Cache Design with Path Balancing Table, Skewing and Indirect Tags
[Tommi Jokinen and Chia-Jiu Wang

Check for
Updates

University of Colorado at Colorado Springs
Department of Electrical and Computer Engineering
P.O. Box 7150, Colorado Springs, CO 80933 - 7150

Abstract

A cache design aimed to reduce cycle time, area,
and miss rate simultaneously is proposed in this paper. A
cache with path balancing table, skewing, and indirect tags
can reduce cycle time, use less area, and reduce miss rate at
the same time as compared with a baseline cache. From our
simulation results, we propose cache design alternatives in
achieving lower cycle time, lower miss rate, and using less
area.

1. Introduction

In this paper, we present a cache design with
techniques to reduce cycle time, save area, and reduce miss rate.
We first review the techniques brefly, then we present our
cache design by combining unique features of different
techniques to achieve an improved high performance cache
architecture.

Seznec [1], introduces the Zndirect-tagged cache to reduce
area cost. The idea behind this method is to recognize there are
actually three places where the page numbers are stored inside a
microprocessor. These three places are Translation Look-aside
Buffer (TLB), cache tag, and branch target buffer A\ pointer oxr
an indirect fag to a location where the page number is stored is
used instead of using address tags. This locaton is referred to as
a page-number cache or a PN-ache. The tag array size is
independent of the address width because a tag of any arbitrary
size can be represented by a pointer. The size of the pointer
depends on the size of the PN-cache. It is often desirable to
have small cache block sizes with out-of-order execution and
pipelined Level 2 caches. This goal can be achieved at little cost
using this method.

Skewed-associative cache design is presented in [6],[9].
With a two-way skewed-assocative cache we are able to keep
the same hardware complexity as a regular two-way set-
associative cache, but with the hit rate performance close to that
of a four-way set-associative cache. T'wo-way skewed caches are
a good tradeoff for small on-chip caches. The goal is to
minimize hardware implementation cost and keep cache cycle
time low. The petformance improvement of skewed caches
relies on inter-bank dispersion and not on a simple hashing

algorithm.

In order to reduce the cycle time, a method called
Path Balance Table (PBT) is presented in [7]. This technique
helps improve petformance through reducing cycle bime by
balancing the path delay between tag and data array. The idea is
to use a separate subset of the tag array to de-couple the one-to-
one relationship between the address tags and the cache blocks
for set-associative caches. We call this subset of the tag array for
the Path Balance Table (PBT). The path through the tag array is
significantly longer than the path through the data array for
both direct-mapped and set-associative caches. For set-
associative caches we need to know the result of the tag
compatison before we can select the correct cache block, this
further lengthens the tag path. The PBT contains a subset of
address tags and the corresponding way in a set to which they
belong. Address tags stored in the PBT are for cache blocks
recently referenced or any other replacement scheme preferred.
The PBT makes the tag array independent of the data array, so
the data array entry can be selected ahead of addtess tag

comparison.

2. Proposed Cache Design

To support the discussions on combining different
techniques to improve cache performance and to show that an
implementation is feasible, we select one of the best
combinations, and vedfy our design with some actual simulation
results. The baseline cache organization for the simulaton will
be a Virtually Indexed Physically Tagged (VIPT), 2-way set-
associative, Least Recently Used block-replacement, {8,16,32
and 64}-Kbytes split cache. It will be assumed that the TLB is
fully-associative and with a size depending on the indirect-tag
cache size, which will become apparent later. A write-through
strategy is also assumed to avoid problems with page
invalidaton when using indirect-tags. Area cost and miss-rate
will be discussed based on simulation results. Since cycle time is
technology dependent, it will be based on assumptions and
logical reasoning. A miss penalty of eight clock cycles for
accessing data from lower memory will be assumed when
needed.

We add the following features on to the baseline
cache, in otder, and do simulation and analysis on that
organization comparing with previous organizations:

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268806.268808&domain=pdf&date_stamp=1997-06-01

(@ Path Balancing Table (PBT) will be added as shown in
Figure 1. Size will be 1:1, 1:2, 1:4 and 1:8 of the base
cache size. A 1:1 ratio means that number of sets in

the direct-mapped PBT cache is equal to the number

simulated will be 8, 16, 32 and 64. It is assumed that
the TLB size is equal ot less than the PN-cache size,
otherwise the TLB can not be fully utilized. In our
simulation, an indirect-tagped cache will be modeled
as a tag cache without a TLB. Our goal hete is to be
able to speed up the PBT tag path and lower the cycle
time even more. We can add indirect tags to the
baseline cache structure using Seznec’s approach. The
number of tag entres in the PN-cache will be fixed at
32. Then different PBT cache sizes will be simulated.

