
55

Measuring Microarchitectural Details of Multi- and Many-Core
Memory Systems through Microbenchmarking

ZHENMAN FANG, University of California Los Angeles
SANYAM MEHTA, PEN-CHUNG YEW and ANTONIA ZHAI, University of Minnesota
JAMES GREENSKY and GAUTHAM BEERAKA, Intel
BINYU ZANG, Shanghai Jiao Tong University

As multicore and many-core architectures evolve, their memory systems are becoming increasingly more
complex. To bridge the latency and bandwidth gap between the processor and memory, they often use a mix
of multilevel private/shared caches that are either blocking or nonblocking and are connected by high-speed
network-on-chip. Moreover, they also incorporate hardware and software prefetching and simultaneous mul-
tithreading (SMT) to hide memory latency. On such multi- and many-core systems, to incorporate various
memory optimization schemes using compiler optimizations and performance tuning techniques, it is cru-
cial to have microarchitectural details of the target memory system. Unfortunately, such details are often
unavailable from vendors, especially for newly released processors.

In this article, we propose a novel microbenchmarking methodology based on short elapsed-time events
(SETEs) to obtain comprehensive memory microarchitectural details in multi- and many-core processors.
This approach requires detailed analysis of potential interfering factors that could affect the intended
behavior of such memory systems. We lay out effective guidelines to control and mitigate those interfering
factors. Taking the impact of SMT into consideration, our proposed methodology not only can measure
traditional cache/memory latency and off-chip bandwidth but also can uncover the details of software and
hardware prefetching units not attempted in previous studies. Using the newly released Intel Xeon Phi
many-core processor (with in-order cores) as an example, we show how we can use a set of microbenchmarks
to determine various microarchitectural features of its memory system (many are undocumented from
vendors). To demonstrate the portability and validate the correctness of such a methodology, we use the well-
documented Intel Sandy Bridge multicore processor (with out-of-order cores) as another example, where
most data are available and can be validated. Moreover, to illustrate the usefulness of the measured data, we
do a multistage coordinated data prefetching case study on both Xeon Phi and Sandy Bridge and show that
by using the measured data, we can achieve 1.3X and 1.08X performance speedup, respectively, compared
to the state-of-the-art Intel ICC compiler. We believe that these measurements also provide useful insights
into memory optimization, analysis, and modeling of such multicore and many-core architectures.

Categories and Subject Descriptors: C.4 [Performance of Systems]: Measurement Techniques

General Terms: Measurement, Performance

Additional Key Words and Phrases: Microbenchmarking, memory microarchitecture, prefetching, many-core,
multicore

This article presents new work and is not an extension of a conference paper. This work was supported by
NSF grants CNS-0834599, CCF-0708822, CCF-0916583, CCF-0903427, CSR-0834599, and CPS-0931931,
and SRC grant SRC-2008-TJ-1819.
Authors’ addresses: Z. Fang, Computer Science Department, UCLA; email: fangzhenman@gmail.com; S.
Mehta, P.-C. Yew, and A. Zhai, Department of Computer Science and Engineering, University of Minnesota
at Twin Cities; emails: {sanyam, yew, zhai}@cs.umn.edu; J. Greensky and G. Beeraka, Intel; emails: james.j.
greensky@intel.com, beer0092@umn.edu; B. Zang, School of Software, Shanghai Jiao Tong University; email:
binyu.zang@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/12-ART55 $15.00

DOI: http://dx.doi.org/10.1145/2687356

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.

http://dx.doi.org/10.1145/2687356
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2687356&domain=pdf&date_stamp=2015-01-09


55:2 Z. Fang et al.

ACM Reference Format:
Zhenman Fang, Sanyam Mehta, Pen-Chung Yew, Antonia Zhai, James Greensky, Gautham Beeraka, and
Binyu Zang. 2014. Measuring microarchitectural details of multi- and many-core memory systems through
microbenchmarking. ACM Trans. Architec. Code Optim. 11, 4, Article 55 (December 2014), 26 pages.
DOI: http://dx.doi.org/10.1145/2687356

1. INTRODUCTION

Modern memory systems are becoming more and more complex. With the advent of mul-
ticore and many-core processors, the latency and bandwidth gap between the processor
and memory continues to grow. To bridge this gap, many microarchitectural features
have been developed and added that make the memory systems even more complex.
Those features often include multilevel private/shared caches that are either blocking
or nonblocking, fast interconnect-on-chip, hardware/software data prefetching, and si-
multaneous multithreading (SMT), to name just a few. For example, the newly released
Intel

R©
Xeon PhiTMprocessor (codename Knights Corner) [Chrysos 2012] has up to 61

in-order cores on a single chip and incorporates many of those features.
It is crucial to know the microarchitectural details of such memory systems because

compiler optimizations and performance tuning strategies depend heavily on how to
exploit those microarchitectural features. For example, in addition to taking the latency
at each level of cache hierarchy and the memory bandwidth into account, it is also useful
for a compiler to know how many outstanding memory requests can be supported so
that it will not generate too many prefetching instructions at a time, which can cause
severe resource contention. It is also useful to know the behavior of the hardware
prefetchers and how they are triggered, as well as the effect of SMT on data prefetching,
so that programmers and compilers can take advantage of those microarchitectural
supports. Unfortunately, many of such microarchitectural details are unavailable in
the published data sheets, especially for newly released processors.

Prior studies [Fang et al. 2013; Molka et al. 2009; Babka and Tuma 2009; Juckeland
et al. 2004; McCalpin 2014; LMbench 2014] mainly focused on measuring memory
latency and bandwidth. Most have not considered other aspects of the memory mi-
croarchitecture such as data prefetching; however, data prefetching has become one of
the crucial memory latency hiding techniques and is gaining more attention [Srinath
et al. 2007; Ebrahimi et al. 2009; Son et al. 2009; Kamruzzaman et al. 2011; Jiménez
et al. 2012; Lee et al. 2012]. Moreover, most prior work measured memory details using
long elapsed-time events (LETEs). Such LETE-based approaches run a memory event
(e.g., a cache miss) a large number of times, taking more than tens of thousands of
cycles to tolerate timing variations. They then take the average and attribute it to that
memory event (e.g., cache miss penalty). Those techniques are not appropriate for short
elapsed-time events (SETEs), which can only be observed in tens or hundreds of clock
cycles and thus cannot tolerate large variations. For example, they cannot observe a
latency spike that is tens or hundreds of cycles after all miss status holding registers
(MSHR) entries are filled,1 or whether it is a cache hit or miss for a specific cache
access.

In this article, we propose a novel SETE-based microbenchmarking methodology
to measure memory microarchitectural details on multicore and many-core processors
that exploit either in-order or out-of-order cores. We aim to provide guidance for the mi-
croarchitecture measurements and make the methodology viable to a wider audience,

1MSHR [Tuck et al. 2006] is a key hardware component for cache miss handling. It holds the cache miss
requests and outstanding prefetches. It thus limits the number of outstanding memory requests to the next
level of cache memory hierarchy.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.

http://dx.doi.org/10.1145/2687356


Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:3

including those outside the microarchitecture community. Our goals are to measure
(1) cache/memory access latency at a cache hierarchy, latency at on-chip interconnect,
and miss penalty of a translation lookaside buffer (TLB), as well as (2) effective off-chip
bandwidth. Moreover, we aim at measuring many prefetching-related parameters not
attempted in prior studies, which include (1) software prefetching parameters such as
triggering conditions, maximum number of outstanding software prefetches allowed
(i.e., the size of MSHRs), and shared and exclusive (for stores) prefetching behavior,
and (2) hardware prefetching parameters such as triggering conditions, prefetching dis-
tances and prefetching degrees, maximum number of outstanding prefetching streams,
and prefetching behavior with different page sizes. In all of those measurements, we
also take the impact of SMT into consideration.

Considering that our SETE-based microbenchmarks run only a very short period of
time (i.e., tens or hundreds of cycles), they require fine-grained timing measurements
with very little tolerance in variation. In this work, we use the high-precision and
low-overhead user-level rdtsc and rdtscp [Intel64IA32Manual 2014; RDTSC 2014] in-
structions to measure the elapsed time. More importantly, we have to eliminate most
of the unintended perturbations, such as a level-1 TLB miss, which may be tolerable
in the LETE-based microbenchmarks. We classify those potential interfering factors
into three categories: (1) interference caused by hardware resource constraints such
as cache pollution, unintended warmed-up cache effects, unintended TLB misses, and
triggering of unintended hardware prefetching and unfinished nonblocking cache re-
quests, (2) interference caused by operating system effects such as page allocation,
context switching, and multithread interleaving and scheduling, and (3) interference
caused by unintended compiler optimizations. By identifying all of those interfering fac-
tors, we further propose guidelines to control them precisely and minimize all possible
perturbations.

To demonstrate how we can measure various memory microarchitectural features
using our SETE-based microbenchmarks, we use the newly released Xeon Phi many-
core processor (with in-order cores) as an example, where most data are undocumented
and thus provides additional benefit to the community. To demonstrate the portability
and validate the correctness of such a methodology, we also apply the methodology to
the well-documented Intel Sandy Bridge multicore processor (with out-of-order cores),
where most data are available and can be validated. Moreover, we open source our
microbenchmarks for further validation by the community. To further illustrate the
usefulness of our measured data, we present a case study on Xeon Phi and Sandy
Bridge, where data are prefetched to the cache memory hierarchy in stages based on
the measured resource availability (e.g., number of MSHRs and the hardware prefetch-
ing support). We find that our proposed multistage coordinated prefetching algorithm
can achieve 1.3X and 1.08X performance speedup on Xeon Phi and Sandy Bridge,
respectively, compared to the state-of-the-art Intel ICC [ICC 2014] compiler. We be-
lieve that these measurements also provide useful insights into memory optimization,
analysis, and modeling of such multicore and many-core architectures.

