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Abstract 

A cache design aimed to reduce cycle time, area, 
and miss rate simultaneously is proposed in this paper. A 
cache with path balancing table, skewing, and indirect tags 
can reduce cycle time, use less area, and reduce miss rate at 
the same time as compared with a baseline cache. From our 
simulation results, we propose cache design alternatives in 
achieving lower cycle time, lower miss rate, and using less 
a r e a .  

1. Introduction 

In this paper, we present a cache design with 
techniques to reduce cyde time, save area, and reduce miss rate. 
We first review the techniques briefly, then we present oux 
cache design by combining unique features o f  different 
techniques to achieve an improved high performance cache 
architecture. 

Seznec [1], introduces the indirect-tagged cache to reduce 
area cost. The idea behind this method is to recognize there axe 
actually three places where the page numbers are stored inside a 
microprocessor. These three places are Translation Look-aside 
Buffer (TL,B), cache tag, and branch target buffer A pointer or 
an indirect tag to a location where the page number is stored is 
used instead of  using address tags. This location is referred to as 
a page-number cache or a PN-cache. The tag array size is 
independent of  the address width because a tag o f  any arbitrary 
size can be represented by a pointer. The size o f  the pointer 
depends on the size of  the PN-cache. It is often desirable to 
have small cache block sizes with out-of-order execution and 
pipelined Level 2 caches. This goal can be achieved at little cost 
using this method. 

Skewed-associative cache design is presented in [6],[9]. 
With a two-way skewed-associative cache we are able to keep 
the same hardware complexity as a regular two-way set- 
associative cache, but with the hit rate performance close to that 
o f  a fottr-way set-associative cache. Two-way skewed caches axe 
a good tradeoff for small on-chip caches. The goal is to 
minimize hardware implementation cost and keep cache cycle 
time low. The performance improvement o f  skewed caches 
relies on inter-bank dispersion and not on a simple hashing 
~,,orith~. 

In order to reduce the cyde time, a method called 
Path Balance Table (PBT) is presented in [7]. This technique 
helps improve performance through reducing cycle time by 
balancing the path delay between tag and data array. The idea is 
to use a separate subset o f  the tag array to de-couple the one-to- 
one relationship between the address tags and the cache blocks 
for set-associative caches. We call rb_/s subset o f  the tag array for 
the Path Balance Table (PBT). The path through the tag array is 
significantly longer than the path through the data array for 
both direct-mapped and set-associative caches. For set- 
associative caches we need to know the result of  the tag 
comparison before we can select the correct cache block, tiffs 
fiaxther lengthens the tag path. The PBT contains a subset o f  
address tags and the corresponding way in a set to which they 
belong. Address tags stored in the PBT are for cache blocks 
recently referenced or any other replacement scheme preferred. 
The PBT makes the tag array independent o f  the data array, so 
the data array entry can be selected ahead of  address tag 
comparison. 

2. Proposed Cache Design 

To support the discussions on combining different 
techniques to improve cache performance and t o  show that an 
implementation is feasible, we select one o f  the best 
combinations, and verify oux design with some actual simulation 
results. The baseline cache organization for the simulation will 
be a VirtuaUy Indexed Physically Tagged (VIPT), 2-way set- 
associative, Least Recently Used block-replacement, (8,16,32 
and 64}-Kbytes split cache. It will be assumed that the TLB is 
fully-associative and with a size depending on the indirect-tag 
cache size, which will become apparent later. A write-through 
strategy is also assumed to avoid problems with page 
invalidation when using indirect-tags. Area cost and miss-rate 
will be discussed based on simulation results. Since cycle time is 
technology dependent, it will be based on assumptions and 
logical reasoning. A miss penalty o f  eight clock cycles for 
accessing data from lower memory will be assumed when 
needed. 

We add the following features on to the baseline 
cache, in order, and do simulation and analysis on that 
organization comparing with previous organizations: 
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(a) Path Balancing Table 0aBT) will be added as shown in 
Figure 1. Size will be 1:1, 1:2, 1:4 and 1:8 o f  the base 
cache size. ,-~ 1:1 ratio means that nuxnber o f  sets in 
the di rect -mapped PBT cache is equal to the number  
o f  sets m the regular cache. 

