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ABSTRACT
Social media users share billions of items per year, only a
small fraction of which is geotagged. We present a data-
driven approach for identifying non-geotagged content items
that can be associated with a hyper-local geographic area
by modeling the location distributions of n-grams that ap-
pear in the text. We explore the trade-off between accuracy
and coverage of this method. Further, we explore differences
across content received from multiple platforms and devices,
and show, for example, that content shared via different
sources and applications produces significantly different ge-
ographic distributions, and that it is preferred to model and
predict location for items according to their source. Our
findings show the potential and the bounds of a data-driven
approach to assigning location data to short social media
texts, and offer implications for all applications that use
data-driven approaches to locate content.

Categories and Subject Descriptors
H.3.5 [Information Storage and Retrieval]: On-line In-
formation Services—Web-based services

Keywords
Geotagging; Social Media; Location-based Services

1. INTRODUCTION
The vast amounts of data shared on social media reflect

people’s attitudes, attention, activities and interests, thus
offering unique opportunities to analyze and reason about
our world and our society. With associated geographic in-
formation, these social-media items allow us to understand,
for the first time, what geographic areas people are paying
attention to, and where they pay attention from. Mining this
dataset can prove hugely valuable to a diverse set of applica-
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tions, including improving city management [34], journalism
[18], tourism [5, 22, 21], health [24] and more.

We call a social media item geotagged when it is associ-
ated with geographic coordinates, usually indicating where
the item was created. However, only a minor portion of the
content posted on social media sites such as Twitter, In-
stagram and Flickr is geotagged. Reported and estimated
numbers range from 2% of the items for Twitter1, to 25%
on Instagram2.

Nevertheless, many of the items that are not geotagged
may still provide valuable geographic information if they
can be associated correctly with the location where they
were created. In this work, we are interested in associat-
ing non-geotagged social media items with hyper-local geo-
graphic locations. Such a process will increase the amount
of data associated with a location (e.g., a park, a venue) and
allow for more robust search and data mining applications.
For example, increasing the amount of content available for
Madison Square Park in New York may allow park adminis-
trators to more robustly model and monitor activities using
public social media data.

Most recent work on locating non-geotagged content in
social media focuses on inferring locations of users [2, 3,
12] rather than of individual content items. A common
approach to the problem is identifying spatial aspects of
phrases in unstructured texts (e.g., text in items posted by
the user, or the text in the user’s profile). While attempt-
ing to improve geographic coverage, these systems, for the
most part, do not consider accuracy bounds, and instead
emphasize the extraction of a general “user location”. For
example, posting about the Steelers (a Pittsburgh football
team) could increase a user’s probability of being located
in Pittsburgh, but would not be able to expose where in
Pittsburgh the user may be. Conversely, our goal here is to
identify individual social media items that can be located
with high precision inside a small (hyper-local) geographic
region. In particular, this paper investigates a data-driven
approach for hyper-localization of content, and explores the
bounds and trade-offs of such a method.

Our approach to localizing social media items involves:
(1) identifying phrases that can be accurately (based on
data) associated with a specific location, and (2) identifying
items that contain these phrases. In an approach inspired by
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Priedhorsky et al. [19], we train a model on text contained
in geotagged items with the goal of identifying n-grams that
are geo-specific: a large portion of the items containing the
n-gram are posted from a small area (the portion of items
and the area size are configurable parameters).Our model
generates an iterative Gaussian model for each n-gram in
order to discover hyper-local phrases that can be used to
predict locations for non-geotagged content.

Indeed, localizing social media items is not an easy task
for several reasons [8]. First, it is a priori unknown which
areas will be associated with textual terms and which will
not. Second, it is a priori unknown which n-grams will be
associated with hyper-local regions. Thus, a naive search
by examining areas or n-grams does not work well. More
importantly, there are many terms that can be roughly as-
sociated with areas, but are not localized enough to be asso-
ciated with a hyper-local region, and erroneously using such
terms may lead to errors or inaccurate results. Thus, it is
important to provide an accurate localization method but
also understand the limitation of the proposed method.

We explore the bounds, properties and trade-offs of such
a hyper-local geotagging solution, on (and across) different
data sources. An important question this paper addresses is
whether these geographic models are specific to the type or
source of content. For example, are location models discov-
ered based on posts of iPhone users also relevant for localiz-
ing posts of Android users? Can Twitter tweets be used for
localizing Instagram photos or vice versa? Answering these
questions could be critical for data mining applications that
perform and build on geotagged data.

We collected more than 14 million Twitter posts that were
geotagged by users within the area of New York City. The
Twitter posts in the dataset were created using different de-
vices (iPhone, Android) and originated from different appli-
cations (Instagram, Foursquare). We use these data for our
training and test sets. New York is one of the most georefer-
enced cities in the world (it covers around 2.5% of the total
geotagged Twitter content [14]), and serves as an excellent
testing ground for our methods. Of course, the framework
would be effective in other geographical regions as well.

