
57

Cross-Loop Optimization of Arithmetic Intensity for Finite Element
Local Assembly

FABIO LUPORINI, Imperial College London
ANA LUCIA VARBANESCU, University of Amsterdam
FLORIAN RATHGEBER and GHEORGHE-TEODOR BERCEA, Imperial College London
J. RAMANUJAM, Louisiana State University
DAVID A. HAM and PAUL H. J. KELLY, Imperial College London

We study and systematically evaluate a class of composable code transformations that improve arithmetic
intensity in local assembly operations, which represent a significant fraction of the execution time in finite
element methods. Their performance optimization is indeed a challenging issue. Even though affine loop
nests are generally present, the short trip counts and the complexity of mathematical expressions, which vary
among different problems, make it hard to determine an optimal sequence of successful transformations.
Our investigation has resulted in the implementation of a compiler (called COFFEE) for local assembly
kernels, fully integrated with a framework for developing finite element methods. The compiler manipulates
abstract syntax trees generated from a domain-specific language by introducing domain-aware optimizations
for instruction-level parallelism and register locality. Eventually, it produces C code including vector SIMD
intrinsics. Experiments using a range of real-world finite element problems of increasing complexity show
that significant performance improvement is achieved. The generality of the approach and the applicability
of the proposed code transformations to other domains is also discussed.

Categories and Subject Descriptors: G.1.8 [Numerical Analysis]: Partial Differential Equations—Finite
element methods; G.4 [Mathematical Software]: Parallel and Vector Implementations

General Terms: Design, Performance

Additional Key Words and Phrases: Finite element integration, local assembly, compilers, optimizations,
SIMD vectorization

ACM Reference Format:
Fabio Luporini, Ana Lucia Varbanescu, Florian Rathgeber, Gheorghe-Teodor Bercea, J. Ramanujam, David
A. Ham, and Paul H. J. Kelly. 2015. Cross-loop optimization of arithmetic intensity for finite element local
assembly. ACM Trans. Architec. Code Optim. 11, 4, Article 57 (January 2015), 25 pages.
DOI: http://dx.doi.org/10.1145/2687415

This research is partly funded by the MAPDES project; the Department of Computing at Imperial
College London; EPSRC through grants EP/I00677X/1, EP/I006761/1, and EP/L000407/1; NERC grants
NE/K008951/1 and NE/K006789/1; the U.S. National Science Foundation through grants 0811457, 0926687,
and 1059417; the U.S. Army through contract W911NF-10-1-000; Louisiana State University; and an
HiPEAC collaboration grant.
Authors’ addresses: F. Luporini, F. Rathgeber, G.-T. Bercea, and P. H. J. Kelly, Department of Computing,
Imperial College London; email: {f.luporini12, f.rathgeber10, gheorghe-teodor.bercea08, p.kelly}@imperial.
ac.uk; A. L. Varbanescu, Informatics Institute, University of Amsterdam; email: a.l.varbanescu@uva.nl;
D. A. Ham, Department of Computing and Department of Mathematics, Imperial College London; email:
david.ham@imperial.ac.uk; J. Ramanujam, Center for Computation and Technology and the School of Elec-
trical Engineering and Computer Science, Louisiana State University; email: ram@cct.lsu.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2015 ACM 1544-3566/2015/01-ART57 $15.00

DOI: http://dx.doi.org/10.1145/2687415

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

http://dx.doi.org/10.1145/2687415
http://dx.doi.org/10.1145/2687415
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2687415&domain=pdf&date_stamp=2015-01-09

57:2 F. Luporini et al.

1. INTRODUCTION

In many fields, such as computational fluid dynamics, computational electromagnetics,
and structural mechanics, phenomena are modeled by partial differential equations
(PDEs). Numerical techniques, such as the finite volume method and the finite element
method, are widely employed to approximate solutions of these PDEs. Unstructured
meshes are often used to discretize the computational domain, as they allow an accurate
representation of complex geometries. The solution is sought by applying suitable
numerical operations, described by computational kernels, to all entities of a mesh,
such as edges, vertices, or cells. On standard clusters of multicores, a kernel typically
is executed sequentially by a thread, whereas parallelism is achieved by partitioning
the mesh and assigning each partition to a different node or thread. Such an execution
model, with minor variations, is adopted, for example, by Markall et al. [2013], Logg
et al. [2012], AMCG [2010], and DeVito et al. [2011].

The time required to execute the numerical kernels is a major issue, because the
equation domain needs to be discretized into an extremely large number of cells to
obtain a satisfactory approximation of the PDE, possibly of the order of trillions, as in
Rossinelli et al. [2013]. For example, it has been well established that mesh resolution is
critical in the accuracy of numerical weather forecasts. However, operational forecast
centers have a strict time limit in which to produce a forecast—60 minutes in the
case of the UK Met Office. Producing efficient kernels has a direct scientific payoff
in higher resolution, and therefore more accurate, forecasts. Computational cost is a
dominant problem in computational science simulations, especially for those based on
finite elements, which are the subject of this article.

In particular, we address the well-known problem of optimizing the local assembly
phase of the finite element method [Russell and Kelly 2013; Ølgaard and Wells 2010;
Knepley and Terrel 2013; Kirby et al. 2005], which can be responsible for a signifi-
cant fraction of the overall computation runtime, often in the range of 30% to 60%.
With respect to these studies, we propose a novel set of composable code transfor-
mations targeting, for the first time, cross-loop arithmetic intensity, with emphasis on
instruction-level parallelism, redundant computation, and register locality. In addition,
we discuss how such transformations generalize to domains other than finite element
local assembly.

During the assembly phase, the solution of the PDE is approximated by executing
a problem-specific kernel over all cells, or elements, in the discretized domain. In this
work, we focus on relatively low order finite element methods, in which an assembly
kernel’s working set is usually small enough to fit in the L1 cache of traditional CPU
architectures. Low-order methods are by no means exotic: they are employed in a wide
variety of fields, including climate and ocean modeling, computational fluid dynamics,
and structural mechanics. The efficient assembly of high-order methods such as the
spectral element method [Vos et al. 2010] requires a significantly different loop nest
structure. High-order methods are therefore excluded from our study.

We aim to maximize our impact on the platforms that are realistically used for
finite element applications, so we target conventional CPU architectures rather than
GPUs. The key limiting factor for the execution on GPUs is the stringent memory
requirements. Only relatively small problems fit in GPU memory, and support for
distributed GPU execution in general-purpose finite element frameworks is minimal.
There has been some research on adapting local assembly to GPUs, which we mention in
Section 7; these works differ from ours in several ways, including (1) not optimizing for
cross-loop arithmetic intensity (the goal is rather effective multithread parallelization),
and (2) not relying on automated code generation from a domain-specific language
(DSL, explained next); moreover, they have done testing only on order 1 methods,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:3

whereas we focus on the order range of 1 to 4. In addition, our code transformations
would drastically impact the GPU parallelization strategy, such as by increasing a
thread’s working set. For all of these reasons, a study on extending our work to GPU
architectures is beyond the scope of this article. In Section 6, however, we provide some
intuitions about this research direction.

An assembly kernel is characterized by the presence of an affine, often nonperfect loop
nest, in which individual loops are rather small: their trip count rarely exceeds 30 and
may be as low as 3 for low-order methods. In the innermost loop, a problem-specific
compute-intensive expression evaluates a 2D array, representing the result of local
assembly in an element of the discretized domain. With such kernel and working set
structures, traditional transformations for cache locality (e.g., blocking) are not helpful;
instead, we focus on aspects such as the optimization of floating-point operations,
register locality, and instruction-level parallelism, especially vectorization.

Achieving high performance on CPUs is nontrivial. The complexity of the mathemat-
ical expressions, often characterized by a large number of operations on constants and
small matrices, makes it hard to determine an optimal sequence of transformations
that is successfully applicable to different problems (equations). Loop trip counts are
typically small and can vary significantly, which further exacerbates the issue. There-
fore, a compiler-based approach is the only reasonable option to obtain close-to-peak
performance in a wide range of different local assembly kernels. Optimizations like
padding, generalized loop-invariant code motion, vector-register tiling, and expression
splitting, as well as their composition, are essential, but their support in state-of-the-art
vendor and polyhedral compilers, if any, is quite limited. BLAS routines could theoret-
ically be employed, although a fairly complicated control and dataflow analysis would
be required to automate identification and extraction of matrix-matrix multiplications.
In addition, as detailed in Section 5.2.8, the small dimension of the matrices involved
and the potential loss in data locality can limit or eliminate the performance gain of
this approach.

To overcome the constraints of the available compilers and specialized linear algebra
libraries, we have automated a set of generic and model-driven code transformations
in COFFEE,1 a compiler for optimizing local assembly kernels. COFFEE is integrated
with [Firedrake 2014], a system for solving PDEs through the finite element method
based on the PyOP2 abstraction [Rathgeber et al. 2012; Markall et al. 2013]. All prob-
lems expressible with this framework are supported by COFFEE, including equations
that can be found at the core of real-world simulations, such as those used in our
performance evaluation. In evaluating our code transformations for a range of rele-
vant problems, we vary two key parameters that impact solution accuracy and kernel
cost: the polynomial order of the method (we investigate from p = 1 to p = 4) and
the geometry of elements in the discretized domain (2D triangle, 3D tetrahedron, 3D
prism). From the point of view of the generated code, these two parameters directly
impact the size of both loop nests and mathematical expressions, as elaborated in
Section 5.2.1.

Our experiments show that the original generated code for nontrivial assembly ker-
nels, despite following state-of-the-art techniques, remains suboptimal in the context
of modern multicore architectures. Our domain-aware cost model–driven sequence of
code transformations, aimed at improving SIMD vectorization and register data local-
ity, can result in performance improvements up to 4.4× over original kernels. Around
70% of the test cases obtain a speedup greater than 2×.

1COFFEE stands for COmpiler For Fast Expression Evaluation.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:4 F. Luporini et al.

Fig. 1. Structure of a local assembly kernel.