Virt u al A ddress 
tag index byte offset 

I I I I 

Tag area Data area 

, 6 ,6  
I Com] 

PBT 

",d, 
) are J 

ralid bit 

Tag Hit ~ D a t a  ~ - P B T  Hit 

Figure 1: Baseline cache with PBT cache added. TLB not  
$howII ,  

(b) A d d  skewing with degree eight onto cache as shown in 
Figure 2. Simple XOR-func t ion  will be used on  the 
high urder 3-bits o f  the set for ias tnacf ion/data  cache. 
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Figure 2: Baseline cache with PBT cache and skewing function 
added. TLB no t  shown. 

(c) Next,  we add the indirect-tags to the baseline cache as 
shown in Figure 3. N u m b e r  o f  PN-cache  entries 

Ind" 

simulated will be  8, 16, 32 and 64. I t  is assumed that 
the TLB size is equal or  less than the PN-cache  size, 
otherwise the TLB can not  be fully ufiliT.ed. In  our  
simulation, an indirect-tagged cache will be mode led  
as a tag cache without  a TLB. O u r  goal here is m be 
able to speed up the PBT tag path  and lower the cycle 
time even more.  XVe can add indirect  tags to the 
baseline cache structure using Seznec's approach. The  
number  o f  tag entries m the PN-cache  will be fixed at 
32. Then  different PBT cache sizes WIU be simulated. 
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Figure 3: Baseline ins t ruct ion/data  cache with PBT cache, 
skewing and PN-cache.  

F = Skewing functio 

A modif ied  version o f  the A c m e  Cache Simulator 
f rom the Parallel Architecture Research Laboratory  in N e w  
Mexico will be used as the simulation tool with some added 
features. F o r  simulation data, we will use trace-files generated 
on a SPARC machine f rom the SPEC92 benchmark package. 
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Figure 4: Average miss-rate for baseline 2-way set-associative 
split cache, 64 byte blocks. Data averaged from Gcc, Ear, Sc, 
Swm256, Li, Eqntott, Compress and Tomcatv, all 10M traces. 

2.1 Cache  wi th  Pa th  Ba lanc ing  T a b l e  (PBT)  

Next, we add the Path Balancing Table to the baseline 
cache. The PBT is a direct-mapped cache with a maximum 
number  o f  entries equal to number  of  sets o f  the corresponding 
cache. Here we will simulate PBT cache sizes with a ratio o f  1:1, 
1:2, 1:4 and 1:8. kVe can expect the 1:1 ratio to be the best 
regarding miss-rate since it is the largest one. However, a large 
PBT is also slower, so there is a tradeoff between miss-rate and 
speed. For cache sizes below about 16-Kbytes, the effect o f  
using a PBT is less beneficial because the PBT will dominate the 
data path [7]. Figure 5, below, supports this assumption. 
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Figure 5: Average miss-rate for direct-mapped instruction PBT- 
cache, 64 byte blocks. Data averaged from Gcc, Ear, Sc, 
Swm256, I_2, Eqntott, Compress and Tomcatv,  all 10M traces. 
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Figure 6: Average miss-rate for direct-mapped data PBT-cache, 
64 byte blocks. Data averaged from Gcc, Ear, So, Swm256, Li, 
Eqntott, Compress and Tomcatv,  all 10M traces. 

2A.L PBT Benefit Cost 

~-kn important measure is how much we need to 
improve the dock  speed to make a PBT implementation 
worthwhile, since we are m a k ~ g  some cache accesses t w o  

cycles. Detailed calculation o f  benefit cost is in [?]. Table 1 and 
Table 2 present the PBT benefit cost results. 