The contributions of this work include:

• Introducing a data-driven approach to identify phrases
(n-grams) associated with hyper-local regions;

• Investigating and evaluating the approach across multi-
ple social media data types and data sources;

• Exposing the limitations and properties of models from
different sources and at different scales;

2. RELATED WORK
The problem of geotagging social Web data has received

significant attention recently. Related studies can be di-
vided into three broad (and overlapping) areas: geotagging
of social media content, understanding characteristics of ge-
ographical areas from social media data, and modeling tex-
tual location references in social media.

2.1 Geotagging Social Content
Most recent studies on automatic text-based geolocation

of social media content aimed to identify location(s) of a so-
cial media user. While localizing users or posts are related
problems, they have distinct properties and biases. Know-
ing users’ overall location is, perhaps, a first step to predict-

ing location for individual posts. For Twitter, research has
shown that home, or primary, location for each user can be
learned by analyzing content of tweets. These predictions
usually do not go below city-level [2, 3, 4, 12, 17]. A few
recent works incorporated additional features such as time
zones [17] or friends locations [4] to find correctly the loca-
tion of the home city, for roughly 80% of Twitter users, with
median error of 6.33km. Schulz et al. [25] proposed multi-
indicator approach that combines various spatial indicators
from the user’s profile and the tweet’s message for estimating
the location of a tweet as well as the user’s home location.
Here, in contrast, we are not interested in a user’s overall
location. Our goal is identifying content items that were
posted from specific geographic areas, with finer granularity
than city-level.

Some studies applied traditional language models to geo-
tagging, e.g. Hong et al. [10] used k-means clustering, Eisen-
stein et al. [7] used Dirichlet Process mixture, and Kling et
al. [13] used multi-Dirichlet process. Our work, however, is
related to the methods introduced in [19] and [32]. Pried-
horsky et al. [19], for example, used a Gaussian Mixture
Model (GMM) to estimate a tweet’s location based on the
distribution of n-grams that appear in the tweet and as-
sociated content to it (e.g. user profile information). In
particular, they generated geographic density estimates for
all n-grams, and used density information to provide a final
location estimate for content, regardless of the geographic
scope. In contrast, we attempt to identify n-grams that can
predict the location of a tweet with high precision.

Mapping social media content to geographical locations
typically implies some discretization of the spatial area. For
example, geographical locations might be clustered as a grid
[26, 33]. However, the fixed-grid based representations have
a limitation of not capturing variability in shapes and sizes
of geographical regions. One of the possible ways to overpass
such limitation is to define an alternative grid construction,
for example by using k-d trees [23]. A different way of repre-
senting geographic areas is to use a continuous function over
the space [19], an approach we take in this work as well.

2.2 Characterizing Geographic Areas
A related set of studies used information about geographic

regions in geotagged social media to extract information and
characterize geographic areas [1, 5, 6, 16, 20, 29].

Ahern et al. [1] proposed a model that aggregates knowl-
edge in the form of “representative tags” for arbitrary ar-
eas in the world by analyzing tags associated with the geo-
referenced Flickr images. Crandell et al. [5] used Flickr to
find relations between photos and popular places in which
the photos were taken and showed how to find representa-
tive images for popular landmarks. Similarly, Kennedy et
al. [11] generate representative sets of images for landmarks
using Flickr data. Quercia et al. [20] proposed applying sen-
timent analysis to geo-referenced tweets in London in order
to find the areas of the city characterized by “well being”. A
recent review by Tasse [28] listed other possible applications
of social media for understanding urban areas.

2.3 Characterizing Location References
Efforts were made to characterize location references (in

text) within social media content. Rattenbury et al. [22]
used an approach similar to the one presented in this paper,
when trying to identify Flickr tags that refer to specific geo-



graphic places or specific events based on the spatiotemporal
distribution of geotagged photos carrying that tag. How-
ever, the authors did not apply their models to geocoding
new items, did not explore hyper-local content, and did not
extract phrases from free-form text like we do here. Further,
Thomee and Morales [30] find that different language vari-
ants of toponyms can be mapped to each other by exploiting
the geographic distribution of tagged media.

Recent work by Shaw et al. [27] mapped users noisy check-
ins on Foursquare to semantically extract meaningful sug-
gestions from a database of known points of interest. In
particular, by aggregating locations from geotagged check-
ins, the authors were able to create geographic models for
different venues using multi-dimensional Gaussian models.
Earlier work from Flickr, Alpha Shapes3, modeled infor-
mation available from geotagged images on Flickr to cre-
ate geographic models for places like neighborhoods, towns,
etc. Finally, Li et al. [15] not only explored point-of-interest
mentions on Twitter but also connected them to the relative
temporal values of the visits.

