
Cache Design with Path Balancing Table, Skewing and Indirect Tags

Tommi Jokinen and Chia-Jiu Wang

University of Colorado at Colorado Springs

Department of Electrical and Computer Engineering

P.O. Box 7150, Colorado Springs, CO 80933 - 7150

Abstract

A cache design aimed to reduce cycle time, area,
and miss rate simultaneously is proposed in this paper. A
cache with path balancing table, skewing, and indirect tags
can reduce cycle time, use less area, and reduce miss rate at
the same time as compared with a baseline cache. From our
simulation results, we propose cache design alternatives in
achieving lower cycle time, lower miss rate, and using less
a r e a .

1. Introduction

In this paper, we present a cache design with
techniques to reduce cyde time, save area, and reduce miss rate.
We first review the techniques briefly, then we present oux
cache design by combining unique features o f different
techniques to achieve an improved high performance cache
architecture.

Seznec [1], introduces the indirect-tagged cache to reduce
area cost. The idea behind this method is to recognize there axe
actually three places where the page numbers are stored inside a
microprocessor. These three places are Translation Look-aside
Buffer (TL,B), cache tag, and branch target buffer A pointer or
an indirect tag to a location where the page number is stored is
used instead of using address tags. This location is referred to as
a page-number cache or a PN-cache. The tag array size is
independent of the address width because a tag o f any arbitrary
size can be represented by a pointer. The size o f the pointer
depends on the size of the PN-cache. It is often desirable to
have small cache block sizes with out-of-order execution and
pipelined Level 2 caches. This goal can be achieved at little cost
using this method.

Skewed-associative cache design is presented in [6],[9].
With a two-way skewed-associative cache we are able to keep
the same hardware complexity as a regular two-way set-
associative cache, but with the hit rate performance close to that
o f a fottr-way set-associative cache. Two-way skewed caches axe
a good tradeoff for small on-chip caches. The goal is to
minimize hardware implementation cost and keep cache cycle
time low. The performance improvement o f skewed caches
relies on inter-bank dispersion and not on a simple hashing
~,,orith~.

In order to reduce the cyde time, a method called
Path Balance Table (PBT) is presented in [7]. This technique
helps improve performance through reducing cycle time by
balancing the path delay between tag and data array. The idea is
to use a separate subset o f the tag array to de-couple the one-to-
one relationship between the address tags and the cache blocks
for set-associative caches. We call rb_/s subset o f the tag array for
the Path Balance Table (PBT). The path through the tag array is
significantly longer than the path through the data array for
both direct-mapped and set-associative caches. For set-
associative caches we need to know the result of the tag
comparison before we can select the correct cache block, tiffs
fiaxther lengthens the tag path. The PBT contains a subset o f
address tags and the corresponding way in a set to which they
belong. Address tags stored in the PBT are for cache blocks
recently referenced or any other replacement scheme preferred.
The PBT makes the tag array independent o f the data array, so
the data array entry can be selected ahead of address tag
comparison.

2. Proposed Cache Design

To support the discussions on combining different
techniques to improve cache performance and t o show that an
implementation is feasible, we select one o f the best
combinations, and verify oux design with some actual simulation
results. The baseline cache organization for the simulation will
be a VirtuaUy Indexed Physically Tagged (VIPT), 2-way set-
associative, Least Recently Used block-replacement, (8,16,32
and 64}-Kbytes split cache. It will be assumed that the TLB is
fully-associative and with a size depending on the indirect-tag
cache size, which will become apparent later. A write-through
strategy is also assumed to avoid problems with page
invalidation when using indirect-tags. Area cost and miss-rate
will be discussed based on simulation results. Since cycle time is
technology dependent, it will be based on assumptions and
logical reasoning. A miss penalty o f eight clock cycles for
accessing data from lower memory will be assumed when
needed.

We add the following features on to the baseline
cache, in order, and do simulation and analysis on that
organization comparing with previous organizations:

6

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268806.268808&domain=pdf&date_stamp=1997-06-01

(a) Path Balancing Table 0aBT) will be added as shown in
Figure 1. Size will be 1:1, 1:2, 1:4 and 1:8 o f the base
cache size. ,-~ 1:1 ratio means that nuxnber o f sets in
the di rect -mapped PBT cache is equal to the number
o f sets m the regular cache.