C a c h e  P B T  P B T  P B T  P B T  
Size r a t i o  r a t i o  r a t i o  r a t io  

1:1 1:2 1:4 1:8 
8k 1.77% 2.32% 3.55% 5.42% 
16k 0.76% 1.82% 2.40% 3.65% 
32k 0.40% 0.77% 1.85% 2.43% 
64k 0.16% 0.40% 0.77% 1.85% 

Table I: Minimum instruction cache dock  speed-up necessary 
for benefit o f  PBT. Assuming lower memory  access o f  eight 
cycles. Data averaged from Gcc, Ear, So, Swm256, Li, Eqntott, 
Compress and Tomcatv,  all 10M traces. 

C a c h e  P B T  P B T  P B T  P B T  
Size ratio 1:1 r a t i o  1:2 r a t i o  1:4 r a t i o  1:8 
8k 5.10% 8.49% 11.79% 18.11% 
16k 3.23% 5.32% 8.86% 12.29% 
32k 2.03% 3.35% 5.51% 9.18% 
64k 1.47% 2.07% 3.41% 5.62% 

Table 2: Minimum data cache clock speed-up necessary for 
benefit o f  PBT. Assuming lower memory  access o f  eight cycles. 
Data averaged from Gcc, Ear, Se, Swm256, Li, Eqntott, 
Compress and Tomcat'v, all 10M traces_ 

2.2. Cache  wi th  P B T  and  skewing 

Next, we add skewing to the cache. Skewing will be 
implemented using an inter-bank dispersion degree o f  eight, 
with a Bit Permute Petrnutation o f  identity. The skewing 
function is shown in Figttte 7. A skewing degree o f  eight has 
been proven adequate for a 2-way set-associative cache [6]. It  is 
possible to remove the delay o f  adding skewing by doing the 
XOR-ing in the address computation cyde. This stage is often 
less time critical. \Ve can also do the data row sdection in the 
following stage. Skewing will affect the PBT-cache miss-rate 
indirectly, since the PBT is a subset o f  the regular cache. 
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Figure 7: Skewing. Inter-bank dispe_t-sion degree of  eight. Bit 
Permute Permutation identity. Simple XOR-functinn creates 
the new high order set bits. 



2.2.1. Miss-Rate Result from Skewed Cache and PBT 

Below is the miss-rate that results from adding 
skewing to the cache. As we know, skewing attacks the miss-rate 
by its inter-bank dispersion quality. We are not concerned with 
the PBT at this time. 
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Figure 8: Average miss-rate for 2-way set-associative split cache 
with skewing degree 8 and 64 byte blocks. Data averaged from 
Gcc, Ear, So, Swm256, Li, Eqntott, Compress and Tomcatv, all 
10M traces. 

The next simulation results show the PBT 
instruction/data cache miss-rate, see Figtae 9 and 10. Since we 
achieved a reduction in miss-rate for the instruction/data cache, 
we should see some reduction in miss-rate for the PBT-cache as 
well. These reductions are much less though, since we have 
inclusion between the PBT and the regular cache. The PBT- 
cache is affected indirectly. 
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Figure 9: Average instruction miss-ratio for direct-mapped PBT 
cache with an 8 degree skewed instruction cache and 64 byte 
blocks. Data averaged from Gcc, Ear, Sc, Swm256, Li, Eqntott, 
Compress and Tomcaw, all 10M traces. 
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Figure 10: Average data miss-rate for direct-mapped PBT cache 
with an 8 degree skewed data cache and 64 byte blocks. Data 
averaged from Gee, Ear, Sc, Swm256, Li, Eqntott, Compress 
and Tomcatv, all 10M traces. 

From the values in Figure 10, we can see that they are 
almost identical to the values in Figure 6, where no skewing is 
used. There is actually a very small difference in the PBT miss- 
rate, but it is not noticeable from the charts. The biggest saving 
with using s k ~ g  is the reduction in rmss rate for the 
data/instruction cache. Next, we look at the minimum clock 
speed-up necessary for the use o f  PBT to achieve some 
performance improvement. 