Summarizing, the contributions of this work are as follows:

(1) An optimization strategy for finite element local assembly that exploits domain
knowledge and goes beyond the limits of both vendor and research compilers

(2) The design and implementation of a compiler that automates the proposed code
transformations for any problems expressible in Firedrake

(3) A systematic analysis using a suite of examples of real-world importance that is
evidence of significant performance improvements on two Intel architectures, a
Sandy Bridge CPU and the Xeon Phi

(4) A full application evaluation to demonstrate that the optimization strategy greatly
impacts the whole finite element problem.

Our contributions also include a theoretical study involving

(5) An analysis of the generality of the proposed code transformations and an investi-
gation of their applicability to different computational domains.

The article is organized as follows. In Section 2, we provide some background on local
assembly, show code generated by Firedrake, and emphasize the critical computational
aspects. Section 3 describes the various code transformations, highlighting when and
how domain knowledge has been exploited. The design and implementation of our com-
piler is discussed in Section 4. Section 5 shows performance results. The generality of
our optimization strategy and the applicability to other domains is discussed in Section
6. Related work is described in Section 7. Finally, Section 8 reviews our contributions
in the light of our results and identifies priorities for future work.

2. BACKGROUND AND MOTIVATING EXAMPLES

Local assembly is the computation of contributions of a specific cell in the discretized
domain to the linear system that yields the PDE solution. The process consists of
numerically evaluating problem-specific integrals to produce a matrix and a vector
[Ølgaard and Wells 2010; AMCG 2010], whose sizes depend on the order of the method.
This operation is applied to all cells in the discretized domain. In this work, we focus
on local matrices or element matrices, which are more costly to compute than element
vectors.

Given a finite element description of the input problem expressed through the
domain-specific Unified Form Language (UFL) [Alnæs et al. 2014], Firedrake employs
the FEniCS form compiler (FFC) [Kirby and Logg 2006] to generate an abstract syn-
tax tree (AST) of a kernel implementing assembly using numerical quadrature. This
kernel can be applied to any element in the mesh, which follows from a mathematical
property of the finite element method. The evaluation of a local matrix can be reduced
to integration on a fixed reference element—a special element that does not belong to
the domain—after a suitable change of coordinates. Firedrake triggers the compilation
of an assembly kernel using an available vendor compiler and manages its parallel
execution over all elements in the mesh. As already explained, the subject of this ar-
ticle is to enhance this execution model by adding an optimization stage prior to the
generation of C code.

The structure of a local assembly kernel is shown in Figure 1. The inputs are a zero-
initialized 2D array used to store the element matrix, the element’s coordinates in the

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:5

Table I. Type and Variable Names Used in the Various Listings
to Identify Local Assembly Objects

Object Name Type Variable Name(s)
Determinant of the Jacobian matrix double det

Inverse of the Jacobian matrix double K1, K2, . . .

Coordinates double** coords
Fields (coefficients) double** w

Numerical integration weights double[] W
Basis functions (and derivatives) double[][] X, Y, X1, . . .

Element matrix double[][] A

LISTING 1: Local assembly source code generated by Firedrake for a Helmholtz problem on a
2D triangular mesh using Lagrange p = 1 elements.
void helmholtz(double A[3][3], double **coords) {
// K, det = Compute Jacobian (coords)

static const double W[3] = {. . .}
static const double X D10[3][3] = {{. . .}}
static const double X D01[3][3] = {{. . .}}
for (int i = 0; i<3; i++)
for (int j = 0; j<3; j++)
for (int k = 0; k<3; k++)
A[j][k] + = ((Y[i][k]*Y[i][j]+

+((K1*X D10[i][k]+K3*X D01[i][k])*(K1*X D10[i][j]+K3*X D01[i][j]))+
+((K0*X D10[i][k]+K2*X D01[i][k])*(K0*X D10[i][j]+K2*X D01[i][j])))*
*det*W[i]);

}

discretized domain and coefficient fields, for instance indicating the values of velocity
or pressure in the element. The output is the evaluated element matrix. The kernel
body can be logically split into three parts:

(1) Calculation of the Jacobian matrix, its determinant, and its inverse required for
the aforementioned change of coordinates from the reference element to the one
being computed.

(2) Definition of basis functions used to interpolate fields at the quadrature points in
the element. The choice of basis functions is expressed in UFL directly by users. In
the generated code, they are represented as global read-only 2D arrays (i.e., using
static const in C) of double-precision floats.

(3) Evaluation of the element matrix in an affine loop nest in which the integration is
performed.

Table I shows the variable names that we will use in the upcoming code snippets to
refer to the various kernel objects.

The actual complexity of a local assembly kernel depends on the finite element prob-
lem being solved. In simpler cases, the loop nest is perfect, has short trip counts (in
the range of 3 to 15), and the computation reduces to a summation of a few products
involving basis functions. An example is provided in Listing 1, which shows the assem-
bly kernel for a Helmholtz problem using Lagrange basis functions on 2D elements
with polynomial order p = 1. In other scenarios, such as when solving the Burgers
equation, the number of arrays involved in the computation of the element matrix
can be much larger. The assembly source code is given in Listing 2 and contains 14
different arrays that are accessed, where the same array can be referenced multiple

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:6 F. Luporini et al.

LISTING 2: Local assembly source code generated by Firedrake for a Burgers problem on a 3D
tetrahedral mesh using Lagrange p = 1 elements.
void burgers(double A[12][12], double ∗∗coords, double ∗∗w) {
// K, det = Compute Jacobian (coords)

static const double W[5] = {. . .}
static const double X1 D001[5][12] = {{. . .}}
static const double X2 D001[5][12] = {{. . .}}
//11 other basis functions definitions.
. . .
for (int i = 0; i<5; i++) {
double F0 = 0.0;
//10 other declarations (F1, F2,. . .)
. . .
for (int r = 0; r<12; r++) {
F0 += (w[r][0]*X1 D100[i][r]);
//10 analogous statements (F1, F2, . . .)
. . .

}
for (int j = 0; j<12; j++)
for (int k = 0; k<12; k++)
A[j][k] += (..(K5*F9)+(K8*F10))*Y1[i][j])+
+(((K0*X1 D100[i][k])+(K3*X1 D010[i][k])+(K6*X1 D001[i][k]))*Y2[i][j]))*F11)+
+(..((K2*X2 D100[i][k]) + · · · + (K8*X2 D001[i][k]))*((K2*X2 D100[i][j]) + · · · +
(K8*X2 D001[i][j]))..)+
+ <roughly a hundred sum/muls go here>)..)*
*det*W[i]);

}
}

times within the same expression. This may also require the evaluation of constants
in outer loops (called F in the code) to act as scaling factors of arrays. Trip counts grow
proportionately to the order of the method, and arrays may be block sparse. In addition
to a larger number of operations, more complex cases like the Burgers equation are
characterized by high register pressure.

The Helmholtz and Burgers equations exemplify a large class of problems and, as
such, will constitute our benchmark problems, along with the Diffusion equation. We
carefully motivate this choice in Section 5.2.1.

Despite the infinite variety of assembly kernels that Firedrake can generate, it is
still possible to identify common domain-specific traits that can be exploited for effec-
tive code transformations and SIMD vectorization. These include (1) memory accesses
along the three loop dimensions are always unit stride; (2) the j and k loops are inter-
changeable, whereas interchanges involving the i loop require precomputation of values
(e.g., the F values in Burgers) and introduction of temporary arrays, as explained in
Section 3; (3) depending on the problem being solved, the j and k loops could iterate
over the same iteration space; and (4) most of the subexpressions on the right-hand
side of the element matrix computation depend on just two loops (either i-j or i-k).
In Section 3, we show how to exploit these observations to define a set of systematic,
composable optimizations.

3. CODE TRANSFORMATIONS

The code transformations presented in this section are applicable to all finite element
problems that can be formulated in Firedrake. Their generality and the potential for
applicability in other domains is discussed in Section 6.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:7

As already emphasized, the variations in the structure of mathematical expres-
sions and in loop trip counts, although typically limited to tens of iterations, ren-
der the optimization process challenging, requiring distinct sets of transformations to
bring performance closest to the machine peak in different problems. For example, the
Burgers problem in Listing 2, given the large number of arrays accessed, suffers from
high register pressure, whereas the Helmholtz problem in Listing 1 does not; this in-
tuitively suggests that the two problems require a different treatment, based on an
in-depth analysis of both data and iteration spaces. Furthermore, domain knowledge
enables transformations that a general-purpose compiler could not apply, making the
optimization space even larger. In this context, our goal is to understand the rela-
tionship between distinct code transformations, their impact on cross-loop arithmetic
intensity, and to what extent their composability is effective in a class of problems and
architectures.

3.1. Padding and Data Alignment

The absence of stencils renders the element matrix computation easily autovectorizable
by a vendor compiler. Nevertheless, autovectorization is not efficient if data are not
aligned to cache-line boundaries and if the length of the innermost loop is not a multiple
of the vector length VL, especially when the loops are small, as in local assembly.

Data alignment is enforced in two steps. First, all arrays are allocated to addresses
that are multiples of VL. Then, 2D arrays are padded by rounding the number of
columns to the nearest multiple of VL. For instance, assume that the original size of a
basis function array is 3 × 3 and VL = 4 (e.g., AVX processor, with 256-bit-long vector
registers and 64-bit double-precision floats). In this case, a padded version of the array
will have size 3 × 4. The compiler is explicitly told about data alignment using suitable
pragmas; for example, in the case of the Intel compiler, the annotation #pragma vector
aligned is added before the loop (as shown in later figures) to inform that all of the
memory accesses in the loop body will be properly aligned. This allows the compiler
to issue aligned load and store instructions, which are notably faster than unaligned
ones.

Padding of all 2D arrays involved in the evaluation of the element matrix also al-
lows to safely round the loop trip count to the nearest multiple of VL. This avoids the
introduction of a remainder (scalar) loop from the compiler, which would render vec-
torization less efficient. These extra iterations only write to the padded region of the
element matrix and therefore have no side effects on the final result.

