
Modeling Website Popularity Competition in the
Attention-Activity Marketplace

Bruno Ribeiro
Carnegie Mellon University

School of Computer Science
Pittsburgh, PA, USA.

ribeiro@cs.cmu.edu

Christos Faloutsos
Carnegie Mellon University

School of Computer Science
Pittsburgh, PA, USA.

christos@cs.cmu.edu

ABSTRACT
How does a new startup drive the popularity of compet-
ing websites into oblivion like Facebook famously did to
MySpace? This question is of great interest to academics,
technologists, and financial investors alike. In this work
we exploit the singular way in which Facebook wiped out
the popularity of MySpace, Hi5, Friendster, and Multiply
to guide the design of a new popularity competition model.
Our model provides new insights into what Nobel Laure-
ate Herbert A. Simon called the “marketplace of attention,”
which we recast as the attention-activity marketplace. Our
model design is further substantiated by user-level activity
of 250,000 MySpace users obtained between 2004 and 2009.
The resulting model not only accurately fits the observed
Daily Active Users (DAU) of Facebook and its competitors
but also predicts their fate four years into the future.

Keywords
Online Social Network Competition Forecast, Market of At-
tention, Transient Analysis, Social Network Analysis

1. INTRODUCTION
Membership-based websites such as Facebook are a proven

success in what the late Nobel Laureate Herbert A. Simon
called “the marketplace of attention.” In a 1969 lecture [41]
Simon observed that many information systems were de-
signed as if information was scarce, when the problem is
just the opposite: “[...] in an information-rich world, the
wealth of information means a dearth of something else: a
scarcity of whatever it is that information consumes. What
information consumes is rather obvious: it consumes the
attention of its recipients.” In this context, Facebook, its
competitors, and other analogous membership-based web-
sites can be understood as Simon’s information processing
systems that speak more than they help us listen (digest
information) [41].

Casting the website popularity competition (e.g. Facebook
v.s. MySpace) into Simon’s insightful framework, we note
that membership-based websites have an extra element: user
attention is converted into content through user activity,
which in turn consumes the attention of other users, thus
creating an attention-activity marketplace. This observation
inspires the following set of questions:

• Can the attention-activity marketplace help explain
the death of MySpace, Hi5, Friendster and Multiply1?

1Section 2 provides a brief history of the Facebook, MyS-
pace, Hi5, Friendster and Multiply websites.

• Was Facebook the likely reason why MySpace, Hi5,
Friendster, and Multiply popularity dwindled or did
they die of “natural causes”, e.g., “users were bored”?

• More broadly, is it possible to model the dynamics
of user attention and activity as to capture the phe-
nomenon that drives down the popularity of well es-
tablished websites (e.g. MySpace)?

• Is it possible to learn the parameters of such model
using widely available Daily Active Users (DAU) time
series?

Model
In this work we take a positive step toward answering the
above questions. We use the puzzling way by which Face-
book has interfered with the popularity of its competitors on
July 2008 to put forth a set of desired model properties. One
of the key desired properties is modeling user attention as a
scarce resource that must be consumed by websites or other
online user activities. With the captured share of attention a
website engages a user in content creation (activity), which
in turn captures the attention of other users. Users also
have other online interests aside from the website and these
interests also compete for attention (a competing website or
other online activities). The popularity competition ensues
when two websites fight for the attention of their concurrent
users (the concurrent adopters of both websites). Media,
marketing, and word-of-mouth adoptions complement the
model as the driving forces behind membership growth.

The resulting model is a compartmental reaction-diffusion
population-level model that provides DAU popularity fore-
casts and offers a compelling hypothesis for the popular-
ity competition of membership-based websites such as Face-
book, MySpace, Hi5, Friendster, and Multiply. Our model
is an attention-activity market generalization of our previ-
ous single website model in Ribeiro [37]. The resulting code
of the algorithm is available online2.

Agreement with Observed Data
Our modeling framework reveals interesting traits in our
data. Websites almost universally have low barriers of adop-
tion, as opposed to adoptions in consumer products such as
smartphones and laptop computers that have a steep barrier
to adopting multiple products. Signing up for Facebook and
the like is free and reasonably effortless. The main resource
consumed by these websites is our time. Not coincidentally
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time is H.A. Simon’s choice of attention metric [41]. As
long as we see value in spending our time at these web-
sites – rather than somewhere else – Facebook, MySpace,
Hi5, Friendster, and Multiply can co-exist without interfer-
ing with each other.

Conversely, a website that suddenly increases its attention
consumption may prey on the attention of its competitors,
driving them to their (popularity) death; website death can
happen as a result of a negative attention-activity feedback
loop (less attention→less content→less attention) that is a
function of the size of the concurrent adopter population and
the amount of attention (time) left to the competitor. This
observation helps explain how a Facebook website change
may have suddenly (July 2008) interfered with the popular-
ity of its competitors after a long period of non-interfering
co-existence (see Figure 1). The July 2008 Facebook user
behavior change is documented in Viswanath et al. [47]. Sec-
tion 2 offers more details about this event.