2.2.2. P B T  Benefi t  Cost  with Skewed Cache  

From the overall miss-rate improvement caused by 
the skewing technique, we should expect it to be easier to satisfy 
the minimum clock speed-up necessary for the PBT technique 
to be worthwh~e. As we can see from Table 3 and 4, the 
greatest improvement are apparent for the smaller cache sizes, 
because this is where the skewing technique had the greatest 
impact. 

Cache 
Size 

PBT 
ratio 1:1 

PBT 
ratio 1:2 

PBT 
ratio 1:4 

PBT 
ratio 1:8 

8k -0.13 % 0.42% 1.64% 3.51% 

16k -0.10% 0.98% 1.53% 2.79% 

32k 0.27% 0.64% 1.72% 2.30% 
0.08% -0.16% 0.45% 64k 1.53% 

Table 3: Minimum instruction cache access speed-up necessary 
for benefit o f  PBT. Assuming lower memory access of  eight 
cycles. Data averaged from Gcc, Ear, Sc, Swrn256, Li, Eqntort, 
Compress and Tomcatv, all 10M traces. 

We can see from Table 3, that for the largest PBT size 
we do not need to improve the cycle Ixne at all for the 
instruction cache. The improved miss-rate due to skewing is so 
high that we can tolerate two-cycle accesses without any 
decrease in performance. 

w 9  m 



C a c h e  
S ize  

P B T  
ra t io  1:1 

P B T  
rat io  1:2 

P B T  
r a t i o  1:4 

P B T  
rat io  1:8 

8k 2.79% 6.18% 9.47% 15.8% 
16k 1.68% 3.76% 7.30% 10.7% 
32k 1.66% 2.98% 5.15% 8.81% 

1.53% 1.02% 2.96% 64k 5.17% 
Table 4: ~fi_nirnum data cache access speed-up necessary for 
benefit o f  PBT. Assuming lower memory  access is eight cycles. 
Data averaged from Gcc, Ear, Sc, Swrn256, Li, Eqntort, 
Compress and Tomeatv, aU 10M traces. 

2.3. Cache  wi th  PBT,  skewing  and  indirect - tags  

Previously, we have studied and analyzed what 
happens when we add a cycle time and a miss-rate reducing 
method. These two methods have both added to the complexity 
and area cost o f  the cache. Next  we would like to investigate 
what happens if  we add an area cost reducing method. Our  
main goal here is m answer the question: Can we remove the 
cost involved with the previously applied methods, without 
affecting any of  the benefits so far? In  addition, are there any 
added benefits through this combination? 

,~n indirect-tagged cache offers more than just 
reduced area cost. We should also get a faster PBT access time, 
since the tag comparison time is less, because comparing tag 
pointers rake less time than comparing the whole tag. It  is hard 
to justify how much faster with this assumption since it will be 
technology dependent. Simulation results assume an LgU-  
repLacement policy, but this will not be possible for a large 
number  o f  PN-cache entries. 

2.3-1. M i s s - R a t e  Resul ts  f rom P B T  and  Cache  wi th  
Ind i r ec t - t ags  

Average instruction cache rnJss-rcta for SPEC92 10M traces wl lh akswlng 
degree B, for dlffm'lml P N - u c t m  

compare with the averaged miss-rate for the baseline cache. A 
PN-cache with 32 entries is sufficient for all cache sizes to keep 
the miss-rate lower than the baseline cache miss-rate. Beyond 32 
entries, there is little increase in performance. 
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Figure 12: Data cache miss-rate with skewing (degree 8) and 
indirect-tags. Data averaged from Gcc, Ear, Sc, Swm256, IA, 
Eqnton,  Compress and Tomcatv,  an 10M traces. 

From Figure 12, we note that for smaller cache sizes, 
we need more PN-cache entries to keep hit-rate perfomaance 
levels above the baseline cache. This is due to worse spatial 
locality for data caches than instruction caches. The thorough 
reader will notice that for some Larger PN-cache sizes, the miss- 
tate is actually slightly worse. This is because a Larger cache 
requires a larger PN-cache to perform better, since blocks in the 
cache will stay valid much longer. 