Virt u al A ddress
tag index byte offset

I I I I

Tag area Data area

, 6 ,6
I Com]

PBT

",d,
) are J

ralid bit

Tag Hit ~ D a t a ~ - P B T Hit

Figure 1: Baseline cache with PBT cache added. TLB not
$howII ,

(b) A d d skewing with degree eight onto cache as shown in
Figure 2. Simple XOR-func t ion will be used on the
high urder 3-bits o f the set for ias tnacf ion/data cache.

Virtual Address
tag index byte offset

I I I I I

__o I --'1
F = Skewing function

PBT

Figure 2: Baseline cache with PBT cache and skewing function
added. TLB no t shown.

(c) Next, we add the indirect-tags to the baseline cache as
shown in Figure 3. N u m b e r o f PN-cache entries

Ind"

simulated will be 8, 16, 32 and 64. I t is assumed that
the TLB size is equal or less than the PN-cache size,
otherwise the TLB can not be fully ufiliT.ed. In our
simulation, an indirect-tagged cache will be mode led
as a tag cache without a TLB. O u r goal here is m be
able to speed up the PBT tag path and lower the cycle
time even more. XVe can add indirect tags to the
baseline cache structure using Seznec's approach. The
number o f tag entries m the PN-cache will be fixed at
32. Then different PBT cache sizes WIU be simulated.

Virtual Address

tag index byte offs~

i I I I
I I

I I

' PPN ~ Tag Hit

Figure 3: Baseline ins t ruct ion/data cache with PBT cache,
skewing and PN-cache.

F = Skewing functio

A modif ied version o f the A c m e Cache Simulator
f rom the Parallel Architecture Research Laboratory in N e w
Mexico will be used as the simulation tool with some added
features. F o r simulation data, we will use trace-files generated
on a SPARC machine f rom the SPEC92 benchmark package.

Q

0.015
m

.m_ Q01

Amxage ca:he ~ r a t e fa" l O M t v ~ - ~ - Baseline
cache

0.~] ...

CXCE

0
I-caO~ D - c a ~

Figure 4: Average miss-rate for baseline 2-way set-associative
split cache, 64 byte blocks. Data averaged from Gcc, Ear, Sc,
Swm256, Li, Eqntott, Compress and Tomcatv, all 10M traces.

2.1 Cache wi th Pa th Ba lanc ing T a b l e (PBT)

Next, we add the Path Balancing Table to the baseline
cache. The PBT is a direct-mapped cache with a maximum
number o f entries equal to number of sets o f the corresponding
cache. Here we will simulate PBT cache sizes with a ratio o f 1:1,
1:2, 1:4 and 1:8. kVe can expect the 1:1 ratio to be the best
regarding miss-rate since it is the largest one. However, a large
PBT is also slower, so there is a tradeoff between miss-rate and
speed. For cache sizes below about 16-Kbytes, the effect o f
using a PBT is less beneficial because the PBT will dominate the
data path [7]. Figure 5, below, supports this assumption.

0.06

0.05

.m 0.O4 ff
m 0.03

:g 0.02

O.Ol

Average instruction PBT-cache miss-rate for SPECS2
10M traces

1:1 1:2 1:4 I:B

PBT size ratio

Figure 5: Average miss-rate for direct-mapped instruction PBT-
cache, 64 byte blocks. Data averaged from Gcc, Ear, Sc,
Swm256, I_2, Eqntott, Compress and Tomcatv, all 10M traces.

Average data PBT-cache miss-rate for SPEC92
10Mtraces

0.25

0.2

0.15

Z 0.1

0.05

1:1 1:2 1:4 1:8

PBT size ratio

Figure 6: Average miss-rate for direct-mapped data PBT-cache,
64 byte blocks. Data averaged from Gcc, Ear, So, Swm256, Li,
Eqntott, Compress and Tomcatv, all 10M traces.

2A.L PBT Benefit Cost

~-kn important measure is how much we need to
improve the dock speed to make a PBT implementation
worthwhile, since we are m a k ~ g some cache accesses t w o

cycles. Detailed calculation o f benefit cost is in [?]. Table 1 and
Table 2 present the PBT benefit cost results.