Last, and perhaps almost as importantly, our model show-
cases the possibility of predicting popularity trends of com-
peting websites using the widely available DAU time series.
Using training data that includes a few months-worth of
DAU data after the competition for attention starts to show
a clear signal in the DAU time series, our model is able to
accurately forecast the popularity of two competing web-
sites nearly five years into the future. We also show that
our model principles are consistent with detailed user-level
activity of 250,000 MySpace users measured between 2004
and 2009.

Outline
The outline of this work is as follows. Section 2 introduces
the websites and datasets used in this study and presents key
DAU patterns in the Facebook, MySpace, Hi5, Friendster
and Multiply DAU data. These patterns are used to inform
a set of desired model properties that are used to guide the
development of our model. Section 3 presents an overview of
the related work. Section 4 introduces our model. Section 6
fits the model parameters to the data and uses the fitted
model to predict the DAU years into the future. Finally,
Section 7 presents our conclusions and future work.

2. DESIRED MODEL PROPERTIES
In what follows we draw key findings from our datasets

and the existing literature to inform our model design through
a set of required model properties. The next section, Sec-
tion 3, contrasts the existing literature through the lenses of
these desired model properties.

2.1 Datasets
In this work we use two complementary sources of data.

The first datasets are provided by Amazon’s Alexa web an-
alytics company totaling 32 years of DAU data. The DAU
time series is measured from June 2007 to January 2014
as a fraction of the total Active Internet Population (AIP)
of each day. We note in passing that Alexa’s DAU/AIP
measurements of Facebook and other websites may have a
strong U.S. and Canada bias. A good argument for
using the DAU/AIP instead of the raw DAU value is that
the DAU/AIP ameliorates seasonal effects such as school
breaks and holidays. But in order to simplify our notation,
throughout this work we use DAU to refer to the quantity
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(a) Facebook DAU time series showing insignifi-
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Figure 1: (Facebook’s Popularity Competition)
DAU/AIP of Facebook, MySpace, Hi5, Friendester,
and Multiply websites from June 2007 to February
2014. Gray vertical lines show the time of the intro-
duction of the “new Facebook”.

DAU/AIP. As standard practice we smooth out the DAU
outliers using a moving median with a 31-day DAU interval
centered around each day. Our second dataset records the
activity of 250,000 MySpace subscribers from 2004 to early
2009, collected by Ribeiro et al. [38].

Figure 1 shows the DAU time series of Facebook, MyS-
pace, Hi5, Friendester, and Multiply. It is important to
note that Alexa’s datasets do not include smartphone traffic.
Even without Facebook’s smartphone data its usage reaches
an impressive 45% of the AIP. According to Facebook’s own
(unverifiable) records, adding smartphone-only users takes
the DAU to 60% of the U.S. and Canada AIP [14], an extra
15% DAU of what is reported by Alexa. Facebook’s 60%
DAU is reported to have remained stable in the last cou-
ple of years [14]. We are interested in the first years of the
competition between Facebook, MySpace, Hi5, Friendester,
and Multiply, a time when smartphone-only usage was likely
small. Thus, the DAU omission of smartphone traffic should
not affect our analysis. However, as a reference for our pre-
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Model Properties

Model Competition
Attention-Activity Attention Concurrent Disjoint Interfering

Feedback Sharing Adoptions Adopters

Proposed Model 3 3 3 3 3

Ribeiro [37] - 3 - - -

Beutel et al. [6] 3 - - 3 -

Viswanath et al. [47] 3 - - 3 -

Cauwels and Sornette [8] - - - - -

Network Effect Adoptions 3 - - - -

Diffusion of Innovation 3 - - 3 -

Threshold Adoption 3 - - - -

Table 1: Model properties matrix

dictions, we include a circle in Figure 1(a) to represent the
uncertainty that Facebook’s smartphone-only DAU adds to
our data. In what follows we provide a brief overview of the
websites analyzed in this work:

• myspace.com: MySpace was founded in 2003 and
from 2005 until early 2008 MySpace was the most vis-
ited social networking website in the world. In June
2006 MySpace surpassed Google as the most visited
website in the United States. But by April 2008 Face-
book usage overtook MySpace [13].

• facebook.com: Facebook was founded on February
4, 2004. It was initially limited to students at various
other universities but soon it was opened to any indi-
vidual older than 13. Facebook is the largest online
social network in the world today. Recently its IPO
raised $16 billion, making it the third largest in U.S.
history [13].

• hi5.com: Founded in 2003, Hi5 is an online social
network where users can share photos and play games.
Today, social games, virtual goods, and other premium
content monetizes the website [13].

• friendster.com: Friendster launched in 2002 as one
of the first social networking sites. The service allowed
users to communicate with other members, share on-
line content and media, discover new events, brands,
and hobbies. The site, at its peak, reached tens of mil-
lions of registered users according to CrunchBase [13].

