otherwise we would get
s → r in E. Assume i 6= j and [j, s] < [i, r]. Then by
definition, we have (i, r + 1) → (j, s) → (j, s + 1) →
(i, r) in E, which is impossible as it violates the asym-
metry of → in E.

• Claim (ii) The relation “<” is transitive.

Proof: Let [i, r], [j, s], [k, t] ∈ Ŝ such that [i, r] < [j, s]
and [j, s] < [k, t]. Assume i 6= j and k 6= j. Then we
have (i, r + 1) → (j, s) → (j, s+ 1) → (k, t) and hence
(i, r+1) → (k, t) in E, which implies that [i, r] < [k, t]
whether i = k or i 6= k. The cases for i = j or j = k

can be proved similarly.

Hence Ŝ forms a poset under the “<” relation.

The following lemma proves the ‘one-to-one’ relation be-
tween consistent cuts of event based and state based models
of a concurrent computation.

Lemma 2. Let Ê = (E,→, π) and Ŝ = (S,<, τ) be event
and state based models of a concurrent computation. Then
there is a bijection between consistent cuts of Ê and Ŝ.

Proof. In Appendix A.

Let us now study the properties of the posets that model
concurrent computations using states.

4. CHARACTERISTICS OF STATE BASED
MODELS OF SYNCHRONOUS CONCUR-
RENT COMPUTATIONS

The event based model of Defn. 1 accepts chain partitions
that allow ‘shared’ events, which in turn allows modeling
synchronous executions. We will show that posets that model
such synchronous concurrent computations must be width-
extensible. We start by showing that Ŝ = (S,<) constructed
from any (E,→, π) by applying the ES transform is width-
extensible. First, we define the three properties ω1, ω2, and
ω3 of Ŝ.
For 1 ≤ i, j, k ≤ n, Ŝ = (S,<, τ):

• (ω1) ∀i, j: [i, 0] || [j, 0]. All initial states are concurrent.

• (ω2) ∀i, j: [i, ni] || [j, nj]. All final states are concur-
rent.

• (ω3) ∀i, j, k, such that for i 6= j ∧ j 6= k: [i, s] < [j, t] ∧
[j, t− 1] < [k, u] ⇒ [i, s] < [k, u].

We now prove that these properties are observed in Ŝ.

Lemma 3. Ŝ satisfies ω1, ω2, and ω3.

Proof. ω1 follows immediately from the construction of Ŝ
because there is no state [i, s] such that [i, s] < [i, 0] for any
i. That is, on any state chain Si there does not exist a state
that is a precursor to the initial state of Si. Hence, all the
initial states must be concurrent.

Similarly, ω2 follows when applied to the last states of Si

in a similar manner because there is no state on any state
chain Si that is a successor of the final state of Si.

ω3: [i, s] < [j, t] ∧ [j, t − 1] < [k, u]. Using the construction
rules, we can infer that (i, s+ 1) → (j, t) ∧ (j, t) → (k, u) in
E. Which by transitivity means (i, s + 1) → (k, u). Hence,
[i, s] < [k, u] in S.

The first condition, ω1, ensures that all n initial states are
pairwise concurrent. This is a valid requirement as all the
processes would start in some default (individual) state, and
at the start of the computation these states would not have
any dependency amongst them. The second condition, given
by ω2, ensures that all n final states are pairwise concurrent.
This is also a valid requirement because irrespective of the
events/commands executed, all the n processes end up in
some individual final state at the end of the computation.
Hence, when the computation is finished all the final states

(1, 1) (1, 2) (1, 3)

(2, 1) (2, 2) (2, 3)

(a) Event based model (E,→, π) of Fig. 1b

[1, 0] [1, 1] [1, 2] [1, 3]

[2, 0] [2, 1] [2, 2] [2, 3]

(b) Generated state based model for (a)

(1, 1)

(1, 2), (2, 2)

(1, 3)

(2, 1) (2, 3)

(c) Event based model of barrier shown in Fig. 2

[1, 1]

[2, 1]

[1, 2]

[2, 2]

[1, 3]

[2, 3]

[1, 0]

[2, 0]

(d) Generated state based model for the barrier in (c)

Figure 4: Event to State transform for computations of earlier examples

would not have any dependency amongst them, and thus be
concurrent to each other.
The third condition, ω3, guarantees that causal dependency
between events under the event based model translates to
causal dependency between corresponding states under the
state based model. Note that the labels of states in the
dependency relation are different from those of events. Sup-
pose that for two events e and f , we have e → f under the
event based model, Ê. Then ω3 translates that dependency
from Ê to Ŝ such that the state preceding the execution
of e is guaranteed to have existed before the state that is
generated after the execution of f .