3. GEOTAGGING FRAMEWORK
Our framework for associating geographic locations with

social media items uses training data to identify n-grams
that are geo-specific — n-grams whose associated items’ lo-
cations have little geographic variance. The process also re-
sults in location estimates for the n-grams that are deemed
geo-specific. The discovered n-grams are used for geotagging
items from the test set, where items are associated with a
location based on the n-grams they contain. For example, if
“Madison Square Park” is detected as a geo-specific n-gram,
a tweet in the test set that includes such n-gram will be
associated with the location assigned to this n-gram.

Note that the method we use does not aim to produce a
general “best guess” for the location of an item; nor does it
aim to identify an approximate location of a user, given a set
of items. Instead, we are interested in identifying individual
items that, with certain (high) accuracy, can be associated
with a hyper-local location, such as a neighborhood, land-
mark or street corner. Note that multi-item and user-level
information may very well be useful even in this scenario.
We discuss this opportunity in more depth below.

Next, we describe the statistical process of identifying a
geo-specific n-gram and the procedure for modeling its lo-
cation. We detail the procedure for assigning locations to
tweets in the test set (Section 3.2). Finally, we discuss and
propose metrics (Section 3.3) to evaluate the performance,
accuracy and bounds of this approach.

3.1 Localizing n-grams
We start by finding frequent n-grams, i.e. n-grams that

appear in many posts within the training dataset. Next,
we associate each n-gram with the geographic locations of
the posts containing it. The main task is to use this data
to (1) decide whether a given n-gram is geo-specific, and
(2) model the location for a given geo-specific n-gram. We
use a data-driven approach, inspired by Priedhorsky et al. [19]
and Chang et al. [32]. In brief, we apply an iterative proce-
dure of discovering the location model for a given n-gram,
by removing outliers and recomputing a Gaussian model for
the remaining locations in each step. For each n-gram wj ,

93code.flickr.net/2008/10/30/the-shape-of-alpha

this process determines whether locations of tweets associ-
ated with wj are describing a hyper-local area, and if so,
computes the parameters of the area.

For convenience, we refer to social media content items
as tweets, i.e. posts on Twitter, in the definitions below.
However, the methods we propose could be applied to other
types of social media items, e.g. Instagram photos. We
denote as T the set of tweets in the training set and each
tweet from this set as ti ∈ T . The geographic location of
ti is denoted li. An n-gram is a consecutive sequence of n
terms. A tweet contains an n-gram if the n terms appear
contiguously in the tweet.

Let Twj be the set of all tweets containing the n-gram

wj . Let T̄wj be some subset of Twj and let L̄wj be the set

of locations for tweets ti ∈ T̄wj . Further, we can fit a two

dimensional Gaussian Nj to the set of locations L̄wj and de-
fine, based on the Gaussian, an ellipse E2,Nj . We construct
E2,Nj to have orientation, shape, and center defined by Nj .
Specifically, E2,Nj is scaled so that its major and minor axes

have lengths 2σ1 and 2σ2, where σ2
1 and σ2

2 are the first and
second eigenvalues of Σ respectively. We decide that wj is
geo-specific if we find a subset T̄wj ⊆ Twj , for adjustable
parameters s and τ , such that:

• The fraction of tweets
|T̄wj

|
|Twj

| is greater than a ratio pa-

rameter τ , and

• The area of the ellipse E2,Nj is smaller than an area
parameter s

We define a characteristic function X (s, τ, wj) such that
X (s, τ, wj) = 1 if the algorithm decides that wj is geo-
specific under parameters (s, τ). If X (s, τ, wj) = 1, we out-
put Nj . Using this final Gaussian, Nj , we can compute the
ellipse E2,Nj that approximates the area represented by wj .

To find whether a subset T̄wj that matches this criteria
exist, we apply and iterative modeling procedure, described
in more detail in Algorithm 1. The procedure includes the
following steps, starting with T̄wj = Twj (the full set of
tweets):

1. If
|T̄wj

|
|Twj

| < τ , set X (s, τ, wj) = 0 and break.

2. Fit the two dimensional Gaussian Nj to the set of lo-
cations L̄wj and compute E2,Nj .

3. If area(E2,Nj ) ≤ s, set X (s, τ, wj) = 1 and break.

4. Remove all the tweets outside of E2,Nj (i.e. are more
than two standard deviations from the center of Nj).

We repeat this process until some L̄wj is deemed geo-
specific, the proportion of tweets goes below τ , or an itera-
tion limit is met. We say that n-gram wj is geo-specific if
at any point in an iterative outlier removal procedure both
parameters s and τ are satisfied. For example, if s = 4km2

and τ = 0.8, wj is geo-specific if at least 80% of the posts in
Twj are contained in some E2,Nj with an area smaller than

4km2 at any step in the iterative outlier removal process.