• multiply.com: Multiply is a mix between an e-commerce
platform and a social networking website, offering sell-
ers a combination of e-commerce and social communi-
cations tools. The website ceased operations in May,
2013 [13].

2.2 Desired Model Properties
In what follows we use our data together with other mea-

surements reported in the literature to suggest key proper-
ties that we use as guiding principles of our model of website
popularity competition.

2.2.1 Attention-Activity Feedback Mechanism
Attention is a scarce resource that must be consumed

by websites. With the captured share of attention a web-
site engages users into content creation, which in turn fur-
ther captures the attention of other users. Users also have
other interests apart from the website that also compete
for their attention. Our previous success in modeling the
DAU times series through the attention-seeking interaction
between users of successful and unsuccessful membership-
based websites in Ribeiro [37] showcases the value of this
property in popularity models. And indeed, recent results
coming out of Facebook [2] indicate that the activity of our
friends on Facebook incites us to login and become active
which, in turn, incites our friends to either become active or
stay active.

The attention-activity feedback mechanism may also come
about due to the marginal increase in website utility as it
gains more active users, an effect known as network effect or
network externality discussed at length in Farrell and Klem-
perer [15]. There are many types of network effect, but the
most widely used effect in its purest form can be described
in the following path-dependent cumulative return rule (see
Arthur [1] for more details): higher DAU → more adver-
tisement revenue → better website features → less inactive
users (increased DAU).

Extrapolating the above observations to all online social
interactions (email, chat, OSN, blog activity) informs the
first requirement of our model:

The popularity of a website should be modeled
by an attention-activity feedback mechanism be-
tween all user activities, both inside and outside
the website of interest.

2.2.2 Concurrent Adoptions
A key factor in modeling popularity competition lies in

the interactions of concurrent adopters, users that have ac-
counts in both competing websites. The size of concurrent
adopter population may be affected by factors that prevent
concurrent adoptions, as follows: Once an individual joins
website a she will be less interested in joining other com-
peting websites, either due to the network effect (e.g., her
friends are all in a), adoption cost (e.g., her “things” are all
in a), or because her “product needs” are already fulfilled by
a (e.g., why join two RSS news aggregators?). Henceforth,
we refer to this effect as the inertia effect, a force that (at
least initially) opposes concurrent adoptions. The inertia
effect is one of the main arguments in favor of network ef-
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fect [4,15,17,21,25,30,33,34,42,43,50] and threshold [20,40]
adoption models.

However, as it is often the case in social studies, the op-
posite explanation seems as plausible: website adopters –
specially the ones that do not adopt the “leading” website
as with Hi5 and Google+ adopters – are more likely to be
“technology enthusiasts” than the average Internet user and,
thus, also more likely to join multiple websites. The case
exists for the existence of concurrent adoptions in the wild,
as documented by Goga et al. [19]. We refer to this effect
as the momentum effect, where a user adopting a website
signals a higher-than-average likelihood of her adopting its
competitor.

In real world scenarios the above opposing forces likely
co-exist in a population-level sense through distinct users.

A model of popularity competition should include
a tunable parameter that covers a large spectrum
of net population-level effects of concurrent adop-
tions, from strong inertia to strong momentum.

2.2.3 Non-interfering to Sudden DAU Interference
In Figure 1 we observe a sudden synchronous drop in the

popularity of MySpace, Hi5, Friendster, and Multiply by
July 2008. The date coincides with the observation of a sig-
nificant change in Facebook’s user behavior [47]. Analyzing
the activity of 60,000 Facebook users between September
2006 and January 2009, Viswanath et al. [47] observed only
one significant Facebook user activity change starting in July
20th of 2008, which Viswanath et al. points out that coin-
cides with the time that Facebook introduced the beta-test
of its “new Facebook” design [47].

Indeed, in July 20, 2008 Facebook introduced the “new
Facebook Wall” with a radically different content-pushing
(news feed) interface, offered only to“selected users” [32]. By
September 2008 these “selected users” already amounted to
30 million [23]. The sudden appearance of this new feature
– which could have been disproportionally adopted by “tech
enthusiasts” concurrent adopters – only marginally affects
Facebook’s DAU (the inset in Figure 1(a) shows an insignif-
icant DAU bump) while it shows a noticeable and seemly
lasting impact on MySpace, Hi5, Friendster, and Multiply
DAU time series.

The attention-activity marketplace provides an easy way
to assess such sudden changes. Facebook’s growth is accom-
panied by a growing number of MySpace, Hi5, Friendster,
and Multiply adopters that become concurrent adopters.
Figure 1 shows that the growing concurrent adopter base
does not interfere with MySpace, Hi5, Friendster, and Mul-
tiply DAU time series. This happens because Facebook’s
attention share does not interfere with concurrent adopter
attention to its competitors. After July 2008 concurrent
adopters find themselves spending more time on Facebook,
time now taken out of the budget of attention of Facebook’s
competitors. A significant enough reduction in attention
from concurrent adopters creates a critical mass that affects
content creation on these competitors, reducing the atten-
tion and content creation (activity) of other users, which
in turn further reduces the attention level of concurrent
adopters; if this negative attention-activity feedback crosses
a particular threshold, the negative feedback loop drives the
website to its death. The above observation prompts the
following model property:
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Figure 2: MySpace growth × activity. Number of
observed new users (bars) and active users (line) per
semester from 2004 to 2008. Note the bell shape in
the green bars, a characteristic of adoption satura-
tions (see Rogers [39]).

