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No Such Thing as a  
General-purpose Processor
 

And the belief in such a device is harmful

David Chisnall, University of Cambridge

There is an increasing trend in computer architecture to categorize processors and accelerators as 
“general purpose.” Of the papers published at this year’s International Symposium on Computer 
Architecture (ISCA 2014), nine out of 45 explicitly referred to general-purpose processors; one 
additionally referred to general-purpose FPGAs (field-programmable gate arrays), and another 
referred to general-purpose MIMD (multiple instruction, multiple data) supercomputers, stretching 
the definition to the breaking point. This article presents the argument that there is no such thing as 
a truly general-purpose processor and that the belief in such a device is harmful. 

TURING COMPLETENESS 
Many of the papers presented at ISCA 2014 that did not explicitly refer to general-purpose processors 
or cores did instead refer to general-purpose programs, typically in the context of a GPGPU (general-
purpose graphics processing unit), a term with an inherent contradiction. 

A modern GPU has I/O facilities, can run programs of arbitrary sizes (or, if not, can store 
temporary results and start a new program phase), supports a wide range of arithmetic, has complex 
flow control, and so on. Implementing Conway’s Game of Life on a GPU is a fairly common exercise 
for students, so it’s clear that the underlying substrate is Turing complete. 

Here is one definition of a general-purpose processor: if it can run any algorithm, then it is general 
purpose. This is not a particularly interesting definition, because it ignores the performance aspect 
that has been the driving goal for most processor development. 

It’s therefore not enough for a processor to be Turing complete in order to be classified as general 
purpose; it must be able to run all programs efficiently. The existence of accelerators (including GPUs) 
indicates that all attempts thus far at building a general-purpose processor have failed. If they had 
succeeded, then they would be efficient at running the algorithms delegated to accelerators, and 
there would be no market for accelerators. 

With this in mind, let’s explore what people really mean when they refer to a general-purpose 
processor: the specific category of workloads that these devices are optimized for and what those 
optimizations are. 

THE OPERATING SYSTEM 
A common requirement for a general-purpose processor is that it can run a general-purpose 
operating system—meaning an operating system that is either Unix or (like MS Windows) has a 
similar set of underlying abstractions to Unix. For example, most modern processors lack the ability 
to cleanly express the memory model found in Multics, with fine-grained sharing and transparent 
virtualized access to memory-mapped I/O devices.

The ability to run an operating system is fundamental to the accepted definition. If you remove 
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the ability to run an operating system from a processor that is considered general purpose, 
then the result is usually described as a microcontroller. Some devices that are now regarded as 
microcontrollers were considered general-purpose CPUs before the ability to run a multitasking, 
protected-mode operating system became a core requirement. 

The important requirements for running an operating system (again, with the caveat that it must 
be efficient and not simply running an emulator) are similar to those enumerated by Gerald Popek 
and Robert Goldberg for virtualization.6 This is not surprising, as an operating-system process is 
effectively a virtual machine, albeit with a very high-level set of virtual devices (file systems rather 
than disks, sockets rather than Ethernet controllers). 

To meet these requirements, a processor needs to distinguish between privileged and unprivileged 
instructions and the ability to trap into privileged mode when a privileged instruction is executed 
in unprivileged mode. Additionally, it needs to implement protected memory so that unprivileged 
programs can be isolated from each other. This is somewhat weaker than Popek and Goldberg’s 
requirement that memory accesses be virtualized, because an operating system does not necessarily 
have to give every process the illusion that it has an isolated linear address space. 

Traditionally, all I/O-related instructions were privileged. One of the advantages of memory-
mapped I/O regions, as opposed to separate namespaces for I/O ports, is that it makes it possible 
to delegate direct access to hardware to unprivileged programs. This is increasingly common with 
network interfaces and GPUs but requires that the hardware provide some virtualization support 
(e.g., isolated command queues that cannot request direct memory access to or from memory 
controlled by another program).

In MIPS, the privileged instructions are modeled as being implemented by CP0 (control 
coprocessor). This dates back to the pre-microcomputer model where the CPU consisted of a small 
number of chips and the MMU (memory management unit) was usually placed on a different chip 
(or even collection of chips). 

In a modern multicore system, it’s fairly common to allocate some cores almost purely to user-
space applications, with all interrupts routed away from them so that they can run until a scheduler 
on another core determines that they should stop. It’s therefore not clear whether every processor 
in a multicore system needs to be able to run all of the kernel code. This model was explored in the 
Cell microprocessor,3 where each SPE (synergistic processing element) was able to run a small stub 
that would message the PowerPC core when it needed operating-system functionality. This design 
is relatively common in supercomputers, where each node contains a slow commodity processor to 
run an operating system and handle I/O, as well as a much faster processor optimized for HPC (high-
performance computing) tasks, over which the application has exclusive control. 