3.2 Assigning a Location to a Tweet
When associating locations for a tweet ti in the test set,

we follow these simple rules. We first identify all n-grams
wj such that wj is contained in ti, X (s, τ, wj) = 1 and wj

is not contained in any other n-gram wk that satisfies the



Algorithm 1: Iterative Modeling Procedure

Data: L(wj), MaxArea: s, Ratio threshold: τ , Iteration
Limit: k

Result: Boolean: GeoSpecificj ; Gaussian: Nj

GeoSpecificj ← false;
iteration← 0;

L̄wj ← Lwj ;

while iteration ≤ k do

if
|L̄wj

|
|Lwj

| < τ then

break;
end

µ← mean(L̄wj );

Σ← cov(L̄wj );

Nj ← {µ,Σ};
if Area(E2,Nj ) ≤ s then

GeoSpecificj ← true;
break;

end

Ltemp
wj
← ∅;

for i in L̄wj do
if i is in E2,Nj then

Ltemp
wj

.add(i);

end

end

L̄wj ← Ltemp
wj

;

iteration← iteration + 1;

end
return GeoSpecificj ,Nj ;

requirement. In other words, we find the longest possible
n-grams in ti that are geo-specific.

In our analysis, we associate a tweet with a location l̂i ac-
cording to the center of the Gaussian model for an n-gram
it contains. If a tweet ti ∈ Ttest contains a single geo-specific
n-gram wj , we associate the tweet with µj from N (µj ,Σj).
If a tweet contains more than one geo-specific n-gram whose
centers are all pairwise within 0.5km of each other, we use
the parameters of the most common of these n-grams. Set-
ting the minimum ratio τ at 0.8 and the maximum allowed
area s fixed at 4km2, less than one percent of tweets with at
least one geo-specific n-gram in the iPhone or Android test
set contained multiple geo-specific n-grams. For the Insta-
gram test sets, while roughly 27% of the tweets in the test
set contained multiple geo-specific n-grams, 73% of these in-
stances could be explained by multiple geo-specific n-grams
that were nearby each other and of these, 42% were simply
cases where the n-grams were subsets of a longer phrase.
For example, “New York Public” and “York Public Library”
are subsets of the longer phrase “New York Public Library”.
Other approaches to handling multiple geo-specific n-grams
include choosing the most accurate n-gram (the one with
the smallest error) as the n-gram predicting the location
of the tweet, using language processing to extract more in-
formation, or explicitly modeling the co-occurrence of such
n-grams (we discuss such approaches in Section 7).

Finally, and naturally, a tweet ti that does not contain any
geo-specific n-gram wj is not associated with a location.

3.3 Metrics
We use three key metrics to evaluate the performance of

our hyper-local geotagging framework on different datasets
and with different parameters: error, precision, and cover-
age. In all cases, we have a training set of tweets with known
locations, and a test set of tweets, with locations hidden, for
which the algorithm decides whether or not to assign an
estimated location. In this setup, the error captures the ge-
ographic distance between an assigned location and a true
location of a tweet from the set of test tweets. Precision
is the proportion of tweets whose true location is within
the core ellipse of the tweet’s assigned Gaussian. Coverage
refers to the portion of tweets in the test dataset for which
the algorithm is able to assign a location.

Next, we formalize these metrics. Note that we do not
directly evaluate the n-gram information that is produced
by the algorithm. One option would be to manually code
the n-gram that the algorithm determines as geo-specific,
e.g. by a human judge. Another option would be to evaluate
the modeled locations associated with each n-gram, again,
by a human. However, since we are taking a data-driven
approach here, we do not need to directly evaluate the n-
grams. In fact, the data may expose trends that would be
non-obvious to a person. For example, the n-gram Nintendo
turns out to be location-sensitive in some New York datasets
[8], due to the Nintendo store at Rockefeller Plaza.

3.3.1 Error
We define the error for tweet ti ∈ Ttest as the geographic

distance between the true (hidden) location of the tweet li
and the tweet’s estimated location l̂i. We use the center
of the Gaussian associated with the tweet, as described in
Section 3.2, as the estimated location. We use the Haversine
distance d(li, l̂i) to compute the error. Another option to
define the error would be computing the distance from the
ellipse E2,Nj (not from the center) defined by the Gaussian
model assigned to the tweet. We do not use this type of
error measurement in this work, for simplicity. The accuracy
is the inverse of the error. We consider it with respect to
a given accuracy parameter δ. The accuracy is equal to 1
when d(li, l̂i) ≤ δ, and it is d(li, l̂i)

−1 otherwise. Thus, when
the error is small the accuracy is high (near 1) and when the
error much larger than δ, the accuracy is low.