Below a given attention budget, a website may
consume extra attention from its concurrent adopters
without interfering with its competitors. Further
attention gains come at the expense of its com-
petitors.

2.2.4 Disjoint Interfering Adopters
Recent reports indicate that today Facebook user base

(penetration) reaches 69% of the U.S. Internet population [49].
In contrast, MySpace, even without Facebook’s competition,
would in all likelihood never have reached this success. By
mid 2007 – when Facebook’s DAU was at a mere 3% – MyS-
pace’s DAU was already stable and new adoptions in clear
decline showing signs of saturation (for MySpace adoptions
see green bars in Figure 2; for the characteristics of adoption
saturation see Rogers [39]).
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Figure 3: MySpace hazard rate estimates for new
subscribers starting in 2006, 2007 and 2008, respec-
tively. Estimates from their first year of activity.

This saturation is unlikely to be due to MySpace’s com-
petition for users with Facebook. The 2007 “drop-out” (haz-
ard) rates of MySpace’s new adopters were identical to that
of 2006 as shown by the Kepler-Meier hazard rate estimates
in Figure 3. The use of the Kepler-Meier estimator is needed
as our MySpace user activity data is right censored (collec-
tion stopped by January 2009). It is only by 2008 that
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new adopters show different hazard rates for MySpace users
signifying that these adopters were in average more commit-
ted to MySpace than 2006 and 2007 new adopters. Thus,
it is unlikely that even if MySpace was allowed to take its
course without any competition it would not have reached
Facebook’s 69% U.S. penetration. The same probably can
be said about Hi5, Friendster, and Multiply although we
do not have user-level data for these websites. The reason
behind the opposition to adopt a website – whether by prin-
ciple, lack of features of broad appeal, or other factors – are
transparent to the model. It is only important to model that
such opposition exists.

It is as important, however, to note that a user only in-
terested in one website (say, Facebook) may still indirectly
affect the DAU of that website’s competitors (say, MySpace
and Hi5). To illustrate, consider Facebook users that are
“opposed” to joining MySpace. The activity of these users
help create content on Facebook, which in turn attracts
the attention of concurrent adopters. Thus, the activity of
“Facebook-only” users can indirectly affect the activity of
“MySpace” users.

Hence, a model of popularity competition should
include disjoint populations of adopters that, how-
ever, affect each other through the attention and
activity of concurrent adopters.

3. RELATED WORK
Adoption models describe phenomena as diverse individ-

uals deciding to adopt a new technology [5,15,16,18,25,30,
36, 37] or individuals adopting a new health habit [9, 10].
These models have deeply influenced the study of online so-
cial network growth [3, 9, 22, 24, 27, 28, 44]. In the literature
the work that is closest to ours is that of Prakash et al. [36].
Prakash et al. models the popularity of two competing prod-
ucts (e.g., smartphones) using a generalization of the dif-
fusion of innovation model (detailed below). The model in
Prakash et al. does not capture users finite attention or their
inertia/momentum in concurrent adoptions. Moreover, the
model in Prakash et al. does not consider disjoint interfer-
ing adopters. Beutel et al. [6] extends the model of Prakash
et al. to include interfering adopters. Table 1 compares the
models in the literature against the desired model properties
specified in Section 2.

Our model is a generalization of the our previous single-
website model in Ribeiro [37], where the popularity of
membership-based websites is modeled using a population-
level reaction-diffusion-decay model. Our new model signif-
icantly generalizes that model by explicitly modeling user’s
attention, attention sharing, website competition, and dis-
joint adoptions in a marketplace where users must share
their finite attention. Note that in our generalization we
make do without the spontaneous exponential decay required
in Ribeiro [37] by modeling the attention grabbing influence
of other online activities.

Another work closely related to ours is that of Cauwels
and Sornette [8] which focuses on describing the evolution
of the Facebook DAU. Cauwels and Sornette, however, is in-
complete in the sense that its time-series analysis is tailored
towards Facebook’s success and, thus, cannot capture DAU
decays. The work of Liu et al. [31] models the popularity
of applications inside online social networks such as Face-
book. More generally, regarding product adoptions can be

classified as: (a) Network effect adoption models (a.k.a. net-
work externality models) [4,15,17,21,25,30,33,34,42,43,50],
where individual rationality and adoption costs and utilities
are modeled in a game-theoretic framework; (b) Thresh-
old adoption models [20, 40], where an individual adopts if
enough of his or her friends are adopters; (c) Diffusion of
innovation models [5, 16, 18, 36], where adopters influence
others to adopt through word-of-mouth; In the absence of
fine-grained individual-level data these models provide de-
mand forecasting at the aggregate (population) level; and
finally (d) Adoption models from influence and network
structure [3, 9, 22, 24, 26–28, 44], where an individual adop-
tions depends not only on whether his or her friends adopt
but also on how these friends are connected among them-
selves. A variety of works also consider the relationship
between community growth inside an online social network
(OSN) websites and their network structure [3,24,27]. These
studies, however, focus on (i) the growth of communities in-
side the OSN (not the growth of the OSN itself) and (ii) the
role of network structure disregarding whether the commu-
nity is alive (active) or dead (inactive). A more thorough
review can be found in Ribeiro [37].