The Barrelfish research operating system1 proposes that, as the transition is made from multicore 
to many-core architectures, time-division multiplexing makes less sense for virtualization than 
space-division multiplexing. Rather than one core running multiple applications, one application 
will have exclusive use of one or more cores for as long as it runs. If this transition takes place, it will 
change the requirements considerably.

BRANCHING 
The heuristic used in the RISC I processor,5 discovered by examining the code produced by the 
Portable C Compiler on the Unix code base, was that general-purpose code contains approximately 
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one branch instruction for every seven instructions. This observation indicates why branch 
predictors are such an important feature in most modern superscalar pipelined CPUs. The Pentium 
4, for example, could have around 140 instructions in-flight at a time and thus (if this observation is 
correct) needed to predict correctly 20 branches into the future to keep the pipeline full. With a 90 
percent branch predictor hit rate, it would have only a 12 percent probability of correctly predicting 
the next 20 branches. 

Fortunately for the Pentium 4, not all branches are of equal difficulty and the most common 
branch in CPU-dependent code is the backwards branch at the end of a loop. The Pentium 4 
included a static heuristic that this branch is always taken on first use, and a complex loop predictor 
would determine which iteration would be the last one. 

This observation is still largely true for C code. It is also now largely true for other languages but 
with several caveats. In particular, while it is true for naïve compilation of C, it is definitely not true 
for naïve compilation of dynamic languages such as Smalltalk or JavaScript. 

Consider the simple expression a+b. In C, you statically know the types of both a and b. The 
operation is either an integer or floating-point addition. Now consider the same line of code in C++. 
If a is a primitive type, then this is a simple arithmetic operation (although there may be some 
complex code including function calls to coerce b to the same type). If a is a class that has a virtual 
overload for the addition operator, then it is an indirect branch via a vtable (virtual table) lookup. 
The compiler will insert a load of the function pointer at a fixed offset in the vtable, followed by an 
indirect jump to the loaded address.

In JavaScript, this is even more complex. The exact semantics for addition in JavaScript are quite 
convoluted; let’s simplify by treating all non-numeric addition as equivalent. In the numeric case, all 
values in JavaScript are double-precision floating-point values. Most processors, however, are much 
faster when performing integer arithmetic than floating point, so, ideally, all arithmetic that fits into 
a 53-bit integer (the mantissa size for a 64-bit IEEE-compliant double) would be performed as integer 
operations. Unfortunately, to do this you must first check whether the operand is an integer or a 
floating-point value (which adds another branch and typically costs more than the savings obtained 
from doing the integer operation). You must then check whether it’s something else (an object) 
before finally doing the arithmetic. 

This means that in naïvely compiled JavaScript, a simple addition can involve two branches. 
Optimizing this has been the focus of a huge amount of research over the past 40 years (most of the 
techniques apply to Smalltalk and similar languages, predating JavaScript). These techniques involve 
dynamically recompiling the code based on type information gained at runtime; this ensures that 
the case involving the most common types contains no branches. 

It’s worth noting that SPARC architecture has a tagged integer type and add and subtract 
instructions specifically designed for dynamic languages.7 A SPARC tagged integer is 30 bits, with the 
lowest two bits in a 32-bit word reserved for type information. The tagged operations set a condition 
code (or trap) if either of the operands has a nonzero tag or if the result overflows. 

These instructions are not widely used for several reasons. They use the opposite definitions of 
tag values from most 32-bit implementations (it is simpler to use a 0 tag for pointers, as it allows the 
pointer value to be used unmodified). For JavaScript, it is also common to use NaN (not a number) 
representations to differentiate object pointers from numeric values. This is possible because most 
64-bit architectures have a “memory hole”—a range in the middle of the virtual address space that 
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cannot be mapped—and this conveniently lines up with the pointer interpretation of certain NaN 
values. This allows generated code to assume that values are floating point and either branch or trap 
for NaN values. 

In spite of the popularity of JavaScript as a general-purpose programming language, most 
“general-purpose” processors still require the compiler to perform complex convolutions to generate 
moderately efficient code. Importantly, all of the techniques that do generate good code from 
JavaScript require a virtual machine that performs dynamic recompilation. If the most efficient 
way of running general-purpose code on a processor is to implement an emulator for a different 
(imaginary) architecture, then it is hard to argue that the underlying substrate is truly general 
purpose. 

LOCALITY OF REFERENCE 
One feature shared by most modern CPUs is their large caches. In the case of Itanium and POWER, 
this trend has gone beyond the realm of propriety, but even commodity x86 chips now have more 
cache than a 386 or 486 had RAM. 

Cache, unlike scratchpad memories, is (as its name implies) hidden from the software and exists 
to speed up access to main memory. This ability to stay hidden is possible only if the software has a 
predictable access pattern. The strategy most commonly used for CPU caches optimizes for locality of 
reference. The caches are split into lines of typically 64 or 128 bytes. Loading a single byte from main 
memory will fill an entire cache line, making accesses to adjacent memory cheap. Often, caches will 
fill more than one adjacent line on misses, further optimizing for this case. 