In summary, this work makes the following contributions:

(1) A SETE-based microbenchmarking methodology is proposed to study the microar-
chitectural details of memory systems (cache memory in particular) on recent multi-
and many-core processors. It uses high-precision low-overhead timing instructions
such as rdtsc and rdtscp on the Intel x86. More importantly, it gives a comprehen-
sive analysis of interfering factors that could affect the intended microbenchmark
behavior. A set of design guidelines is provided to precisely control and mitigate
those interfering factors.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:4 Z. Fang et al.

(2) A set of open source SETE-based microbenchmarks is developed.2 It can be used
to study a comprehensive list of memory microarchitectural details on both out-
of-order and in-order multi-/many-core processors. Those details include not only
traditional cache/memory access latency and off-chip bandwidth but also many
software and hardware prefetching related parameters not attempted in the past
studies.

(3) A case study is conducted to show that some of the insights on effective software
and hardware prefetching uncovered in our measurements can achieve significant
performance improvement.

The rest of the article is organized as follows. In Section 2, we discuss related works
and their limitations, which motivate our work. Section 3 presents a comprehensive
analysis on the interfering factors in our SETE-based microbenchmarking. A list of
general guidelines is then proposed to control those interfering factors in the design
of our microbenchmarks. Section 4 briefly describes the Intel Xeon Phi many-core ar-
chitecture and its software programming environment, which we use as a platform
to prototype our methodology. In Section 5, we present specific issues related to mi-
crobenchmark design and our measured results on Xeon Phi. It also provides several
useful insights from the measured results. In Section 6, we apply our microbench-
marks on Sandy Bridge to demonstrate their portability and validate their correctness.
Section 7 presents a case study of multistage coordinated prefetching using our mea-
sured data to demonstrate their usefulness. Finally, Section 8 concludes the article.

2. RELATED WORK AND MOTIVATION

Using microbenchmarks is a common technique to uncover microarchitectural details
of a target processor. In this section, we introduce some related works and identify
their limitations, which motivate our SETE-based micro-benchmarking methodology.
We also compare our work against performance analysis techniques using hardware
performance counters in Section 2.1.

Traditional microbenchmarks, such as BenchIT [Juckeland et al. 2004], LMbench
[LMbench 2014], and STREAM [McCalpin 2014], use a LETE-based methodology to
measure the cache/memory latency and bandwidth. They use a system call to a timer to
measure the time, which usually requires thousands of cycles overhead. Hence, those
techniques do not control and mitigate interfering factors at a precision level required
in our methodology. Their measurements are often not stable and can have variations
in hundreds or thousands of cycles. To tolerate such variations, they run a single event
a large number of times, which can take tens of thousands of cycles, and then take
their average since the latency of each event is the same. A recent study on the Intel
Xeon Phi many-core processor [Fang et al. 2013] used such LETE-based methodology
to measure cache/memory latency and bandwidth parameters. In [Peng et al. 2008], it
used a similar methodology to compare the memory performance of dual-core proces-
sors. It used a ping-pong scheme to measure the latency of cache-to-cache transfers.
LETE-based microbenchmarks [Juckeland et al. 2004; LMbench 2014] are also used
to measure the cache sizes, cache set associativity, TLB sizes, and access latencies.

To reduce the timing variation, in [Molka et al. 2009], it used the high-precision
low-overhead rdtsc instruction to measure cache/memory latency and bandwidth on
Intel Nehalem processors. It takes only a few cycles to read the timer. Similarly, in
[Babka and Tuma 2009], it also used the rdtsc instruction to investigate TLB and
cache associativity on Intel Core and AMD Opteron processors. In [Paoloni 2014], it

2Our microbenchmarks can be downloaded from https://sites.google.com/site/fangzhenman/home/ubench.
20140502.tar.gz.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.

https://sites.google.com/site/fangzhenman/home/ubench.20140502.tar.gz
https://sites.google.com/site/fangzhenman/home/ubench.20140502.tar.gz


Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:5

further used the similar instruction rdtscp to reduce the timing variation in Intel out-
of-order processors, which has just around 56 cycles overhead and 4-cycle variation.3
They can reduce timing variation of the measured events due to the low-overhead timer
accesses. However, they still needed a LETE-based methodology because they needed
to aggregate the measured events to offset the effect of out-of-order execution and,
more importantly, the variation caused by other interfering factors listed in Section 3.4

There are two challenges in the SETE-based microbenchmarking methodology. First,
most SETEs cannot be aggregated and then averaged when measuring prefetching-
related parameters because the latency of the events will change. For example, to
identify the triggering conditions of hardware prefetching in cache memories, we need
to know precisely whether each specific memory access is an L1/L2 cache hit or miss.
LETE-based microbenchmarks can only tell the average latency from aggregated mea-
surements. They cannot be used to measure the exact latency of each specific access. As
another example, when we measure the size of MSHRs, we expect to see a latency spike
when all MSHR entries are filled. It occurs after only tens or hundreds of cycles, as
most MSHRs are quite small. Aggregating such measurements will obscure such small
latency spikes. Second, many interfering factors that may be tolerable in LETE-based
microbenchmarks can no longer be tolerated in SETE-based microbenchmarks because
of their short elapsed time in tens or hundreds of cycles. For example, a TLB miss will
significantly perturb the latency of a single cache access. To address those challenges,
we propose a SETE-based methodology in Section 3 to measure the microarchitectural
details of the memory system in multi- and many-core processors.

Similar SETE-based methodologies have been used to measure GPU performance in
[Wong et al. 2010] and [Volkov and Demmel 2008], including the cache size, set asso-
ciativity, instruction latency, and control flow behavior. However, it was not intended
to study the data prefetching aspect of the cache memory, which is very important in
most memory latency hiding strategies.

2.1. Using Hardware Performance Counters

To enable efficient low-level performance analysis and tuning, commodity processors
usually provide a set of hardware performance counters for users to get some statistical
performance data such as cycle breakdown, cache miss rate, and bandwidth.

There are mainly two types of hardware performance counter working mechanisms:
event-based sampling5 (EBS, widely used in Intel machines) [Levinthal 2014] and
instruction-based sampling (IBS, widely used in AMD machines) [Drongowski 2014].
In EBS, it configures a hardware performance counter to monitor an event (e.g., L2
cache miss) and interrupts every Nth time the event happens. When the interrupt
occurs, the program counter (PC) is reported. However, in out-of-order execution, the
reported PC may be quite far (tens of instructions) from the actual instruction that
triggers the interrupt. To tackle this problem, precise event-based sampling (PEBS) is
further introduced (for only a small subset of events) to guarantee that the reported PC
is within one instruction of the actual instruction and report the entire architectural
state. On the other hand, IBS is designed to associate with an instruction instead of an
event. In IBS, every N cycles, it tags a random instruction and records useful events
caused by the instruction as it proceeds through the pipeline.

As a result, hardware performance counters can report how frequent an event (e.g.,
L2 cache miss) happens, identify instructions that most frequently cause a specific

3We will discuss the limitation of rdtscp and how to overcome it in Section 3.1.
4Although [Molka et al. 2009] did point out some interfering factors that could affect the intended mi-
crobenchmark behavior, it was not comprehensive enough.
5Here, we treat time-based sampling as a special case of EBS, where the event is time.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:6 Z. Fang et al.

event (EBS/PEBS), or identify the most frequent events that an instruction causes
(IBS). Based on this information, researchers can further compute other useful sta-
tistical profiles of a running program. For example, in [Levinthal 2014], Intel demon-
strated how to estimate cycle breakdown using hardware performance counters. In
[Eyerman et al. 2006, 2011], researchers used hardware performance counters to esti-
mate the cycle per instruction (CPI) breakdown (in different miss events such as cache
and TLB miss) of a program and proposed an interval analysis model to further reduce
event overlap effects in out-of-order processors. In [Fields et al. 2003, 2004], they col-
lected miss event information within hotspots using specialized hardware performance
counters and modeled the interaction cost between multiple instructions to enable bot-
tleneck analysis. In [Ferdman et al. 2012], it used hardware performance counters to
characterize various performance metrics such as CPI, cache miss rate, and bandwidth
consumption for large-scale workloads.

However, both EBS/PEBS and IBS have their limitations. They use sampling-based
mechanisms to reduce the high overhead of using hardware performance counters, and
the sampling rate is usually thousands or tens of thousands of instructions. This works
fine with statistical measurement but makes it inaccurate to measure the behavior of
a single specific event. In [Demme and Sethumadhavan 2011], it proposed a precise
and lightweight technique to use on-chip performance counters. However, it is different
from our work and is more like an extension to rdtsc and rdtscp instructions. It makes
reading other on-chip performance counters more lightweight yet precise. But it does
not consider applying it to measure the memory microarchitectural details or analyze
interfering factors to the microbenchmarks.

3. METHODOLOGY FOR MEASURING MEMORY MICROARCHITECTURE

In this section, we present our microbenchmarking methodology using SETE. We first
describe how we measure the time using high-precision, low-overhead, user-level rdtsc
and rdtscp instructions with our precision enhancement on in-order and out-of-order
processors. We then analyze the crucial factors that could interfere with the intended
microbenchmark behavior such as hardware resource constraints, operating system
effects, and compiler optimizations. We follow it by proposing some general design
guidelines to mitigate those effects. We also uncover some interfering factors unique to
SETE-based microbenchmarks and propose techniques to deal with them. For example,
we need to ensure that an out-of-order instruction or a nonblocking cache request has
been completed before a measurement. Each thread also has to execute its concurrent
code region at least 0.1ms (mainly to mitigate thread creating overhead) to ensure
that all thread execution is indeed overlapped in a multithreaded environment. Those
specific design issues to each measurement are discussed in Section 5.

3.1. Measuring Short Elapsed-Time Events

Many-core architectures such as Xeon Phi use in-order cores to simplify core design
and to save power. They usually provide a very stable rdtsc instruction, which costs
only a few cycles of overhead (six cycles on Xeon Phi). On these in-order cores, we can
get the elapsed time by comparing the end and the beginning time of an event, and
then subtract the rdtsc overhead.

