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Abstract. Fractals are self-similar recursive structures that have been
used in modeling several real world processes. In this work we study how
“fractal-like” processes arise in a prediction game where an adversary is
generating a sequence of bits and an algorithm is trying to predict them.
We will see that under a certain formalization of the predictive payoff for
the algorithm it is most optimal for the adversary to produce a fractal-
like sequence to minimize the algorithm’s ability to predict. Indeed it
has been suggested before that financial markets exhibit a fractal-like
behavior [1,2]. We prove that a fractal-like distribution arises naturally
out of an optimization from the adversary’s perspective.
In addition, we give optimal trade-offs between predictability and ex-
pected deviation (i.e. sum of bits) for our formalization of predictive
payoff. This result is motivated by the observation that several time
series data exhibit higher deviations than expected for a completely ran-
dom walk.

1 Introduction

Consider an adversary who is producing a sequence of bits (each bit is +1 or −1)
and an algorithm having seen a certain number of bits is interested in predicting
the next x bits. Say the algorithm gets a payoff of 1 for every bit that it predicts
correctly and −1 for every bit where it is wrong. This is like an idealized stock
market where each day the price changes by +1 or −1 percent and the algo-
rithm is required to make a bet on the daily direction. We ask what is the most
adversarial distribution on sequence of bits so as to minimize the algorithm’s
payoff. Clearly the uniform distribution where every bit is chosen independently
and uniformly at random is the most adversarial, since the expected payoff of
any algorithm is always exactly 0.

Given a sequence s of bits, let h(s) be the sum of the bits in s i.e. the height
of the sequence when plotted cumulatively. We will refer to the magnitude of
height as deviation. For s ∈ {−1, 1}T chosen uniformly at random the typical
deviation s is Θ(

√
T ).

The question we study here is: what is the most adversarial distribution on
sequences if the distribution is required to be heavy-tailed, say the typical height
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should be k
√
T where k > 1. Indeed it has been observed in several studies that

the distribution of financial time series is heavy-tailed [3,4]. A natural heavy-
tailed distribution is to pick a random string conditioned on its height being at
least k

√
T . This is essentially the highest entropy distribution with the property

that the typical height is around k
√
T . However the highest entropy distribution

is not the least predictable. Indeed for large k, it tends to rise/drop rather linearly
to its final height. Thus by observing the initial segment of bits, the algorithm
can easily infer the direction of the remaining bits to get a large payoff.

One distribution that has been suggested for financial markets is the Fractional
Brownian Motion (FBM) [5,6] which is a generalization of the Brownian motion.
For our purposes, the Brownian motion can be thought of as a continuous variant
of the uniform distribution on bits. FBM is characterized by a single parameterH
which is called the Hurst parameter, and the typical height achieved by sequences
drawn from FBM(H) is around TH . For H > 1/2, the increments of FBM are
positively correlated while the case H = 1/2 corresponds to Brownian motion.

To make our question precise we introduce a measure of unpredictability for
a distribution which is motivated by the notion that the expected payoff of an
algorithm on an interval I having observed the previous bits should be small
compared to the standard deviation of height in I. Intuitively, we are enforcing
a low signal-to-noise ratio.

Definition 1 Let D be a distribution which produces bits in an online fashion
and s be the sequence of bits that have been produced immediately preceding an
interval I. Let E[As(I)] denote the expected payoff of an algorithm A on interval
I (where the bits in I are produced according to D conditioned on having produced
s immediately before I). Note that A must fix its prediction for I based solely on
s and before looking at any bits within I.

We say that D is δ-unpredictable if for all A, s and I, E[As(I)] ≤ δ ·
√
|I|.

Fig. 1: Growth charts for two different types of adversarial sequences. The first
is the cumulative plot of a random i.i.d sequence with a constant upward bias.
The second is an α-inverting sequence as in Definition 2. Note that the latter
plots seems to change direction more significantly than the former.
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For example an algorithm may notice a high density of +1’s and may de-
cide to predict +1 for the next few bits (this would correspond to a “buying” a
stock) for the next x bits. Note that

√
x is the standard deviation in the payoff

of an algorithm for the uniform distribution on x bit sequences and thus we
are asking that the payoff of the algorithm for a δ-unpredictable distribution is
negligible compared to this standard deviation (we will in fact construct distri-
butions where the standard deviation is much higher than

√
x). Roughly, this is

equivalent to saying that the signal to noise ratio in any interval is negligible.
We ask what is the maximum deviation that can be achieved by a δ-unpredictable

distribution D. We will look at maximizing measures such as median deviation
or mean deviation: Es∼D[|h(s)|] (we will show that our claims hold with respect
to any of these measures).