This design is a result of the working-set hypothesis, which proposes that each phase of computation 
accesses a subset of the total memory available to a program, and this set changes relatively slowly.2 
GPUs, in contrast, are optimized for a very different set of algorithms. The memory controller on an 
Nvidia Tesla GPU, for example, has a small number of fixed access patterns (including some recursive 
Z-shapes, commonly used for storing volumetric data); it fetches data in those patterns within a 
texture and streams it to the processing elements. Modern Intel CPUs can also identify some regular 
access patterns and efficiently stream memory but with a lower throughput. 

Jae Min Kim et al. showed that some programs run faster on the slow cores in ARM’s big.LITTLE 
architecture.4 Their explanation was that the slow Cortex A7 cores have a single-cycle access to 
their level-1 caches, whereas the fast Cortex A15 cores have a four-cycle penalty. This means that, 
if the working-set hypothesis holds—the working set fits into the L1 cache, and the performance is 
dominated by memory access—then the A7 will be able to saturate its pipeline, whereas the A15 will 
spend most of its time waiting for data. 

This highlights the fact that, even within commodity microprocessors from the same 
manufacturer and generation, the different cache topologies can bias performance in favor of a 
specific category of algorithm. 

MODELS OF PARALLELISM 
Parallelism in software comes in a variety of forms and granularity. The most important form for 
most CPUs is ILP (instruction-level parallelism). Superscalar architectures are specifically designed to 
take advantage of ILP. They translate the architectural instruction encodings into something more 
akin to a static single assignment form (ironically, the compiler spends a lot of effort translating from 
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such a form into a finite-register encoding) so that they can identify independent instructions and 
dispatch them in parallel. 

Although the theoretical limit for ILP can be very high, as much as 150 independent instructions,8 
the amount that it is practical to extract is significantly lower. VLIW (very long instruction 
word) processors simplify their logic by making it the compiler’s job to identify ILP and bundle 
instructions. 

The problem with the VLIW approach is that ILP is a dynamic property. Recall that the RISC 
I heuristic was that branches occur, on average, every seven instructions. This means that the 
compiler can, at most, provide seven-way ILP, because it cannot identify ILP that spans basic blocks: 
if the compiler statically knew the target of a branch, then it would most likely not insert a branch. 

VLIW processors have been successful as DSPs (digital signal processors) and GPUs but not in the 
kind of code for which “general-purpose” processors are optimized, in spite of several attempts by 
Intel (i860, Itanium). This means that statically predictable ILP is relatively low in the code that these 
processors are expected to run. Superscalar processors do not have the same limitation because, in 
conjunction with a branch predictor, they can extract ILP from dynamic flow control spanning basic 
blocks and even across functions. 

It’s worth noting that, in spite of occupying four times the die area and consuming four times the 
power, clock-for-clock the ARM Cortex A15 (three-issue, superscalar, out-of-order) achieves only 75-
100 percent more performance than the (two-issue, in-order) A7, in spite of being able (theoretically) 
to exploit a lot more ILP. 

The other implicit assumption with regard to parallelism in most CPUs is that communication 
among parallel threads of execution is both rare and implicit. The latter attribute comes from the 
C shared-everything model of concurrency, where the only way for threads to communicate is by 
modifying some shared state. A large amount of logic is required in cache coherency to make this 
efficient, yet it is relevant only for shared-memory parallelism. 

Implementing message passing (as embodied both by early languages such as Occam and Actor 
Smalltalk and by newer ones such as Erlang and Go) on such processors typically involves algorithms 
that bounce cache-line ownership between cores and involve large amounts of bus traffic. 

CONCLUSION 
The general-purpose processors of today are highly specialized and designed for running applications 
compiled from low-level C-like languages. They are virtualized using time-division multiplexing, 
contain mostly predictable branches roughly every seven instructions, and exhibit a high degree of 
locality of reference and a low degree of fine-grained parallelism. Although this describes a lot of 
programs, it is by no means exhaustive. 

Because processors optimized for these cases have been the cheapest processing elements that 
consumers can buy, many algorithms have been coerced into exhibiting some of these properties. 
With the appearance of cheap programmable GPUs, this has started to change, and naturally data-
parallel algorithms are increasingly run on GPUs. Now that GPUs are cheaper per FLOPS (floating-
point operations per second) than CPUs, the trend is increasingly toward coercing algorithms that 
are not naturally data parallel to run on GPUs. 

The problem of dark silicon (the portion of a chip that must be left unpowered) means that it 
is going to be increasingly viable to have lots of different cores on the same die, as long as most of 



COMPUTER ARCHITECTURE

6

them are not constantly powered. Efficient designs in such a world will require admitting that there 
is no one-size-fits-all processor design and that there is a large spectrum, with different trade-offs at 
different points. 
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