4. MODEL
Compartmental models of interacting populations have

been successfully applied in mathematical biology [35] and
social systems [11, 12]. Our model considers a large seg-
mented user population that interact through catalytic re-
actions and media & marketing diffusions. Reaction and
diffusion processes find applications in chemistry, physics,
and applied mathematics [11, 12, 35, 45, 46]. We choose to
avoid stochastic models (which would allow us to give con-
fidence intervals to our predictions) because very little is
known about the stochastic behavior of the dynamics between
inactive and active members of websites and between the lat-
ter and non-members.

Our model can be described as follows. The user state is a
tuple (Wa,Wb) ∈ {∅, U,A, I}2, where Wa and Wb represent
the state of the user with respect to competing websites a
and b, respectively. For each website a user can be in one of
four states: ∅ is a permanent state signifying that the user
will never adopt the website; all remaining three states are
likely transient: U : the user is willing to join but she is still
unaware of the website; A: the user is an active member of
the website, and finally I: the user is an inactive member of
the website.

4.1 Catalytic Reactions & Marketing Diffusion
We use the following notation to mark interactions be-

tween users in distinct populations. Let S(Wa,Wb)(t) ∈ (0, 1)
be the fraction of the active Internet population at state
(Wa,Wb) ∈ {∅, U,A, I}2 at time t. We use the notation

S(Wa,Wb)

υ×S(W ′
a,W ′

b
)

−−−−−−−−→ S
(W

†
a ,W

†
b
)

to denote a population of users in state (W ′a,W
′
b) acting as

catalysts of users in state (Wa,Wb), inciting them to state

(W †a ,W
†
b ) in the next dt time step, with probability υdt,

υ ∈ R+. The above notation directly translates into the
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differential equations:

dS
(W

†
a ,W

†
b
)
(t)

dt
= · · ·+ υS(W ′

a,W
′
b
)(t)S(Wa,Wb)(t) ,

dS(Wa,Wb)(t)

dt
= · · · − υS(W ′

a,W
′
b
)(t)S(Wa,Wb)(t) ,

where “. . . ” represents the contributions of other reactions
and diffusions that flow into the same state. We also use
of other two important definitions: (Wa, ?) represents users
with state Wa on website a and any state on website b. We
also use S(Wa,Wb)(t) to denote the fraction of the Internet
population that is not in state (Wa,Wb) at time t. The
DAU of website a is given by

S(A,?)(t) =
∑

k∈{∅,U,A,I}

S(A,k)(t)

and website’s b DAU is

S(?,A)(t) =
∑

k∈{∅,U,A,I}

S(k,A)(t).

4.1.1 Disjoint Population Dynamics
The equations describing the dynamics of users of website

a that will never join website b are as follows (a symmetric
set of equations model website b users that will never join
website a). The first reaction

S(U,∅)
γaS(A,?)−−−−−−→ S(A,∅) {word-of-mouth}

describes the catalytic reaction at rate γaS(A,?) that hap-
pens when an active member of website a influences a un-
aware users (U, ∅) to join website a, which can happen either
through word-of-mouth or because of increased utility (e.g.,
network effects), two widely known phenomena in the spe-
cialized literature [5, 15, 39]. Unaware users can also join
website a through media & marketing campaign diffusions

S(U,∅)
λa−−→ S(A,∅) {marketing} .

The remaining catalytic reactions are

S(I,∅)
αaS(A,?)−−−−−−→ S(A,∅) {website activity} ,

describing the population-level influence that the content
created by active users of website a exert on a’s inactive
users, prodding them into activity (for more details on these
dynamics see Ribeiro [37]); and finally

S(A,∅)
βaS(A,?)−−−−−−→ S(I,∅) {external activity} ,

modeling the influence of people doing things other than
spending time on website a exert on website a users to also
do something else.

4.1.2 Joint Unaware Population Dynamics
We now apply the same mechanisms used above to de-

scribe the dynamics of website a users that are willing to
join website b but are still unaware of website b. In what
follows we only present website a’s equations; the symmet-
ric corresponding set of equations should be used to describe
the dynamics from website’s b point of view. Users unaware

of website a join through word-of-mouth and media & mar-
keting diffusions:

S(U,U)
λa−−→ S(A,U) {marketing} ,

S(U,U)

γaS(A,?)−−−−−−→ S(A,U) {word-of-mouth} .