3.2. Generalized Loop-Invariant Code Motion

From an inspection of the codes in Listings 1 and 2, it can be noted that the computa-
tion of A involves evaluating many subexpressions that only depend on two iteration
variables. Since symbols in most of these subexpressions are read-only variables, there
is ample room for loop-invariant code motion. Vendor compilers apply this technique,
although not in the systematic way we need for our assembly kernels. We want to
overcome two deficiencies that both Intel and GNU compilers exhibit. First, they only
identify subexpressions that are invariant with respect to the innermost loop. This is
an issue for subexpressions depending on i-k, which are not automatically lifted in
the loop order ijk. Second, the hoisted code is scalar and therefore not subjected to
autovectorization.

We work around these limitations with source-level loop-invariant code motion. In
particular, we precompute all values that an invariant subexpression assumes along
its fastest varying dimension. This is implemented by introducing a temporary array
per invariant subexpression and by adding a new loop to the nest. At the price of extra
memory for storing temporaries, the gain is that lifted terms can be autovectorized as

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:8 F. Luporini et al.

LISTING 3: Local assembly source code for the Helmholtz problem in Listing 1 after application
of padding, data alignment, and loop-invariant code motion, for an AVX architecture. In this
example, subexpressions invariant to j are identical to those invariant to k, so they can be
precomputed once in the r loop.
void helmholtz(double A[3][4], double **coords) {
#define ALIGN attribute ((aligned(32)))
// K, det = Compute Jacobian (coords)

static const double W[3] ALIGN = {. . .}
static const double X D10[3][4] ALIGN = {{. . .}}
static const double X D01[3][4] ALIGN = {{. . .}}
for (int i = 0; i<3; i++) {
double LI 0[4] ALIGN;
double LI 1[4] ALIGN;
for (int r = 0; r<4; r++) {
LI 0[r] = ((K1*X D10[i][r])+(K3*X D01[i][r]));
LI 1[r] = ((K0*X D10[i][r])+(K2*X D01[i][r]));

}
for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
A[j][k] += (Y[i][k]*Y[i][j]+LI 0[k]*LI 0[j]+LI 1[k]*LI 1[j])*det*W[i]);

}
}

part of an inner loop. Given the short trip counts of our loops, it is important to achieve
autovectorization of hoisted terms to minimize the percentage of scalar instructions,
which could otherwise be significant. It is also worth noting that in some problems,
for instance Helmholtz, invariant subexpressions along j are identical to those along
k, and both loops iterate over the same iteration space, as anticipated in Section 2. In
these cases, we safely avoid redundant precomputation.

Listing 3 shows the Helmholtz assembly source code after the application of loop-
invariant code motion, padding, and data alignment.

3.3. Model-Driven Vector-Register Tiling

One notable problem of assembly kernels concerns register allocation and register
locality. The critical situation occurs when loop trip counts and the variables accessed
are such that the vector-register pressure is high. Since the kernel’s working set fits
the L1 cache, it is particularly important to optimize register management. Standard
optimizations, such as loop interchange, unroll, and unroll-and-jam, can be employed
to deal with this problem. In COFFEE, these optimizations are supported either by
means of explicit code transformations (interchange, unroll-and-jam) or indirectly by
delegation to the compiler through standard pragmas (unroll). Tiling at the level of
vector registers is an additional feature of COFFEE. Based on the observation that
the evaluation of the element matrix can be reduced to a summation of outer products
along the j and k dimensions, a model-driven vector-register tiling strategy can be
implemented. If we consider the code snippet in Listing 3 and ignore the presence of
the operation det*W[i], the computation of the element matrix is abstractly expressible
as

Ajk =
∑

x ∈ B′ ⊆ B
y ∈ B′′ ⊆ B

xj · yk j, k = 0, . . . , 2, (1)

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:9

Fig. 2. Outer-product vectorization by permuting values in a vector register.

Fig. 3. Restoring the storage layout after op-vect. The figure shows how 4 × 4 elements in the top-left block
of the element matrix A can be moved to their correct positions. Each rotation, represented by a group of
three same-colored arrows, is implemented by a single shuffle intrinsic.

LISTING 4: Local assembly source code generated by Firedrake for the Helmholtz problem
after application of op-vect on top of the optimizations shown in Listing 3. In this example, the
unroll-and-jam factor is 1.
void helmholtz(double A[4][4], double **coords) {

// K, det = Compute Jacobian (coords)
// Declaration of basis function matrices

for (int i = 0; i<3; i++) {
// Do generalized loop-invariant code motion
for (int j = 0; j<4; j+=4)
for (int k = 0; k<4; k+=4) {

// load and set intrinsics
// Compute A[0,0], A[1,1], A[2,2], A[3,3]
// One permute pd intrinsic per k-loop load
// Compute A[0,1], A[1,0], A[2,3], A[3,2]
// One permute2f128 pd intrinsic per k-loop load
// . . .

}
// Remainder loop (from j = 4 to j = 6)

}
// Restore the storage layout:

for (int j = 0; j<4; j+=4) {
m256d r0, r1, r2, r3, r4, r5, r6, r7;

for (int k = 0; k<4; k+=4) {
r0 = mm256 load pd (&A[j+0][k]);
// Load A[j+1][k], A[j+2][k], A[j+3][k]
r4 = mm256 unpackhi pd (r1, r0);
r5 = mm256 unpacklo pd (r0, r1);
r6 = mm256 unpackhi pd (r2, r3);
r7 = mm256 unpacklo pd (r3, r2);
r0 = mm256 permute2f128 pd (r5, r7, 32);
r1 = mm256 permute2f128 pd (r4, r6, 32);
r2 = mm256 permute2f128 pd (r7, r5, 49);
r3 = mm256 permute2f128 pd (r6, r4, 49);
mm256 store pd (&A[j+0][k], r0);

// Store A[j+1][k], A[j+2][k], A[j+3][k]
}
}
}

where B is the set of all basis functions (or temporary variables, e.g., LI 0) accessed in
the kernel, whereas B′ and B′′ are generic problem-dependent subsets. Regardless of the
specific input problem, by abstracting from the presence of all variables independent of
both j and k, the element matrix computation is always reducible to this form. Figure
2 illustrates how we can evaluate 16 entries (j, k = 0, . . . , 3) of the element matrix
using just two vector registers, which represent a 4 × 4 tile, assuming |B′| = |B′′| = 1.
Values in a register are shuffled each time a product is performed. Standard compiler
autovectorization for both GNU and Intel compilers, instead, executes four broadcast
operations (i.e., “splat” of a value over all of the register locations) along the outer
dimension to perform the calculation. In addition to incurring a larger number of cache
accesses, it needs to keep between f = 1 and f = 3 extra registers to perform the same
16 evaluations when unroll-and-jam is used, with f being the unroll-and-jam factor.

The storage layout of A, however, is incorrect after the application of this outer-
product–based vectorization (op-vect, in the following). It can be efficiently restored
with a sequence of vector shuffles following the pattern highlighted in Figure 3, ex-
ecuted once outside of the ijk loop nest. The generated pseudocode for the simple
Helmholtz problem when using op-vect is shown in Listing 4.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:10 F. Luporini et al.

3.4. Expression Splitting

In complex kernels, like Burgers in Listing 2, and on certain architectures, achiev-
ing effective register allocation can be challenging. If the number of variables in-
dependent of the innermost-loop dimension is close to or greater than the number
of available CPU registers, then poor register reuse is likely. This usually happens
when the number of basis function arrays, temporaries introduced by generalized loop-
invariant code motion, and problem constants is large. For example, applying loop-
invariant code motion to Burgers on a 3D mesh requires 24 temporaries for the ijk
loop order. This can make hoisting of the invariant loads out of the k loop inefficient
on architectures with a relatively low number of registers. One potential solution to
this problem consists of suitably “splitting” the computation of the element matrix A
into multiple subexpressions; an example for the Helmholtz problem is given later in
Listing 5. The transformation can be regarded as a special case of classic loop fission, in
which associativity of the sum is exploited to distribute the expression across multiple
loops. To the best of our knowledge, expression splitting is not supported by available
compilers.

LISTING 5: Local assembly source code generated by Firedrake for the Helmholtz problem in
which split has been applied on top of the optimizations shown in Listing 3. In this example, the
split factor is 2.
void helmholtz(double A[3][4], double **coords) {
// Same code as in Listing˜3 up to the j loop
for (int j = 0; j<3; j++)
#pragma vector aligned
for (int k = 0; k<4; k++)
A[j][k] += (Y[i][k]*Y[i][j]+LI 0[k]*LI 0[j])*det*W[i];

for (int j = 0; j<3; j++)
#pragma vector aligned

for (int k = 0; k<4; k++)
A[j][k] += LI 1[k]*LI 1[j]*det*W[i];

}

Splitting an expression (henceforth split) has several drawbacks, however. First,
it increases the number of accesses to A in proportion to the “split factor,” which
is the number of subexpressions produced. In addition, depending on how splitting
is done, it can lead to redundant computation. For example, the number of times
the product det ∗ W[i] is performed is proportional to the number of subexpressions,
as shown in the code snippet. Further, it increases loop overhead, such as through
additional branch instructions. Finally, it might affect register locality: for instance,
the same array could be accessed in different subexpressions, requiring a proportional
number of loads be performed, although this is not the case for the Helmholtz example.
Nevertheless, the performance gain from improved register reuse can still be greater
if suitable heuristics are used. Our approach consists of traversing the expression
tree and recursively splitting it into multiple subexpressions as long as the number
of variables independent of the innermost loop exceeds a certain threshold. This is
elaborated in the next section and validated against empirical search in Section 5.2.6.

4. OVERVIEW OF COFFEE

Firedrake users employ the UFL to express problems in a notation resembling math-
ematical equations. At runtime, the high-level specification is translated by a modi-
fied version of the FFC [Kirby and Logg 2006] into an AST representation of one or

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:11

Fig. 4. High-level view of Firedrake. COFFEE is at the core, receiving ASTs from a modified version of the
FFC and producing optimized C code kernels.

more finite element assembly kernels. ASTs are then passed to COFFEE to apply the
transformations described in Section 3. The output of COFFEE, C code, is eventually
provided to PyOP2 [Rathgeber et al. 2012; Markall et al. 2013], where just-in-time
compilation and execution over the discretized domain take place. The flow and the
compiler structure are outlined in Figure 4.