Other multicore processors such as Sandy Bridge use out-of-order cores to boost their
performance. Measuring event elapsed time on out-of-order processors is much more
challenging. Due to the nature of out-of-order execution, the leading rdtsc instruction
might be executed ahead of some irrelevant instructions before it; similarly, the trailing
rdtsc instruction might also be executed ahead of some target instructions. This could
lead to a variation of up to hundreds of cycles. To ensure that irrelevant instructions
before the leading rdtsc are not included, and that all target instructions before the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:7

trailing rdtsc are included, we need to insert a serializing instruction such as cpuid
[Intel64IA32Manual 2014; RDTSC 2014] right before each rdtsc. Unfortunately, such
a serializing instruction could incur an overhead of hundreds of cycles and makes the
measurement unstable.

To overcome this problem, we use the rdtscp instruction to read the end time instead.
The rdtscp instruction does the serialization first to ensure that all instructions before
rdtscp have been completed and then reads the timestamp counter. However, it does
not guarantee that instructions after rdtscp are not executed before the time is read. To
guarantee this, we use a cpuid instruction right after rdtscp to block the instructions
after it from being executed before the end time is read. Compared to rdtsc, rdtscp has
a much higher overhead of around 56 cycles with a 4-cycle variation on processors such
as Sandy Bridge [Paoloni 2014].

Although [Paoloni 2014] has already greatly reduced the rdtscp overhead and varia-
tion, there is still one problem. Some target instructions might overlap their execution
with the serializing part (around 50 cycles) of rdtscp—that is, the time for those over-
lapped target instructions cannot be measured. To overcome this problem, we fill some
data-dependent instructions after the target event to mitigate this effect—in other
words, we use those filled data-dependent instructions to overlap with the serializing
part of rdtscp so that we can more accurately measure the time of the entire target
event.

In summary, to measure the time on out-of-order cores, we use rdtsc to read the
beginning time and put a serializing instruction cpuid right before it. Similarly, we
use rdtscp to read the end time and put a serializing instruction cpuid right after it.
Moreover, we fill some data-dependent instructions after the target event to overlap the
serialization latency of rdtscp. Finally, we calculate the elapsed time by comparing the
end and the beginning time of the event, then subtract the overhead of rdtsc and rdtscp.
We find that this technique mostly eliminates the interference caused by out-of-order
execution and can produce quite stable timing results for SETEs.

The hardware timestamp counter on multicore and many-core processors is per-core
based. It cannot measure the global time for all on-chip cores (i.e., the system-wide
time). Fortunately, the only measurement that needs a global timer is for off-chip
bandwidth, which can be measured using a traditional LETE-based approach.

3.2. Interfering Factors and General Design Guidelines

There are many other factors that can interfere with the measurements, which makes it
quite challenging. In this section, we present the first comprehensive analysis of those
interfering factors and classify them into three categories: (1) hardware resource con-
straints, (2) operating system effects, and (3) compiler optimizations. We also propose
techniques to control or mitigate them.

3.2.1. Hardware Resource Constraints. All hardware resources have limited capacities.
They include caches, TLBs, and off-chip bandwidth. They could affect the intended mi-
crobenchmark behavior if left unchecked. There are other constraints as well. For ex-
ample, when measuring software prefetching parameters, hardware prefetchers could
interfere with their measurements because hardware prefetchers on machines such as
Xeon Phi are always on (Intel does not disclose how to turn them off on the Xeon Phi).
We use the following techniques to control and avoid those unintended effects.

(1) Warm up instruction cache and TLB. In SETE-based measurements, instruction
cache misses and TLB misses can cause the measurements to vary significantly
in different runs. To reduce such effects and get more stable time, we repeat the
measured code regions five times in each run and use the last measured time of
the five as our measurement time, as suggested in [RDTSC 2014]. This allows the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:8 Z. Fang et al.

instruction cache and TLB to be fully warmed up before the intended measurement
is taken. In addition, we take the average of three such runs to further reduce
possible time variations. We also check their standard deviations (all within 1%) to
ensure that the measurement of each run is stable enough to be useful.

(2) Flush unintended warmed-up data cache lines. As we repeat the same measure-
ments five times in each run, the cache lines could have been unintentionally
warmed up. For example, when we try to measure L1 cache miss penalty, the in-
tended cache line may have already been brought into the L1 cache by earlier
execution. To avoid using warmed-up cache lines, we need to explicitly flush the
cache each time before taking the measurement.

(3) Avoid data cache pollution. Cache pollution could replace the cache lines of inter-
ests during a measurement and cause unintended cache misses. To avoid cache
pollution, we need to use different cache lines in different sets during a measure-
ment.

(4) Avoid data TLB misses. Data TLB misses will incur additional latency and affect
the measured time. To avoid unintended TLB misses, we use as few pages as
possible to allow their page table entries to be held in the level-1 TLB. We also
include a warm-up phase in each run to touch all required pages to ensure that no
page fault occurred during the run and that the TLB is also sufficiently warmed
up.

(5) Avoid approaching bandwidth limit. The memory latency will increase significantly
when approaching the bandwidth limit. In all cases except bandwidth measure-
ments, we only use a small number of memory operations. This is guaranteed to
keep them way below the bandwidth limit.

(6) Avoid triggering hardware prefetchers during software prefetching measurements.
To distinguish software and hardware prefetching effects, we need to avoid trig-
gering hardware prefetchers when measuring software prefetching parameters.
On Sandy Bridge, we can turn off all hardware prefetchers in the BIOS. How-
ever, the Intel data sheets do not disclose how to turn them off on Xeon Phi. To
avoid triggering hardware prefetchers, we access random cache lines in all software
prefetching measurements, which can prevent hardware prefetchers from detect-
ing any streaming access pattern to trigger them. Interestingly, it was found later
that software prefetching will not trigger hardware prefetchers on Xeon Phi—that
is, hardware prefetchers will not affect software prefetching.

(7) Ensure that a nonblocking cache request is completed. On out-of-order processors
such as Sandy Bridge, all cache requests are nonblocking. Even on in-order proces-
sors such as Xeon Phi, software and hardware prefetching, as well as cache flushing
instructions, are nonblocking. To ensure that those nonblocking cache requests are
completed before a measurement, we use the serializing instruction cpuid to ensure
that all of the instructions in the pipeline have been completed before the target
instructions, as described earlier.

3.2.2. Operating System Effects. Another type of interferences comes from the operat-
ing system. Paging, context switching, multithread interleaving, and scheduling could
affect the intended microbenchmark behavior.

(1) Ensure physical page allocation. Considering that data caches use physical ad-
dresses, it is important that physical pages are allocated when they are accessed.
The operating system often uses copy-on-write mechanism to optimize the phys-
ical page management, so we need to initialize (i.e., write) the pages before we
access them to guarantee that physical pages have been allocated before we run
the measurements.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:9

Fig. 1. Maximum variations of the thread start time.

(2) No context switching. When measuring SETEs, context switching is usually not an
issue because of the short elapsed time.

(3) Avoid thread migration. The operating system might migrate a thread to a different
core with a cold cache and produce unexpected behavior. To avoid such thread
migration during a run, we pin each thread to a specific core. We also pin each
thread to a specified hardware thread context when we measure the SMT effects.

(4) Avoid thread synchronization. Thread synchronization could incur significant over-
head for SETE-based measurements. In our microbenchmarks, we avoid any thread
synchronization in the measured code regions.

(5) Ensure concurrent multithreaded execution. In multithreaded microbenchmarks,
we have to guarantee that when we take the measurements, all threads are actually
running concurrently. For example, Figure 1 shows the maximum variation of the
start time of each thread when a multithreaded microbenchmark is being run on
Xeon Phi. Each thread is bound to a different core (except for the 2-smt case, where
threads are bound to two hardware threads on the same core). Figure 1 shows
that each thread has to execute at least 0.1ms in the concurrent code regions to
guarantee that all threads are actively executing concurrently. This variation is
mainly due to the thread creating overhead and is system specific.

This variation can make SETE-based multithreaded microbenchmarking quite
challenging when we want to guarantee that two threads actually overlap in their
execution. Fortunately, memory bandwidth measurement is the only case that re-
quires concurrent multithreaded execution, and we measure the bandwidth using
LETEs. In all other multithreaded measurements, we only care about the time of
each individual thread during the measurements. We keep the first thread run-
ning indefinitely, then start the second thread to ensure that these two threads are
overlapped. We then take the SETE-based measurements in the second thread.

3.2.3. Compiler Optimizations. Finally, we should avoid unintended compiler optimiza-
tions. The compiler may optimize the code in an unexpected way. To avoid compiler
optimizations on the microbenchmarks, we use assembly code to implement the mea-
sured code regions. We generate other parts of the program by compiling the C code to
assembly code and check the assembly codes to make sure that they are what we need.

4. AN OVERVIEW OF INTEL XEON PHI MANY-CORE ARCHITECTURE

In this section, we give a brief overview of the architecture and software programming
environment of the newly released Intel Xeon Phi (codename Knights Corner) many-
core processor, which we use as an example to demonstrate how to determine various
(many undocumented) memory microarchitectural features.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:10 Z. Fang et al.

Fig. 2. Overview of the Intel Xeon Phi (codename Knights Corner) many-core architecture.