F = Skewing functio

of sets in the regular cache.
Virtual Address
1ag index byte offset
| |] |]]
Tag area D arta area
PBT
Ll
—
Compare Valid bit
Tag Hit VDam PBT Hit
Figure 1: Baseline cache with PBT cache added. TLB not
shown.

(®) Add skewing with degree eight onto cache as shown in
Figure 2. Simple XOR-function will be used on the
high order 3-bits of the set for instruction/data cache.

Virtual Address

tag index byte offset
L [1 |
I | F = Skewing function
Sub-armay 0 Sub-array 1
Tag | Data Tag | Data
F
PBT
Compare —
Compare Valid bit
N
Tag Hit vD:lta PBT Hit

Figure 2: Baseline cache with PBT cache and skewing function
added. TLB not shown.

() Next, we add the indirect-tags to the baseline cache as
shown in Figure 3. Number of PN-cache entries

Virtual Address
tag index byte offset
L | | | | |
Sub-array 0 Sub-array 1
an
(En Data £ | Data
TLB F
PBT
<
VPN
Indirect-tag i d -
PN-cache v Compare
—
y PPN Tag Hit Data

Figure 3: Baseline instrucion/data cache with PBT cache,
shewing and PN-cache.

A modified version of the Acme Cache Simulator
from the Parallel Architecture Research Laboratory in New
Mexico will be used as the simulation tool with some added
features. For simulation data, we will use trace-files generated
on a SPARC machine from the SPEC92 benchmark package.

Average cache miss-rate for 10Mtraces - Baseline
cache

Miss rate

Select bit

Valid bit

PBT Hit

Figure 4: AAverage miss-rate for baseline 2-way set-associative
split cache, 64 byte blocks. Data averaged from Geg, Ear, Sc,
Swm256, Li, Eqntott, Compress and Tomecatv, all 10M traces.

2.1 Cache with Path Balancing Table (PBT)

Next, we add the Path Balancing Table to the baseline
cache. The PBT is a direct-mapped cache with a maximum
number of entres equal to number of sets of the corresponding
cache. Here we will simulate PBT cache sizes with a ratio of 1:1,
1:2, 1:4 and 1:8. We can expect the 1:1 ratio to be the best
regarding miss-rate since it is the largest one. However, a large
PBT is also slower, so there is a tradeoff between miss-rate and
speed. For cache sizes below about 16-Kbytes, the effect of
using a PBT is less beneficial because the PBT will dominate the
data path [7]. Figure 5, below, supports this assumption.

Average instruction PBT-cache miss-rate for SPECS52
10M traces

PBT size ratlo

Figure 5: Average miss-rate for direct-mapped instruction PBT-
cache, 64 byte blocks. Data averaged from Gecc, Ear, Sc,
Swm256, Li, Eqntott, Compress and Tomcatv, all 10M traces.

Average data PBT-cache miss-rate for SPEC92
10M traces

Miss rate

PBT siza ratio
Figure 6: Average miss-rate for direct-mapped data PBT-cache,
64 byte blocks. Data averaged from Gecc, Ear, Sc, Swm256, Li,
Eqntott, Compress and Tomcatv, all 10M traces.

2.1.1. PBT Benefit Cost

An important measure is how much we need to

improve the clock speed to make a PBT implementation

worthwhile, since we are making some cache accesses two

cycles. Detailed calculaton of benefit cost is in [?]. Table 1 and

Table 2 present the PBT benefit cost results.

Cache PBT PBT PBT PBT

Size ratio ratio ratio ratio
1:1 1:2 1:4 1-8

Bk 1.77% 2.32% 3.55% 5.42%

16k 0.76% 1.82% 2.40% 3.65%

32k 0.40% 0.77% 1.85% 2.43%

64k 0.16% 0.40% 0.77% 1.85%

Table 1: Minimurm instruction cache clock speed-up necessary
for benefit of PBT. Assuming lower memory access of eight
cycles. Data averaged from Gec, Ear, Sc, Swm256, Li, Eqntott,
Compress and Tomcatv, all 10M traces.