We show that there is a δ-unpredictable distribution which achieves a deviation
of
√
T (1 + Ω(δ log T )). Thus, the deviation can be ω(

√
T ) for δ = o(1). The

distribution we construct is a variant of a discretization of FBM. We also show
that the highest deviation that can be achieved by a δ-unpredictable distribution
is
√
T (1 +O(δ log T )). In addition, we construct a distribution which is a simple

discretization of FBM and show that the deviation achieved by this distribution
is T 1/2+Θ(δ). Though this distribution is not δ-unpredictable, it satisfies a similar
but weaker property.

A nice property of δ-unpredictable distributions is that they are “fractal-like”
in some sense. We use the terms fractal-like and fractal somewhat interchange-
ably. Normally fractal is considered to be a self-similar recursive structure in
Euclidean space (usually with non-integer dimension to exclude trivial patterns).
Traditionally this has not been applied to bit sequences. Therefore we refrain
from calling such sequences strictly a fractal. To formalize our “fractal-like”
property, we first define a notion of inversion for a deterministic sequence. The
property essentially says that if in any interval there is a huge rise, then there
must be a sub-interval where there must be a proportionally big fall and vice
versa.

Definition 2 (α-Inversion) Given a sequence s ∈ {−1, 1}T , it is said to be α-
inverting if for every interval X within [1, T ] (of at least some constant length)
there is a sub interval Y such that h(sX) and h(sY ) are of opposite sign and
|h(sY )|/|h(sX)| ≥ α. Here by sI we mean the sequence s restricted to interval I.

We refer to the largest feasible α as the inversion ratio of s.

Observe that an α-inverting sequence resembles a fractal in a certain sense.
To see this, note that in a sequence s such that h(s) > 0, if we locate the biggest
contiguous rise, it may be divided into three parts s1s2s3 where s2 has a net
downward slope and s1, s3 have a positive slope each. But one can recurse and
divide each of the three substrings further into three parts each and thus the
sequence has a recursive, self-similar structure.

We show that any δ-unpredictable distribution is α-inverting in a certain sense.
Since we are dealing with a distribution rather than a deterministic sequence we
need an appropriate generalization of Definition 2 which is stated in Section
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1.1. It will be clear from the definition that the highest entropy sequence we
discussed earlier has a very small inversion ratio compared to δ-unpredictable
distributions.

1.1 Main results

In this section we describe our main results in more detail. As we mentioned ear-
lier, the adversarial distributions we construct are closely related to and inspired
from FBM.

FBM with parameterH is the unique continuous time, Gaussian processBH(t)
which satisfies B(0) = 0, E[BH(t)] = 0 for all t and has covariance function:

E[BH(t)BH(s)] =
1

2
(|t|2H + |s|2H − |t− s|2H)

The process BH is translation invariant and is self-similar in the sense that
{BH(at) : t ∈ R} is identical in distribution to {aHBH(t) : t ∈ R} for all a > 0.
Furthermore, BH(t) is normally distributed with variance tH . Thus any interval
of length t has deviation about tH . The case H = 0.5 corresponds to the standard
Brownian motion.

The analysis of the FBM usually requires an understanding of integrated
Wiener processes. The first adversarial distribution we construct is a discrete
variant of the FBM that produces bits instead of real numbers. We denote this
distribution as Fractal Random Walk (FRW).

The sequence is constructed recursively in lengths that are powers of 2. To
produce a sequence of length 2n, we concatenate two recursively constructed
sequences of length n each, and change the height of the second sequence by a
factor proportional to the height h of the first sequence. This is done by flipping
approximately δh (−1)’s to +1’s if h > 0 (and +1’s to −1 otherwise.) A formal
description of the construction appears in Section 3.

While this lacks the translation invariance and the exact self-similarity proper-
ties of the FBM, it still has the property that any interval of size t has deviation
t1/2+Θ(δ).