4.1. Intel Xeon Phi Architecture

Figure 2 shows an overview of Intel Xeon Phi architecture [Chrysos 2012]. It is con-
nected to the host processor (e.g., Intel Xeon processor) through a PCI Express (PCIe)
bus. To support high parallelism, the Intel Xeon Phi processor provides up to 61 in-order
cores on a single chip. The core used in this study has a clock rate of 1GHz, and Turbo
Boost technology [XeonPhiManual 2014] is not supported. Each core has a private L1
cache (32KB) and a private L2 cache (512KB). They are inclusive—that is, all data in
L1 also have a copy in L2. Each L2 cache has a streaming hardware prefetcher. Each
core also has a two-level data TLB that supports two page sizes: 4KB and 2MB. There
is an on-chip bidirectional ring that connects the L2 caches, memory controllers (MCs),
and distributed tag directories (TDs). The distributed TDs maintain global coherence
states for each cache line. Table I shows the basic architectural parameters available
in Intel data sheets [XeonPhiManual 2014] for our preproduction engineering sample
of the Xeon Phi processor donated by Intel.

4.2. Software Programming Environment

Being an x86-64 many-core processor running Linux, Xeon Phi offers full capability
of using the same software tools, programming languages, and programming models
as in other general-purpose Intel Xeon processors [XeonPhiManual 2014]. There are
two major modes to run an application on Xeon Phi: (1) offload mode, in which an
application runs on the host and offloads selected parts of the application to Xeon
Phi, and (2) native mode, in which an application runs on Xeon Phi natively and
independently. It can communicate with the host processor or other coprocessors. In
this work, we run all microbenchmarks on Xeon Phi in native mode. We use Linux
pthreads to implement our multithreaded microbenchmarks. Xeon Phi’s Linux running
kernel is version 2.6.38.8. The Linux kernel uses 4KB page size as default, and we use
4KB page size throughout this article unless otherwise specified. To allocate physical
pages in 2MB size, we use an mmap system call to map a local file onto 2MB pages. To
avoid unintended compiler optimizations, Intel ICC 13.0.1 compiler [ICC 2014] with
the -O0 option is used to compile the microbenchmarks.

5. MICROBENCHMARK IMPLEMENTATION AND EXPERIMENTAL
RESULTS ON XEON PHI

In this section, we show how we design microbenchmark programs to measure key
memory microarchitectural details using Xeon Phi as an example, since many of the
parameters on Xeon Phi are undocumented in Intel data sheets. They include not
only traditional cache latencies and off-chip bandwidth but also microarchitectural

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:11

Table I. Basic Parameters of Xeon Phi Preproduction Engineering
Sample Available in Intel Data Sheets [XeonPhiManual 2014]

In-order core parameters
number of cores 60
number of HW threads/core 4
core frequency always 1GHz (no Turbo Boost)

Cache hierarchy parameters (per core)
L1 instruction cache size 32KB
L1 data cache size 32KB
L2 unified cache size 512KB
L1/L2 inclusive yes
line size of L1/L2 64B
associativity of L1/L2 8-way
L2 HW prefetcher 1 streaming HW prefetcher

TLB hierarchy parameters (per core)
associativity in all cases 4

4KB small page size
level-1 instruction TLB 32 entries, maps 128KB memory
level-1 data TLB 64 entries, maps 256KB memory
level-2 unified TLB 64 entries, maps 128MB memory

2MB huge page size
level-1 instruction TLB not supported
level-1 data TLB 8 entries, maps 16MB memory
level-2 unified TLB 64 entries, maps 128MB memory

GDDR5 memory parameters
memory size 4GB
peak bandwidth 153.6GB/s

details related to software and hardware prefetching. We also present some insights
into software and hardware prefetching using our measured data. Considering that
bandwidth measurements use LETEs, we will present them last in Section 5.4. Finally,
we summarize all of our measurements on Xeon Phi in Table V.

5.1. Latency Measurements

We measure the latency at different levels of cache hierarchy, on-chip ring interconnect,
and TLBs. Moreover, we discuss the effect of blocking and nonblocking caches.

5.1.1. Latency at Different Levels of Cache Hierarchy. We stage an L1 (or L2) cache hit by
first prefetching the cache line into the L1 (or L2) cache, then measure the latency of
reading the same cache line. For DRAM memory access latency, we directly measure
the latency of reading a line from memory (i.e., an L2 cache miss).

We first measure the hit latency of a single thread. The L1 cache hit latency is 1
or 2 cycles. The variation of 1 cycle is caused by the fact that 2 instructions can be
issued every other cycle for each hardware thread on a Xeon Phi core. Memory access
latency varies in different runs and usually falls between 318 and 346 cycles. These
measurements agree with those provided in the Intel data sheets [XeonPhiManual
2014]. Our measured L2 cache hit latency is 22 or 23 cycles, which is different from the
11 cycles listed in the Intel data sheets. Another technical report showed independently
that L2 cache hit latency was around 22 cycles in their measurements [Fang et al. 2013].
Moreover, we verify the results using both scalar and vector loads, and the hit latency
remains the same.

We then measure the hit latency when SMT is turned on. We find that the hit
latency increases about 10 cycles due to the thread interleaving in SMT. Hence, in the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:12 Z. Fang et al.

Fig. 3. Latency of reading data from another core’s L2 cache.

Table II. Latency (in Clock Cycles) of a Level-1 or Level-2 TLB Miss and a Page Fault

cycles level-1 TLB miss level-2 TLB miss page fault
4KB page 29 91 2,261
2MB page 10 86 2,898,353

rest of article, we will not measure latency using SMT unless we need to study whether
hardware threads will cause contention at some shared resources.

5.1.2. Latency at On-Chip Ring Interconnect. According to Intel data sheets, Xeon Phi uses
an on-chip ring interconnect to maintain its MESI-like cache coherence protocol. We
measure the latency on the ring interconnect by first prefetching a cache line to core
i’s L2 cache, then measure the latency of reading the same cache line from core 0.

Figure 3 shows the latency of reading core i’s L2 cache on core 0. Although the
latency varies when reading from different cores, the latency does not increase linearly
with the increase of the distance between two cores on the ring. This is due to the
“evenly” distributed tag directory design and the ring-based cache coherence protocol.
The average latency is about 243 cycles, and the standard deviation is 32 cycles.

A useful insight here is that as the average access latency from a remote L2 is less
than the off-chip memory latency (about 25% faster), we could use other idle cores to
perform data prefetching for hiding more memory latency if its own L2 data prefetchers
are fully subscribed.

5.1.3. TLB Miss Penalty. In this section, we measure the penalty of level-1 TLB miss,
level-2 TLB miss, and page fault in both 4KB and 2MB page sizes. To instigate a level-1
or level-2 TLB miss, we use twice the number of pages that a level-1 or level-2 TLB
can hold. We touch all of those pages so that later accesses to earlier pages will cause
a level-1 or level-2 TLB miss. To trigger a page fault, we simply do not initialize the
page before accessing it. Since page fault penalty is much larger than a cache or TLB
miss, the results are quite stable.

As Table II shows, the latency of a level-1 TLB miss in accessing a 2MB page
(10 cycles) is much smaller than that in accessing a 4KB page (29 cycles). This is
mainly because for 4KB pages, a level-2 TLB caches only enough page directory infor-
mation that requires another level of table lookup, whereas in a 2MB page, a level-2
TLB caches the entire physical address. The level-2 TLB miss latency in accessing a
2MB page is also slightly better. The page fault incurs a significant penalty, which is
around 2,300 cycles if the page is cached in the main memory (in the case of a 4KB

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:13

Table III. Software Prefetching Triggering Conditions

type level-1 TLB miss level-2 TLB miss
Y/N Yes Yes
type page fault across page boundary
Y/N No Yes

page), and around 3ms if the page is on a local file on Xeon Phi (in the case of a 2MB
page).

A useful insight here is that one can use the 2MB page size to reduce the penalty of
TLB misses if data accesses are concentrated in certain large memory regions.

5.1.4. Blocking and Nonblocking Cache. We also study the effects of a blocking and a non-
blocking cache on regular loads and stores, and on software prefetching instructions.
We investigate whether they can overlap their latency with the following independent
loads, stores, software prefetching instructions, and long-latency computing instruc-
tions such as floating-point multiplications.

The results confirm that a load or store miss could block the entire pipeline in an in-
order instruction pipeline during a single-thread execution, whereas they can overlap
with instructions from another thread if SMT is turned on. For software prefetching
instructions, they are nonblocking and can overlap with other independent instructions.
The prefetched data returning to the cache can be out of order—in other words, they
are not necessary in the order in which prefetching instructions are issued.6

5.2. Software Prefetching

In this section, we look at the triggering conditions of software prefetching, the number
of outstanding prefetches supported with and without SMT turned on, and the behavior
of prefetching in the exclusive mode (i.e., data prefetching for later store instructions).

5.2.1. Software Prefetching Triggering Conditions. We first check whether software
prefetching will be dropped if (1) it will trigger a level-1/level-2 TLB miss, (2) it will
trigger a page fault, or (3) it will cross a page boundary. To verify these cases, we first
prefetch a cache line under each of those scenarios. We then measure the latency of
reading the same cache line immediately after the prefetching instruction is completed.
If it is a cache hit, then clearly software prefetching has been triggered.

Table III summarizes our observations. Except for the page fault, software prefetch-
ing will be triggered in all other cases. In Section 5.3, we will notice that hardware
prefetching has very different triggering conditions—that is, it will not prefetch across
a page boundary.

5.2.2. Number of Outstanding Software Prefetches. We also measure the maximum number
of outstanding software prefetches supported at L1 and L2 caches—that is, the number
of MSHRs available at L1 and L2 caches. We increase the number of issued software
prefetches and measure the prefetch latencies. We expect to see a large latency increase
when all MSHR entries are filled (so the next prefetch has to wait until one of the
previous prefetches is completed and an MSHR entry is freed up). When measuring
the number of MSHRs at the L1 cache, we ensure that all prefetched cache lines are
already in the L2 cache.

Figure 4(a) shows the results of measuring L1 MSHRs in a single thread. The latency
increases sharply when the number of L1 cache prefetches increases from eight to nine,

6Due to space constraints, detailed results are not shown in this article but can be obtained using our open
source microbenchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:14 Z. Fang et al.