3.3.2 Precision
We define precision as the fraction of tweets whose true

locations fall within the core ellipse E2,Nj computed for the
n-gram wj . In other words, the precision for a test set Ttest

of size n is
∑n

i=1 R(ti)

n
, where R(ti) = 1 if li is in E2,Nj , and 0

otherwise. This method has the property that the criterion
for a precise prediction is a function of parameter choices s
and τ . For example, a prediction that is deemed precise in
a model with large area s (a model with a loose definition of
hyper-locality) may not be precise in a model with a small
area s (stricter definition of hyper-locality).

3.3.3 Covearge
Coverage is defined as the fraction of tweets in the test

set for which we can predict a location given a set of model
parameters. More specifically, it is the fraction of tweets
in the test set with a single geo-specific n-gram or multiple
adjacent n-grams. Maximizing coverage is a conflicting goal
to maximizing accuracy and precision. Setting the param-



eters such that only n-grams with highly accurate models
are used (e.g. by setting a small area s and high minimum
ratio τ) can result in a small number of n-grams that are
geo-specific, and by extension, a small number of tweets that
contain these n-grams.

4. EXPERIMENTS
We explore the trade-offs and properties of the n-gram

based geocoding approach in a series of experiments with
a number of Twitter datasets. As mentioned above, even
within Twitter, there are multiple sources and types of data
shared by different users. For example, tweets can include
photos or contain text-only; the source of the tweets can
be another application, like the photo-sharing application
Instagram or the location-check-in application Foursquare;
or tweets can be generated by different types of devices, such
as the Andriod phone or the iPhone. Research so far had
not considered the source or type of content when creating
location and geographic models. Here we explore that issue
in more depth as we expect the source will have a significant
effect on the geographic distribution of content.

We describe the datasets and provide more detail on ex-
tracting candidate n-grams in Section 4.1. In Section 4.2 we
examine the performance of the method in respect to the
metrics defined above, using the different datasets, and with
different parameter settings. In Section 4.3 we examine the
performance across datasets, or rather, what happens when
we mix content from different sources in our training and
testing datasets.

4.1 Datasets
We collected geotagged tweets shared from the New York

City area spanning two years from July, 2012 to July, 2014.
This core dataset of 14.5 million geotagged tweets is the
basis for the derived datasets we use in all experiments.
We extract from the dataset four mutually exclusive sets of
tweets according to each tweet’s original source application:
Foursquare, Instagram, Twitter for iPhone, and Twitter for
Android (the source information is available for each tweet
retrieved using the Twitter API). For all experiments, we
use the first 651 days of tweets (July 21st, 2012 to May 3rd,
2014) as training data, and the remaining 80 days (May
4th to July 23rd, 2014) as test data with a one day gap in-
between to simulate a real-world case where you build mod-
els on extant data before applying to incoming information.
The rate at which content is generated is different for each
source. For example, roughly four times as many tweets with
location information in the New York City area are shared
from iPhones as there are from Android phones. In order to
evaluate performance on a per training item basis we sample
random tweets from each data source so that all training sets
and all testing sets, respectively, contain the same number
of items (training: 1,014,574, testing: 257,083). Finally, we
created a TW-All dataset, where we randomly sampled from
the entire set of Tweets to create a dataset that mimics the
properties of the full dataset but is comparable in size to the
others. The different datasets and distinct number of users
in each of the sampled datasets we used for our experiments
are listed in Table 1.

The source applications are different on many — some-
times interleaving — dimensions, including their function,
the device they are running on, and even the demograph-
ics of their users. Instagram is a photo-sharing application

Name % of Total % Used Users
In dataset For train/test In train/test

TW-iPhone 60% 15% 151,431
TW-Android 16% 57% 72,692
TW-Instagram 9% 97% 166,965
TW-Foursquare 9% 100% 78,598
TW-ALL 100% 9% 222,608
Other (not used) 6% 0% N.A.

Table 1: The datasets used in the experiments

whose users can choose to post their photos to Twitter, of-
ten with a caption much shorter than a “normal” tweet.
Foursquare is a location check-in app where users can choose
to share their check-in (“I’m at Cornell Tech”) on Twitter,
often with just the check-in default text. Finally, Twitter
for iPhone and Twitter for Android are two Twitter mobile
applications, that, while similar in nature and design, differ
in the type of mobile device they run on, which subsequently
also results in a different user population (note that we do
not have device information for posts from Foursquare or
Instagram). Given these differences, we expect the differ-
ent sources to produce different types of information, and,
therefore, different models of location.

The items in our test data, extracted from the same source
as the modeling/training data, conveniently have associated
location information. As a result, we can robustly evalu-
ate our methods through experimentation. However, we do
note that using this test data may also introduce bias. Of
particular concern is that the distribution of text and loca-
tions in the global Twitter dataset are different than those
in the geotagged tweets. However, we believe our approach
is useful enough to create a baseline understanding of the
potential (and challenges) of these types of methods.