To see this, note that if h1, h2 denote the heights of the two sequences that
are concatenated to produce the sequence of length 2n after altering the second
string then E[h1h2] = 2δE[h21] = 2δE[H(n)2] where H(n) is a random variable
that denotes the height of a random sequence of length n drawn from FRW. So
E[H(2n)2] = E[(h1 + h2)2] = E[h21] +E[h22] + 2E[h1h2] = (2 + δ)E[H(n)2]. The
recurrence works out to a root mean square deviation (

√
E[H(n)2]) of about

n1/2+Θ(δ).
This informal description skips over technical issues such as discretization. Fur-

thermore, extending this argument to show that the high deviation is achieved
with constant probability is more complicated and is done in Theorem 7. Note
that a constant probability bound for achieving a particular deviation is stronger
than showing a high deviation in expectation (using Markov’s inequality). We
note that this distribution is not δ-unpredictable but satisfies a weaker property
(Theorem 20). For completeness, we show that the FBM (continuous version)
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with H = 1/2 + δ is also not δ-unpredictable in the strict sense (Claim D).
We also note that the highest entropy distribution is very poor in terms of δ-
unpredictability (Claim 25).

We construct another distribution, which we call Optimal Fractal Ran-
dom Walk (Opt-FRW) which has optimal trade-offs between deviation and
predictability. The distribution Opt-FRW is a simple but important twist on
the above process where instead of flipping δ · h bits, we flip δ ·

√
n bits in the

direction of h.

Theorem 3. (Theorems 12, 18 and 13) The distribution Opt-FRW is O(δ)-
unpredictable and achieves a deviation of

√
T (1+Ω(δ log T )) with constant prob-

ability. Further, no δ-unpredictable distribution can achieve an expected deviation
higher than

√
T (1 +O(δ log T )).

We now turn to formalizing the relationship between δ-unpredictability and
“fractal-like” property of a distribution.

For a deterministic sequence we show that an α-inverting sequence with the
highest deviation is a fractal.

Theorem 4. (Claim C)
Let s be an α-inverting sequence of length t (Definition 2), where α is bounded

above by a constant. Then the highest deviation that can be achieved by s for
large t is tθ where θ is the solution to the equation 1 = 2((1 + α)/2)1/θ + α1/θ.
Furthermore, this deviation is actually achieved by an appropriately designed
fractal.

For distributions D over sequences we define the following variant of the earlier
inversion rule.

Definition 5 ((α, q)-Inversion) A distribution D is said to be (α, q)-inverting
if for any interval X of at least some constant length) with median deviation
∆ = Ω(δ

√
|X|), with probability at least q there is a sub interval Y such that

h(sX) and h(sY ) are of opposite sign and |h(sY )| ≥ α ·∆. Here by sI we mean
the sequence s restricted to interval I. This should hold even if one conditions
on a given history of bits seen before the interval X.

We note (see Observation 24) that a uniform random sequence is (α, q) invert-
ing for some constants α, q. Further the probability parameter q can be made as
high as 1− ε by reducing the inversion ratio α to Θ(1/ log(1/ε)).

The following theorem establishes that every δ-unpredictable distribution must
be fractal-like in the sense that it is (Ω(1), Ω(1)) inverting.

Theorem 6. (Theorems 16 and 17) For δ small enough, any δ-unpredictable
distribution is also (α, q)-inverting for some constants α, q. Further by dropping
the inversion ratio α to Θ(1/ log T ) the probability q can be made as high as
1−1/TΩ(1) for all intervals of length at least Ω(log T ). Thus the condition holds
with high probability simultaneously for all such intervals.
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1.2 Related Work

Many studies support the thesis that fractals occur naturally in several real world
processes in diverse fields such as physics, finance and geography [7,8,9]. Ralph
Elliot [1], a professional accountant, suggested the use of fractal like “waves”
in understanding financial markets. Fractal models for finance have also been
studied widely in the academic community. Fractional Brownian Motion (FBM)
was introduced as a variant to the well known Brownian Motion by Mandelbrot
and van Ness in [5]. In addition to financial time series modeling, FBM has also
found applications in the study of network traffic and fluid turbulence [10,6].

The reason for considering FBM rather than the standard Brownian motion
for financial modelling was the observation that the distribution of financial
time series is heavy-tailed [3,4]. This means that the deviations achieved are a
bit higher than those expected for Brownian motion. It has been argued that
modeling S&P500 price data according to FBM produces an estimated value
of the Hurst parameter H to be slightly over the 0.5 value that corresponds
to the standard Brownian Motion [11]. Values of H > 0.5 allow for long range
(positive) correlations in the time series that results in a higher than normal
deviation. Besides FBM other models such as p-stable distributions and levy
distributions [12,4,13] provide an alternate explanation for the heavy tailed na-
ture of time series data by allowing heavier tails for the price changes in each
unit time that are independent across time. In contrast, the FBM uses normally
distributed price changes in each unit time, and the high deviations are achieved
by correlations across time.