Fig. 4. Latency with different number of outstanding L1 and L2 prefetches, respectively.

and this pattern repeats after every eight L1 cache prefetches. This indicates that the
number of L1 MSHRs is eight (i.e., eight outstanding L1 prefetches are supported). We
also measure this number when SMT is on and find that all hardware threads on the
same core share the same eight L1 MSHRs. By eliminating all interfering factors for
this SETE as described earlier, the measured results as shown in Figure 4(a) are quite
stable—in other words, there is always a jump in latency from eight to nine outstanding
software prefetches.

Figure 4(b) shows the results of measuring L2 MSHRs in a single thread. The number
of L2 MSHRs is between 56 and 60. Unlike those in L1 cache, this pattern does not
repeat because memory latency fluctuates due to the ring interconnect and DRAM
latencies. L2 prefetches are completed totally out of order (i.e., prefetched data return
in an order different from when they are issued). We also measure it when SMT is on
and find that hardware threads on the same core also share the same L2 MSHRs.

A useful insight here is that the number of MSHRs are shared among hardware
threads and are quite limited, especially for L1 MSHRs. Prefetching directly from
memory to the L1 cache will require much longer prefetch distance and hence more
outstanding prefetches that likely will exceed the number of L1 MSHRs. Therefore, it
is better to use a multistage coordinated software prefetching—that is, first prefetch
data from off-chip memory to the L2 cache, then from the L2 cache to the L1 cache with
a different prefetch distance. We find that this strategy can significantly improve the
cache performance, as demonstrated in Section 7.

5.2.3. Exclusive Prefetching Behavior. Xeon Phi allows a cache line to be prefetched into
L1/L2 caches with a shared or an exclusive coherence state for a later store operation.
The behavior is quite different when other L1/L2 caches also have a copy of the same
cache line due to the invalidation-based coherence protocol. To measure the differences
in access latency, we first prefetch the target cache line into a controlled number of
remote L2 caches. (We omit the case of prefetching to other cores’ L1 caches because it
is quite similar to the case of prefetching to other cores’ L2 caches.) We then measure
the latency of a store operation immediately after prefetching the target cache line with
a shared and an exclusive state in its L2 cache, respectively.

As shown in Figure 5, the store latency after an exclusive prefetching is the same as
that of a cache hit because the invalidation of the copies in other L2 caches has already
been done by the exclusive prefetching, whereas after a shared prefetching, a store
operation will incur a large invalidation overhead. However, the invalidation overhead
does not increase linearly with the increased number of L2 caches holding the same
cache line due to the coherence protocol on the ring interconnect and the distributed
tag directories that it uses.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:15

Fig. 5. Latency of a store after using a shared or an exclusive prefetch with different number of other cores
holding the same data.

Table IV. Hardware Prefetching Triggering Conditions

access type triggering condition
regular loads 3 ascending or descending line misses;

corner cases need 1 or 2 line misses
regular stores 3 ascending or descending line misses;

corner cases need 1 or 2 line misses
SW prefetching does not trigger HW prefetcher
across page boundary stop at page boundary

5.3. Hardware Prefetching

Xeon Phi has a hardware prefetcher on the L2 cache but not on the L1 cache. Each L2
hardware prefetcher is a streaming prefetcher [Srinath et al. 2007] that can prefetch 16
different data streams. We look at how a hardware prefetcher is triggered, the number
of cache lines a single stream is allowed to prefetch, whether a hardware prefetcher
can distinguish memory access streams from different hardware SMT threads, and the
hardware prefetcher’s behavior in huge (i.e., 2MB) page size.

5.3.1. Hardware Prefetching Triggering Conditions. In this section, we study when and how
loads, stores, and software prefetching can trigger hardware prefetching. We also look at
the number of misses needed to trigger hardware prefetching, and whether a hardware
prefetcher can prefetch across page boundary or not. To do this, we measure the latency
of a load operation to a target cache line immediately after those conditions have been
met, then check to see whether it is an L2 cache hit or not.

Table IV summarizes the observed triggering conditions for hardware prefetching.
First, both loads and stores can trigger hardware prefetching. In general, 3 consecutive
cache misses to 3 different cache lines on the same page are needed to trigger hardware
prefetching. Moreover, the starting addresses of those 3 cache lines must be in an
increasing order (positive distance), or a decreasing order (negative distance), to trigger
a prefetching in a forward or backward direction, respectively. There are some corner
cases that do not need 3 misses: (1) if the first cache miss occurs in the 0th (or 63rd
because a page contains 64 cache lines) cache line of a page, then this single miss will
trigger the hardware prefetcher in a forward (or backward) direction, as there is only
one possible direction for the hardware prefetching stream, and (2) if the first cache
miss occurs in the 1st (or 62nd) cache line of a page, then two misses are needed to
trigger the hardware prefetcher in a forward (or backward) direction, as these two
misses will determine the direction of the hardware prefetching stream.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:16 Z. Fang et al.

Fig. 6. Overview of a single-stream hardware prefetching behavior.

Fig. 7. Prefetch degree and prefetch distance of a single hardware prefetching stream that continuously
accesses an entire page.

We also find that software prefetching instructions will not trigger hardware
prefetchers. Instead, it will disable the hardware prefetcher if it also tries to prefetch
the same cache blocks on Xeon Phi. Moreover, we verify that hardware prefetchers will
not prefetch across page boundary, because pages that are contiguous in the virtual
address space are not necessarily contiguous in the physical address space.

5.3.2. Single-Stream Hardware Prefetching Behavior. Figure 6 presents an overview of a
single-stream hardware prefetching behavior, according to the description in Srinath
et al. [2007]. After three triggering misses, the hardware prefetcher will prefetch a
batch of cache lines (called prefetch degree). After the batch is prefetched, whenever
there is an access to any of those prefetched cache lines (called prefetched region), it
will continue to prefetch another batch (of the same degree) of cache lines following
the end of the last prefetched region (called prefetch start), assuming that the distance
between the prefetch start and the current access (called prefetch distance) is within a
certain threshold (called maximum prefetch distance).

In this section, we study how hardware prefetching works in a single data stream
including its prefetch degree, maximum prefetch distance, and how to trigger the
hardware prefetcher to prefetch an entire page. We used a technique similar to that
in Section 5.3.1 that measures the latency of a load to the target cache line and see
whether it is an L2 cache hit or miss.

Figure 7 shows the behavior of a hardware streaming prefetcher that continuously
accesses the next cache line in a single page. The x-axis shows the cache line number
that the target load triggers the hardware prefetcher to start prefetching or to continue
prefetching cache lines. It starts from the 0th cache line in a page and ends at the 47th
line, at which time all 64 cache lines on the page have either been loaded or being
prefetched. Beyond the 47th cache line, the hardware prefetcher will not be triggered,
as it has reached the page boundary. The line with round dots shows the prefetch
degree at the time a cache line (whose line number is shown the on x-axis) is accessed.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:17

Fig. 8. A single prefetching stream distributed into different hardware SMT threads.

The miss on the 0th cache line triggers the hardware prefetcher to prefetch two lines,
whereas the hit on the 1st cache line triggers three additional lines to be prefetched.
After that, each cache access to the prefetched region triggers the hardware prefetcher
to prefetch four additional lines (the prefetch degree on Xeon Phi is 4). The access of the
47th cache line triggers two additional lines to be prefetched (instead of four) because
there are only two lines left on the page before it crosses the page boundary.

The line with square dots shows the prefetch distance at each cache line access, as
demonstrated in Figure 6. At first, the prefetch distance continues to increase as the
hardware prefetching stream continues to prefetch additional lines. When the prefetch
distance goes beyond 16 lines, it stops triggering further prefetching as indicated by
the missing numbers in the x-axis of Figure 7 (i.e., 6, 8, 9, 10 . . .), until the prefetch
distance is back within 16 lines again.

In summary, the results show that the prefetch degree of the hardware prefetcher is
4 lines, whereas the maximum prefetch distance is 16 lines on Xeon Phi. Moreover, as
the access sequence shown in Figure 7, one cache miss to the 0th line and 16 cache line
hits to the cache lines with the numbers shown on the x-axis of Figure 7 would trigger
the hardware prefetcher to prefetch the entire page of 64 cache lines.

We verify that the hardware prefetcher can support up to 16 such data streams as
specified in the Intel data sheets. However, we also find that each data stream has to
be in a different page. They cannot be on the same page—in other words, the hardware
prefetcher can prefetch cache lines from up to 16 different streams, each on a different
page. Each stream will independently track the three consecutive line misses on a
page. Those data accesses can be interleaved with misses in other data streams on
different pages. Hardware prefetchers can still track them regardless of how they are
interleaved.

5.3.3. Hardware Prefetching in SMT. Each core on Xeon Phi can support up to four hard-
ware SMT threads. When SMT is on, we would like to know whether a hardware
prefetcher can be triggered by three cache line misses from different hardware threads
or not. To do this, we distribute the three triggering load misses among two to four
hardware threads on the same core. We synchronize those load misses to make sure
they are issued in their specific order that meets the triggering conditions described in
Section 5.3.1. We then issue a load to the anticipated prefetched cache line to see if the
cache line has been prefetched by the hardware prefetcher or not.

Figure 8 shows the results when those three triggering load misses are dis-
tributed among two, three, and four hardware threads, marked as “2t-interleave,”
“3t-interleave,” and “4t-interleave.” In the “4t-interleave” case, each of the first three
hardware threads issues a triggering load miss, and the fourth hardware thread issues

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:18 Z. Fang et al.

the test load operation. The “2t-another” is the case in which all three triggering load
misses are in the same hardware thread, and the test load operation is issued from
another hardware thread. From the latency of the test load (shown in the y-axis), we
can see that the hardware prefetcher can be triggered by three load misses regardless
of which hardware threads they come from. The slight increase in the hit latency of
the test load (around 12 cycles) when three or four hardware threads are used is due
to the nondeterministic interleaving of hardware threads between the two hardware
pipelines on the same core that causes the triggering loads to be issued at a later time.
It is certainly not as large as 320 cycles for a typical L2 cache miss.