To generate candidate n-grams, we tokenized the mes-
sage text and location description into n-grams of length
n = 1, 2, 3 by splitting words delimited by whitespace and
removing English stop words. In order to mitigate spam
(often one user sharing hundreds of similar spam messages)
n-grams used by fewer than 5 unique users or appearing in
fewer than 20 unique tweets were removed.

4.2 Exploring the Parameter Space
For each parameter setting in each dataset we examine

the impact on various measures of performance. In particu-
lar, we vary the minimum ratio parameter τ and the area s,
defined in Section 3.1, and examine the effect on accuracy,
precision and coverage as defined in Section 3.3. Recall that
the minimum ratio parameter τ controls the precision of the
model, i.e. how much content we allow in the model that is
outside the core ellipse,. The parameter s controls the maxi-
mum size of the core ellipse for each model. Higher minimum
ratios and smaller maximum areas correspond to stricter
standards for classifying a given n-gram as geo-specific and
generally lead to higher accuracy and lower coverage. To
capture the balance between accuracy/precision and cover-
age we also include the F-score, 2 Precision∗Coverage

Precision+Coverage
, in the

figures.
The results are shown in Figures 1 and 2. Figure 1 shows

results for varying the minimum ratio τ with maximum al-
lowed area s fixed at 4km2. Figure 2 varies s with the min-
imum ratio τ fixed at 0.8. The curves shown are for all the
different datasets, where each curve represents the results for
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Figure 1: Effects of varying τ (minimum ratio) on
performance for different datasets fixing s = 4km2

training and testing on the same source. For example, the
solid black lines in Figure 1 show that when using TW-All
for training (using the training sample) and testing (on the
test data), when the minimum ratio is set to 0.8, the mean
error is 1.6, the coverage is 6.3% (6.3% of tweets in the test
set can be assigned a location), the precision is 79.8%, and
the F-score is 0.12 (dragged down by the low coverage).

While the results seem promising, there is significant vari-
ation in performance between the datasets. In particular,

the performance for geotagging content from Instagram and
Foursquare demonstrates high accuracy, precision and cov-
erage. At the same time, results for predicting locations for
the iPhone or Android datasets are low in all these met-
rics, and especially in terms of coverage. For the TW-All
dataset, as a random sample from the content (and with a
heavy representation of iPhone data), results are in between.
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Figure 2: Effects of varying s (maximum area) on
performance for different datasets fixing τ = 0.8

In reality, we can have the most impact for real-world
applications by geotagging Android/iPhone and Instagram



content. Content originating from Foursquare is already geo-
tagged: if not associated with location on the Twitter plat-
form, it includes a link to a Foursquare venue that pinpoints
the content by identifying the venue. Instagram content,
however, may be more interesting to fill locations for — we
provide some preliminary numbers below in Section 6. Most
important, though, are tweets from Android and iPhone, as
(1) they represent a much larger portion of Twitter data,
(2) they are less likely to be geotagged (see Section 6), and
(3) they are most similar in characteristics to other sources
of Twitter items (e.g. the Twitter web site [19]).

Figure 2 also demonstrates that the results are not very
sensitive to s, the maximum area size parameter. In other
words, when an n-gram demonstrates strong geo-specific
tendencies, the model correctly captures and represents that
information regardless of area size.

Next, we explore the performance based on specific test
sets, focusing on TW-iPhone and TW-Instagram, while ex-
perimenting with different training sets.

4.3 Cross-Model Performance
Figure 3(a) shows the performance when training on dif-

ferent datasets, while testing on the key TW-iPhone data set
(i.e., on tweets posted from the Twitter for iPhone applica-
tion). The n-gram extraction and modeling was performed
on multiple training sets with parameters s = 4km, τ = 0.8.
One can see in Figure 3(a) that when using the TW-All
dataset for training, roughly half of the geotagged tweets in
the TW-iPhone test data set are geotagged within a 1.0km
radius of their true location. Somewhat surprisingly, the
accuracy of the results increases when using TW-All com-
pared to using TW-iPhone for training (recall that TW-
All is a sample of all tweets, with roughly 60% of tweets
emerging from iPhone). We believe that the reason for the
improved accuracy is the additional coverage provided by
n-grams that are detected as location-specific with support
from Foursquare and Instagram.

There are significant differences in coverage between the
training sets. Using the TW-iPhone training set results
in much lower coverage (0.3%) than TW-All (1.3%), TW-
Foursquare (6.4%) and TW-Instagram (5.1%), when test-
ing on TW-iPhone. One possible explanation for this low
coverage, which we discuss more in Section 7, is the weak
aboutness of TW-iPhone content and lower rate of location
references, relative to other datasets such as TW-Foursquare
or TW-Instagram. Our experiments support this hypothe-
sis due to the fact that the low coverage is driven not by
the failure to locate geo-specific n-grams but rather by the
failure to identify a large number of geo-specific n-grams.