Works such as [14,15] have analyzed the level of arbitrage present in FBM.
The authors in [16] have analyzed the predictability of the FBM using a different
loss function from ours. Other researchers [17,18] have studied the prediction
problem as a game between an algorithm and an adversary, and derived that
the optimal strategy for the adversary resembles a Brownian Motion. The work
in [18] was inspired by [19] where the authors provide robust upper and lower
bounds for pricing European call options, under the no-arbitrage assumption
when the price process is assumed to be discrete and discontinuous as opposed
to the Black Scholes model [20] where the price process is taken to be continuous.

1.3 Discussion and Future work

Note that our notion of δ-unpredictable requires the algorithm to fix its predic-
tion for an entire interval I before looking at any of its bits. A stronger notion of
unpredictability is to allow the algorithm to change its prediction for the interval
after looking at bits within I. In other words, at every point the algorithm tries
to simply predict the next bit, based on the bits it has seen so far. One could
ask what is most adversarial distribution in this setting which achieves a high
deviation. In this setting, for any sequence s, a bounded regret algorithm such
as Weighted Majority can achieve a payoff of |h(s)| − c

√
|s| where c :=

√
2/π

[21,22]. So for a distribution D which achieves typical deviation k
√
T , it is al-

ways possible to get a payoff of (k − c)
√
T . It is also fairly straightforward to
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construct a distribution D such that no algorithm can achieve an expected pay-
off better than (k − c)

√
T even when it predicts one bit at a time. We also note

that while the distributions inspired by FBM have some guarantees in terms
of δ-unpredictability, they perform poorly in this model when one is allowed to
predict based on all previous bits (see Claim 26).

One possible justification for our notion of δ-unpredictability is that changing
predictions very often may have a cost associated with it. Although this may be
a reasonable assumption (at least for financial markets), it is only a conjecture
at this point and we invite further comments on this issue.

An interesting direction for further research is to look for natural constraints
on real world processes which provably result in the formation of fractal-like
processes.

2 Preliminaries

Here is some common notation we use throughout the paper. For a sequence of
bits s ∈ {−1, 1}T , h(s) denotes the sum of bits in s i.e. the height of s. We refer
to the magnitude of height as deviation.

We will be working with several aggregate measures of deviation for a distri-
bution such as median deviation (or generalized median), mean deviation and
root-mean-squared deviation (

√
Es∼D[h(s)2]). Note that mean deviation is no

more than root-mean-squared deviation and the generalized median is bounded
by mean deviation up to constant factors using Markov’s inequality (as long as
the probability in generalized median is at least a constant). We will prove our
upper bounds for root-mean-squared deviation and lower bounds for generalized
median and so they will hold for all measures up to constants.

We will typically denote random variables by capital letters and fixed se-
quences by small letters.

3 Construction of Adversarial distributions

In this section we formally construct our adversarial distributions. Each of these
distributions has two parameters, l which is the length of the sequence in the
base case and δ > 0.

We will construct the distributions inductively: having constructed Dδ(n) we
will show how to construct Dδ(2n) (the base case for n = l is simply a random
sequence in {−1, 1}l). In both cases below, we describe the distribution Dδ(2n)
in terms of how to generate a sequence s ∼ Dδ(2n) given access to distribution
Dδ(n).
Fractal Random Walk (FRWl,δ) (2n)

1. Generate sequences s1, s2 independently according to FRWl,δ(n)
2. If height of s1 is positive, change exactly δ ·h(s1) −1’s in s2 to 1 (if they exist,

otherwise change as many as possible). Similarly, if height of s1 is negative,
change exactly δ · h(s1) 1’s in s2 to −1 (if they exist). Call the resulting
sequence s′2.

7



3. Set s = s1 · s′2 i.e. the concatenation of s1 and s′2

Optimum Fractal Random Walk (Opt-FRWl,δ)(2n)

1. Generate sequences s1, s2 independently according to Opt-FRWl,δ(n)

2. If height of s1 is positive, change exactly δ
√
n −1’s in s2 to 1 (if they exist,

otherwise change as many as possible). Similarly, if height of s1 is negative,
change exactly δ

√
n 1’s in s2 to −1 (if they exist). Call the resulting sequence

s′2.