Cache | PBT PBT PBT PBT
Size ratio 1:1 | ratio 1:2 | ratio 1:4 | ratio 1:8
8k 5.10% 8.49% 11.79% 18.11%
16k 3.23% 5.32% 8.86% 12.29%
32k 2.03% 3.35% 5.51% 9.18%
64k 1.47% 2.07% 341% 5.62%

oo . O |

Table 2: Minimum data cache clock speed-up necessary for
benefit of PBT. Assuming lower memory access of eight cycles.
Data averaged from Gee, Ear, Sc, Swm256, Li, Eqntott,
Compress and Tomcatv, all 10M traces.

2.2. Cache with PBT and skewing

Next, we add skewing to the cache. Skewing will be
implemented using an inter-bank dispersion degree of eight,
with a Bit Permute Petmutation of identity. The skewing
function is shown in Figure 7. A skewing degree of eight has
been proven adequate for a 2-way set-associative cache [6]. It is
possible to temove the delay of adding skewing by doing the
XOR-ing in the address computation cycle. This stage is often
less time critical. We can also do the data row selection in the
following stage. Skewing will affect the PBT-cache miss-rate
indirectly, since the PBT is a subset of the regular cache.

VPN O ffset
Set
L[|
XOR
21N

Figure 7: Skewing. Inter-bank dispersion degree of eight. Bit
Pemmute Permutation identity. Simple XOR-function creates
the new high order set bits.

2.2.1. Miss-Rate Result from Skewed Cache and PBT

Below is the miss-rate that results from adding
skewing to the cache. As we know, skewing attacks the miss-rate
by its inter-bank dispersion quality. We ate not concerned with
the PBT at this time.

M

Figure 8: Average miss-rate for 2-way set-associative split cache
with skewing degree 8 and 64 byte blocks. Data averaged from
Geec, Ear, Sc, Swm256, Li, Eqntott, Compress and Tomcatv, all
10M traces.

The next simulaton results show the PBT
instruction/data cache miss-rate, see Figure 9 and 10. Since we
achieved a reduction in miss-rate for the instruction/data cache,
we should see some reduction in miss-rate for the PBT-cache as
well. These reductons are much less though, since we have
inclusion between the PBT and the regular cache. The PBT-
cache is affected indirecdy.

T . LEaT 10

Figure 9: Average instruction miss-ratio for direct-mapped PBT
cache with an 8 degree skewed instruction cache and 64 byte
blocks. Data averaged from Gce, Ear, Sc, Swm256, Li, Eqntott,
Compress and Tomcatv, all 10\ traces.

Figure 10: Average data miss-rate for direct-rmapped PBT cache
with an 8 degree skewed data cache and 64 byte blocks. Data
averaged from Gee, Ear, Sc, Swm256, Li, Eqntott, Compress
and Tomcatv, all 10M traces.

From the values in Figure 10, we can see that they are
almost identical to the values in Figure 6, where no skewing is
used. Thete is actually a very small difference in the PBT miss-
rate, but it is not noticeable from the charts. The biggest saving
with using skewing is the reduction in miss rate for the
data/instruction cache. Next, we look at the minimum clock
speed-up necessary for the use of PBT to achieve some
petformance improvement.

2.2.2. PBT Benefit Cost with Skewed Cache

From the overall miss-rate improvement caused by
the skewing technique, we should expect it to be easier to satisfy
the minimum clock speed-up necessary for the PBT technique
to be worthwhile. As we can see from Table 3 and 4, the
greatest improvement are apparent for the smaller cache sizes,
because this is where the skewing technique had the greatest
impact.

Cache | PBT PBT PBT PBT
Size ratio 1:1 ratio 1:2 | ratio 1:4 | ratio 1:8
8k -0.13% 0.42% 1.64% 351%
16k -0.10% 0.98% 1.53% 2.79%
32k 0.27% 0.64% 1.72% 2.30%
64k -0.16% 0.08% 0.45% 1.53%

Table 3: Minimum instruction cache access speed-up necessary
for benefit of PBT. Assuming lower memory access of eight
cycles. Data averaged from Gcec, Ear, Sc, Swm256, Li, Egntott,
Comptess and Tomcatv, all 10M traces.

We can see from Table 3, that for the largest PBT size
we do not need to improve the cycle time at all for the
instructon cache. The improved miss-rate due to skewing is so
high that we can tolerate two-cycle accesses without any
decrease in performance.