Figure 3(b) shows the same analysis when testing on the
TW-Instagram dataset. Clearly, the results are significantly
better than testing on TW-iPhone with more than 80% of
the items geotagged within 1.0km of their true location when
using datasets other than TW-Android for training. The
coverage is also much better across the board: 38.1% for
training on TW-All, 47.2% for TW-Foursquare, 54.2% for
TW-Instagram, 3.8% for TW-Android, and 4.6% for TW-
iPhone.

In summary, the results of our cross-model experimen-
tation show that when geotagging hyper-local content for
search and data mining apps, not all data is created equal.
Considering the source of the training data, as well as the
source of the test data could prove critical to the perfor-
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Figure 3: Performance when training with differ-
ent datasets and testing on TW-iPhone and TW-
Instagram

mance and accuracy of the solution. Next, we explore the
differences in location models that are created based on dif-
ferent sources of data.

5. N-GRAM "GRAVITY"
As we have seen in previous sections, the performance in

terms of accuracy and precision varies greatly between the
different sources. Are there significant differences between
location models for n-grams that are geo-specific across dif-
ferent sources, or are the differences only due to different
n-grams are extracted from each training dataset? In this
section we touch on the differences in “gravity”, our collo-
quial term referencing the dispersion of tweet locations, for
n-grams that are detected as geo-specific across three differ-
ent training datasets: TW-iPhone, TW-Instagram and TW-
Foursquare. Figure 4 shows that there are significant differ-
ences in the dispersion of locations for the three datasets,
even for the same n-grams. The figure shows, for the top
thirteen n-grams that were identified as geo-specific in each
of the three sources, the average distance between the loca-
tion li of tweet in the training set, to the center of the final
Gaussian model Nj . For example, for the n-gram “NYCC
New York”, in the TW-iPhone dataset, the average distance
between the n-gram tweets in the training set to the center



of the model was 1.14km. The same distance computed on
the TW-Instagram training set was 0.015km.
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Figure 4: N-Gram gravity for multiple sources

There are multiple potential contributors to the fact that
the iPhone data is more dispersed, including the “about-
nesss” of content, the accuracy of location provided by the
application, and the semantics of posts from the different
sources. We discuss these in more length in Section 7. Re-
gardless of the reason for the differences in dispersion, it is
clear that the phenomena has a direct effect on the results
for the different datasets.

6. POTENTIAL GAINS
We have seen in Section 5 that we can achieve a significant

gain in items that are associated with a precise location,
at least for certain types of data and items. Under these
assumptions, what are the patterns and scale of these gains?

We measure the relative frequency of posts geotagged in
the New York area coming from different application sources
in Table 1. Ideally we would like to geotag every post that
has hyper-local geographic relevance. But what fraction of
posts, in the best case scenario, can be geotagged? Twitter
is reported to have about 2% geotagged content, but there
are no reported numbers of portions of geotagged for indi-
vidual sources. We performed a preliminary study where
we track a sample set of keywords on the Twitter stream to
estimate the portion of geotagged items posted to Twitter
by the different applications. For example, between 1% and
10% of the tweets posted from Twitter for iPhone for the
keywords we tracked where geotagged (3% for the keyword
“New York”, 4% for the common word “at”). Foursquare
showed a much higher ratio, anywhere from 22% to 72%
(26% for “New York”, 71% for “at”). Posts made from Twit-
ter for Android ranged between 2% and 17% for the different
terms (2% for “New York”, 4% for “at”) and Instagram posts
to Twitter were, for the phrases we tracked, between 10%
and 42% geotagged (“New York”: 42%, “at”: 14%).

These numbers, with our results above, indicate an oppor-
tunity for significant gains in the amount of content associ-
ated with hyper-local data. For example, for content from
Instagram, we report 60% coverage for our default param-
eter settings (see Figure 1). In other words, if just 20% of
the Instagram content posted to Twitter is geotagged, we

9(a) training data locations

9(b) predicted locations (gain)

Figure 5: Heatmaps of training and predicted tweets
from TW-Instagram dataset, sampled to use same
number of observations

can get a further lift of 0.6× 0.8 = 0.48 of the items posted
from Instagram, more than tripling the amount of available
data. This potential boost is performed with precision close
to 90% (Figure 1).

How is this gain distributed? Figure 5 shows the geo-
graphic distribution of content items in the TW-Instagram
training set (Figure 5(a)) and the locations of items associ-
ated with predicted location from the test set (Figure 5(b))
(we randomly sub-sampled from the training set so both fig-
ures show the same number of items). We used the default
settings for the analysis in this figure (s = 4.0km, τ = 0.8),
and show only a portion of the geographic area we cov-
ered in our analysis. Points that are colored red indicate



a higher concentration for that area. As is evident in the
figure, most of the gain occurs in the already-popular areas
where most content is posted (i.e., midtown and downtown
Manhattan). Indeed, the methods we propose above bring a
“rich get richer” phenomena, where the models are most ro-
bust, and allow for associating content with additional social
media items, in the areas that are already covered.