We now show that any state based model that is generated
by applying the ES transform on an event based model is a
valid state based model. To be a valid state based model, it
is sufficient that the generated poset be width-extensible.

Theorem 2. Let Ŝ = (S,<, τ) be a state based model for

some concurrent computation. If Ŝ satisfies ω1, ω2 and ω3,
then the poset (S,<) is width-extensible.

Proof. We show that any antichain A ⊂ S can be extended
to a width-antichain. It is sufficient to show that when |A| <
n, there exists an antichain A ⊂ B such that |B| = |A|+ 1.
Consider any process Ci that does not contribute a state
to A. We will show that there exists a state in Si that is
concurrent with all states in A. Let s and s′ be two distinct
states in A.

We first claim that for any state s and any process Ci, there
exists a nonempty sequence of consecutive states called the
“interval concurrent to s on Ci” and denoted by Ii(s) such
that:

1. Ii(s) ⊆ Si — i.e., the interval consists of only states
from process Ci, and

2. ∀t ∈ Ii(s) : t || s — i.e., all states in the interval are
concurrent with s.

For a state v ∈ Si, let index(v) denote the index of state
v on Si. Thus 0 ≤ index(v) ≤ ni. Define Ii(s).lo =
min{v | v ∈ Si ∧ v 6< s}. This is well-defined since

[i, ni] 6< s due to ω2. Similarly, on account of ω1, we can
define Ii(s).hi = max{v | v ∈ Si ∧ s 6< v}. We show that
Ii(s).lo ≤ Ii(s).hi by the following case analysis.
Case 1: There exists v : Ii(s).hi < v < Ii(s).lo.
Since v < Ii(s).lo implies v < s and Ii(s).hi < v implies
s < v, we get a contradiction (v < s < v).

Case 2: index(Ii(s).hi) + 1 = index(Ii(s).lo).
Let Ii(s).lo be the r

th state on Si, i.e., Ii(s).lo = [i, r]. Then,
Ii(s).hi = [i, r − 1]. Let s correspond to state [j, t]. From
the definition of Ii(s).lo, [i, r − 1] < [j, t]. From the defi-
nition of Ii(s).hi, [j, t] < [i, r]. We now have, [j, t] < [i, r]
and [i, r − 1] < [j, t]. From ω3, we get [j, t] < [j, t] which
contradicts irreflexivity of <.

From the above discussion it follows that Ii(s).lo ≤ Ii(s).hi.
Furthermore, for any state t such that Ii(s).lo ≤ t ≤ Ii(s).hi,
t 6< s and s 6< t holds. Now that our claim holds, we know
that Ii(s) and Ii(s

′) are both non-empty. We show that
Ii(s) ∩ Ii(s

′) 6= ∅. If not, without loss of generality assume
that Ii(s).hi < Ii(s

′).lo. Now there are two possible cases.

Case 1: index(Ii(s).hi) + 1 = index(Ii(s
′).lo).

Let Ii(s).hi be r
th state on Si, i.e., Ii(s).hi = [i, r]. Then,

Ii(s
′).lo = [i, r + 1]. Suppose that s = [j, u] and s′ = [k, v].

From the definition of Ii(s).hi we get that [j, u] < [i, r + 1].
From the definition of Ii(s

′).lo we get that [i, r] < [k, v].
Hence, from ω3, we get that [j, u] < [k, v] — contradicting
that s and s′ are concurrent.

Case 2: There exists v : Ii(s).hi < v < Ii(s
′).lo.

This implies that s < v (because Ii(s).hi precedes v) and
v < s′ (because v precedes Ii(s

′).lo). Thus s < s′, a contra-
diction with A being an antichain. Therefore, Ii(s)∩Ii(s

′) 6=
∅.

Because any interval Ii(s) is a total order, it follows that:
⋂

s∈A

Ii(s) 6= ∅

We now choose any state in
⋂

s∈A
Ii(s) to extend A.

We have established that every poset that provides the three
conditions ω1, ω2, and ω3 is width-extensible. We now show

the converse — every width-extensible poset guarantees these
three conditions.