3. Set s = s1 · s′2 i.e. the concatenation of s1 and s′2

Note: Note that both distributions involve changing exactly r bits in s2 where
r is a real number. Intuitively, we want to change each bit of the appropriate
sign in s2 with probability r/n. However, it is simpler to analyze the deviation of
the distributions when we change exactly r bits. The fact that r is a real number
and not an integer will not make much difference since our base case l will be
an increasing function of T (total number of bits to be produced) and so the
discretization errors can be safely ignored.

3.1 High deviation

In this section we show that the distributions we constructed achieve high devia-
tion with constant probability. What follows is a proof sketch for high deviation
of distribution FRWi,δ. Due to space constraints, the proof for Opt-FRWi,δ

and for the intermediate claims appears in the appendix (Section B).

Theorem 7. The distribution FRWl,δ(T ) achieves a deviation of T 1/2+Θ(δ)

with probability at least 1/2− ε where ε ≤ T−10.

Proof: To analyze the height distribution of FRWl,δ it will be more convenient
to define another process which is similar to FRWl,δ but which can assume
integer values instead of bits.

Augmented Fractal Random Walk (AFRWl,δ) (2n)

1. Generate sequences s1, s2 independently according to AFRWl,δ(n)

2. If height of s1 is positive, change exactly δ · h(s1) −1’s in s2 to 1 (if they
exist). Similarly, if height of s1 is negative, change exactly δ · h(s2) 1’s in s2
to −1 (if they exist). Call the resulting sequence s′2.

3. Augment: If there aren’t enough −1’s to flip in s2, then add 2 to some of
the numbers so that the increase in height is exactly δ · h(s1). Similarly for
1’s.

4. Set s = s1 · s′2 i.e. the concatenation of s1 and s′2

For the random variable S ∼ AFRWl,δ, we can exactly characterize the dis-
tribution of h(S).
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Claim 8 (Claim 21) For n = 2i · l, S ∼AFRWl,δ(n),

h(S) =
∑
U⊆[i]

r|U |h(XU ) (3.1)

where r = (1 + δ) and each XU is independently and uniformly distributed in
{−1, 1}l.

We then apply the Berry-Esseen theorem (Theorem 28) to show that the
deviation of |h(AFRWl,δ)| is high.

Lemma 1. (Lemma 3) Median of |h(AFRWl,δ)| is n1+Ω(δ).

Next we show that the probability of executing step Augment in AFRWl,δ

is exponentially small. Note that when constructing a sequence of size T , the
inductive steps of distribution AFRWl,δ are executed at most 2T times. We show
that when starting with sequences of size l where l = 100 log T , the probability
that sequence s2 doesn’t have enough 1’s or −1’s to flip at a particular stage is
at most T−10. Thus, taking a union bound over all inductive steps, we get the
desired result.

Claim 9 (Claim 22) The probability that step Augment is executed at a par-
ticular step is at most T−10.

When the step Augment is not executed, the distributions AFRW and FRW
are identical. Thus, the probability that the distribution FRWl,δ(T ) achieves a
deviation of T 1/2+Θ(δ) is at least 1/2− T−10.

3.2 Unpredictability

In this section we show that the distribution Opt-FRWl,δ is δ-unpredictable.
We first observe that it suffices to work with aligned intervals i.e. intervals

which start and end at appropriate powers of 2.

Definition 10 (Aligned interval)
We assume here that T is a power of 2. An aligned interval is one which is

obtained by breaking [1, T ] into 2i equal parts for i ∈ [0, log T ] and picking one
of the parts. So for instance the first part is always [1, 2i].

In other words, an interval [p + 1, p + x] given by p ∈ [0, T ], x ∈ [1, T − p] is
said to be an aligned interval if p = j · 2i and x = 2i for some i ∈ [0, log T ] and
j ∈ [0, T − 2i].

Claim 11 If distribution D(T ) is ε-unpredictable with respect to all aligned in-

tervals then it is c ·ε-unpredictable with respect to all intervals, where c :=
√
2√

2−1 .

The proof of Claim 11 is fairly straightforward and is moved to the appendix
(Claim 23).

9



Theorem 12. The distribution Opt-FRWl,δ is O(δ)-unpredictable.