Some of the transformations presented in the previous section, as well as other typ-
ical compiler optimizations used in COFFEE, such as loop interchange and unrolling,
are parametric; for instance, expression splitting and loop unrolling depend on the
split and the unroll factors, respectively. Since all transformations are composable, the
optimization space can be as large as thousands of variants for local assembly kernels
in which mathematical expressions are moderately complex and the iteration space
is not particularly small; so, a pruning strategy is required. For this, COFFEE uses
heuristics and a simple cost model to select the most suitable optimization strategy
for a given problem. Autotuning can also be used, although it would significantly in-
crease the runtime overhead, since the generation of ASTs occurs at runtime as soon
as problem-specific data are available.

The compiler applies an ordered sequence of optimization steps to the ASTs received
from FFC. Application of loop-invariant code motion (or licm) must precede padding and
data alignment, due to the introduction of temporary arrays. These transformations
are always performed because they are likely to improve the runtime performance, as
demonstrated by our results in Section 5.2. Based on a cost model (described later), loop
interchange, split, and op-vect may be introduced. Their implementation is centered on
analysis and manipulation of the kernel AST. When op-vect is selected, the compiler
outputs AVX or AVX-512 intrinsics code. Any possible corner cases are handled: for
example, if op-vect is to be applied but the size of the iteration space is not a multiple
of the vector length, then a remainder loop, amenable to autovectorization, is inserted.

Loop interchange. All loops are interchangeable, provided that temporaries are intro-
duced if the nest is not perfect. For the employed storage layout, the loop permutations
ijk and ikj are likely to maximize performance. Conceptually, this is motivated by the
fact that if the i loop were in an inner position, then a significantly higher number
of load instructions would be required at every iteration. We tested this hypothesis
in manually crafted kernels. We found that the performance loss is greater than the
gain due to the possibility of accumulating increments in a register, rather than mem-
ory, along the i loop. The choice between ijk and ikj depends on the number of load
instructions that can be hoisted out of the innermost dimension. Our compiler chooses
the outermost loop such that the number of invariant loads is smallest, freeing addi-
tional registers for computation of the element matrix.

Loop unrolling. Loop unroll (or unroll-and-jam of outer loops) is fundamental to
the exposure of instruction-level parallelism, and tuning unroll factors is particularly
important.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:12 F. Luporini et al.

Fig. 5. The cost model is employed by the compiler to estimate the most suitable unroll-and-jam (when
op-vect is used) and split factors, avoiding the overhead of autotuning.

We first observe that manual full (or extensive) unrolling is unlikely to be effective
for two reasons. First, the ijk loop nest would need to be small enough such that the
unrolled instructions do not exceed the instruction cache, which is rarely the case:
for the local assembly kernels we study, the minimum size of the ijk loop nest is
3 × 3 × 3 (triangular mesh and polynomial order 1); however, this increases rapidly
with the polynomial order of the method and problem dimensionality (e.g., tetrahedral
meshes imply larger loop nests than triangular ones), so sizes greater than 10 × 10 ×
10, for which extensive unrolling would already be harmful, are quite common in
practice. Second, manual unrolling is dangerous because it may compromise compiler
autovectorization by either removing loops (most compilers search for vectorizable
loops) or losing spatial locality within a vector register.

By comparison with implementations characterized by manually unrolled loops, we
note that recent versions of compilers such as those of GNU and Intel estimate close-
to-optimal unroll factors when the loops are affine and their bounds are relatively
small and known at compile time, which is the case of our kernels. Our choice, there-
fore, is to leave the backend compiler in charge of selecting unroll factors. This also
simplifies COFFEE’s cost model, described next. The only situation in which we ex-
plicitly unroll-and-jam a loop is when op-vect is used, since the transformed code pre-
vents the Intel compiler from applying this optimization, even if specific pragmas are
added.

Cost model. The cost model is shown in Figure 5. It takes into account the number
of available logical vector registers, n_regs, and the number of unique variables ac-
cessed: n_consts counts variables independent of both j and k loops and temporary
registers, n_outer_arrays counts j-dependent variables, and n_inner_arrays counts
k-dependent variables, assuming the ijk loop order. These values are used to estimate
unroll-and-jam and split factors for op-vect and split. If a factor is 0, then the corre-
sponding transformation is not applied. The split transformation is triggered whenever
the number of hoistable terms is larger than the available registers along the outer
dimension (lines 3 through 8), which is approximated as half of the total (line 3). A split
factor of n means that the assembly expression should be “cut” into n subexpressions.
Depending on the structure of the assembly expression, each subexpression might end
up accessing a different number of arrays; the cost model is simplified by assuming
that all subexpressions are of the same size. The unroll-and-jam factor for the op-vect
transformation is determined as a function of the available logical registers—that is,
those not used for storing hoisted terms (lines 9 through 11). Finally, the profitability
of loop interchange is evaluated (line 13).

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:13

5. PERFORMANCE EVALUATION

5.1. Experimental Setup

Experiments were run on a single core of two Intel architectures: a Sandy Bridge (I7-
2600 CPU, running at 3.4GHz, 32KB L1 cache, and 256KB L2 cache) and a Xeon Phi
(5110P, running at 1.05GHz in native mode, 32KB L1 cache, and 512KB L2 cache). We
have chosen these two architectures because of the differences in the number of logical
registers and SIMD lanes (16 256-bit registers in the Sandy Bridge and 32 512-bit
registers in the Xeon Phi), which can impact the optimization strategy. The icc 13.1
compiler was used. We selected the best optimization levels for each platform; we used
-xAVX for autovectorization and -O2 on the Sandy Bridge, and -O3 on the Xeon Phi.

We present two studies. First, in Section 5.2, we analyze the impact of the proposed
code transformations, and their interplay, in three real-world representative equa-
tions. We quantify the speedups achievable at the level of the local assembly kernel,
by excluding the other stages of the computation from the measurements. Then, in
Section 5.3, we provide a full application investigation. Here, we use another equa-
tion, bringing the total number of examined problems to four, to demonstrate that
COFFEE’s optimizations actually allow a significant reduction in the overall execution
time, which is the motivation for this work.

5.2. In-Depth Performance Analysis of the Code Transformations and Their Interplay

5.2.1. Choice and Properties of the Benchmarks. Our code transformations were evaluated
in three real-world problems based on the following PDEs: (1) Helmholtz, (2) Advection-
Diffusion, and (3) Burgers.

The three chosen benchmarks are real-life kernels and comprise the core differen-
tial operators in some of the most frequently encountered finite element problems in
scientific computing. This is of crucial importance because distinct problems, possibly
arising in completely different fields, may employ (subsets of) the same differential
operators of our benchmarks, which implies similarities and redundant patterns in
the generated code. Consequently, the proposed code transformations have a domain
of applicability that goes far beyond that of the three analyzed equations.

The Helmholtz and Diffusion kernels are archetypal second-order elliptic operators.
They are complete and unsimplified examples of the operators used to model diffusion
and viscosity in fluids, and for imposing pressure in compressible fluids. As such, they
are both extensively used in climate and ocean modeling. Very similar operators, for
which the same optimizations are expected to be equally effective, apply to elasticity
problems, which are at the base of computational structural mechanics. The Burgers
kernel is a typical example of a first-order hyperbolic conservation law, which occurs in
real applications whenever a quantity is transported by a fluid (the momentum itself, in
our case). We chose this particular kernel because it applies to a vector-valued quantity,
wherease the elliptic operators apply to scalar quantities; this impacts the generated
code, as explained next. The operators that we have selected are characteristic of both
the second- and first-order operators that dominate fluids and solids simulations.

The benchmarks were written in UFL (code available in Luporini [2014a]) and exe-
cuted over real unstructured meshes through Firedrake. The Helmholtz code has al-
ready been shown in Listing 1. For Advection-Diffusion, the Diffusion equation, which
uses the same differential operators as Helmholtz, is considered. In the Diffusion
kernel code, the main differences with respect to Helmholtz are the absence of the
Y array and the presence of additional constants for computing the element matrix.
Burgers is a nonlinear problem employing differential operators different from those
of Helmholtz and relying on vector-valued quantities, which has a major impact on

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:14 F. Luporini et al.

Table II. Performance Improvement Due to Generalized Loop-Invariant Code Motion over the Original
Nonoptimized Code

Sandy Bridge Xeon Phi

problem shape p1 p2 p3 p4 p1 p2 p3 p4

Helmholtz triangle 1.05 1.46 1.68 1.67 1.49 1.06 1.05 1.17
Helmholtz tetrahedron 1.36 2.10 2.64 2.27 1.28 1.29 2.05 1.73
Helmholtz prism 2.16 2.28 2.45 2.06 1.04 2.26 1.93 1.64

Diffusion triangle 1.09 1.68 1.97 1.64 1.07 1.06 1.18 1.16
Diffusion tetrahedron 1.30 2.20 3.12 2.60 1.00 1.38 2.02 1.74
Diffusion prism 2.15 1.82 2.71 2.32 1.11 2.16 1.85 2.83

Burgers triangle 1.53 1.81 2.68 2.46 1.21 1.42 2.34 2.97
Burgers tetrahedron 1.61 2.24 1.69 1.59 1.01 2.55 0.98 1.21
Burgers prism 2.11 2.20 1.66 1.32 1.39 1.56 1.18 1.04

the generated assembly source code (see Listing 2), where a larger number of basis
function arrays (X1, X2, . . .) and constants (F0, F1, . . . , K0, K1, . . .) are generated.

These problems were studied varying both the shape of mesh elements and the
polynomial order p of the method, whereas the element family, Lagrange, is fixed. As
might be expected, the higher the dimensionality of the element and p, the larger the
iteration space. Triangles, tetrahedra, and prisms were tested as element shape. For
instance, in the case of Helmholtz with p = 1, the size of the j and k loops for the three
element shapes is 3, 4, and 6, respectively. Moving to higher-dimensional elements
has the effect of increasing the number of basis function arrays, since, intuitively, the
behavior of the equation has to be approximated also along an additional axis. On the
other hand, the polynomial order affects only the problem size (the three loops i, j,
and k, and, as a consequence, the size of X and Y arrays). A range of polynomial orders
from p = 1 to p = 4 were tested; higher polynomial orders are excluded from the study
because of current Firedrake limitations. In all of these cases, the size of the element
matrix rarely exceeds 30 × 30, with a peak of 105 × 105 in Burgers with prisms and
p = 4.