Cache | PBT PBT PBT PBT
Size ratio 1:1 ratio 1:2 ratio 1:4 ratio 1:8
8k 2.719% 6.18% 9.47% 15.8%
16k 1.68% 3.76% 7.30% 10.7%
32k 1.66% 2.98% 5.15% 8.81%
64k 1.02% 1.53% 2.96% 5.17%

Table 4: Minimum dara cache access speed-up necessary for
benefit of PBT. Assuming lower memory access 1s eight cycles.
Data averaged from Gece, Ear, S¢, Swm256, Li, Eqntott,
Compress and Totncatv, all 10M traces.

2.3. Cache with PBT, skewing and indirect-tags

Previously, we have studied and analyzed what
happens when we add a cycle time and a miss-rate reducing
method. These two methods have both added to the complexity
and area cost of the cache. Next we would like to investigate
what happens if we add an area cost reducing method. Our
main goal here is to answer the question: Can we remove the
cost involved with the previously applied methods, without
affecting any of the benefits so far? In addition, are there any
added benefits through this combinaton?

An indirect-tagged cache offers more than just
reduced area cost. We should also get a faster PBT access time,
since the tag comparison time is less, because comparng tag
pointers take less ime than comparng the whole tag. It is hard
to justify how much faster with this assumpton since it will be
technology dependent. Simulation results assume an LRU-
replacement policy, but this will not be possible for a large
number of PN-cache entxes.

2.3.1. Miss-Rate Results from PBT and Cache with
Indirect-tags

E

=

Figure 11: Instruction cache miss-rate with skewing (degtee 8)
and indirect-tags. Data averaged from Gec, Ear, Sc, Swm256,
Li, Eqntott, Compress and Tomcatv, all 10M traces.

Adding indirect-tags increases miss-rate. This is
because there is only a limited set of physical tags possible in the
PN-cache. From Figures 11 and 12 we would like to know if
the degradaton in hit-rate is worse than the improvement
accomplished by the skewing effect. For this, we need to

compare with the averaged miss-rate for the baseline cache. A
PN-cache with 32 entries is sufficient for all cache sizes to keep
the miss-rate lower than the baseline cache miss-rate. Beyond 32
entries, there is little increase in performance.

Figure 12: Data cache miss-rate with skewing (degree 8) and
indirect-tags. Data averaged from Gcec, Ear, Sc, Swm256, Li,
Eqntott, Compress and Tomcatv, all 10M traces.

From Figure 12, we note that for smaller cache sizes,
we need more PN-cache entnes to keep hit-rate performance
levels above the baseline cache. This is due to worse spatial
locality for data caches than instruction caches. The thorough
teader will notice that for some larger PN-cache sizes, the miss-
rate is actually slightly worse. This is because a larger cache
requires a larger PN-cache to perform better, since blocks in the
cache will stay valid much longer.

The next thing we examine, is how the PBT cache
model is affected by the PN-cache. The author believes that a
PN-cache with 32 entries is sufficient for most cases. Therefore,
we will fix the PN-cache size to this value before conducting
any further studies. Figure 13 and 14 shows the miss-rate results
for the instruction/data PBT-cache when skewing is used.

—— L [i = T
wirf dge b i F

pludim i Qs 3 &N PH-cache sire X2 enlris

Figure 13: Average instruction cache miss-ratio for direct-
mapped PBT cache, 64 byte blocks. Skewing degree 8 and PN-
cache size 32 entties. Data averaged from Gce, Ear, Sc,
Swm256, Li, Eqntott, Compress and Tomcatv, all 10M traces.

— 10—

Figure 14: Average data cache miss-rate for direct-mapped PBT
cache, 64 byte lines. Skewing degree 8 and PN-cache size 32
entties. Data averaged from Gec, Ear, Sc, Swm256, Li, Eqntott,
Compress and Tomcatv, all 10M traces.

Comparing Figure 13 and 14 with the miss-rate for the
cache model without indirect-tags, we see that there are no
noticeable differences. A we discussed earlier, 2 PN-cache with

32 entdes will completely fit the worldoad for the simulated
programs.

2.3.2. Area Cost Calculations for Cache with Indirect-
tags and PBT

The addition of an indirect-tagged cache offers
reduced tag size, in this case for both the cache and the PBT.
Next, we try to determine if there is an area cost increase
involved with this new cache organization.