Theorem 3. Let (S,<) be a width-extensible poset. Con-

sider any chain-partition τ of (S,<). Then, Ŝ = (S,<, τ)
satisfies ω1, ω2 and ω3.

Proof. We show the contrapositive. If ω1 is violated, then
there exists an initial state t such that there exists a state s
different from t which is less than t. Then, s is less than all
states in the process containing t. Therefore, the antichain
{t} cannot be extended to a width-antichain. The proof for
ω2 is dual.

If ω3 is violated, then there exist [i, s], [j, t] and [k, u], where
i 6= j∧ j 6= k, such that [i, s] < [j, t] and [j, t−1] < [k, u] but
[i, s] 6< [k, u]. We now do a case analysis on the relationship
between [i, s] and [k, u].

Case 1: [k, u] < [i, s]. (Illustrated in Fig. 6, Appendix B).
In this case we claim that there is no width-antichain that
contains [i, s]. Since [i, s] < [j, t], for any state w on process
Cj that is concurrent with [i, s], we get w ≤ [j, t− 1]. Since
[j, t − 1] < [k, u] none of the states on process Ck greater
than [k, u] are eligible to be in the width-antichain with w.
Furthermore, all states less than or equal to [k, u] are ineli-
gible because [k, u] < [i, s].

Case 2: [k, u] is incomparable with [i, s]. In this case we
claim that there is no width-antichain that includes both
[k, u] and [i, s]. No state greater than or equal to [j, t] can
be included from Cj because [i, s] < [j, t]. No state less
than or equal to [j, t − 1] can be included from Cj because
[j, t− 1] < [k, u].
Note that ω3 only requires i 6= j ∧ j 6= k. It is possible that
i = k; the proof still holds.

With Theorems 2 and 3, we have established that conditions
ω1, ω2 and ω3 are necessary and sufficient for a poset to be
width-extensible. We now show that width-extensibility is a
sufficient condition for modeling a concurrent computation
under the state based model. First, we outline how to gener-
ate an event based model of a concurrent computation from
(S,<). Let τ be any chain partition of (S,<). We construct
an event based model (E′,→, π′) of a concurrent computa-
tion by applying the SE transform (a reverse transform to
ES) whose steps are shown in Algorithm 1.

In the algorithm, lines 1 − 11 perform a reversal of steps
of ES transform. Lines 13 − 18 try to collapse events that
are ‘shared’ between processes by performing a strongly con-
nected component (SCC) decomposition, and using the SCCs
for identifying shared events. If an SCC has events from the
same process, then that results in a same process cycle —
an invalid event based computation. If we represent Ŝ as a
directed graph with m = |S| vertices and d directed edges,
then the complexity of SE transform is O(m+d), i.e. linear
in size of the graph.

See Appendix B for some illustrations of SE transform’s
application to examples discussed in this paper.

Algorithm 1 SE (State to Event) Transform

Input: State Based Model Ŝ = (S,<, τ)

Output: Event Based Model Ê = (E′,→, π)
1: E′

i ← {}
2: for i = 1 to n do
3: for k = 1 to ni do
4: Add (i, k) to E′

i

5: for k = 0 to ni − 1 do
6: Define (i, k)→ (i, k + 1) in E′

i
7: ⊲ E′

i is now (|Si| − 1)-element chain

8: E′

temp ←
⋃n

i=1
E′

i

9: for i = 1 to n do
10: for j = 1 to n ∧ j 6= i do
11: if [i, r − 1] < [j, s] in S then
12: Define (i, r)→ (j, s) in E′

temp

13: E′ ← E′

temp

14: for all Cs in SCC-Decomposition of E′

temp do
15: if each node is Cs lies on diff. chains then
16: Replace Cs with one element e in E′

17: Assign all labels of nodes in Cs to e
18: else
19: Report S as not width-extensible

The next theorem shows that width-extensibility is sufficient
for modeling concurrent computations under the state based
model.

Theorem 4. Let (S,<) be any width-extensible poset. Then,
there exists a concurrent computation for which it is the state
based model.

Proof. We show that there exists a concurrent computation
in the event based model such that when we convert that
event based computation to state based model, we get the
poset (S,<).