The forces that users on website a and people outside website
a exert on each other manifest in the following catalytic
reactions:

S(I,U)

αaS(A,?)−−−−−−→ S(A,U) {website activity} ,

S(A,U)

βaS(A,?)−−−−−−→ S(I,U) {external activity} .

Up until now websites a and b do not interfere with each
other. In what follows we consider the dynamic of con-
current adopters. But first users must become concurrent
adopters. A user of website a becomes a concurrent adopter
of website b through the following catalytic reactions and
diffusions:

S(A,U)
ζaλb−−−→ S(A,A) {marketing+inertia|momentum} ,

S(A,U)

ζaγbS(?,A)−−−−−−−→ S(A,A) {word-of-mouth+inertia|momentum} ,

S(I,U)
ζaλb−−−→ S(I,A) {marketing+inertia|momentum} ,

S(I,U)

ζaγbS(?,A)−−−−−−−→ S(I,A) {word-of-mouth+inertia|momentum} ,

where ζa ∈ R+ is a parameter that covers the spectrum
of net population-level effects from inertia for ζa < 1 to
momentum for ζa > 1. In order to reduce the model com-
plexity and also model the relative interest generated by
the websites over time, we can further reduce the parameter
space of our model ζa(t) = ζS(A,?)(t)/(S(A,?)(t) + S(?,A)(t))

and ζb = ζS(?,A)(t)/(S(A,?)(t)+S(?,A)(t)), where ζ ∈ R+. In
what follows we cover the dynamics of concurrent adopters.

4.1.3 Concurrent Adopters Dynamics
In our current attention-activity marketplace model con-

current adopters do not interfere with each other’s inactive→active
dynamics. This is because spending more time (attention)
on website a is assumed not to make the activity of other
users (say, on website b) seem less interesting. Using the fact
that Facebook suffered nearly no lasting DAU effect around
the July 2008 website redesign as a guiding principle (as
shown by the tiny DAU bump in the inset of Figure 1(a)),
we will assume that the extra time spent on website a does
not increase the user activity (attention-grabbing activity)
rate αa, that is, αa remains unchanged in the following cat-
alytic reactions:

S(I,A)

αaS(A,?)−−−−−−→ S(A,A) {website a activity} ,

S(A,I)

αbS(?,A)−−−−−−→ S(A,A) {website b activity} ,

S(I,I)

αaS(A,?)−−−−−−→ S(A,I) {website a activity} ,

S(I,I)

αbS(?,A)−−−−−−→ S(I,A) {website b activity} .

Interestingly, according to our framework an increase in αa
happens only when a new “user activity” feature is added,
which our model predicts will cause an abrupt permanent
change in the DAU slope. For instance, in February 2009
Facebook introduced the “Like” feature [48] and, indeed, in
Figure 1(a) we observe a small but sustainable sharp jump
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in the DAU time series. Similarly, in September 2009 Face-
book introduced the “tagging” feature [48] and, again, we
observe another DAU sustainable sharp jump followed by a
slope change. In these scenarios αa becomes αa(t), a right-
continuous step function that sharply changes after a new
“user activity” feature is added. In order to keep model
complexity down in our experiments and because these un-
predictable changes are not of interest to out forecast, we
consider αa as a constant in the results presented in Sec-
tion 6.

Attention Sharing of Concurrent Adopters.
In what follows we model the attention sharing behavior of

users. In the attention-activity marketplace the concurrent
adopters are responsible for driving otherwise self-sustaining
websites (see Ribeiro [37] for a precise definition of website
self-sustainability) to their “unnatural” death. In our model
the average time a user spends on the website is latent, as
we are modeling the DAU. However, we can model its effect
on the parameters of our model. Let B be the average time
budget of time that a user is willing to spend at online social
interactions. Let Ba, Bb, and Bo be the times that the
user spends at websites a, b, and at other activities o s.t.
Bo = B−Ba−Bb. If at time t0 Ba sharply increases by ∆a

and Bo sharply decreases by ∆a then Bb remains constant.
In this scenario the DAU of website b remains unchanged
and websites a and b do not interfere with each other.

However, if the sharp increase in Ba by ∆a is met with
a decrease ∆b in Bb, i.e., users are not willing to further
compromise Bo, then βb also abruptly changes to follow the
abrupt change in Bb as βb(1 + ∆b/Bb). Define η′b := ∆b/Bb;
using the Heaviside step function, H(t0), at time t0 yields
the catalytic reactions that model the attention sharing
behavior of concurrent adopters:

S(A,A)

βaS(A,?)−−−−−−→ S(I,A) {external activity} ,

S(A,I)

βaS(A,?)−−−−−−→ S(I,I) {external activity} ,

S(A,A)

(1+H(t0)ηb)βbS(?,A)−−−−−−−−−−−−−−→ S(A,I) {external activity} ,

S(I,A)

(1+H(t0)ηb)βbS(A,?)−−−−−−−−−−−−−−→ S(I,I) {external activity} .