C a c h e P B T P B T P B T P B T
Size r a t i o r a t i o r a t i o r a t io

1:1 1:2 1:4 1:8
8k 1.77% 2.32% 3.55% 5.42%
16k 0.76% 1.82% 2.40% 3.65%
32k 0.40% 0.77% 1.85% 2.43%
64k 0.16% 0.40% 0.77% 1.85%

Table I: Minimum instruction cache dock speed-up necessary
for benefit o f PBT. Assuming lower memory access o f eight
cycles. Data averaged from Gcc, Ear, So, Swm256, Li, Eqntott,
Compress and Tomcatv, all 10M traces.

C a c h e P B T P B T P B T P B T
Size ratio 1:1 r a t i o 1:2 r a t i o 1:4 r a t i o 1:8
8k 5.10% 8.49% 11.79% 18.11%
16k 3.23% 5.32% 8.86% 12.29%
32k 2.03% 3.35% 5.51% 9.18%
64k 1.47% 2.07% 3.41% 5.62%

Table 2: Minimum data cache clock speed-up necessary for
benefit o f PBT. Assuming lower memory access o f eight cycles.
Data averaged from Gcc, Ear, Se, Swm256, Li, Eqntott,
Compress and Tomcat'v, all 10M traces_

2.2. Cache wi th P B T and skewing

Next, we add skewing to the cache. Skewing will be
implemented using an inter-bank dispersion degree o f eight,
with a Bit Permute Petrnutation o f identity. The skewing
function is shown in Figttte 7. A skewing degree o f eight has
been proven adequate for a 2-way set-associative cache [6]. It is
possible to remove the delay o f adding skewing by doing the
XOR-ing in the address computation cyde. This stage is often
less time critical. \Ve can also do the data row sdection in the
following stage. Skewing will affect the PBT-cache miss-rate
indirectly, since the PBT is a subset o f the regular cache.

V P N O f f s e t

I) I I I IS°tl I I

f XOR [

?
I I I I

Figure 7: Skewing. Inter-bank dispe_t-sion degree of eight. Bit
Permute Permutation identity. Simple XOR-functinn creates
the new high order set bits.

2.2.1. Miss-Rate Result from Skewed Cache and PBT

Below is the miss-rate that results from adding
skewing to the cache. As we know, skewing attacks the miss-rate
by its inter-bank dispersion quality. We are not concerned with
the PBT at this time.

A v e r a g e m i s s - r a t e f o r 1 0 M t r a c e s - S k e w e d
c a c h e

O olOO!o

0 . 0 1 • 1 6 k

D 3 2 k

0 . 0 0 5 D 6 4 k

0 , ,

I - c a c h e D - c a c h e

Figure 8: Average miss-rate for 2-way set-associative split cache
with skewing degree 8 and 64 byte blocks. Data averaged from
Gcc, Ear, So, Swm256, Li, Eqntott, Compress and Tomcatv, all
10M traces.

The next simulation results show the PBT
instruction/data cache miss-rate, see Figtae 9 and 10. Since we
achieved a reduction in miss-rate for the instruction/data cache,
we should see some reduction in miss-rate for the PBT-cache as
well. These reductions are much less though, since we have
inclusion between the PBT and the regular cache. The PBT-
cache is affected indirectly.

0.06

A w r a p instruction PBT-cache rnlss-rate (or SPEC921OM I r a c g - Skewld
instruction car.,ha

O.O5

0.04
£
t '
: o.oa

0.02

0.01 m
ma-

I

1:1 1:2 1:4

PBT size ratio

i

l:S

Figure 9: Average instruction miss-ratio for direct-mapped PBT
cache with an 8 degree skewed instruction cache and 64 byte
blocks. Data averaged from Gcc, Ear, Sc, Swm256, Li, Eqntott,
Compress and Tomcaw, all 10M traces.

0.15

_=
:E 0.1

Average data PBT-caghe miss- ra te far SPEC92 10M t races - Skewed
data cache

0.25 . ,

0.2

0 . 0 5 ~ . ~

0 • , , ,
1:1 1:2 1:4 1:8

PBT size ratio

Figure 10: Average data miss-rate for direct-mapped PBT cache
with an 8 degree skewed data cache and 64 byte blocks. Data
averaged from Gee, Ear, Sc, Swm256, Li, Eqntott, Compress
and Tomcatv, all 10M traces.