The next thing we examine, is how the PBT cache 
model is affected by the PN-cache. The author believes that a 
PN-cache with 32 entries is sufficient for most  cases. Therefore, 
we win fix the PN-cache size to this value before conducting 
any further studies. Figure 13 and 14 shows the miss-rate results 
for the insmaction/data PBT-cache when skm~ag is used. 
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Figure 11- Instruction cache miss-rate with skewing (degree 8) 
and indirect-tags. Data averaged from Gcc, E ~ ,  So, Swm256, 
Li, Eqntott, Compress and Tomcatv,  an 10M traces. 

Adding indirect-tags increases miss-rate. This is 
because there is only a limited set o f  physical tags possible in the 
PN-cache. From Figures 11 and 12 we would like to know if  
the degradadon m hit-rate is worse than the improvement  
accomplished by the skewing effect. For this, we need to 

PEEl' size rat io 

Figure 13: Average instruction cache miss-ratio for dixect- 
mapped PBT cache, 64 byte blocks. Skewing degree 8 and PN-  
cache size 32 entries. Data averaged from Gcc, Ear, Sc, 
Swm256, LL Eqntott, Compress and Tomcatv, all 10M traces. 
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Figure 14: Average data cache miss-rate for direct-mapped PBT 
cache, 64 byte lines. Skewing degree 8 and PN-cache size 32 
entries. Data averaged from Gcc, Ear, Sc, Swm256, Li, Eqntott, 
Compress and Tomcatv, all 10M traces. 

Comparing Figure 13 and 14 with the miss-rate for the 
cache modal without indirect-tags, we see that there are no 
noticeable differences. A we discussed earlier, a PN-cache with 
32 entries will completely fit the workload for the simulated 
programs. 

2.3.2. Area Cost Calculations for Cache with Indirect- 
tags and PBT 

The addition o f  an indirect-tagged cache offers 
reduced tag size, in this case for both the cache and the PBT. 
Next, we try to determine if  there is an area cost increase 
involved with this new cache mgarfization. 

Cache 
Size 

P B T  
ratio 1:1 

PBT 
ratio 1:8 

P B T  P B T  
ratio 1:2 ratio 1:4 
0.988 0.986 
0.983 0.982 
0.982 O.98O 
0.983 0.981 

8k 0.991 0.985 
16k 0.986 0.98 

32k 0.985 0.979 
64k 0.986 0.980 

Table 5: Areas cost ratio by adding PN-cache (32 entries). 
Skewing degree 8 and PBT size vaxying. Address width is 32 
bits. Only status bit included is valid bit. Value less than one 
indicates a reduced area. 

Table 5 shows the area cost ratio by" adding indirect- 
tags to the cache. As we can see, there is no increase for any o f  
the cache sizes. The actual benefits ate somewhat less than 
showing due to implementation overhead such as encoders and 
control logic. The TLB size WIU also be reduced, since we have 
removed the physical page numbers and replaced them with an 
indirect-tag. We have chosen to look at the overall area 
reduction, not  just the reduced tag area, and the reason is that 
we can better justify adding a PBT and the other techniques. 
The cost o f  adding a PBT now basically come at no  cost with 
the added benefit o f  lower cycle time. 

Another important issue is the address width, which is 
independent o f  the tag cost. A 64-bit address will only require 
minimal added cost because o f  larger tags in the PN-cache, but 
will give an overall tag area reduction for the cache tag array and 
the PBT that is overall better. 

3. Discuss ion  

For the proposed cache design, there are some 
drawbacks or disadvantages associated with each o f  the 
methods used that we have not  yet discussed. This will now be 
the focus o f  our attention. From what we have found from this 
analysis, we also summarize some important findings. 

3.1. Effect on miss-rate 

We used the skewing technique to effectively reduce 
the miss-rate in the proposed cache design. The biggest 
disadvantage o f  this technique is that we need to use a lot more 
non-translated address bits to perform the skewing. There axe at 
leas t a couple o f  possible solutions to this problem. 