5.2.2. Loop Interchange. In the following, only results for the loop order ijk are shown.
For the considerations exposed in Section 4, loop interchanges having an inner loop
along i caused slowdowns; additionally, interchanging j and k loops while keeping i
as outermost loop did not provide any benefits.

5.2.3. Impact of Generalized Loop-Invariant Code Motion. Table II illustrates the perfor-
mance improvement obtained when loop-invariant code motion (or licm) is applied. In
general, the speedups are notable. The main reasons were anticipated in Section 3.2:
in the original code, (1) subexpressions invariant to outer loops are not automatically
hoisted, whereas (2) subexpressions invariant to the innermost loop are hoisted but
their execution is not autovectorized. These observations come from inspection of as-
sembly code generated by the compiler.

The gain tends to grow with the computational cost of the kernels: bigger loop nests
(i.e., higher dimensional elements and polynomial orders) usually benefit from the
reduction in redundant computation, even though extra memory for the temporary
arrays is required. Some discrepancies to this trend are due to a less effective autovec-
torization. For instance, on the Sandy Bridge, the improvement at p = 3 is larger than
that at p = 4 because, in the latter case, the size of the innermost loop is not a mul-
tiple of the vector length, and a remainder scalar loop is introduced at compile time.
Since the loop nest is small, the cost of executing the extra scalar iterations can have a
significant impact. The remainder loop overhead is more pronounced on the Xeon Phi,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:15

Table III. Performance Improvement Due to Generalized Loop-Invariant Code Motion, Data Alignment,
and Padding over the Original Nonoptimized Code

Sandy Bridge Xeon Phi

problem shape p1 p2 p3 p4 p1 p2 p3 p4

Helmholtz triangle 1.32 1.88 2.87 4.13 1.50 2.41 1.30 1.96
Helmholtz tetrahedron 1.35 3.32 2.66 3.27 1.41 1.50 2.79 2.81
Helmholtz prism 2.63 2.74 2.43 2.75 2.38 2.47 2.15 1.71

Diffusion triangle 1.38 1.99 3.07 4.28 1.08 1.88 1.20 1.97
Diffusion tetrahedron 1.41 3.70 3.18 3.82 1.05 1.51 2.76 3.00
Diffusion prism 2.55 3.13 2.73 2.69 2.41 2.52 2.05 2.48

Burgers triangle 1.56 2.28 2.61 2.77 2.84 2.26 3.96 4.27
Burgers tetrahedron 1.61 2.10 1.60 1.78 1.48 3.83 1.55 1.29
Burgers prism 2.19 2.32 1.64 1.42 2.18 2.82 1.24 1.25

Fig. 6. Performance improvement over licm-ap obtained by op-vect in the Helmholtz kernel. Bars suffixed
with “CM” indicate that the cost model was used to transform the kernel.

where the vector length is twice as long, which leads to proportionately larger scalar
remainder loops.

5.2.4. Impact of Padding and Data Alignment. Table III shows the cumulative impact of
loop-invariant code motion (or licm), data alignment, and padding over the original
code. In the following, this version of the code is referred to as licm-ap. Padding, which
avoids the introduction of a remainder loop as described in Section 5.2.3, as well as data
alignment, enhance the quality of autovectorization. Occasionally, the execution time
of licm-ap is close to that of licm, since the nonpadded element matrix size is already
a multiple of the vector length. Rarely, licm-ap is slower than licm (e.g., in Burgers
p = 3 on the Sandy Bridge). One possible explanation is that the number of aligned
temporaries introduced by licm is so large to induce cache associativity conflicts.

5.2.5. Impact of Vector-Register Tiling. In this section, we evaluate the impact of vector-
register tiling. We compare two versions: the baseline, licm-ap; and vector-register
tiling on top of licm-ap, which in the following is referred to simply as op-vect.

Figures 6 and 7 illustrate the speedup achieved by op-vect over licm-ap in the Hel-
moltz and Diffusion kernels, respectively. As explained in Section 4, the op-vect version
requires the unroll-and-jam factor to be explicitly set. To distinguish between the two
ways in which this parameter was determined, for each problem instance (equation,
element shape, polynomial order) we report two values: the best speedup obtained after
all feasible unroll-and-jam factors were tried and the speedup when the unroll-and-jam
factor was retrieved via the cost model. In a plot legend, cost model bars are suffixed
with “CM.”

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:16 F. Luporini et al.

Fig. 7. Performance improvement over licm-ap obtained by op-vect in the Diffusion kernel. Bars suffixed
with “CM” indicate that the cost model was used to transform the kernel.

It is worth noticing that in most cases, the cost model successfully determines how
to transform a kernel to maximize its performance. This is chiefly because assembly
kernels fit the L1 cache; thus, within a certain degree of confidence, it is possible
to predict how to obtain a fast implementation by simply reasoning on the register
pressure. For each problem, the cost model stated to use the default loop permutation,
to apply a particular unroll-and-jam factor, and not to perform expression splitting,
which, as explained in Section 5.2.6, only deteriorates performance in Helmholtz and
Diffusion.

The rationale behind these results is that the effect of op-vect is significant in prob-
lems in which the assembly loop nest is relatively big. When the loops are short,
since the number of arrays accessed at every loop iteration is rather small (between 4
and 8 temporaries, plus the element matrix itself), there is no need for vector-register
tiling; extensive unrolling is sufficient to improve register reuse and, therefore, to max-
imize the performance. However, as the iteration space becomes larger, op-vect leads
to improvements up to 1.4× on the Sandy Bridge (Diffusion, prismatic mesh, p = 4—
increasing the overall speed up from 2.69× to 3.87×), and up to 1.4× on the Xeon Phi
(Helmholtz, tetrahedral mesh, p = 3—bringing the overall speed up from 1.71× to
2.42×).

Using the Intel Architecture Code Analyzer tool [Intel Corporation 2012] on the
Sandy Bridge, we confirmed that speedups are a consequence of increased register
reuse. In Helmholtz p = 4, for example, the tool showed that when using op-vect, the
number of clock cycles to execute one iteration of the j loop decreases by roughly 17%,
and that this is a result of the relieved pressure on both of the data (cache) ports
available in the core.

On the Sandy Bridge, we have also measured the performance of individual kernels
in terms of floating-point operations per second. The theoretical peak on a single core,
with the Intel Turbo Boost technology activated, is 30.4GFlop/s. In the case of Diffusion
using a prismatic mesh and p = 4, we achieved a maximum of 21.9GFlop/s with op-vect
enabled, whereas 16.4GFlop/s was obtained when only licm-ap is used. This result is in
line with the expectations: analysis of assembly source code showed that in the jk loop
nest, which in this problem represents the bulk of the computation, 73% of instructions
are actually floating-point operations.

Application of op-vect to the Burgers problem induces significant slowdowns due
to the large number of temporary arrays that need to be tiled, which exceeds the
available logical registers on the underlying architecture. Expression splitting can be
used in combination with op-vect to alleviate this issue; this is discussed in the next
section.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:17

Fig. 8. Performance improvement over licm-ap obtained by split in the Burgers kernel. Bars suffixed with
“CM” indicate that the cost model was used to transform the kernel.

5.2.6. Impact of Expression Splitting. Expression splitting relieves the register pressure
when the element matrix evaluation needs to read from a large number of basis function
arrays. As detailed in Section 3.4, the price to pay for this optimization is an increased
number of accesses to the element matrix and, potentially, redundant computation.
Similarly to the analysis of vector-register tiling, we compare two versions: the baseline,
licm-ap, and expression splitting on top of licm-ap, which, for simplicity, in the following
is referred to as split.

For the Helmholtz and Diffusion kernels, in which only between four and eight
temporaries are read at every loop iteration, split tends to slow down the computation
because of the aforementioned drawbacks. Slowdowns up to 1.4× and up to 1.6× were
observed, respectively, on the Sandy Bridge and the Xeon Phi. Note that the cost model
prevents the adoption of the transformation: the while statement in Figure 5 is never
entered.

In the Burgers kernels, between 12 and 24 temporaries are accessed at every
loop iteration, so split plays a key role on the Sandy Bridge, where the number
of available logical registers is only 16. Figure 8 shows the performance improve-
ment achieved by split over licm-ap. In almost all cases, a split factor of 1, meaning
that the original expression was divided into two parts, ensured close-to-peak per-
formance. The transformation negligibly affected register locality, so speedups up to
1.5× were observed. For instance, on the Sandy Bridge, when p = 4 and a prismatic
mesh is employed, the overall performance improvement (i.e., the one over the orig-
inal code) increases from 1.44× to 2.11×. On the Xeon Phi, the impact of split is
only marginal, since register spilling is limited by the presence of 32 logical vector
units.

On the Sandy Bridge, the performance of the Burgers kernel on a prismatic mesh
was 20.0GFlop/s from p = 1 to p = 3, whereas it was 21.3GFlop/s in the case of p = 4.
These values are notably close to the peak performance of 30.4GFlop/s. Disabling split
makes the performance drop to 17.0GFlop/s for p = 1, 2, 18.2GFlop/s for p = 3, and
14.3GFlop/s for p = 4. These values are in line with the speedups shown in Figure 8.

The split transformation was also tried in combination with op-vect (split-op-vect),
although the cost model prevents its adoption on both platforms. Despite improvements
up to 1.22×, split-op-vect never outperforms split. This is motivated by two factors:
for small split factors, such as 1 and 2, the data space to be tiled is still too big,
and register spilling affects runtime; for higher ones, subexpressions become so small
that, as explained in Section 5.2.5, extensive unrolling already ensures high register
reuse.

5.2.7. Comparison with FFC’s Built-In Optimizations. We have modified the FFC to return
an AST representation of a local assembly kernel rather than plain C++ code to enable

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:18 F. Luporini et al.