Cache PBT PBT PBT PBT
Size ratio 1:1 | ratio 1:2 | ratio 1:4 | ratio 1:8
8k 0.991 0.988 0.986 0.985
16k 0.986 0.983 0.982 0.98

32k 0.985 0.982 0.980 0.979
64k 0.986 0.983 0.981 0.980

Table 5: Areas cost ratio by adding PN-cache (32 entries).
Skewing degree 8 and PBT size varying. Address width is 32
bits. Only status bit included is valid bit. Value less than one

indicates a reduced area.

Table 5 shows the area cost ratio by adding indirect-
tags to the cache. As we can see, there is no increase for any of
the cache sizes. The actual benefits are somewhat less than
showing due to implementation overhead such as encoders and
control logic. The TLB size will also be reduced, since we have
removed the physical page numbers and replaced them with an
indirect-tag. We have chosen to look at the overall area
reduction, not just the reduced tag area, and the reason is that
we can better justify adding a PBT and the other techniques.
The cost of adding a PBT now basically come at no cost with
the added benefit of lower cycle time.

Another important issue is the address width, which is
independent of the tag cost. A 64-bit address will only require
minimal added cost because of larger tags in the PN-cache, but
will give an overall tag area reduction for the cache tag array and
the PBT that is overall better.

3. Discussion

For the proposed cache design, there are some
drawbacks or disadvantages associated with each of the
methods used that we have not yet discussed. This will now be
the focus of our attention. From what we have found from this
analysis, we also summatze some impottant findings.

3.1. Effect on miss-rate

We used the skewing technique to effectively reduce
the miss-rate in the proposed cache design. The biggest
disadvantage of this technique is that we need to use a lot more
non-translated address bits to petrform the skewing. There are at
least a couple of possible solutions to this problem.

(1) Make the page size larger, reducing the cache size or
increase associativity.

(2) Allow for more non-translated bits. This works up to a
certain point. Seznec [6] showed that up to 18 non-
translated address bits is possible without much
performance degradation.

(3) As an example, the UltraSPARC microprocessor from
Sun Microsystems uses a ‘“next field” prediction
scheme to avoid virtual indexing. The high order
index bits are predicted. A similar method could be
used in this case.

The fixst step in this design was to add the PBT. Since
the PBT does not affect the miss-rate for the cache itself, we
were only interested in the added PBT cache miss-rate. As
expected for a direct-mapped cache, for small sizes hit-rate
performance is poor.

In Table 3 and 4, we found a measure on the difficulty
of improving petformance with a PBT. The data cache is mote
difficult ro improve because the PBT miss-rate is very poor. A
good design altemative in this case is 2 32-64Kbyte cache with a
PBT ratio between 1:2 and 1:4. We only need to have a PBT
cache cycle tme that is about 1-5% better than the baseline
cache, which is very feasible.

As we have mentHoned before, the skewing technique
we added improved the miss-rate for the cache but had little
effect on the PBT cache miss-rate. The best improvements were
made for cache sizes in the range 8-16Kbyte and in particular
for the instruction cache. Overall, there was a miss-rate
improvement in all cases. This suggests that a smaller cache is
better in this case regarding the larger improvements.

In the last step, we added the PN-cache, which effects
the miss-rate negatively. Here we also showed that we still gain

—T1]—

from the skewing if the PN-cache is 232 entties. In the overall
design, miss-rate is improved if PN-cache is greater than 32, for
all cache sizes.

3.2. Effect on cycle-time

We used the PBT technique to improve cycle time.
For physically tagged caches, we must assume that the TLB
access is faster than the PBT. Otherwise, the cycle time will be
determined by the TLB, since we need to read the indirect-tags
from the TLB to compare with the indirect-tag stored in the
PBT. The added cycle-time given by skewing is handled either
by doing the skewing function in a previous cycle. On the other
hand, if the PBT tag path is longer than the data sub-array
access plus the skewing latency, no problem exists, because
skewing is not used for the PBT. In the overall design, cycle-
time will be improved.

3.3. Effect on area cost

All the methods, except the indirect-tagged cache
method, have added to the cache area. A cache consuming
larger area can lead to more complex routing and more power
consumption, which can indirectly affect cache performance. By
implementing a PN-cache, we wanted to overcome or alleviate
these problems.