Proof: [Sketch]
It can be shown that the process Opt-FRWl,δ has very similar properties if

in Step 2 of the construction, instead of changing exactly δ ·
√
n bits in s2 we

change each bit (of appropriate sign) in s2 with probability δ√
n

. Here we assume

this fact without proving it.
We need to show that for every A, s and I, E[As(I)] ≤ O(δ) ·

√
|I| where s

and I are as in Definition 1. We may assume that I is an aligned interval (Claim
11).

From the construction it is clear that E[As(I)] is largest when h(s) = |s|
or h(s) = −|s| i.e. all the bits before I are of the same sign. Without loss
of generality assume hs = s. Also, if there were no prefix (i.e. |s| = 0) then
E[As(I)] = 0 since the construction is symmetric. To provide an upper bound
on E[As(I)] we simply need to bound the expected number of −1’s which are
changed to +1’s due to the existence of s. We will use a simple union bound
on the total probability of changing a −1 to a 1 according to the construction.
This probability can be split into 2 parts, the first which occurs because of bit
sequences immediately preceding I of length less than I and the second because
of bit sequences immediately preceding I of length more than I. For sequences
of the first kind, the number of bits changed in I is exactly δ ·

√
l while for

sequences of the second kind we may assume that the expected number of bits

changed in I is δ·|I|√
l

where l is the length of the bit sequence under discussion.

Thus, the total probability is bounded by:-

∞∑
i=1

(min(|I|, 2i) · δ)/
√

2i =

log |I|∑
i=1

δ ·
√

2i +

∞∑
i=log |I|+1

δ · |I|√
2i

Both terms can be bounded by δ ·
√
|I| ·

∑∞
i=0 1/

√
2i and so the combined sum

is at most O(δ) ·
√
|I|.

4 Deviation upper bound for Adversarial Distributions

In this section we prove that the deviation achieved by Opt-FRW is essentially
the best possible for a δ-unpredictable distribution up to a constant factor.

Theorem 13. The highest Root-Mean-Square deviation that can be achieved by
a δ-unpredictable distribution on sequences of length T is

√
T (1 +O(δ)) log T .

Proof:
Let Dδ(T ) be the set of all δ-unpredictable distributions over sequences of

length T , and let hn = maxD∈Dδ(n) Es∼D[h(s)2]. Clearly, h1 = 1. We need to

show that
√
hT =

√
T (1 +O(δ)) log T .
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Let D(T ) be a δ-unpredictable distribution which maximizes Es∼D[h(s)2].
Given a sequence s ∼ D, we write s = s1s2 where s1 and s2 are of length n/2
each. Then we have,

hn = Es∼D[h(s)2] = E[(h(s1) + h(s2))2]

= E[h(s1)2] + E[h(s2)2] + 2E[h(s1)h(s2)]

≤ 2hn/2 + 2

n/2∑
x=0

Pr[h(s1) = x] · x · E[h(s2) | h(s1) = x]

≤ 2hn/2 + 2δ
√
n/2

n/2∑
x=0

Pr[h(s1) = x] · |x|

= 2hn/2 + δ ·
√

2n · E[|h(s1)|]

≤ 2hn/2 + δ ·
√

2n ·
√
E[h(s1)2]

≤ 2hn/2 + δ ·
√

2n ·
√
hn/2

The first inequality follows from the definition of hn/2. The second inequality
follows from the fact that the distribution of s2 is also δ-unpredictable.

Let’s substitute, g2n := hn/n. Then hn/2 = (ng2n/2)/2 and
√
hn/2 =

√
n/2

√
g2n/2.

Thus, we get

ng2n ≤ ng2n/2 + δn
√
g2n/2

=⇒ g2n ≤ g2n/2 + δ
√
g2n/2 ≤

(√
g2n/2 + δ/2

)2
=⇒ gn ≤ gn/2 + δ/2

Since g1 = 1, this gives the upper bound gn ≤ 1 + (δ/2) log n. This implies√
hn =

√
EA∼D[h2A] ≤

√
n(1 + δ/2) log n.
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A Fractal nature of Adversarial Distributions

Here we show that any distribution which is δ-unpredictable must have a fractal
like nature (Theorem 6). We will first show that δ-unpredictable distributions
are also unpredictable in a slightly stronger sense.

Definition 14 (Adaptive interval algorithm) An interval prediction algo-
rithm is said to be adaptive if it can choose to stop making predictions on in-
terval I at any point within I based on the bits it has seen so far. Note that we
do not allow the prediction of the algorithm to depend on the bits in I, the only
decision the algorithm can make based on bits in I is to stop predicting earlier
than the end point of I.