We first create a width chain partition τ of (S,<) to get

(S,<, τ). We then generate an event based model Ê′ =
(E′,→, π′) from (S,<, τ) using SE transform. It can be
easily verified that applying the ES transform to (E′,→, π′)
leads to (S,<, τ). It suffices to show that (E′,→) is a partial
order.
Irreflexivity: Assume, (i, r) → (i, r) in E′(π′). This would

require r < r in Ŝ — a contradiction.
Transitivity: Consider (i, r) → (j, s) ∧ (j, s) → (k, t), in
E′. First, let us look at the case where i 6= j ∧ j 6= k.
(i, r) → (j, s) in the event based model is possible only if

[i, r− 1] < [j, s] in Ŝ. Similarly, we also get [j, s− 1] < [k, t].
Hence:

[i, r − 1] < [j, s] ∧ [j, s− 1] < [k, t]

By using ω3 on Ŝ we get [i, r−1] < [k, t] in Ŝ ≡ (i, r) → (k, t)
in E′.
When i = j = k, the transitivity of states the same chain
is trivial. Now let us consider the case when i = j ∧ j 6= k.
Then, (i, r) → (j, s) ∧ (j, s) → (k, t) in E′ requires r < s,

as i = j, and [j, s − 1] < [k, t] in Ŝ. Observe that i = j

and r < s means that r − 1, s− 1, s form a totally ordered
set, such that r − 1 ≤ s − 1. Hence, we get [i, r − 1] ≤

[j, s − 1] ∧ [j, s − 1] < [k, t]. By transitivity of < in Ŝ,
this leads to [i, r − 1] < [k, t] which is the desired condition
for (i, r) → (k, t) in E′. The proof for the case of i 6=

j, j = k is similar. Finally, consider the case when i =
k, i 6= j ∧ r = t. In such a case, the original condition in
the E′ becomes (i, r) → (j, s) ∧ (j, s) → (i, r). Given that
we have i 6= j, the condition is only possible if (i, r) and
(j, s) represent the same shared event — shared between
processes/chains i and j. Now that (i, r) and (j, s) represent
the same shared event, the requirement of transitivity on this
event is trivially held.

The following lemma combines the results established earlier
to show that ES and SE transforms are inverse functions
of each other.

Lemma 4. Let Ê = (E,→, π) be an event based model for

some computation and let Ŝ be the result of applying ES

transform to Ê. Then, applying SE transform on Ŝ results
in Ê.

Proof. Follows directly from lemmas 1, 2, and 3 combined
with theorems 2, 3, and 4.

Thus, we have established that ω1, ω2, and ω3 properties
provide a complete characterization of a state based model
for a concurrent computation. In the next section, we dis-
cuss asynchronous computations, and show that their state
based models are a special case of models of concurrent com-
putations formalized in this section.

5. CHARACTERISTICS OF STATE BASED
MODELS OF ASYNCHRONOUS
CONCURRENT COMPUTATIONS

Asynchronous concurrent computations, which are common
in distributed systems, are a special type the concurrent
computations that cannot have any ‘shared’ events. Shared
events are only possible when the communication between
processes is synchronous. Thus, the event based model of
asynchronous computations is defined based on a chain par-
tition π in which all chains are disjoint. The event based
model of asynchronous concurrent computations(we use the
short-form notation ASC from here on) is given by the fol-
lowing definition:

Definition 6 (Event based model of ASC). An event based
model of an ASC on n processes is is a tuple (E,→, π) where
E is the set of events, → is the happened-before relation on
E, and π is a map from E to {1..n} such that for all distinct
events e, f ∈ E : π(e) = π(f) ⇒ (e→ f) ∨ (f → e).

Thus, π partitions E such that every block of the partition
is totally ordered under →.

Such an event based model, with no ‘shared’ events, leads to
a state based model that satisfies stronger properties than
those satisfied by the state based model of the previous sec-
tion. Intuitively, given that the communication between pro-
cesses is asynchronous, no two processes can make a ‘jump’
together from their individual states to next states as if there
was a ‘shared’ execution. Hence, the poset (S,<) exhibits a
property that we call ‘interleaving-consistency’.

Definition 7 (Interleaving-consistent Poset). A poset (X,<
) is interleaving-consistent if for every width-antichain W

that is not equal to the biggest width-antichain, there exists
a width-antichain W ′ > W such that |W ∩W ′| = |W | − 1.