The insight here is that hardware threads (on the same core) accessing the same
page could hinder the hardware prefetcher because the nondeterministic interleaving
among hardware threads can make data access patterns very random for the hardware
prefetcher to detect them. It could be more effective if hardware threads could access
different pages so that the hardware prefetcher can detect different data streams on
different pages. This may require the intervention of a compiler or a programmer.

5.3.4. Hardware Prefetching in Huge (2MB) Pages. So far, we have presented hardware
prefetching results only for the 4KB page size. We also have taken the same measure-
ments using the 2MB page size. We find that the hardware prefetcher treats 2MB pages
as if they were 4KB pages. For example, it still cannot prefetch across a 4KB boundary
even if it has 2MB in each page. All results that we measured are the same as those in
4KB page size. Notice that software prefetching is ignorant of the page sizes. Hence, it
has no effect on software prefetching.

5.4. Off-Chip Memory Bandwidth

As off-chip bandwidth is shared among all cores, we have to consider potential con-
tention among cores and use traditional LETE-based approaches. We have to use the
global timer provided on Xeon Phi instead of the local timer on each core. The mi-
crobenchmarks are written in C code instead of assembly code. To minimize the branch
overhead, we unroll the loop to access two pages in each iteration. We calculate the
effective bandwidth by dividing the total amount of data accessed from off-chip memory
by the measured elapsed time. The peak bandwidth provided in Intel data sheets is
153.6GB/s. It is not possible to accurately measure the peak bandwidth, because the
access time will increase nonlinearly when it approaches the peak bandwidth.

Due to space constraints, we only present effective off-chip bandwidth results using
software prefetching, which can achieve the highest effective bandwidth, as prefetching
is nonblocking on Xeon Phi.7 As Figure 9 shows, when there is one hardware thread
per core and each thread is issuing software prefetching (in the shared cache coherence
state) continuously, the combined bandwidth used by software prefetching increases
with the number of cores up to 48 cores. Using more hardware threads per core results
in a slight decrease in effective bandwidth, because the scheduling of hardware threads
and their contention for MSHRs will increase the total elapsed time. The highest
bandwidth achieved with aggregated software prefetching is about 91GB/s, or 59% of
the peak bandwidth, which is in line with the Intel data sheets [XeonPhiManual 2014].

5.5. Summary of Results from Xeon Phi

We summarize all of the data we have measured on Xeon Phi in Table V. All undocu-
mented data are in an italic font.

7Other effective off-chip bandwidth results using exclusive software prefetching, streaming, and random
loads and stores can also be obtained using our open source microbenchmarks.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:19

Fig. 9. Effective off-chip bandwidth for shared prefetching with increasing number of cores and hardware
SMT threads.

Table V. Summary of Measured Memory Microarchitectural Details on Xeon Phi

Cache/memory hierarchy latency (cycles)
L1 cache hit 1–2
L2 cache hit 22–23
memory access 318–346
on-chip ring interconnect average 243, stdev 32
level-1 TLB miss 29 on 4KB page, 10 on 2MB page
level-2 TLB miss 91 on 4KB page, 86 on 2MB page
page fault 2300 in memory, 3M on disk

Off-chip bandwidth
91 GB/s, 59% of peak bandwidth

SW prefetching parameters
SW prefetch can work level-1/level-2 TLB miss,

across page boundary
SW prefetch cannot work page fault
number of L1 MSHRs 8, shared by HW threads
number of L2 MSHRs 56–60, shared by HW threads
exclusive prefetch effect work better for stores

HW prefetching parameters
HW prefetch can work regular load/store
HW prefetch cannot work SW prefetch, across page boundary
detect/prefetch granularity cache line granularity
line misses to trigger 3 ascending or descending misses;

corner cases need 1 or 2 misses
prefetch degree 4 cache lines
max prefetch distance 16 cache lines
single page behavior 1 miss and 16 hits will trigger the

hardware prefetcher to prefetch an
entire page with 64 lines

number of streams 1 per page, in total, 16 streams
streams in SMT does not distinguish HW threads
HW prefetch on 2MB page treat it as a 4KB page

Note: Undocumented data are in an italic font.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:20 Z. Fang et al.

Table VI. Summary of Measured Memory Microarchitectural Details on Sandy Bridge

Cache/memory hierarchy latency (cycles)
private L1 cache hit 4
private L2 cache hit 12
shared L3 cache hit 26–31
L2/L1 cache in other cores around 60
memory access around 200

Off-chip bandwidth
38 GB/s, 74% of peak bandwidth

SW prefetching parameters
number of L1 MSHRs 10, shared by HW threads
number of L2 MSHRs 10, shared by HW threads

HW prefetching parameters
L1 streamer prefetcher

trigger condition 3 loads to same cache line
prefetch target next cache line
number of streams 8

L1 IP-based stride prefetcher
trigger condition same load instruction with stride access
prefetch target current address plus stride
number of streams 8

L2 spatial prefetcher
trigger condition 1 miss in either line of the pair of two cache lines
prefetch target the other cache line in the pair

L2 streamer prefetcher, similar to Xeon Phi
trigger condition 5 ascending/descending line misses from load/

store/prefetch, or 1 miss from L1 HW prefetcher
prefetch degree 2 cache lines
max prefetch distance 20 cache lines
number of streams 32, 1 forward and 1 backward per page

Note: Undocumented data are in an italic font.

6. PORTABILITY OF THE SETE-BASED MICROBENCHMARKING METHODOLOGY

Our proposed microbenchmarks can be ported to other Intel or non-Intel processors
with in-order or out-of-order cores because similar high-precision, low-overhead rdtsc
and rdtscp instructions are available on most modern microprocessors. Furthermore,
our proposed design guidelines to avoid interference caused by hardware limitations
(e.g., cache pollution, TLB misses), OS operations (e.g., thread scheduling, paging),
and compiler optimizations are also applicable to most modern microprocessors. To
demonstrate the portability of our SETE-based microbenchmarking methodology, we
try it on an eight-core Intel Sandy Bridge processor (Xeon

R©
E5-2650) [SandyBridge

2014] that has out-of-order cores.
In contrast to Xeon Phi, many of the memory microarchitectural details on Sandy

Bridge have already been released in Intel’s data sheets [Intel64IA32Manual 2014].
Table VI summarizes the major memory microarchitectural parameters that we mea-
sured on Sandy Bridge. We validate that all of the available parameters in the data
sheets [Intel64IA32Manual 2014] are the same as those we measured.

Due to space constraints, we mainly present prefetching-related parameters on
Sandy Bridge in this section, which can only be measured using our SETE-based
microbenchmarks. The methodology is similar to that on Xeon Phi. As well, we need to
use rdtsc and rdtscp instructions patched with data-dependent instructions to measure
the time on Sandy Bridge as explained in Section 3.1.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:21

We first measure the software prefetching related parameters. On Sandy Bridge, only
prefetching instructions that prefetch data in shared coherence state are supported.
They can prefetch data to an L2 cache or to an L1 cache. Prefetching to an L3 cache
is not supported. First, we verify that the triggering conditions of software prefetch-
ing on Sandy Bridge are the same as those on Xeon Phi. Second, we verify that the
number of L1 MSHRs is 10, as specified in the data sheets [Intel64IA32Manual 2014].
Moreover, we find that the number of L2 MSHRs is also 10, which is unavailable in
the data sheets. This important parameter indicates that the very effective two-stage
coordinated software prefetching strategy on Xeon Phi will not work on Sandy Bridge.

We then measure the hardware prefetching related parameters. On Sandy Bridge,
there are two hardware prefetchers on each L1 cache: the data cache unit (DCU)
streamer prefetcher and the instruction pointer (IP)-based stride prefetcher. There are
also two hardware prefetchers on each L2 cache: the spatial prefetcher (also known
as the adjacent cache line prefetcher) and the streamer prefetcher. There is no hard-
ware prefetcher on the L3 cache. All hardware prefecthers cannot prefetch across page
boundaries.

(1) L1 streamer prefetcher. The L1 streamer prefetcher on Sandy Bridge is quite dif-
ferent from the streamer prefetcher on Xeon Phi. We verify that it is triggered by
three accesses (only loads) to the same cache line, and it only prefetches the next
cache line when triggered. Moreover, we find that it can support at most eight such
streams, which is unavailable in the data sheets.

(2) L1 IP-based stride prefetcher. The L1 IP-based stride prefetcher keeps track of an
individual load instruction to detect regular stride (in bytes). If a regular stride
is detected, a prefetch is sent to the address calculated by adding the stride to
the current address. The stride can be up to 2KB and can be both forward and
backward. We verify all patterns of the L1 IP-based stride prefetchers. Moreover,
we find that it can support up to eight such stride prefetching streams at most—
that is, it can keep track of eight such load instructions, which is unavailable in
the data sheets.

(3) L2 spatial prefetcher. The L2 spatial prefetcher is also known as the adjacent cache
line prefetcher. It combines two adjacent cache lines (these two lines form a 128-byte
aligned chunk) together into a pair. Whenever one cache line in the pair triggers a
cache miss, it prefetches the other line in the pair. We have verified this behavior.

(4) L2 streamer prefetcher. The L2 streamer prefetcher on Sandy Bridge is similar to
the streamer prefetcher on Xeon Phi. However, specific parameters of the prefetcher
are different. We first verify the following behavior: (1) the prefetch degree is 2 cache
lines, and maximum prefetch distance is 20 lines; (2) it can support 32 streams at
most, and each page can support 1 forward and 1 backward stream; and (3) it can
be triggered by all misses from loads, stores, software prefetching, and L1 hard-
ware prefetchers. Moreover, we find that to trigger the L2 streamer prefetcher, it
needs five misses from loads, stores, or software prefetching. This avoids aggres-
sive prefetching for short streams, and the incurred overhead is negligible due to
out-of-order execution and nonblocking caches on Sandy Bridge. However, if the
misses come from the L1 hardware prefetchers, only one miss is needed because it
already knows that it is not a short stream. These triggering conditions are also
unavailable in the data sheets.