Definition 15 (Adaptively δ-unpredictable) A distribution D is said to be
adaptively δ-unpredictable if for any adaptive algorithm A, sequence of bits s and
interval I, E[As(I)] ≤ δ ·

√
l where l is the expected time for which A continues

making a prediction in I.
Here the bits in I are produced according to D conditioned on having produced

s immediately before I, similarly as in Definition 1.

Theorem 16. A δ-predictable distribution is also adaptively O(δ)-unpredictable.

Proof:
Let D be a δ-predictable distribution and A′ an adaptive interval algorithm.

We first show that E[A′s(I)] ≤ 2δ ·
√
|I| i.e. we replace the expected time for

which A′ continues making a prediction in I by the maximum time for which it
makes a prediction.

We will construct a non-adaptive algorithm A such that E[|As(I)−A′s(I)|] ≤
δ ·
√
|I|. Since E[As(I)] ≤ δ ·

√
|I| (D is δ-unpredictable) this implies that

E[A′s(I)] ≤ 2δ ·
√
|I|

Let pu be the probability of producing a sequence of bits u as a prefix in
I according to distribution D. Let E be the set of sequences u such that the
algorithm A′ stops making predictions on seeing u. Then

∑
u∈E pu = 1.

Let Pu(A) denote the expected payoff of A on the remaining part of I con-
ditioned on the event that A′ has stopped making predictions. Then Pu(A) ≤
δ ·
√
|I| − |u| ≤ δ ·

√
|I|. Thus, E[|As(I)−A′s(I)|] ≤

∑
u∈E pu · δ ·

√
|I| = δ ·

√
|I|.

Now we extend the proof to the case where A′ makes a prediction for expected
time x rather than maximum time x.

Let qi be the probability that A′ makes a prediction for time more thant 2ix.
By Markov’s inequality, qi ≤ 2−i. Also, qi =

∑
u∈E:|u|=2i pu, where pu is as

defined above. We will bound the payoff of A′ in phases where the ith phase
consists of bits between 2ix to 2i+1x from the start of I, and show that it is at
most 2δ · qi ·

√
2ix. For a fixed sequence u, the payoff of algorithm A′ in phase i

conditioned on having seen u is at most 2δ
√

2ix (proved above). Thus, the total

payoff of A′ in phase i is at most 2δ · qi ·
√

2ix. Finally, the expected payoff of
A′ over all phases is at most:
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∑
i 2δqi

√
2ix ≤ 2δ ·

∑
i

√
2ix/2i ≤ O(δ) ·

√
x)

which proves that D is adaptively O(δ)-unpredictable.

Now we turn to showing that any adaptively δ-unpredictable distribution has
a fractal like nature.

Theorem 17. If a distribution over T bit sequences is adaptively δ-unpredictable
(Definition 15) then it is (α, q)-inverting for some constants α, q. Further by
dropping the inversion ratio α to Θ(1/ log T ) the probability q can be made as
high as 1−1/TΩ(1) for all intervals of length at least Ω(log T ). Thus the condition
holds with high probability simultaneously for all such intervals.

Proof:
For a certain given history of bits consider the interval I. Let h(I) denote the

random variable that denotes the height of this interval. Let θ, p be such that
the deviation in I exceeds θ with constant probability p (this generalizes the
case when θ is the median deviation.)

We will show that some prefixes of I must achieve height at least αθ and −αθ
each with constant probability (where α < 1/2 is a constant). To show this,
note that either h ≥ θ or h ≤ −θ with probability at least p/2. Assume it is the
former without loss of generality. So we only need to prove that h ≤ −αθ with
probability at least p/4. Assume the contrary and we will see that the interval
cannot be δ-unpredictable.

Consider a prediction algorithm that predicts +1 for the interval but adap-
tively terminates its betting if the height drops to −αθ or if the height exceeds
2αθ, whichever happens first. Since the algorithm hits the lower limit of −αθ
only with probability at most p/4, so with at least probability p/4 it must realize
the upper limit (payoff) of 2αθ (since 2α < 1). In all remaining cases the payoff
is at least −αθ. So the expected payoff is at least (p/4)(2αθ)− (p/4)(αθ) which

needs to be at most δ
√
x. This is not possible if α ≤ 1/2 and θ = Ω(

δ·
√
|I|
p ).