From the values in Figure 10, we can see that they are
almost identical to the values in Figure 6, where no skewing is
used. There is actually a very small difference in the PBT miss-
rate, but it is not noticeable from the charts. The biggest saving
with using s k ~ g is the reduction in rmss rate for the
data/instruction cache. Next, we look at the minimum clock
speed-up necessary for the use o f PBT to achieve some
performance improvement.

2.2.2. P B T Benefi t Cost with Skewed Cache

From the overall miss-rate improvement caused by
the skewing technique, we should expect it to be easier to satisfy
the minimum clock speed-up necessary for the PBT technique
to be worthwh~e. As we can see from Table 3 and 4, the
greatest improvement are apparent for the smaller cache sizes,
because this is where the skewing technique had the greatest
impact.

Cache
Size

PBT
ratio 1:1

PBT
ratio 1:2

PBT
ratio 1:4

PBT
ratio 1:8

8k -0.13 % 0.42% 1.64% 3.51%

16k -0.10% 0.98% 1.53% 2.79%

32k 0.27% 0.64% 1.72% 2.30%
0.08% -0.16% 0.45% 64k 1.53%

Table 3: Minimum instruction cache access speed-up necessary
for benefit o f PBT. Assuming lower memory access of eight
cycles. Data averaged from Gcc, Ear, Sc, Swrn256, Li, Eqntort,
Compress and Tomcatv, all 10M traces.

We can see from Table 3, that for the largest PBT size
we do not need to improve the cycle Ixne at all for the
instruction cache. The improved miss-rate due to skewing is so
high that we can tolerate two-cycle accesses without any
decrease in performance.

w 9 m

C a c h e
S ize

P B T
ra t io 1:1

P B T
rat io 1:2

P B T
r a t i o 1:4

P B T
rat io 1:8

8k 2.79% 6.18% 9.47% 15.8%
16k 1.68% 3.76% 7.30% 10.7%
32k 1.66% 2.98% 5.15% 8.81%

1.53% 1.02% 2.96% 64k 5.17%
Table 4: ~fi_nirnum data cache access speed-up necessary for
benefit o f PBT. Assuming lower memory access is eight cycles.
Data averaged from Gcc, Ear, Sc, Swrn256, Li, Eqntort,
Compress and Tomeatv, aU 10M traces.

2.3. Cache wi th PBT, skewing and indirect - tags

Previously, we have studied and analyzed what
happens when we add a cycle time and a miss-rate reducing
method. These two methods have both added to the complexity
and area cost o f the cache. Next we would like to investigate
what happens if we add an area cost reducing method. Our
main goal here is m answer the question: Can we remove the
cost involved with the previously applied methods, without
affecting any of the benefits so far? In addition, are there any
added benefits through this combination?

,~n indirect-tagged cache offers more than just
reduced area cost. We should also get a faster PBT access time,
since the tag comparison time is less, because comparing tag
pointers rake less time than comparing the whole tag. It is hard
to justify how much faster with this assumption since it will be
technology dependent. Simulation results assume an LgU-
repLacement policy, but this will not be possible for a large
number o f PN-cache entries.

2.3-1. M i s s - R a t e Resul ts f rom P B T and Cache wi th
Ind i r ec t - t ags

Average instruction cache rnJss-rcta for SPEC92 10M traces wl lh akswlng
degree B, for dlffm'lml P N - u c t m

compare with the averaged miss-rate for the baseline cache. A
PN-cache with 32 entries is sufficient for all cache sizes to keep
the miss-rate lower than the baseline cache miss-rate. Beyond 32
entries, there is little increase in performance.

0.045

o.o4

0.0~15

0.(]3

0.025

~ 0,02 I
0.055

Q.01

0.00G

0

Avefaga dadi o r -h i nVm~ri4a ~or SPECE2 10M Dacim w | h akmublg dmgrim B, h=r
different PN-m=ho 8 t'm~

B "16 32 64

PN-aaclm mnlr km

Figure 12: Data cache miss-rate with skewing (degree 8) and
indirect-tags. Data averaged from Gcc, Ear, Sc, Swm256, IA,
Eqnton, Compress and Tomcatv, an 10M traces.