5. DAU MODEL FIT
In this section we briefly introduce the challenges of learn-

ing the parameters of our model from the DAU data. The
DAU time series only provides information about S(A,?) and
S(?,A). The parameters introduced in Section 4.1 need to be
estimated together with the population compartment frac-
tions. The latter is what mathematical biologists call the
carrying capacity of each of our four compartments, repre-
sented by the population fractions: (1) users “opposed” to
both websites a and b: C00 := S(∅,∅); (2) the users opposed
to website b: C10 :=

∑
k∈{U,A,I} S(k,∅); (3) users opposed to

website a: C01 :=
∑
k∈{U,A,I} S(∅,k); and (4) the fraction of

concurrent adopters

C11 :=
∑

ka∈{U,A,I}

∑
kb∈{U,A,I}

S(ka,kb),

such that C00 + C10 + C01 + C11 = 1.
Note that because the DAU time series starts June 18,

2007 and not when the websites were created, we also need

to parametrize the unobservable quantities S(I,?)(t−1) and
S(?,I)(t−1), where t−1 =“June 18, 2007”. For the remaining
quantities that need to be initialized with values greater than
zero due to the t−1 start, e.g., S(A,A)(t−1), we use indepen-
dence assumptions, e.g., S(A,A)(t−1) = S(A,?)(t−1)S(?,A)(t−1).
We fit the model parameters to the DAU data using the
Levenberg-Marquardt algorithm [29]. Our results in Sec-
tion 6 show the model fit using the first two years of DAU
data to train the model, the following four months for model
selection, and the remaining years as holdout data to evalu-
ate the model predictions.

The Levenberg-Marquardt algorithm only finds a locally
optimal solution starting from an initial parameter guess.
Hence, the initial guess may significantly influence the out-
put of the algorithm. Due to the large number of param-
eters of our model we run the Levenberg-Marquardt algo-
rithm with multiple initial parameter guesses, choosing the
fitted parameters that best fit our model selection data.
In order further reduce the number of parameters to be
learned, we tried the options of learning C11 or setting C11 =
min(C10, C01). While these two options give similar results,
the option C11 requires at least ten times the number of
initializations and, in the end, C11 = min(C10, C01) in all
examples we tried. Therefore, in the scenarios presented in
Section 6 we set C11 = min(C10, C01) to speed up computa-
tions.

6. RESULTS
In this section we briefly introduce our results. In all of

our results an extra four months of DAU data is used to
select the best parameter fit that does not overfit the data
(model selection phase). The fitted models and their predic-
tions show great agreement with the data. But the learned
parameter should be interpreted carefully given that most
differential equations in our model are quadratic (the ones
with ζ are cubic) and the model has a multitude of param-
eters and latent variables. The only observable quantities
(the DAUs) are the aggregates S(A,?) and S(?,A), the DAU
data is left-censored (our DAU time series starts mid 2007
when, for instance, MySpace was already four years old),
only two years of DAU data are used to fit the model, and
the maximum DAU of Facebook in the training set is 20%.

Nevertheless, the learned parameter seem to offer interest-
ing insights into the popularity growth of Facebook and the
death of its competitors. As expected, the model predicts
momentum in concurrent adoptions for all websites, that is,
users of MySpace, Hi5, Friendster, and Multiply were more
likely than the average user to adopt Facebook.

Facebook v.s. MySpace.
Figure 4 shows the results of the model fit using the first

two years (24 months) of the DAU time series of the com-
petition between Facebook and MySpace. These 28 months
(24 months for training and 4 months for the model selection
phase) are shown as blue points in the plot. The gray verti-
cal line separates the training & model selection data from
the remaining 50 months (4.1 years) of DAU data used to
test our predictions, shown in the plot as gray points. The
model shows great agreement with the data, both in the
training (blue line) and prediction (red line) phases. The
inset in Figure 4 gives a closer look at the MySpace results.

The model – which was trained with Facebook’s peak-
ing at only 20% DAU – estimates the total (unaware +
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active + inactive) Facebook population at C10 + C11 =
77% and MySpace’s population at C01 + C11 = 22%; the
model also estimates that Facebook user base grew largely
due to word-of-mouth and that the July 20, 2008 change
in Facebook reduced the average time spent on MySpace
by 88%. The model fit also estimates ζ = 4, that is, by
2008 MySpace users were about twice as likely to join Face-
book than the average Facebook adopter (recall that ζa(t) =
ζS(?,A)(t)/(S(?,A)(t) + S(A,?))(t)).

In light of our findings, it seems that MySpace’s docu-
mented “white flight” and “teen disengagement” in 2007 [7]
– often anecdotally cited by the lay press as the primary
reason of MySpace’s death – may have had only a marginal
role in MySpace’s demise. While in hindsight many social
causes could explain MySpace’s demise, they would not ex-
plain why Hi5, Friendster, and Multiply simultaneously suf-
fered the same effect. Moreover, by 2007 MySpace’s DAU
was stable – and our model predicts it would have remained
stable in the absence of Facebook’s change –, thus, making
the “white flight” and “teen disengagement” 2007 hypothesis
rather unlikely as the main cause of MySpace’s death.
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Figure 4: Model fit and predictions for the compe-
tition Facebook v.s. MySpace.