7. DISCUSSION AND CONCLUSIONS
A data-driven approach for geocoding individual social

media items at a hyper-local scale has the potential to ex-
tend the geographic coverage of social media data, but its
performance may depend on the distribution of the data
according to its source. We used Twitter data to identify
and model geo-specific n-grams, based on the location dis-
tribution of tweets associated with them. We then predicted
locations for individual tweets based on a given tweet’s geo-
specific n-gram’s locations (if any). The performance of
this method was highly contingent on the source of the
data. Data from the check-in application Foursquare and the
photo sharing application Instagram were highly location-
specific in general, and as a result, the method produced
location estimates with high accuracy. Conversely, tweets
from“regular”Twitter clients, like Twitter for iPhone, demon-
strated low accuracy, and even when geo-specific n-grams
were detected from these sources, the breadth of the lo-
cation model for these n-grams was much larger than the
same model in data posted to Twitter through Instagram or
Foursquare.

There are a number of possible reasons for the differences
between sources, chief among them the aboutness of the con-
tent and the density of location-based references. We regard
the aboutness of posts in social media as the likelihood of
the posts to be about a geo-specific feature. Foursquare has
clear and strong aboutness as posts are often of the format
“I am at. . . ”. Instagram, as a photo sharing service, also
has strong aboutness: when a photo is taken, the text is
very likely to reference to object that is in it, and that ob-
ject is likely to be nearby (although it may not be, e.g. in
the case of the Empire State Building). For a regular Twit-
ter client, aboutness could be more dispersed, as people are
more likely to make comments like “I am headed to Cen-
tral Park” or “I hear the Empire State Building was lit in
blue and white today” — both comments that are quite un-
likely on Foursquare and Instagram. Related, the density
of location references is lower in non-Foursquare and non-
Instagram content, as people may converse on any topic.

Nevertheless, we have shown that significant reach can be
achieved for certain applications under certain conditions
with a potential to more than triple the amount of available,
geotagged content for Instagram, for example. However, the
lift that is gained demonstrates the“rich get richer”phenom-
ena, where places that were already significantly covered are
more likely to gain new content than other areas. This phe-
nomena is likely to bias the distribution of social media geo-
tagged content even more significantly. Hecht and Stephens
describe the implications of such bias in respect to urban
and rural communities [9].

It is important to note that the results described here are
somewhat over-optimistic because they are based on data
from a single locale (i.e. New York City). For instance, an
n-gram like “city hall” may be geo-specific when examining
a New York-only dataset, but in a world-wide dataset there

would be many different city halls. However, the concern can
be somewhat mitigated by additional information a system
may have, e.g. the user profile information or the IP address.

Another key limitation in our approach is the bias intro-
duced by building models based on geotagged data. In fact,
Twitter had recently reported (see footnote 1) that 1% of the
users produce 66% of the geotagged items. It is entirely pos-
sible that the data we trained and tested on is significantly
biased, e.g., the type of content that is posted may be dif-
ferent between users that geotag their content versus others.
Of course, bias can also result from the fact that most geo-
tagged content is posted from specific Twitter applications.
These concerns are also significant, but can be mitigated by
a couple of factors. First, as we show above, we can achieve
significant lift even when training and testing with the data
from the same source, somewhat limiting the bias. Second,
as reported by Priedhorsky et al. [19], the difference between
geotagged and non-geotagged tweets is limited; the authors
report a correlation of 0.85 between the unigram frequency
vectors for each set. On the other hand, there are a number
of avenues for future work that could further improve the
results reported here. First, using language analysis and, in
particular, extracting tense and time references [15] could
help improve the models for TW-iPhone data where peo-
ple are likely to post plans and reviews with their location
references. A more refined approach to combining multi-
ple n-grams that appear in tweets could take into account
their likelihood and co-variation models. Additionally, us-
ing user level information, e.g. profile or historic data, has
the potential to greatly improve performance. Further, our
model could be refined to not only rely on geographic infor-
mation, but include temporal information as well [22]. Note,
however, that a photo’s geographic and temporal metadata
may not always be accurate [31]. Nonetheless, modeling by
space, time and source may allow more gains in geolocating
content in hyper-local areas.

Ultimately, the gain in content associated with hyper-local
geographic areas can help create better models, and under-
stand better the activities in different geographic areas. For
example, we can use these data to provide more robust in-
formation to people interested in monitoring the activities,
say, in Central Park. Such gains will provide for new ways
to reflect the activities in the park, detect outliers and un-
usual activities, and help users with specific search and data
mining tasks.
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