From Figure 12, we note that for smaller cache sizes,
we need more PN-cache entries to keep hit-rate perfomaance
levels above the baseline cache. This is due to worse spatial
locality for data caches than instruction caches. The thorough
reader will notice that for some Larger PN-cache sizes, the miss-
tate is actually slightly worse. This is because a Larger cache
requires a larger PN-cache to perform better, since blocks in the
cache will stay valid much longer.

The next thing we examine, is how the PBT cache
model is affected by the PN-cache. The author believes that a
PN-cache with 32 entries is sufficient for most cases. Therefore,
we win fix the PN-cache size to this value before conducting
any further studies. Figure 13 and 14 shows the miss-rate results
for the insmaction/data PBT-cache when skm~ag is used.

o.ooo . A v e r a g e m s l m c t l o n PBT-cacho m l u - r M s ~ r 8 P E C 9 2 10M I ramm.
0 . ~ 8 Skewk~g degree O and PN-cache a~.e 32 e m r ~ .

0.(X)6 O.0S []

I 0.(3(35

8 0.004 ~ - - s [] [] m B J 0o4
o.ooa - E [] / m ; 0 0 a

E 16 32 64 0.01

Pl~l-utChe 8 r t l r ~

1:1 1:2 1:4 1:8
Figure 11- Instruction cache miss-rate with skewing (degree 8)
and indirect-tags. Data averaged from Gcc, E ~ , So, Swm256,
Li, Eqntott, Compress and Tomcatv, an 10M traces.

Adding indirect-tags increases miss-rate. This is
because there is only a limited set o f physical tags possible in the
PN-cache. From Figures 11 and 12 we would like to know if
the degradadon m hit-rate is worse than the improvement
accomplished by the skewing effect. For this, we need to

PEEl' size rat io

Figure 13: Average instruction cache miss-ratio for dixect-
mapped PBT cache, 64 byte blocks. Skewing degree 8 and PN-
cache size 32 entries. Data averaged from Gcc, Ear, Sc,
Swm256, LL Eqntott, Compress and Tomcatv, all 10M traces.

1 0 - -

0.25

Average dala PBT-cache mlss.rale for SPECg2 1OMtracn.
Skewing degree S and PN-cache sbm 32 entrlu.

0.2

0.15

.-_
l 0.1

0.05

1:1 1:2 1:4 l:a

PBT st',e rmllo

Figure 14: Average data cache miss-rate for direct-mapped PBT
cache, 64 byte lines. Skewing degree 8 and PN-cache size 32
entries. Data averaged from Gcc, Ear, Sc, Swm256, Li, Eqntott,
Compress and Tomcatv, all 10M traces.

Comparing Figure 13 and 14 with the miss-rate for the
cache modal without indirect-tags, we see that there are no
noticeable differences. A we discussed earlier, a PN-cache with
32 entries will completely fit the workload for the simulated
programs.

2.3.2. Area Cost Calculations for Cache with Indirect-
tags and PBT

The addition o f an indirect-tagged cache offers
reduced tag size, in this case for both the cache and the PBT.
Next, we try to determine if there is an area cost increase
involved with this new cache mgarfization.

Cache
Size

P B T
ratio 1:1

PBT
ratio 1:8

P B T P B T
ratio 1:2 ratio 1:4
0.988 0.986
0.983 0.982
0.982 O.98O
0.983 0.981

8k 0.991 0.985
16k 0.986 0.98

32k 0.985 0.979
64k 0.986 0.980

Table 5: Areas cost ratio by adding PN-cache (32 entries).
Skewing degree 8 and PBT size vaxying. Address width is 32
bits. Only status bit included is valid bit. Value less than one
indicates a reduced area.

Table 5 shows the area cost ratio by" adding indirect-
tags to the cache. As we can see, there is no increase for any o f
the cache sizes. The actual benefits ate somewhat less than
showing due to implementation overhead such as encoders and
control logic. The TLB size WIU also be reduced, since we have
removed the physical page numbers and replaced them with an
indirect-tag. We have chosen to look at the overall area
reduction, not just the reduced tag area, and the reason is that
we can better justify adding a PBT and the other techniques.
The cost o f adding a PBT now basically come at no cost with
the added benefit o f lower cycle time.