Table IV. Performance Comparison between
FEniCS and COFFEE on Sandy Bridge

Problem Max Slowdown Max Speedup
Helmholtz — 4.14×
Diffusion — 4.28×
Burgers 2.24× 1.61×

code transformations in COFFEE. In FEniCS, FFC applies its own optimizations to
local assembly kernels [Ølgaard and Wells 2010], which mainly consist of loop-invariant
code motion and elimination, of floating point operations involving zero-valued entries
in basis function arrays.

FFC’s loop-invariant code motion is different from that of COFFEE. It is based on
expansion of arithmetic operations, such as applying distributivity and associativity to
products and sums at code generation time, to identify terms that are invariant of the
whole loop nest. Depending on the way expansion is performed, operation count may
not decrease significantly.

Elimination of zero-valued terms, which are the result of using vector-valued quan-
tities in the finite element problem, has the effect of introducing indirection arrays
in the generated code. This kind of optimization is currently under development in
COFFEE, although it will differ from that of FEniCS by avoiding noncontiguous mem-
ory accesses, which would otherwise affect vectorization, at the price of removing fewer
zero-valued contributions.

Table IV summarizes the performance achieved by COFFEE over the fastest FEniCS
(FFC) implementation on the Sandy Bridge for the Burgers, Helmholtz, and Diffusion
kernels. Burgers’ slowdowns occur in presence of a small iteration space (triangular
mesh, p ∈ [1, 2]; tetrahedral mesh, p ∈ [1, 2]; prismatic mesh, p = 1). The result shown
represents the worst slowdown, which was obtained with a triangular mesh and p = 1.
This is a result of removing zero-valued entries in FEniCS’s basis function arrays:
some operations are avoided, but indirection arrays prevent autovectorization, which
significantly impacts performance as soon as the element matrix becomes bigger than
12 × 12. However, with the forthcoming zero-removal optimization in COFFEE, we
expect to outperform FEniCS in all problems. In the cases of Helmholtz and Diffusion,
the minimum improvements, respectively, are 1.10× and 1.18× (2D mesh, p = 1),
which tend to increase with polynomial order and element dimensionality up to the
values illustrated in Table IV.

5.2.8. Comparison with Handmade BLAS-Based Implementations. For the Helmholtz prob-
lem on a tetrahedral mesh, manual implementations based on Intel MKL BLAS were
tested on the Sandy Bridge. This particular kernel can be easily reduced to a se-
quence of four matrix-matrix multiplies that can be computed via calls to BLAS dgemm.
In the case of p = 4, where the element matrix is of size 35 × 35, the computa-
tion was almost twice as slow as the case in which licm-ap was used, with the slow-
down being even worse for smaller problem sizes. These experiments suggest that the
question regarding to what extent linear algebra libraries can improve performance
cannot be trivially answered. This is due to a combination of issues: the potential
loss in data locality, as exposed in Section 3.4; the actual effectiveness of these li-
braries when the arrays are relatively small; and the problem inherent to assembly
kernels concerning extraction of matrix-matrix multiplies from static analysis of the
kernel’s code. A comprehensive study of these aspects will be addressed in further
work.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:19

Fig. 9. Performance improvement over nonoptimized code for the static linear elasticity equation on a single
core of the Sandy Bridge architecture.

5.2.9. On the Compilation Time. Firedrake and its various software components (see
Figure 4) are implemented in Python and Cython, whereas the generated code is pure
C. COFFEE has been written in Python to be naturally integrated within Firedrake.
Among the various Firedrake modules, COFFEE is where, in general, the least amount
of time is spent. The process of transforming the AST usually takes order of millisec-
onds. For instance, for the Helmholtz equation with p = 4 on a tetrahedral mesh, it
took 0.9ms to transform the AST, whereas the whole assembly process needed 3.84ms.
Being a domain-specific compiler, COFFEE expects C code with the structure outlined
in Figure 1, so typical compilers functionalities such as dependency tracking are sim-
plified with respect to a general-purpose compiler, which implies a clear advantage in
compilation time and implementation complexity.

5.3. Full Application Study

In this section, we investigate the performance gain for an entire finite element com-
putation developed in Firedrake, a static linear elasticity problem. The source code
is available in Luporini [2014b]. The equation is used to simulate deformation of an
object caused by pre-established loading conditions.

The execution time of a steady finite element problem is dominated by two factors:
assembly and solve. The evaluation of all local element matrices and vectors, and their
insertion in a “global” sparse matrix and a global vector, respectively, compose the “as-
sembly” phase. The global matrix and vector form a linear system, usually solved by an
iterative method; this is the “solve” phase. The percentage of time spent in assembly
and solve varies from problem to problem. As reiterated in the available literature, such
as in Ølgaard and Wells [2010], the computational cost of local assembly grows with the
complexity of the PDE (e.g., because of larger loops and more articulated expressions),
whereas the solve time increases with polynomial order and mesh discretization. The
complexity of an equation depends on several factors, including the number of deriva-
tives and coefficient functions (i.e., additional known functions that characterize the
equation).

We study two versions of the static linear elasticity problem: (1) with one coefficient
function, f = 1, and (2) with two coefficient functions, f = 2. More coefficient functions
are also plausible; however, as we will see, the assembly process starts being partic-
ularly expensive already with f = 1. For each of these two versions, we examine the
cases of polynomial order p = 1 and p = 2. To run our experiments, we use a single
core of the Sandy Bridge architecture described in Section 5. The application runs on
a tetrahedral mesh composed of 196,608 elements.

In Figure 9, we show the execution times for the four test cases, split over two
figures (one for each polynomial order), without and with optimizations enabled. A

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:20 F. Luporini et al.

stacked bar captures the time spent in the assembly phase (assembly), in solving the
linear system (solve), and in the other various parts of the program (other—e.g., setup
of the problem and initialization of the coefficient functions). The non-opt and opt bars
correspond, respectively, to the cases in which no optimizations and a combination
of optimizations have been applied. The optimizations applied are generalized loop-
invariant code motion, alignment and padding, and expression splitting. We recall that
the cost of the insertion of the computed local element matrices (and vectors) in the
global matrix (vector) is incorporated in assembly.

We first notice that in the scenario (f = 1, p = 1), the assembly is dominated by
matrix insertion: despite the application of several transformations, only a minimal
performance gain is achieved. However, if either p or f is increased, then the cost of
assembly becomes larger with respect to solve, and the matrix insertion cost becomes
negligible. In such cases, the transformations automatically applied by COFFEE dra-
matically decrease the cost of assembly. This results in a significant overall speedup
and a simulation that is now dominated by solve time. It is interesting to note that
generalized loop-invariant code motion was particularly invasive in this case, with 23
temporaries generated and several redundancies discovered (see Section 3.2).

In these experiments, we observe a maximum performance improvement of 1.47×
over the nonoptimized local assembly source code, obtained in the case (f = 2, p = 2).
However, we reiterate the fact that full application speedups increase proportionately
with the amount of time spent in assembly and therefore with the complexity of the
equation. By increasing polynomial order and number of coefficient functions, or by sim-
ply studying a different, more complex equation, it is our experience that performance
gains become increasingly relevant. The choice of studying the static linear elasticity
equation was to show that even relatively simple problems can be characterized by a
large proportion of execution time spent in assembly.

6. GENERALITY OF THE APPROACH AND APPLICABILITY TO OTHER DOMAINS

We have demonstrated that our cross-loop optimizations for arithmetic intensity are
effective in the context of automated code generation for finite element local assembly.
In this section, we discuss their applicability in other computational domains and, in
general, their integrability within a general-purpose compiler.

COFFEE was developed as a separate, self-contained software module, with clear
input/output interfaces, rather than incorporating it within PyOP2. This choice was
motivated by two critical aspects that characterize the generality of our research.

Separation of concerns. We believe that in domain-specific frameworks, there must
be a clear, logical separation of roles reflecting the various levels of abstraction, where
domain specialists are completely separated from performance optimization. In Fire-
drake, for instance, COFFEE decouples the mathematical specification of a finite el-
ement method, captured by the UFL and the FFC, from code optimization. This is
of fundamental importance to maximize productivity by allowing scientists to focus
only on their area of expertise. Practically speaking, from the perspective of the DSL
and compiler designers, our optimization strategy represents an incentive to produce
extremely simple representations of the code (e.g., fully inlined mathematical expres-
sions in the form of an AST, in the case of Firedrake) to make the architecture-aware
code optimizer completely responsible for choosing and applying the most suitable set
of transformations.

Generalizability to other domains. There are neither conceptual nor technical reasons
that prevent our compiler from being used in applications other than Firedrake. For
example, integration with the popular FEniCS framework, the pioneer of automated

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:21

code generation for finite element local assembly, would be relatively easy to achieve.
It is more challenging to assess the generality of the optimization strategy: the extent
to which COFFEE and its transformations are transferable to other computational
domains, perhaps other DSLs, and to what extent this would be helpful for improving
full application performance. To answer these questions, we first need to go back to
the origins of our compiler. The starting point of our work was the mathematical
formulation of a local assembly operation, expressible as follows:

∀i, j AK
ij =

n1∑

q=1

n2∑

k=1

αk,q(a′, b′, c′, . . .)βq,i, j(a, b, c, d, . . .)γq(wK, zK). (2)

The expression represents the numerical evaluation of an integral at n1 points in
the mesh element K computing the local element matrix A. Functions α, β, and γ are
problem specific and can be intricately complex, involving, for example, the evaluation
of derivatives. However, we can abstract from the inherent structure of α, β, and γ to
highlight a number of aspects.