We showed in Table 5 that we can reduce the overall
area cost for the complete design. We assumed a 32-bit address
width in this case, but the new microprocessors with 64-bits
addresses will give us an even greater improvement. Indirectly
by reducing area, cycle-time could also be improved.

3.4. The best cache design alternative

Based on the discussion above, the author suggests a
cache with the following organization for best performance.

(1) A 32-64Kbyte cache with a PBT size of 1:2 or 1:4.

(2 A minimuom of 32 PN-cache entres. In [1] a PN-
cache size of 128-512 was simulated. For multi-
processor wotkloads, a much larger PN-cache size is
necessary and should be determined based on the
cache size as well.

3 A minimum skewing degree of eight
exclusive-or algorthm sufficient.

(4) Wrte-Through strategy to avoid problems with page
mvalidations.

Simple

If we can meet the PBT minimum cycle time
improvement, this design will have a lower miss-rate, lower
cycle-ime AND consume less area than the baseline cache. For
pipelined processors, it can be difficult to have a cache with
multiple-cycle accesses, but the author believes that superscalar
processors with a Tomasulo-based scheme will suffer no penalty
using this design.

References

[11 Seznec, André. Dor'’t use page number, but a pointer to 1.
Proceeding of the 23 Intemational Symposium on
Computer Architecture,

[21 Hennessy, Patterson. Computer Architecture, A quantitative
approach. Morgan Kaufmann, 2nd edition, 1997.

[3] Kabakibo, Aiman. Milutnovic, Veljko. Silbey, Alex. Furht,
Botko. 4 Survey of Cache Memory in Modern Microcomputer and
Minicomputer Systeres. IEEE, 1987.

[4] Seznec, André. Deconpled Sectored Caches: conciliating low tag
implementation cost and low miss ratio. ISCA’21 Proceedings,
Apal 18-21, 1994.

[5] Agarwal, Anant. Columm-Associative Caches: A Technigue for
Reducing the Miss Rate of Direct-Mapped Caches. Computer
Architecture News, Vol. 21, No. 2, May 1993.

[6] Seznec, André. A Case for Two-Way Skewed-Associative Caches.
Computer Architecture News, Vol. 21, No. 2, May 1993.

[7] Peir, Jih-Kwon. Hsu, Windsor W. Young, Honesty. Ong,
Shauchi. Improvirg Cache Performance with Balanced Tag and
Data Paths. Computer Architecture News, Vol. 24, October
1996.

[8] Juan, Toni. Lang, Tomas. Navarro, Juan J. The Difference-Bit
Cache. Proceedings of the 23 International Symposium on
Computer Architecture.

[9] Bodin, Francbis. Seznec, André. Skewed Associativity
Enbances Performance Predictability. Computer Architecture
News, Vol. 23, No. 2, May 1995.

[10]Wang, Hong. Sun, Tong. Yang, Qing. CAT — Caching
Address Tags, A Technique for Reducing Area Cost of On-chep
Caches. Computer Architecture News, Vol. 23, No. 2, May
1995.

[11]Wulf, Wm. A. McKee, Sally A. Hitting the Memory Wall:
Implications of the Obvious. Computer Architecture News, Vol
23, No. 1, March 1995.

[12]Child, Jeff. Fragmentation abead for advanced DRAM:.
Computer Design, February 1995.

[13]Wilkes, Mautice V. The Memory Wall and the CMOS End-Poins.
Computer Architecture News, Vol. 23, No. 4, September
1995.

[14]Johnson, Exic E. Graffiti on “The Memory Wall”. Computer
Architecture News, Vol 23, No. 4, September 1995.

[15]Oht, Stephan. Special Report: Cache Design, Computer Design,
1995.

[16]Jouppi, Norman P. Wilton, Steven J. E. Tradeoffs in Two-Leve!
On-Chip Caching. ISCA’21 Proceedings, Apnl 18-21, 1994.

[17]Gee,]J. D. Hill, M. D. Pnevmatikatos, D. N. Smith, A. J.
Cache Performance of the SPEC92 Benchmark Suite. IEEE
Micro, page 17-27, August 1993.

[18]Ewy, Benjamin]. Evans, Joseph B. Secondary Cache
Performance in RIS C Architectures. Computer Architecture
News, Vol. 21, No. 3, June 1993.

[19] L2 cache/ controlier runs 66-MHzg PowerPC. Page 126,
Computer Design, January 1996.

[20)Hill, Mark D. .A Case for Direct-Mapped Caches. December,
1988.

—12—