(1) Make the page size larger, reducing the cache size or 
increase associativity. 

(2) Allow for more non-translated bits. This works up to a 
certain point. Seznec [6] showed that up to 18 non- 
translated address bits is possible without much 
performance degradation. 

(3) As an example, the UltraSPARC microprocessor from 
Sun ~ficrosystems uses a "next field" prediction 
scheme to avoid xdmml indexfing. The high order 
index bits are predicted. A similar method could be 
used in this case. 

The first step in this design was to add the PBT. Since 
the PBT does not affect the miss-rate for the cache itself, we 
were only interested in the added PBT cache miss-rate. As 
expected for a direct-mapped cache, for small sizes hit-rate 
perfomaance is poor. 

In Table 3 and 4, we found a measme on the difficulty 
o f  improving performance with a PBT. The data cache is more 
difficult to improve because the PBT miss-rate is very poor. A 
good design alternative in this case is a 32-64Kbyte cache with a 
PBT ratio between 1:2 and 1:4. We only need to have a PBT 
cache cyrde rune that is about 1-5% better than the baseline 
cache, which is very feasible. 

As we have mentioned before, the skewing technique 
we added improved the miss-rate for the cache but had little 
effect on the PBT cache miss-rate. The best improvements were 
made for cache sizes in the range 8-16K'byte and in particular 
for the instruction cache. Overall, there was a miss-rate 
improvement in all cases. This suggests that a smaller cache is 
better in this case regarding the larger improvements. 

In the last step, we added the PN-cache, which effects 
the miss-rate negafvely. Here we also showed that we still gain 



from the skewing if the PN-cache is _>32 entries. In the overall 
design, miss-rate is improved if  PN-cache is greater than 32, for 
all cache sizes. 

3.2. E f f ec t  o n  c y c l e - t i m e  

We used the PBT tecbaxique to improve cycle time. 
For  physically tagged caches, we must assume that the TLB 
access is faster than the PBT. Otherwise, the cycle time will be 
determined by the TI_,B, since we need to read the indirect-tags 
from the TLB to compare with the indirect-tag stored in the 
PBT. The added cycle-time given by skewing is handled either 
by doing the skewing fianction in a previous cycle. On the other 
hand, if  the PBT tag path is longer than the data sub-array 
access plus the skewing latency, no problem exists, because 
skewing is not used for the PBT- In the overall design, cycle- 
time will be improved. 

3.3.  E f f e c t  o n  area c o s t  

All the methods, except the indirect-tagged cache 
method, have added to the cache area. A cache consuming 
larger area can lead to more complex routing and more power 
consumption, which can indirectly affect cache performance. By 
implementing a PN-cache, we wanted to overcome or alleviate 
these problems. 

We showed in Table 5 that we can reduce the overall 
area cost for the complete design. We assumed a 32-bit address 
width in this case, but the new microprocessors with 64-bits 
addresses will give us an even greater improvement. Indirectly 
by reducing area, cycle-time could also be improved. 

3.4. T h e  b e s t  c a c h e  d e s i g n  a l ternat ive  

Based on the discussion above, the author suggests a 
cache with the following organization for best performance. 

(1) A 32-64Kbyte cache with a PBT size of  1:2 or 1:4. 

(2) A minimum of  32 PN-cache entries. In [1] a PN- 
cache size o f  128-512 was simulated. For  muhi- 
processor workloads, a much larger PN-cache size is 
necessary and should be determined based on the 
cache size as we]]. 

(3) A minimum skewing degree o f  eight. Simple 
exclusive-or algorithm suffident. 

(4) Write-Through strategy to avoid problems with page 
invalidations. 

I f  we can meet the PBT minimum cycle time 
improvement, this design will have a lower miss-rate, lower 
cyde-time ,UNTD consume less area than the baseline cache. For  
pipelined processors, it can be difficult to have a cache with 
multiple-cycle accesses, but the author believes that superscalax 
processors with a Tomasulo-based scheme ~ suffer no penalty 
using this design. 
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