LetA(X) be the set of all width-antichains of a poset (X,<).
The biggest width-antichain of (X,<) is the width-antichain
A ∈ A(X) such that ∄A′ ∈ A(X) : A < A′. Informally,
interleaving-consistency requires that any possible cut (mod-
eled as a width-antichain) can be advanced on some process
to reach another possible cut. Fig. 4a shows an ASC under
the event based model, and the corresponding poset of the
state based model in Fig. 4b is interleaving-consistent. In
contrast, the event based computation in Fig. 4c is not an
ASC, and thus the resulting state based model’s poset in
Fig. 4d is not interleaving-consistent — the processes make
a ‘jump’ together from states [1, 1], [2, 1] to [1, 2], [2, 2].

ASCs are a special kind (subset) of concurrent computa-
tions, and thus a partial order modeling states of an ASC
must satisfy ω1, ω2 and ω3. In addition, it should also be
interleaving-consistent. Formally, interleaving-consistency
of Ŝ is captured by the condition ψ as follows:

(ψ) for 1 ≤ i, j ≤ n, if i 6= j, then [i, s−1] < [j, t] ⇒
¬ ([j, t− 1] < [i, s]).

Thus, for an ASC, a poset (S,<) that models its states is
characterized by ω1, ω2, ω3, and ψ. The state based model
for ASCs is formally defined as:

Definition 8 (State based model of ASCs). An asynchronous

distributed computation on n processes is modeled by Ŝ =
(S,<, π), where S is the set of states, < is an irreflexive par-
tial order relation on S such that (S,<) is a width-extensible
and interleaving-consistent poset, and π maps every state to
a process from {1..n} such that for all i ∈ {1 . . . n}, Si =
{s ∈ S | i ∈ π(s)} is totally ordered under <.

The following set of results establish the properties of state
based models of ASCs.

Lemma 5. Suppose Ŝ = (S,<, τ) is obtained by applying

ES transform on an ASC’s event based model Ê = (E,→

, π). Then Ŝ satisfies ω1, ω2, ω3, and ψ.

Proof. Since ASCs are a subset of concurrent computations,
the conditions ω1, ω2, ω3 continue to be satisfied as shown in
Theorem 3. Suppose (S,<) doesn’t satisfy ψ and thus we
have [i, s− 1] < [j, t] ⇒ ([j, t− 1] < [i, s]) in (S,<). But this
would require (i, s) → (j, t) ∧ (j, t) → (i, s) in E, which is a
contradiction.

Lemma 6. Let Ŝ = (S,<, τ) be as defined in Lemma 5.
Then, (S,<) is interleaving-consistent.

Proof. Suppose (S,<) satisfies ψ, but is not interleaving-
consistent. Hence, there is some antichain A of (S,<) that
is not the biggest, and still can not be extended along just
one process to form another antichain A′. Let [i, ai] be the
element from chain i that belongs to A. Our assumption

means that ∄i : A−{[i, ai]}+{[i, ai+1]} is a width-antichain.
Hence ∀i,∃j 6= i : [i, ai] < [j, aj + 1]. Given that S is
finite (we can not keep on finding a ‘new’ j for every ‘new’
i we consider), we know that to satisfy this requirement
there must exist k, k 6= j ∧ k 6= i such that [j, aj] < [i, ai +
1] ∧ [k, ak] < [j, aj + 1] ∧ [i, ai] < [k, ai + 1]. See Fig. 7 in
Appendix B for an illustration.

From the previous lemma, we know that (S,<) satisfies
ω1, ω2, ω3. Applying ω3 we get [k, ak] < [i, ai + 1]. But
this leads to [i, ai] < [k, ai + 1] ∧ [k, ak] < [i, ai + 1] — a
contradiction with ψ.

Theorem 5. Let (S,<) be any interleaving-consistent and
width-extensible poset. Consider any chain partition τ of
(S,<). Then, Ŝ = (S,<, τ) satisfies ω1, ω2, ω3, and ψ.

Proof. Width-extensibility guarantees ω1, ω2 and ω3. Sup-
pose ψ is not satisfied, i.e., there exist [i, s], [j, t], for i 6= j,
such that [i, s − 1] < [j, t] ∧ ([j, t − 1] < [i, s]). Let [j, r] be
the largest state on Sj that is incomparable with [i, s − 1].
Note that r ≤ t − 1. It is clear that [j, r] < [j, t] because
[i, s − 1] < [j, t]. Since ([j, t − 1] < [i, s]), we also get that
[j, r] < [i, s].