Facebook v.s. Multiply.
Figure 5 shows the results of the model fit using the first

two and a half years (31 months) of the DAU time series
in the competition between Facebook and Multiply. The
larger training data was required to achieve a better quality
fit of the parameters (harder to learn on Multiply). Unlike
MySpace, Hi5, and Friendster, the model now predicts that
Multiply survives Facebook’s “attention raid”. The model
fit shows great agreement with the data up until May, 2013
when Multiply officially closed operations. The model es-
timates the total (unaware + active + inactive) Facebook
population at C10+C11 = 64% and Multiply’s population at
C01 +C11 = 0.9%; the model estimates that both Facebook
and Multiply user base grew largely due to word-of-mouth.
The model also estimates that immediately after the July
20, 2008 event the average time spent on Multiply decreases
“only” by 24%, which is why Multiply is projected to sur-
vive. The model fit also estimates ζ = 7.5, that is, Multiply
users were over seven times as likely to join Facebook than

the average Facebook adopter.
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Figure 5: Model fit and predictions for the compe-
tition Facebook v.s. Multiply.

Facebook v.s. Hi5.
Figure 6 shows the results of the model fit using the first

two years (24 months) of the DAU time series in the com-
petition between Facebook and Hi5. The model fit shows
great agreement with the data, blue line shows the model
fit and red line shows its prediction. The model was able to
capture the sharp elbow near July 20, 2008. Here the model
estimates the total (unaware + active + inactive) Facebook
population at C10 + C11 = 59% and Hi5’s population at
C01 + C11 = 5%; the model estimates that Hi5 user base
grew largely due to media & marketing campaigns and that
Facebook’s growth was through word-of-mouth; the July 20,
2008 event largely reduced the average time spent on Hi5 by
95%. The model fit also estimates ζ = 3.7, that is, by 2008
Hi5 users were almost four times as likely to join Facebook
than the average Facebook adopter.
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Figure 6: Model fit and predictions for the compe-
tition Facebook v.s. Hi5.
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Facebook v.s. Friendster.
Figure 7 shows the results of the model fit using the first

two years (24 months) of the DAU time series in the com-
petition between Facebook and Multiply. The model shows
good agreement with the data both in the fitting phase (blue
line) and the prediction phase (red line). The model esti-
mates the total (unaware + active + inactive) Facebook
population at C10 + C11 = 59% and Multiply’s population
at C01 + C11 = 3.6%; the model estimates that both Face-
book and Friendster user base grew largely due to word-
of-mouth. Immediately after the July 20, 2008 event the
average time spent on Friendster is estimated to have de-
creased by nearly 99%. The model fit also estimates ζ = 1.8
showing that Friendster users were almost twice as likely to
join Facebook than the average Facebook adopter.

years

D
A

U

2008 2009 2010 2011 2012 2014

0%
20

%
40

%
60

%
80

%

2013

2008 2009 2010 2011 2012 2014

0%
0.

5%
1%

1.
5%

2%

2013

Past Future Friendster

Facebook
Friendster

Figure 7: Model fit and predictions for the compe-
tition Facebook v.s. Friendster.

7. CONCLUSIONS
Our study sheds light onto the role of the attention-activity

marketplace in the popularity (DAU time series) of membership-
based websites. Making use of the unique way by which
Facebook affected its competitors in July, 2008, we derive a
set of modeling principles that inform our proposed attention-
activity model design. Through a series of catalytic reac-
tions that model user attention and activity interactions, to-
gether with media & market diffusions, we propose a model
that well captures the popularity competition between web-
sites. We fit the model parameters to real-world DAU time
series data and show that our model not only fits well the
DAU data but can also predict its future evolution.

In a 1969 lecture Herbert A. Simon warned us that in-
formation systems that help us generate more content than
they help us reduce our time consuming such content would
exacerbate the scarcity of attention [41]. Our work takes
a positive step towards modeling such phenomenon in In-
ternet companies, providing insights into the connections
between website popularity and user attention. The model
shows that two competing websites can co-exist without in-
terfering with each other as long as users have enough atten-
tion to spare; this agrees with our data showing that before
its new attention-demanding “Wall” feature Facebook did
not seem to interfere with the popularity of MySpace, Hi5,

Friendster, or Multiply. Conversely, the model shows that
websites fiercely compete when they share a sizable popu-
lation of attention-starved users, and that such population
can play a central role into the negative attention feedback
loop that leads to the death of a website. The model shows,
for instance, that the popularity of a website with a large
user base of tech savvy users – or novelty-driven teen users
– can be easily preyed upon by a competing website, thus
reducing the long-term viability of such websites.

Our hope is that further research in this direction will pro-
vide a better picture of the attention-activity marketplace,
helping the design of information systems that do not need
to overload the finite attention capacity of its users in order
to survive.
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