—Optimizing mathematical expressions: Expression manipulation (e.g., simplification,
decomposition into subexpressions) opens multiple semantically equivalent code gen-
eration opportunities, characterized by different trade-offs in parallelism, redundant
computation, and data locality. The basic idea is to exploit properties of arithmetic
operators, such as associativity and commutativity, to reschedule the computation
suitably for the underlying architecture. Loop-invariant code motion and expression
splitting follow this principle, so they can be readapted or extended to any domains
involving numerical evaluation of complex mathematical expressions (e.g., electronic
structure calculations in physics and quantum chemistry relying on tensor contrac-
tions [Hartono et al. 2009]). In this context, we highlight three notable points:
(1) In Equation (2), the summations correspond to reduction loops, whereas loops

over indices i and j are fully parallel. Throughout the article, we assumed that
a kernel will be executed by a single thread, which is likely to be the best strat-
egy for standard multicore CPUs. On the other hand, we note that for certain
architectures (e.g., GPUs), this could be prohibitive due to memory requirements.
Intrakernel parallelization is one possible solution: a domain-specific compiler
such as COFFEE could map mathematical quantifiers and operators to different
parallelization schemes and generate distinct variants of multithreaded kernel
code. Based on our experience, we believe that this is the right approach to achieve
performance portability.

(2) The various subexpressions in β only depend on (i.e., iterate along) a subset
of the enclosing loops. In addition, subexpressions may be computed redundantly
in different iteration spaces. This code structure motivated the generalized loop-
invariant code motion technique. The intuition is that whenever subexpressions
invariant with respect to different sets of affine loops can be identified, the ques-
tion of whether, where, and how to hoist them, while minimizing redundant
computation, arises. Precomputation of invariant terms also increases memory
requirements due to the need for temporary arrays, so it is possible that for certain
architectures, the transformation could actually cause slowdowns (e.g., whenever
the available per-core memory is small).

(3) Associative arithmetic operators are the prerequisite for expression splitting. In
essence, this transformation concerns resource-aware execution. In the context of
COFFEE, expression splitting has been successfully applied to improve register
pressure. However, the underlying idea of rescheduling (reassociating) operations
to optimize for some generic parameters is far more general. It could be used, for

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:22 F. Luporini et al.

example, as a starting point to perform kernel fission—that is, splitting a ker-
nel into multiple parts, with each part characterized by less stringent memory
requirements (a variant of this idea for nonaffine loops in unstructured mesh
applications has been adopted in Bertolli et al. [2013]). In Equation (2), for in-
stance, not only can any of the functions α, β, and γ be split (assuming that they
include associative operators), but α could be completely extracted and evaluated
in a separate kernel. This would reduce the working set size of each of the kernel
functions, an option that is particularly attractive for many-core architectures
in which the available per-core memory is much smaller than that in traditional
CPUs.

—Code generation and applicability of the transformations: All array sizes and loop
bounds, such as n1 and n2 in Equation (2), are known at code generation time. This
means that “good” code can be generated. For example, loop bounds can be made
explicit, arrays can be statically initialized, and pointer aliasing is easily avoidable.
Further, all of these factors contribute to the applicability and the effectiveness of
some of our code transformations. For instance, knowing loop bounds allows both
generation of correct code when applying vector-register tiling (see Section 3.3) and
discovery of redundant computation opportunities (see Section 3.2). Padding and data
alignment are special cases, as they could be performed at runtime if some values
were not known at code generation time. Theoretically, they could also be automated
by a general-purpose compiler through profile-guided optimization, provided that
some sort of dataflow analysis is performed to ensure that the extra loop iterations
over the padded region do not affect the numerical results.

—Multiloop vectorization: Compiler autovectorization has become increasingly effec-
tive in a variety of codes. However, to the best of our knowledge, multiloop vectoriza-
tion involving the loading and storing of data along a subset of the loops characteriz-
ing the iteration space (rather than just along the innermost loop) is not supported by
available general-purpose and polyhedral compilers. The outer-product vectorization
technique presented in this article shows that two-loop vectorization can outperform
standard autovectorization. In addition, we expect the performance gain to scale with
the number of vectorized loops and the vector length (as demonstrated in the Xeon
Phi experiments). Although the automation of multiloop vectorization in a general-
purpose compiler is far from straightforward, especially if stencils are present, we
believe that this could be more easily achieved in specific domains. The intuition is to
map the memory access pattern onto vector registers and then to exploit in-register
shuffling to minimize the traffic between memory and processor. By demonstrating
the effectiveness of multiloop vectorization in a real scenario, our research represents
an incentive for studying this technique in a broader and systematic way.

7. RELATED WORK

The finite element method is extensively used to approximate solutions of PDEs. Well-
known frameworks and applications include Nek5000 [Fischer et al. 2008], the FEniCS
project [Logg et al. 2012], Fluidity [AMCG 2010], and of course Firedrake. Numerical
integration based on quadrature, as in Firedrake, is usually employed to implement the
local assembly phase. The recent introduction of DSLs to decouple the finite element
specification from its underlying implementation has facilitated the development of
novel approaches. Methods based on tensor contraction [Kirby and Logg 2006] and
symbolic manipulation [Russell and Kelly 2013] have been implemented. Nevertheless,
it has been demonstrated that quadrature-based integration remains the most efficient
choice for a wide class of problems [Ølgaard and Wells 2010], which motivates our work
in COFFEE.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:23

Optimization of quadrature-based local assembly for CPU architectures has been
addressed in FEniCS [Ølgaard and Wells 2010]. The comparison between COFFEE
and this work has been presented in Section 5.2.7. In Markall et al. [2010], and more
recently in Knepley and Terrel [2013], the same problem has been studied for GPU
architectures. In Kruel and Bana [2013], variants of the standard numerical integration
algorithm have been specialized and evaluated for the PowerXCell processor, but an
exhaustive study from the compiler viewpoint—like ours—is missing, and none of the
optimizations presented in Section 3 are mentioned. Among these efforts, to the best
of our knowledge, COFFEE is the first work targeting low-level optimizations through
a real compiler approach.

The code transformations presented are inspired by standard compilers optimiza-
tions and exploit domain properties. Our loop-invariant code motion technique indi-
viduates invariant subexpressions and redundant computation by analyzing all loops
in an iteration space, which is a generalization of the algorithms often implemented
by general-purpose compilers. Expression splitting is an abstract variant of loop fis-
sion based on properties of arithmetic operators. The outer-product vectorization is
an implementation of tiling at the level of vector registers; tiling or “loop blocking” is
commonly used to improve data locality especially for caches. Padding has been used to
achieve data alignment and to improve the effectiveness of vectorization. A standard
reference for the compilation techniques readapted in this work is Aho et al. [2007].

Our compiler-based optimization approach is made possible by the top-level DSL,
which enables automated code generation. DSLs have been proven successful in au-
togenerating optimized code for other domains: Spiral [Püschel et al. 2005] for digi-
tal signal processing numerical algorithms, LGen [Spampinato and Püschel 2014] for
dense linear algebra, and Pochoir [Tang et al. 2011] and SDSL [Henretty et al. 2013] for
image processing and finite difference stencils. Similarly, PyOP2 is used by Firedrake
to express iteration over unstructured meshes in scientific codes. COFFEE improves
automated code generation in Firedrake.

Many code generators, such as those based on the Polyhedral model [Bondhugula
et al. 2008] and those driven by domain knowledge [Stock et al. 2011], make use of
cost models. The alternative of using autotuning to select the best implementation for a
given problem on a certain platform has been adopted by Nek5000 [Shin et al. 2010] for
small matrix-matrix multiplies, the ATLAS library [Whaley and Dongarra 1998], and
FFTW [Frigo and Johnson 2005] for fast Fourier transforms. In both cases, pruning the
implementation space is fundamental to reduce complexity and overhead. Likewise,
COFFEE uses a cost model and heuristics (Section 4) to steer the optimization process.

8. CONCLUSIONS

In this article, we have presented the study and systematic performance evaluation
of a class of composable cross-loop optimizations for improving arithmetic intensity in
finite element local assembly kernels, as well as their integration in a novel compiler,
COFFEE. In the context of automated code generation for finite element local assembly,
COFFEE is the first compiler capable of introducing low-level optimizations to maxi-
mize instruction-level parallelism, register locality, and SIMD vectorization. Assembly
kernels have particular characteristics. Their iteration space is usually quite small,
with the size depending on aspects like the polynomial order of the method and the
mesh discretization employed. The data space, in terms of number of arrays and scalars
required to evaluate the element matrix, grows proportionately with the complexity
of the finite element problem. COFFEE has been developed taking into account all of
these degrees of freedom, based on the idea that reducing the problem of local assembly
optimization to a fixed sequence of transformations is far too simple-minded if close-to-
peak performance needs to be reached. The various optimizations overcome limitations

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

57:24 F. Luporini et al.

of current vendor and research compilers. The exploitation of domain knowledge allows
some of them to be particularly effective, as demonstrated by our experiments on two
state-of-the-art Intel platforms. Further work includes a comprehensive study about
feasibility and constraints on transforming kernels into a sequence of calls to external
linear algebra libraries. As suggested by the performance evaluation, an exploration
of more sophisticated approaches for expression splitting also looks promising. COF-
FEE is already integrated with Firedrake and supports all of the problems expressible
in Firedrake. In addition, we have discussed the generality and applicability of the
proposed code transformations to other domains.

ACKNOWLEDGMENTS

The authors would like to thank Carlo Bertolli, Lawrence Mitchell and Francis Russell for their invaluable
suggestions and their contribution to the Firedrake project. We thank the ACM TACO and HiPEAC ’15
reviewers for their suggestions that led to a significantly improved version.

REFERENCES

A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman (Eds.). 2007. Compilers: Principles, Techniques, and Tools (2nd
ed.). Pearson/Addison Wesley, Boston, MA. http://www.loc.gov/catdir/toc/ecip0618/2006024333.html.

M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. 2014. Unified Form Language: A
domain-specific language for weak formulations of partial differential equations. ACM Transactions on
Mathematical Software 40, 2, Article No. 9. DOI:http://dx.doi.org/10.1145/2566630.

AMCG. 2010. Fluidity Manual (version 4.0-release ed.). Applied Modelling and Computation Group, Depart-
ment of Earth Science and Engineering, South Kensington Campus, Imperial College London, London,
SW7 2AZ, UK. Available at http://hdl.handle.net/10044/1/7086.