Another important issue is the address width, which is
independent o f the tag cost. A 64-bit address will only require
minimal added cost because o f larger tags in the PN-cache, but
will give an overall tag area reduction for the cache tag array and
the PBT that is overall better.

3. Discuss ion

For the proposed cache design, there are some
drawbacks or disadvantages associated with each o f the
methods used that we have not yet discussed. This will now be
the focus o f our attention. From what we have found from this
analysis, we also summarize some important findings.

3.1. Effect on miss-rate

We used the skewing technique to effectively reduce
the miss-rate in the proposed cache design. The biggest
disadvantage o f this technique is that we need to use a lot more
non-translated address bits to perform the skewing. There axe at
leas t a couple o f possible solutions to this problem.

(1) Make the page size larger, reducing the cache size or
increase associativity.

(2) Allow for more non-translated bits. This works up to a
certain point. Seznec [6] showed that up to 18 non-
translated address bits is possible without much
performance degradation.

(3) As an example, the UltraSPARC microprocessor from
Sun ~ficrosystems uses a "next field" prediction
scheme to avoid xdmml indexfing. The high order
index bits are predicted. A similar method could be
used in this case.

The first step in this design was to add the PBT. Since
the PBT does not affect the miss-rate for the cache itself, we
were only interested in the added PBT cache miss-rate. As
expected for a direct-mapped cache, for small sizes hit-rate
perfomaance is poor.

In Table 3 and 4, we found a measme on the difficulty
o f improving performance with a PBT. The data cache is more
difficult to improve because the PBT miss-rate is very poor. A
good design alternative in this case is a 32-64Kbyte cache with a
PBT ratio between 1:2 and 1:4. We only need to have a PBT
cache cyrde rune that is about 1-5% better than the baseline
cache, which is very feasible.

As we have mentioned before, the skewing technique
we added improved the miss-rate for the cache but had little
effect on the PBT cache miss-rate. The best improvements were
made for cache sizes in the range 8-16K'byte and in particular
for the instruction cache. Overall, there was a miss-rate
improvement in all cases. This suggests that a smaller cache is
better in this case regarding the larger improvements.

In the last step, we added the PN-cache, which effects
the miss-rate negafvely. Here we also showed that we still gain

from the skewing if the PN-cache is _>32 entries. In the overall
design, miss-rate is improved if PN-cache is greater than 32, for
all cache sizes.

3.2. E f f ec t o n c y c l e - t i m e

We used the PBT tecbaxique to improve cycle time.
For physically tagged caches, we must assume that the TLB
access is faster than the PBT. Otherwise, the cycle time will be
determined by the TI_,B, since we need to read the indirect-tags
from the TLB to compare with the indirect-tag stored in the
PBT. The added cycle-time given by skewing is handled either
by doing the skewing fianction in a previous cycle. On the other
hand, if the PBT tag path is longer than the data sub-array
access plus the skewing latency, no problem exists, because
skewing is not used for the PBT- In the overall design, cycle-
time will be improved.

3.3. E f f e c t o n area c o s t

All the methods, except the indirect-tagged cache
method, have added to the cache area. A cache consuming
larger area can lead to more complex routing and more power
consumption, which can indirectly affect cache performance. By
implementing a PN-cache, we wanted to overcome or alleviate
these problems.

We showed in Table 5 that we can reduce the overall
area cost for the complete design. We assumed a 32-bit address
width in this case, but the new microprocessors with 64-bits
addresses will give us an even greater improvement. Indirectly
by reducing area, cycle-time could also be improved.

3.4. T h e b e s t c a c h e d e s i g n a l ternat ive

Based on the discussion above, the author suggests a
cache with the following organization for best performance.

(1) A 32-64Kbyte cache with a PBT size of 1:2 or 1:4.

(2) A minimum of 32 PN-cache entries. In [1] a PN-
cache size o f 128-512 was simulated. For muhi-
processor workloads, a much larger PN-cache size is
necessary and should be determined based on the
cache size as we]].