Let W be the set of all width-antichains that include both
[i, s− 1] and [j, r]. Let A be the biggest antichain in W. We
claim that there does not exist any width-antichain A′ ≥ A

such that |A′ − A| = 1, and thus not satisfying ψ contra-
dicts with interleaving-consistency. If A′ differs from A on
a chain different from i and j, then it violates that A is the
biggest antichain that contains [i, s − 1] and [j, r]. Hence,
to satisfy interleaving-consistency, A′ must differ from A on
either i or j. Suppose A′ − A = [i, s] then, because A′ is
a width-antichain, we get that [j, r] is incomparable with
[i, s], a contradiction. If A′−A = [j, r+1], then we get that
[i, s − 1] is incomparable with [j, r + 1], which contradicts
the definition of [j, r].

Theorem 6. Let (S,<) be any poset that is width-extensible
and interleaving-consistent. Then, there exists an ASC for
which it is the state-based model.

Proof. Let τ be any chain partition of (S,<). Apply SE

transform on (S,<, τ)to generate an event based model (E′,→
). It is trivial to verify that applying ES transform to
(E′,→) leads to (S,<). It suffices to show that (E′,→)
is a partial order.
Irreflexivity: can be proved using exactly the same argument
used in Theorem 4.
Transitivity: Except the case of i = k, i 6= j ∧ r = t, apply
the same argument as in Theorem 4. For i = k, i 6= j∧r = t,
we use a different argument. In this case, the left hand side
of (i, r) → (j, s) ∧ (j, s) → (k, t) is equivalent to [i, r − 1] <
[j, s] ∧ [j, s− 1] < [i, r] as i = k, r = t. But, ψ prohibits this
case — hence the left hand side is false and the constraint
holds trivially.

Similar to Lemma 4, we can now verify the following result.

Lemma 7. Let Ê = (E,→, π) be an event based model for

some ASC and let Ŝ be the result of applying ES transform
to Ê. Then, applying SE transform on Ŝ results in Ê.

Proof. Follows directly from lemmas 2, 5, and 6 combined
with theorems 2, and 6.

6. APPLICATIONS
To conclude, we now discuss two applications of duality be-
tween state and event based models of concurrent computa-
tions.

6.1 Predicate Detection
Our theory applies to detection of global predicates that
depend only on the latest events in ASCs. For example,
consider a set of processes that execute three kinds of events:
internal, message send and blocking receive. The blocking
receive event blocks the process until it receives a message
from some process. It is clear that in absence of in-transit
messages, and the last executed event at all processes being a
receive event, the system has a communication deadlock. In
this example, we require that the last event at each process
be a blocking receive. Even if one process is left out, that
process could send messages to all other processes to unblock
them.

Recall that an ideal Q of a poset P = (X,≤) is a width-
ideal if the set of all maximal elements in Q, denoted by
maximal(Q), is a width-antichain of P . Let B be a predi-
cate, and G be a global state of a computation, then B(G)
denotes that B is true on G. A width-predicate is defined
as follows.

Definition 9 (Width-Predicate). A global predicate B in a
distributed computation on n processes is a width-predicate
if B(G) ⇒ |maximal(G)| = n.

Some examples of width-predicates are:
1. Barrier synchronization: “Every process has made a call
to the method barrier.”
2. Deadlock for Dining Philosophers: “Every philosopher has
picked up a fork”.
3. Global Availability: “Every process has an active session
and the total number of permits with processes is less than
k.”

Note that 1 and 2 are also conjunctive predicates and can
already be detected efficiently. But even if B is not stable
or conjunctive, as in example 3, we can use our theory to
detect it. Clearly, to detect a width-predicate, it is suffi-
cient to construct or traverse the lattice of the width-ideals.
The following result, based on [8, 9], gives an idea for an
algorithm to construct or traverse the lattice.

Theorem 7. Given any finite width-extensible poset P , there
exists an algorithm to enumerate all its width-antichains in
O(n2L) time where n is the width of the poset and L is the
size of the lattice of width-antichains.

Proof. We exploit the bijection between the set of all down-
sets of (E,→, π) and the set of all width antichains of (S,<

, τ) (Lemma 1). Given the poset P , we apply the SE trans-
form (Algorithm 1) to get another poset P ′ such that enu-
merating consistent cuts of P ′ is equivalent to enumerating
all width-antichains of P . We can now use algorithms in [8,
9] on P ′ to enumerate all down-sets in O(n2L) time.