C. Bertolli, A. Betts, N. Loriant, G. R. Mudalige, D. Radford, D. A. Ham, M. B. Giles, and P. H. J. Kelly. 2013.
Compiler optimizations for industrial unstructured mesh CFD applications on GPUs. In Languages
and Compilers for Parallel Computing, Hironori Kasahara and Keiji Kimura (Eds.). Lecture Notes in
Computer Science, Vol. 7760. Springer, 112–126. DOI:http://dx.doi.org/10.1007/978-3-642-37658-0_8

U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan. 2008. A practical automatic poly-
hedral parallelizer and locality optimizer. In Proceedings of the 2008 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’08). ACM, New York, NY, 101–113.
DOI:http://dx.doi.org/10.1145/1375581.1375595

Z. DeVito, N. Joubert, F. Palacios, S. Oakley, M. Medina, M. Barrientos, E. Elsen, F. Ham, A. Aiken,
K. Duraisamy, E. Darve, J. Alonso, and P. Hanrahan. 2011. Liszt: A domain specific language for build-
ing portable mesh-based PDE solvers. In Proceedings of the 2011 International Conference for High
Performance Computing, Networking, Storage and Analysis (SC’11). ACM, New York, NY, Article No. 9.
DOI:http://dx.doi.org/10.1145/2063384.2063396

Firedrake. 2014. The Firedrake Project. Retrieved November 16, 2014, from http://www.firedrakeproject.org.
P. F. Fischer, J. W. Lottes, and S. G. Kerkemeier. 2008. Nek5000 Web Page. Retrieved November 16, 2014,

from http://nek5000.mcs.anl.gov.
M. Frigo and S. G. Johnson. 2005. The design and implementation of FFTW3. Proceedings of the IEEE 93,

2, 216–231.
A. Hartono, Q. Lu, T. Henretty, S. Krishnamoorthy, H. Zhang, G. Baumgartner, D. E. Bernholdt, M. Nooijen,

R. Pitzer, J. Ramanujam, and P. Sadayappan. 2009. Performance optimization of tensor contraction
expressions for many-body methods in quantum chemistry. Journal of Physical Chemistry A 113, 45,
12715–12723. DOI:http://dx.doi.org/10.1021/jp9051215 PMID: 19888780.

T. Henretty, R. Veras, F. Franchetti, L.-.N Pouchet, J. Ramanujam, and P. Sadayappan. 2013. A stencil com-
piler for short-vector SIMD architectures. In Proceedings of the 27th International ACM Conference on
Supercomputing (ICS’13). ACM, New York, NY, 13–24. DOI:http://dx.doi.org/10.1145/2464996.2467268

Intel Corporation. 2012. Intel Architecture Code Analyzer (IACA). Retrieved November 16, 2014, from
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/.

R. C. Kirby, M. Knepley, A. Logg, and L. R. Scott. 2005. Optimizing the evaluation of finite element matrices.
SIAM Journal on Scientific Computing 27, 3, 741–758. DOI:http://dx.doi.org/10.1137/040607824

R. C. Kirby and A. Logg. 2006. A compiler for variational forms. ACM Transactions on Mathematical Software
32, 3, 417–444. DOI:http://dx.doi.org/10.1145/1163641.1163644

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

http://www.loc.gov/catdir/toc/ecip0618/2006024333.html
http://dx.doi.org/10.1145/2566630
http://hdl.handle.net/10044/1/7086
http://dx.doi.org/10.1007/978-3-642-37658-0_8
http://dx.doi.org/10.1145/1375581.1375595
http://dx.doi.org/10.1145/2063384.2063396
http://www.firedrakeproject.org
http://dx.doi.org/10.1021/jp9051215
http://dx.doi.org/10.1145/2464996.2467268
http://software.intel.com/en-us/articles/intel-architecture-code-analyzer/
http://dx.doi.org/10.1137/040607824
http://dx.doi.org/10.1145/1163641.1163644

Cross-Loop Optimization of Arithmetic Intensity for Finite Element Local Assembly 57:25

M. Knepley and A. Terrel. 2013. Finite element integration on GPUs. ACM Transactions on Mathematical
Software 39, 2, Article No. 10. DOI:http://dx.doi.org/10.1145/2427023.2427027

F. Kruel and K. Bana. 2013. Vectorized OpenCL implementation of numerical integration for
higher order finite elements. Computers and Mathematics with Applications 66, 10, 2030–2044.
DOI:http://dx.doi.org/10.1016/j.camwa.2013.08.026

A. Logg, K.-A. Mardal, and G. N. Wells (Eds.). 2012. Automated Solution of Differential Equations by the
Finite Element Method. Lecture Notes in Computational Science and Engineering, Vol. 84. Springer.
DOI:http://dx.doi.org/10.1007/978-3-642-23099-8

F. Luporini. 2014a. Helmholtz, Advection-Diffusion, and Burgers UFL Code. Retrieved November 16, 2014,
from https://github.com/firedrakeproject/firedrake/tree/pyop2-ir-perf-eval/t ests/perf-eval.

F. Luporini. 2014b. Static Linear Elasticity Code. Retrieved November 16, 2014, from https://github.com/
firedrakeproject/firedrake-bench/tree/experiments/elasticity.

G. R. Markall, D. A. Ham, and P. H. J. Kelly. 2010. Towards generating optimised finite ele-
ment solvers for GPUs from high-level specifications. Procedia Computer Science 1, 1, 1815–1823.
DOI:http://dx.doi.org/10.1016/j.procs.2010.04.203 ICCS 2010.

G. R. Markall, F. Rathgeber, L. Mitchell, N. Loriant, C. Bertolli, D. A. Ham, and P. H. J. Kelly. 2013.
Performance portable finite element assembly using PyOP2 and FEniCS. In Supercomputing. Lecture
Notes in Computer Science, Vol. 7905. Springer, 279–289.

K. B. Ølgaard and G. N. Wells. 2010. Optimizations for quadrature representations of finite element tensors
through automated code generation. ACM Transactions on Mathematical Software 37, 1, Article No. 8.
DOI:http://dx.doi.org/10.1145/1644001.1644009

M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A. Gacic, Y.
Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. 2005. SPIRAL: Code generation for DSP transforms.
In Proceedings of the IEEE: Special Issue on Program Generation, Optimization, and Adaptation 93, 2,
232–275.

F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham, C. Bertolli, and P. H. J. Kelly. 2012. PyOP2: A
high-level framework for performance-portable simulations on unstructured meshes. In Proceedings of
the 2012 SC Companion: High Performance Computing, Networking, Storage, and Analysis. 1116–1123.
DOI:http://dx.doi.org/10.1109/SC.Companion.2012.134

D. Rossinelli, B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, A. Curioni, A. Bertsch, S. Futral, S. J. Schmidt,
N. A. Adams, and P. Koumoutsakos. 2013. 11 PFLOP/s simulations of cloud cavitation collapse. In
Proceedings of the International Conference on High Performance Computing, Networking, Storage, and
Analysis (SC’13). ACM, New York, NY, Article No. 3. DOI:http://dx.doi.org/10.1145/2503210.2504565

F. P. Russell and P. H. J. Kelly. 2013. Optimized code generation for finite element local assembly using
symbolic manipulation. ACM Transactions on Mathematical Software 39, 4, Article No. 26.

J. Shin, M. W. Hall, J. Chame, C. Chen, P. F. Fischer, and P. D. Hovland. 2010. Speeding up Nek5000 with auto-
tuning and specialization. In Proceedings of the 24th ACM International Conference on Supercomputing
(ICS’10). ACM, New York, NY, 253–262. DOI:http://dx.doi.org/10.1145/1810085.1810120

D. G. Spampinato and M. Püschel. 2014. A basic linear algebra compiler. In Proceedings of the Annual
IEEE/ACM International Symposium on Code Generation and Optimization (CGO’14). 23.

K. Stock, T. Henretty, I. Murugandi, P. Sadayappan, and R. Harrison. 2011. Model-driven SIMD code
generation for a multi-resolution tensor kernel. In Proceedings of the 2011 IEEE International
Parallel and Distributed Processing Symposium (IPDPS’11). IEEE, Los Alamitos, CA, 1058–1067.
DOI:http://dx.doi.org/10.1109/IPDPS.2011.101

Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson. 2011. The Pochoir stencil compiler.
In Proceedings of the 23rd Annual ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA’11). ACM, New York, NY, 117–128. DOI:http://dx.doi.org/10.1145/1989493.1989508

P. E. J. Vos, S. J. Sherwin, and R. M. Kirby. 2010. From H to P efficiently: Implementing finite and spectral/hp
element methods to achieve optimal performance for low- and high-order discretisations. Journal of
Computational Physics 229, 13, 5161–5181. DOI:http://dx.doi.org/10.1016/j.jcp.2010.03.031

R. C. Whaley and J. J. Dongarra. 1998. Automatically tuned linear algebra software. In Proceedings of the
1998 ACM/IEEE Conference on Supercomputing (Supercomputing’98). IEEE, Los Alamitos, CA, 1–27.
http://dl.acm.org/citation.cfm?id=509058.509096.

Received July 2014; revised October 2014; accepted October 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 57, Publication date: January 2015.

http://dx.doi.org/10.1145/2427023.2427027
http://dx.doi.org/10.1016/j.camwa.2013.08.026
http://dx.doi.org/10.1007/978-3-642-23099-8
https://github.com/firedrakeproject/firedrake/tree/pyop2-ir-perf-eval/t ignorespaces ests/perf-eval
https://github.com/firedrakeproject/firedrake-bench/tree/experiments/elasticity
https://github.com/firedrakeproject/firedrake-bench/tree/experiments/elasticity
http://dx.doi.org/10.1016/j.procs.2010.04.203
http://dx.doi.org/10.1145/1644001.1644009
http://dx.doi.org/10.1109/SC.Companion.2012.134
http://dx.doi.org/10.1145/2503210.2504565
http://dx.doi.org/10.1145/1810085.1810120
http://dx.doi.org/10.1109/IPDPS.2011.101
http://dx.doi.org/10.1145/1989493.1989508
http://dx.doi.org/10.1016/j.jcp.2010.03.031
http://dl.acm.org/citation.cfm?id$=$509058.509096