(3) A minimum skewing degree o f eight. Simple
exclusive-or algorithm suffident.

(4) Write-Through strategy to avoid problems with page
invalidations.

I f we can meet the PBT minimum cycle time
improvement, this design will have a lower miss-rate, lower
cyde-time ,UNTD consume less area than the baseline cache. For
pipelined processors, it can be difficult to have a cache with
multiple-cycle accesses, but the author believes that superscalax
processors with a Tomasulo-based scheme ~ suffer no penalty
using this design.

R e f e r e n c e s
[1] Seznec, ~adr~. Don't usepage number, but apointer to it.

Proceeding of the 23 ~a International Symposium on
Computer Architecture.

[2] FIermessy, Patterson. Computer Architecture, A quantitative
approach. Morgan Kaufmarm, 2 "d edition, 1997.

[3] Kabakibo, ,~rnan. M.ilutinovic, Veljko. Silbey, Alex. Furht,
Borko. A Survey of Cache Memory in Modern Microcomputer and
Minicomputer Systems. IEEE, 1987.

[4] Seznec, Andre. Decoupled Sectored Caches: condkating low tag
impkmentation cost and low miss ratio. ISCA'21 Proceedings,
April 18-21, 1994_

[5] Agaxwal, ,-Lnant. Column-Assodatiz¢ Caches: A Technique for
Recludag the Miss Rate of Direct-Mapped Caches. Computer
Architecture News, VoL 21, No. 2, ~Lay 1993.

[6] Seznec, ?mdr~. A Cace for Two-Friday SAeumd-mssoeiative Caches.
Computer Architecture News, Vol. 21, No. 2, May 1993.

[7] Pelt, Jih-Kwort. FIsu, Windsor W. Young, Honesty. Ong,
Shauchi. Improving Cache Performance with Balanced Tag and
Data Paths. Computer Architectttre News, Vol. 24, October
1996.

[8] Juan, Tom. Lang, Tomas. Naw,-ro, Juan j. The Di2~o,nce-Bit
Cache. Proceedings of the 23 'a International Symposium on
Computer Architecture.

[9] Bodin, Francbis. Seznec, ~Mxdr~. SkewedAs~odativity
Enhances Performance PredictabikO. Computer Architectuxe
News, Vol. 23, No. 2, May 1995.

[10]Wang, Hong. Sun, Tong. Yang, Qing. C A T - Caching
Address Tags, A Technique for Redudng Area Co~t of On-chip
Caches. Computer 2krchitectuxe News, Vol. 23, No. 2, May
1995.

[11]Wulf, Wm. A. McKee, Sally A. Hitting the Merao~7 IVa/L"
Imph'catiotu of the Obvious. Computer Architecture News, Vol.
23, No. 1, March 1995.

[12] Child, Jeff. Fragmentation ahead for advanced DRAMs.
Computer Design, February 1995.

[13]Wilkes, Maurice V. The Memo[y Wall and the C79IOS End-Point.
Computer zLtchitectuxe News, Vol. 23, No. 4, September
1995.

[14]Johnson, Eric E. GraJ~ti on "The Memoty IF'a~/': Computer
Architecture News, Vol. 23, No. 4, September 1995.

[15]Oh_r, Stephan. Specia/Report: Cache DeJign, Computer Design,
1995.

[16]Jouppi, Norman P. ~,V'dton, StevenJ. E. Tradeoffs iu Two-I_wve/
On-Ch~p Caching. ISCA'21 Proceedings, April 18-21, 1994.

[17]Gee, J. D. Hill, M. D_ Pnevmatikatos, D. N. Smith, A.J.
Cache Performance of the SPEC92 Benchmark Suite. IEEE
Micro, page 17-27, August 1993.

[18]Ewy, Benjamin J. Evans, Joseph B. Secondm.y Cache
Performance in RIS C Architectur~s. Computer Architecture
News, Vol. 21, No. 3,June 1993.

[19] L2 cache/ control/er runs 66-MH z PowerPC. Page 126,
Computer Design, January 1996.

[20]HiU, Mark D. A Case for Direct-Mapped Caches. December,
1988.

m 1 2 m