These measured hardware prefetcher parameters provide a few important insights.
First, the L1 hardware prefetchers are quite conservative—that is, they can only be trig-
gered by loads and can support at most eight streams. If an application has more than
eight streams, we need L1 software prefetching to help prefetching more data. Second,
the L2 hardware prefetchers (combined with out-of-order execution and nonblocking

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:22 Z. Fang et al.

caches) are very effective most of the time. However, they also have some limitations:
(1) they cannot prefetch across a page boundary, and (2) they cannot prefetch beyond
20 cache lines. Thus, we can use software prefetching to trigger the L2 hardware
prefetchers if the needed prefetch distance is beyond 20 lines.

7. CASE STUDY: MULTISTAGE COORDINATED DATA PREFETCHING

In Section 5 and Section 6, we presented many useful insights into hardware and
software prefetching based on our measured data. In this section, we do a case study
of multistage coordinated data prefetching on both Xeon Phi and Sandy Bridge to
demonstrate the usefulness of our measured data, which we published in [Mehta et al.
2014]. Due to space constraints, we briefly explain our proposed strategies and quote
the results from [Mehta et al. 2014].

Multistage coordinated software prefetching on Xeon Phi: L1 software prefetching +
L2 software prefetching. On Xeon Phi, hardware prefetchers will be disabled if software
prefetching is accessing the same cache blocks as described in Section 5.3.1. Moreover,
the number of MSHRs at the L1 cache is only 8, which limits its number of outstanding
L1 software prefetches. However, the number of MSHRs at the L2 cache is around
56 to 60, which allows more L2 software prefetches. Therefore, we propose two-stage
coordinated software prefetching for Xeon Phi. Data are first brought from memory to
the L2 cache with a much larger prefetch distance that requires more outstanding L2
software prefetches (prefetch distance is calculated by dividing the prefetch latency by
loop iteration time, as proposed in Mowry et al. [1992]). Data are then brought from the
L2 cache to the L1 cache with a much smaller prefetch distance—that is, with fewer
outstanding L1 software prefetches. As a result, the resource contention on MSHRs is
greatly reduced, and the performance is significantly improved.

Multistage coordinated hardware and software prefetching on Sandy Bridge: L1
software prefetching + L2 hardware prefetching. In contrast, on Sandy Bridge, there
are only 10 MSHRs at both the L1 and L2 cache as described in Section 6, and two-
stage coordinated software prefetching will not work well. Hence, we have to rely more
on hardware prefetchers. According to our measurements in Section 6, L1 hardware
prefetchers on Sandy Bridge are quite conservative: they can only prefetch for loads
and can support at most eight streams. On the other hand, the L2 hardware prefetchers
are quite effective. Based on such observations, one strategy is to use only L2 hardware
prefetchers and disable L1 hardware prefetchers. To achieve a better performance, we
can use a two-stage coordinated hardware and software prefetching for Sandy Bridge
(as opposed to only software prefetching on Xeon Phi). Data are first brought from
memory to the L2 cache using the effective L2 hardware prefetchers. Then, to hide
the L1 miss latency that cannot be hidden by out-of-order execution and nonblocking
caches [Lee et al. 2012], data are further brought from the L2 cache to the L1 cache
using L1 software prefetching. Moreover, to overcome the limitation of L2 hardware
prefetchers (i.e., it cannot prefetch beyond 20 cache lines and cannot prefetch across
a page boundary), we use L1 software prefetching to train L2 hardware prefetchers
with a much larger prefetch distance when necessary. As presented in [Mehta et al.
2014], we make a prefetch distance as large as possible. To avoid pollution in the
L1 cache, we calculate the L1 software prefetch distance as “1/4 of L1 cache size” di-
vided by “data access size per loop iteration.” As a result, the L2 hardware prefetchers
can be trained to prefetch beyond 20 cache lines and page boundaries with a better
performance.

7.1. Experimental Environment and Results

We have implemented our multistage coordinated data prefetching algorithm based on
ROSE [Quinlan et al. 2001], an open source source-to-source compiler. After generating

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:23

Fig. 10. Performance speedup of different prefetching strategies for single-thread execution on Xeon Phi (a)
and Sandy Bridge (b).

the transformed source code that contains prefetching instructions, we use the Intel
ICC compiler (v13) [Krishnaiyer et al. 2013; ICC 2014] with the O3 option to generate
the executable. In our experiments, we choose a diverse set of memory-intensive bench-
marks from the SEPC CPU2006 [SPECCPU2006 2014] and OMP2012 [SPECOMP2012
2014] benchmark suites with the reference inputs that have high cache miss rates. We
also choose two frequently used kernels: dense matrix-matrix multiplication (matmul)
and sparse matrix-vector multiplication (spmv).

Figure 10 compares the performance of different prefetching strategies for the chosen
benchmarks running with a single thread on Xeon Phi and Sandy Bridge, respectively.
In the baseline configuration, we turn off all hardware and software prefetching. Note
that on Xeon Phi, the hardware prefetcher cannot be turned off. Except for our proposed
two-stage coordinated software prefetching (2-stage-SW) and two-stage coordinated
hardware and software prefetching (2-stage-HW-SW), we also evaluate the prefetching
performance speedup for (1) L1-SW, using L1 software prefetching only; (2) L2-SW, us-
ing L2 software prefetching only; (3) ICC [Krishnaiyer et al. 2013; ICC 2014], using ICC
with the -opt-prefetch option enabled; and (4) HW/ICC, with all hardware prefetchers
enabled on Sandy Bridge, together with ICC software prefetching.

Figure 10(a) shows the prefetching performance speedup on Xeon Phi. First, our
two-stage coordinated software prefetching performs the best. Compared to the hard-
ware prefetcher, it achieves 1.55X speedup on average, whereas compared to ICC, it
achieves 1.3X speedup on average because ICC does not coordinate the prefetching be-
tween multilevel caches in an effective way. Second, two-stage hardware and software
prefetching performs worst because hardware prefetcher and software prefetching can-
not coordinate effectively on Xeon Phi. Third, L1 software prefetching alone usually
cannot improve the performance due to severe contention on the eight MSHRs. Fourth,
L2 software prefetching alone performs better than the L2 hardware prefetcher alone.
Finally, for cactus, all software prefetching strategies achieve significant speedup com-
pared to the hardware prefetching because it has around 80 streams, whereas the
hardware prefetcher only supports 16 streams.

Figure 10(b) shows the prefetching performance speedup on Sandy Bridge. The re-
sults are quite different from those on Xeon Phi. Actually, the best prefetching strategy
on Xeon Phi becomes the worst on Sandy Bridge and vice versa. First, two-stage coordi-
nated hardware and software prefetching performs the best. Compared to the baseline,
it achieves 2.36X speedup on average, whereas compared to HW/ICC, it achieves 1.08X
speedup on average due to the coordination. The speedup compared to HW/ICC mainly
comes from three categories of benchmarks: (1) benchmarks with significant L1 miss

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



55:24 Z. Fang et al.

latency that cannot be tolerated by out-of-order execution and nonblocking caches, such
as swim; (2) benchmarks that needs large prefetch distance that cannot be prefetched by
the L2 hardware prefetcher, such as matmul and bwaves; and (3) benchmarks with both
property (1) and property (2), such as libquantum. For other benchmarks, two-stage
coordinated hardware and software prefetching achieve comparable performance with
hardware prefetchers (HW/ICC) since the software prefetching instruction overhead
incurred is negligible. Second, two-stage software prefetching performs worst. Since
both the L1 and L2 cache have only 10 MSHRs, two-stage software prefetching does
not have any advantage over using L1 or L2 software prefetching alone. Furthermore,
two-stage software prefetching incurs more instruction overhead than L1 software
prefetching alone. Third, hardware prefetching performs better than pure software
prefetching because it does not incur additional instruction overhead and is not lim-
ited by MHSR resources. Finally, for cactus, all prefetching strategies achieve modest
speedup because out-of-order execution and nonblocking caches on Sandy Bridge can
tolerate a large portion of the stalls caused by cache misses.

In summary, our multistage coordinated data prefetching case study has demon-
strated that using our measured data, we can achieve significant performance im-
provement.

8. CONCLUSION

In this article, we proposed a microbenchmarking methodology that allows software de-
velopers to measure various memory microarchitectural features based on SETEs. We
presented a comprehensive analysis of potential interfering factors from hardware re-
source constraints, operating system effects, and compiler optimizations, which can af-
fect the intended behavior of such microbenchmarks. We further proposed mechanisms
to control and mitigate those potential interferences. Using the proposed methodology,
we can measure not only those microarchitectural features that can use traditional
LETEs, such as cache/memory latency and off-chip bandwidth parameters, but also
those that require SETEs, such as software and hardware prefetching related details,
which have not been explored before.

Moreover, we demonstrated the effectiveness of our approach by developing a set of
open source microbenchmarks for multi- and many-core processors that have either
in-order or out-of-order cores. We measured many memory microarchitectural details
on Xeon Phi (many of them are unavailable in published data sheets), which are
summarized in Table V. We further demonstrated the portability of our approach on
the Intel Sandy Bridge multicore processor and measured some undocumented but
important memory microarchitectural parameters, which are summarized in Table VI.
We also provided some useful insights for effective software and hardware prefetching
based on the measured data. A case study that applies those insights on Xeon Phi
and Sandy Bridge shows that multistage coordinated data prefetching strategies can
significantly improve the application performance.

ACKNOWLEDGMENTS

We thank the reviewers for their constructive feedback that helped us improve the quality of our work. This
work was done as a partial fulfillment of the dissertation work by James Greensky at the University of
Minnesota at Twin Cities.