6.2 Better Understanding of Checkpointing
Checkpointing [1] is widely used for fault tolerance in dis-
tributed systems. In uncoordinated checkpointing [15], pro-
cesses take checkpoints independently, without any group
communication and coordination. In a distributed compu-
tation with n processes, let Li denote the sequence of local
checkpoints of process Ci. Note that any checkpoint lc ∈ Li

is a local state of process Ci. Hence, Li is a state chain that
is totally ordered under the “<” relation that we have used
for comparing states in this paper. It is common to assume
that the initial state and the final state in each process are
checkpointed [15, 12]. Let the set of all local checkpoints be
L, i.e., L =

⋃
Li. The set of checkpoints L, together with

the existed-before relation “<”, forms a state based model
L̂ = (L,<, τ), where τ partitions L into chains. A sub-
set G ⊆ L is a global checkpoint iff ∀c, d ∈ G : c ‖ d and
|G| = n. Hence, a global checkpoint is equivalent to a consis-
tent global state in a state based model over checkpoints of
the computation. A local checkpoint is ‘useless’ if it cannot
be part of any global checkpoint. Netzer et al. [15] estab-
lished results on useless checkpoints using the notion of zig-
zag paths. Wang [17] used a construction called R-graph (or,
rollback-dependency graph) to devise an algorithm for de-
tection of useless checkpoints. Although, both [15, 17] have
made important contributions, they do not clearly highlight
the fundamental concept that checkpoints are states of a
distributed computation, and reasoning about checkpoints
is in effect reasoning over the state based model of an ASC.
Using the theory established in this paper, one can easily un-
derstand the intuition behind constructions of zig-zag paths
and R-graphs. In short, by viewing a checkpointing compu-
tation as a state based model, the interpretation of zig-zag
paths, useless checkpoints, and R-graphs is as follows.

• Absence of zig-zag paths between checkpoints (states)
in a computation means that the checkpoints can be
part of a width-antichain (consistent cut). Their pres-
ence between checkpoints indicates that the checkpoints
cannot be part of a width-antichain. A useless check-
point is a state of a computation that cannot belong to
any width-antichain of the poset under the state based
model.

• The R-graph construction on a checkpoint computa-
tion essentially generates an event based model from
the state based model that is the original computation.
Hence, the algorithm to identify useless checkpoints (in
[17]) effectively tries to check if the model of the com-
putation is legal under the event based model when a
particular checkpoint is included. Thus, it applies the
SE transform (Alg. 1) on the state based model im-
posed by the checkpoints. The R-graph construction
and detection algorithm (by finding cycles) and the
SE transform have the same computation complex-
ity O(k + m), where k is the number of checkpoints
(states) in the computation and m is the number of
messages.

7. REFERENCES
[1] B. Bhargava and S.-R. Lian. Independent

checkpointing and concurrent rollback for recovery in
distributed systems-an optimistic approach. In
Reliable Distributed Systems, 1988. Proceedings.,
Seventh Symposium on, pages 3–12. IEEE, 1988.

[2] G. Birkhoff. On the combination of subalgebras. Proc.
Camb. Phil. Soc., 29:441–464, 1933.

[3] S. D. Brookes, C. A. Hoare, and A. W. Roscoe. A
theory of communicating sequential processes. Journal
of the ACM (JACM), 31(3):560–599, 1984.

[4] K. M. Chandy and L. Lamport. Distributed snapshots:
Determining global states of distributed systems.
ACM Trans. Comput. Syst., 3(1):63–75, Feb. 1985.

[5] B. A. Davey and H. A. Priestley. Introduction to
Lattices and Order. Cambridge University Press,
Cambridge, UK, 2002.

[6] R. P. Dilworth. A decomposition theorem for partially
ordered sets. Ann. Math. 51, pages 161–166, 1950.

[7] C. Flanagan and P. Godefroid. Dynamic partial-order
reduction for model checking software. In ACM
Sigplan Notices, volume 40, pages 110–121. ACM,
2005.

[8] B. Ganter. Two basic algorithms in concept analysis.
In Formal Concept Analysis, pages 312–340. Springer
Berlin Heidelberg, 2010.

[9] V. K. Garg. Enumerating global states of a distributed
computation. In Intl Conf. on Parallel and Distributed
Computing and Systems, pages 134–139, November
2003.

[10] V. K. Garg and B. Waldecker. Detection of weak
unstable predicates in distributed programs. IEEE
Trans. on Parallel and Distributed Systems,
5(3):299–307, Mar. 1994.

[11] P. Godefroid. Partial-Order Methods for the
Verification of Concurrent Systems, volume 1032 of
Lecture Notes in Computer Science. Springer-Verlag,
1996.