REFERENCES

Vlastimil Babka and Petr Tuma. 2009. Investigating cache parameters of x86 family processors. In Proceed-
ings of the 2009 SPEC Benchmark Workshop on Computer Performance Evaluation and Benchmarking.
77–96.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.



Measuring Microarchitectural Details of Multi- and Many-Core Memory Systems 55:25

George Chrysos. 2012. Knights Corner, Intel’s first many integrated core (MIC) architecture product. In
Proceedings of Hot Chips: A Symposium on High Performance Chips (HotChips’12).

John Demme and Simha Sethumadhavan. 2011. Rapid identification of architectural bottlenecks via precise
event counting. In Proceedings of the 38th Annual International Symposium on Computer Architecture
(ISCA’11). 353–364.

Paul J. Drongowski. 2014. Instruction-Based Sampling: A New Performance Analysis Technique for AMD
Family 10h Processors. Retrieved November 16, 2014, from http://amd-dev.wpengine.netdna-cdn.com/
wordpress/media/2012/10/AMD_IBS_ paper_EN.pdf.

Eiman Ebrahimi, Onur Mutlu, Chang Joo Lee, and Yale N. Patt. 2009. Coordinated control of multiple
prefetchers in multi-core systems. In Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO’09). 316–326.

Stijn Eyerman, Lieven Eeckhout, Tejas Karkhanis, and James E. Smith. 2006. A performance counter
architecture for computing accurate CPI components. In Proceedings of the 12th International Conference
on Architectural Support for Programming Languages and Operating Systems (ASPLOS’06). 175–184.

Stijn Eyerman, Kenneth Hoste, and Lieven Eeckhout. 2011. Mechanistic-empirical processor performance
modeling for constructing CPI stacks on real hardware. In Proceedings of the IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS’11). 216–226.

Jianbin Fang, Ana Lucia Varbanescu, and Henk Sips. 2013. Benchmarking Intel Xeon Phi to Guide Kernel
Design. Technical Report PDS-2013-005. Delft University of Technology, The Netherlands.

Michael Ferdman, Almutaz Adileh, Onur Kocberber, Stavros Volos, Mohammad Alisafaee, Djordje Jevdjic,
Cansu Kaynak, Adrian Daniel Popescu, Anastasia Ailamaki, and Babak Falsafi. 2012. Clearing the
clouds: A study of emerging scale-out workloads on modern hardware. In Proceedings of the 17th In-
ternational Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’12). 37–48.

Brian A. Fields, Rastislav Bodı́k, Mark D. Hill, and Chris J. Newburn. 2003. Using interaction costs for
microarchitectural bottleneck analysis. In Proceedings of the 36th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’03). 228–239.

Brian A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J. Newburn. 2004. Interaction cost and shotgun
profiling. ACM Transactions on Architecture and Code Optimization 1, 3, 272–304.

ICC. 2014. Intel ICC Compiler. Retrieved November 16, 2014, from https://software.intel.com/
en-us/intel-compilers.

Intel64IA32Manual. 2014. Intel 64 and IA-32 Architectures Optimization Reference Manual. Retrieved
November 16, 2014, from http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-opti
mization-manual.pdf.

Victor Jiménez, Roberto Gioiosa, Francisco J. Cazorla, Alper Buyuktosunoglu, Pradip Bose, and Francis
P. O’Connell. 2012. Making data prefetch smarter: Adaptive prefetching on POWER7. In Proceedings
of the 21st International Conference on Parallel Architectures and Compilation Techniques (PACT’12).
137–146.

Guido Juckeland, Michael Kluge, Wolfgang E. Nagel, and Stefan Puger. 2004. Performance analysis with
BenchIT: Portable, flexible, easy to use. In Proceedings of the 1st International Conference on the Quan-
titative Evaluation of Systems. 320–321.

Md Kamruzzaman, Steven Swanson, and Dean M. Tullsen. 2011. Inter-core prefetching for multicore proces-
sors using migrating helper threads. In Proceedings of the 16th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS’11). 393–404.

Rakesh Krishnaiyer, Emre Kultursay, Pankaj Chawla, Serguei Preis, Anatoly Zvezdin, and Hideki Saito.
2013. Compiler-based data prefetching and streaming non-temporal store generation for the Intel Xeon
Phi coprocessor. In Proceedings of the IEEE 27th International Parallel and Distributed Processing
Symposium Workshops PhD Forum (IPDPSW). 1575–1586.

Jaekyu Lee, Hyesoon Kim, and Richard Vuduc. 2012. When prefetching works, when it doesn’t, and why.
ACM Transactions on Architecture and Code Optimization 2, 1–2, 29.

David Levinthal. 2014. Performance Analysis Guide for Intel Core i7 Processor and Intel Xeon 5500 Proces-
sors. https://software.intel.com/sites/products/collateral/hpc/vtune/performa nce_analysis_guide.pdf.

LMbench. 2014. LMbench: Tools for Performance Analysis. Retrieved November 16, 2014, from http://www.
bitmover.com/lmbench/.

John D. McCalpin. 2014. STREAM: Sustainable Memory Bandwidth in High Performance Computers. Re-
trieved November 16, 2014, from http://www.cs.virginia.edu/stream/.

Sanyam Mehta, Zhenman Fang, Antonia Zhai, and Pen-Chung Yew. 2014. Multi-stage coordinated prefetch-
ing for present-day processors. In Proceedings of the 28th International Conference on Supercomputing
(ICS’14).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/AMDIBS paperEN.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/AMDIBS paperEN.pdf
https://software.intel.com/en-us/intel-compilers
https://software.intel.com/en-us/intel-compilers
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-opti ignorespaces mization-manual.pdf.
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-opti ignorespaces mization-manual.pdf.
https://software.intel.com/sites/products/collateral/hpc/vtune/performa ignorespaces nce_analysis_guide.pdf.
http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
http://www.cs.virginia.edu/stream/.


55:26 Z. Fang et al.

Daniel Molka, Daniel Hackenberg, Robert Schone, and Matthias S. Muller. 2009. Memory performance
and cache coherency effects on an Intel Nehalem multiprocessor system. In Proceedings of the 18th
International Conference on Parallel Architectures and Compilation Techniques (PACT’09). 261–270.

Todd C. Mowry, Monica S. Lam, and Anoop Gupta. 1992. Design and evaluation of a compiler algorithm for
prefetching. In Proceedings of the 5th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’92). 62–73.

Gabriele Paoloni. 2014. How to Benchmark Code Execution Times on Intel IA-32 and IA-64 Instruction
Set Architectures. Retrieved November 16, 2014, from http://www.intel.com/content/dam/www/public/
us/en/documents/white-papers/ia-32-ia-64-benchmark-code-execution-paper.pdf.

Lu Peng, Jih-Kwon Peir, Tribuvan K. Prakash, Carl Staelin, Yen-Kuang Chen, and David M. Koppelman.
2008. Memory hierarchy performance measurement of commercial dual-core desktop processors. Journal
of Systems Architecture: The EUROMICRO Journal 54, 8, 816–828.

Daniel J. Quinlan, Markus Schordan, Bobby Philip, and Markus Kowarschik. 2001. The specification of
source-to-source transformations for the compile-time optimization of parallel object-oriented scientific
applications. In Proceedings of the 14th International Conference on Languages and Compilers for Par-
allel Computing (LCPC’01). 383–394.

RDTSC. 2014. Using the RDTSC Instruction for Performance Monitoring. Retrieved November 16, 2014,
from http://www.ccsl.carleton.ca/∼jamuir/rdtscpm1.pdf.

SandyBridge. 2014. Intel Sandy Bridge Processor. Retrieved November 16, 2014, from http://ark.intel.
com/products/64590.

Seung Woo Son, Mahmut Kandemir, Mustafa Karakoy, and Dhruva Chakrabarti. 2009. A compiler-directed
data prefetching scheme for chip multiprocessors. In Proceedings of the 14th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP’09). 209–218.

SPECCPU2006. 2014. The SPEC CPU 2006 Benchmark Suite. Retrieved November 16, 2014, from
http://www.spec.org/cpu2006/.

SPECOMP2012. 2014. The SPEC OMP 2012 Benchmark Suite. Retrieved November 16, 2014, from
http://www.spec.org/omp/.

Santhosh Srinath, Onur Mutlu, Hyesoon Kim, and Yale N. Patt. 2007. Feedback directed prefetching: Im-
proving the performance and bandwidth-efficiency of hardware prefetchers. In Proceedings of the IEEE
13th International Symposium on High Performance Computer Architecture (HPCA’07). 63–74.

James Tuck, Luis Ceze, and Josep Torrellas. 2006. Scalable cache miss handling for high memory-level par-
allelism. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’06). 409–422.

Vasily Volkov and James W. Demmel. 2008. Benchmarking GPUs to tune dense linear algebra. In Proceedings
of the ACM/IEEE Conference on Supercomputing (SC’08). 31:1–31:11.

Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas Moshovos. 2010. Demys-
tifying GPU microarchitecture through microbenchmarking. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems Software (ISPASS’10). 235–246.

XeonPhiManual. 2014. Intel Xeon Phi Coprocessor System Software Developers Guide. Retrieved November
16, 2014, from http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-
coprocessor-system-software-developers-guide.pdf.

Received June 2014; revised October 2014; accepted October 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 55, Publication date: December 2014.

http://www.intel.com/content/dam/www/public/us/en/documents/white-paper s/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-paper s/ia-32-ia-64-benchmark-code-execution-paper.pdf
http://www.ccsl.carleton.ca/protect $elax sim $jamuir/rdtscpm1.pdf.
http://ark.intel.com/products/64590
http://ark.intel.com/products/64590
http://www.spec.org/cpu2006/.
http://www.spec.org/omp/.
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-coprocessor-system-software-developers-guide.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/xeon-phi-coprocessor-system-software-developers-guide.pdf