[12] J. Helary, A. Mostefaoui, R. H. B. Netzer, and
M. Raynal. Preventing useless checkpoints in
distributed computations. In Symp. on Reliable
Distributed Systems, pages 183–190, Durham, NC,
1997.

[13] K. Koh. On the lattice of maximum-sized antichains of
a finite poset. Algebra Universalis, 17(1):73–86, 1983.

[14] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Commun. of the ACM,
21(7):558–565, July 1978.

[15] R. H. B. Netzer and J. Xu. Necessary and sufficent
conditions for consistent global snapshots. IEEE
Trans. on Parallel and Distributed Systems,
6(2):165–169, Feb. 1995.

[16] R. Tzoref, S. Ur, and E. Yom-Tov. Instrumenting
where it hurts: an automatic concurrent debugging
technique. In Proceedings of the 2007 international
symposium on Software testing and analysis, pages
27–38. ACM, 2007.

[17] Y. M. Wang. Consistent global checkpoints that
contain a given set of local checkpoints. IEEE Trans.
Comput., 46(4), Apr. 1997.

APPENDIX
A. PROOF OF LEMMA 1
Lemma 1. Let Ê = (E,→, π) and Ê = (S,<, τ) be event
and state based models of a computation. Then there is a
bijection between consistent cuts of Ê and Ŝ.

Proof. Let G be any consistent cut of (E,→, π). We will
show how to construct the corresponding consistent cut T
of (S,<, τ). Suppose that G contains at least one event
from Ci. Then, let (i, k) be the largest event from process
Ci. In this case, we add [i, k] to T . If G does not contain
any event from Ci, then we add [i, 0] to T . Clearly, T has
exactly n states, one from each process. We show that the
cut T is also consistent. If not, suppose [i, s] and [j, t] be
two states in T such that [i, s] < [j, t]. This implies that
(i, s+1) → (j, t), under the event based model, contradicting
that G is consistent because G contains (j, t) but does not
contain (i, s+ 1). It is also easy to verify that the mapping
from the set of consistent cuts is one-to-one.

Conversely, given a consistent cut T in the state based model,
we construct a consistent cut in event based model in 1− 1
manner as follows. For all states [i, k] ∈ T we include all
events (i, k′) such that k′ ≤ k. Note that when k equals
0, no events from Ci are included. It can again be easily
verified that whenever T is a consistent cut in state model,
G is a consistent cut in event model.

B. ILLUSTRATIONS
Fig. 5a shows theE′

temp (and not the finalE′) generated dur-

ing the execution when SE transform is applied to Ŝ given
by Fig. 4d. After the SCC decomposition based ‘collapsing’
on this E′

temp, the generated E′ is same as Fig. 4c. Re-
call that we claimed invalidity of a state based model poset
shown in Fig. 3a claiming that such a state model would
cause cycles when converted to an event based model. Let
us assign state labels to the states shown in that figure:
a = [1, 0], b = [1, 1], c = [1, 2], d = [2, 0], e = [2, 1]. Now ap-
ply the SE transform of Alg. 1 to this poset on states. The
resulting (E,→) would be the one shown in Fig. 5b. Such
a cycle can not exist in a valid event based model.

(1, 1) (1, 2)

(2, 2)

(1, 3)

(2, 1) (2, 3)

(a) E′

temp for Ŝ of Fig. 2c

(1, 1) (1, 2)

(2, 1)

(b) Event model generated from states of Fig. 3a

Figure 5: SE transform applied to earlier examples

[i, s]

[j, t− 1] [j, t]

[k, u]

Figure 6: Case 1 when ω3 is violated (in proof of Theorem 3)

[i, ai] [i, ai + 1]

[j, aj] [j, aj + 1]

[k, ak + 1][k, ak]

Figure 7: Illustration: Case 1 in proof of Lemma 5

	1 Introduction
	2 Background & Terminology
	2.1 Concepts on Posets
	2.2 Event based Model of Concurrent Computations

	3 Modeling Computations using States
	3.1 Translation between event based and state based models

	4 Characteristics of State Based Models of Synchronous Concurrent Computations
	5 Characteristics of State based Models of Asynchronous Concurrent Computations
	6 Applications
	6.1 Predicate Detection
	6.2 Better Understanding of Checkpointing

	7 References
	A Proof of Lemma 1
	B Illustrations