Thus if the height in an interval has high magnitude with constant probability,
it must reach in either direction with constant probability.

To convert this into a high probability argument, we will use (at most) s
iterations of the above prediction algorithm each with limits that depend on θ/s
instead of θ. Each iteration has limits of 2αθ/s and −αθ/s on the sum of bits
seen during its execution. The next iteration is initiated only if either of the
upper or lower limit is reached in the previous iteration and if not all |I| bits in
the full interval are exhausted. From the previous argument, conditioned on the
event that a certain iteration is initiated, if an iteration is executed for expected
time O(|I|/s) and hits the upper limit with probability p/2 then it must also
hit the lower limit with probability p/4. Since the final height exceeds αθ with
constant probability p, in such cases all s iterations have been initiated. Since
there are at most s iterations and all are initiated with constant probability,
at least half of them must have an expected length of O(|I|/s) conditioned on
the event that they are initiated; otherwise the total expected time of all the s
iterations will exceed x.
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Conditioned on the event that the ith iteration is initiated, with probability
p it must hit at least one of its two limits; otherwise the total height will not
reach 2αθ with probability p. So conditioned on the event that the ith iteration
is initiated, for at least half the iterations, it must hit the lower limit (and
upper limit) with probability at least p/4. So conditioned on the event that all
s iterations are initiated the probability that none of them hit the lower limit
and also the upper limit is at most (p/4)s/2.

Thus, it follows that by choosing s = Θ(1), we get an α inversion for constant
α with constant probability. This proves the first part of the theorem.

For the second part, note that with probability at least 1 − (p/4)s/2 either
the final height is less than 2αθ or some subinterval has height −αθ/s. For
s = Θ(log T ) the probability that the final height exceeds θ and there is no
inversion of height ≤ −α/sθ is negligible.

B Omitted Proofs

Theorem 18. The distribution Opt-FRWl,δ(T ) achieves a deviation of
√
T (1+

Ω(δ log T )) with constant probability for l := T−3/4.

Proof:
To prove the theorem it will be more convenient to define another process

which is similar to Opt-FRWl,δ but which can assume integer values instead of
bits.
Augmented Optimum Fractal Random Walk (AOpt-FRWl,δ)(2n)

1. Generate sequences s1, s2 ∈ {−1, 1}n independently according to AOpt-
FRWl,δ(n)

2. If height of s1 is positive, change exactly δ ·
√
n −1’s in s2 to 1 (if they exist).

Similarly, if height of s1 is negative, change exactly δ ·
√
n 1’s in s2 to −1 (if

they exist). Call the resulting sequence s′2.
3. Augment: If there aren’t enough (−1)’s to flip in s2, then add 2 to some

of the numbers so that the increase in height is exactly δ ·
√
n. Similarly for

1’s.
4. Set s = s1 · s′2 i.e. the concatenation of s1 and s′2

First we observe that when l = T−3/4, the probability of executing step Aug-
ment is exponentially small in T . To see this note that if all the base sequences
of length l have at least c(T ) := δ

√
T log T (−1)’s and at least c(T ) 1’s then the

step Augment is never called. This is because every inductive step removes at
most δ

√
T 1’s or −1’s at each stage and the number of times a base sequence is

modified is at most log(T/l) ≤ log T . Now note that by Chernoff bound, proba-
bility that a given base sequence does not have c(T ) 1’s or (−1)’s is exponentially
small in T . Finally note that the number of base sequences is at most T/l, so
we can simply take a union bound over all of them.

For brevity, let D :=Opt-FRWl,δ and D′ :=AOpt-FRWl,δ. The next ob-

servation is that it suffices to prove that E[|h(D′)|] is
√
T (1 + Ω(δ log T )) and
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E[h(D′)2] = O(E[|h(D′)|]2) to prove the theorem. To see this, let NA be the
event that the step Augment is never executed at any point in the construc-
tion, then we have:-

Es∼D[|h(s)|] ≥ Es∼D[|h(s)| | NA]

= Es∼D′ [|h(s)|] | NA]

= Es∼D′ [|h(s)|]− Pr[NA] ·max
s∈D′

|h(s)|

We already saw that Pr[NA] is exponentially small in T . Note that the maxi-
mum value of |h(s)| is at most T +δ(

√
T/2+2

√
T/4)+4

√
T/8+ . . .+2T/l−1

√
l

which is bounded by a polynomial in T . Thus, if E[|h(D′)|] is
√
T (1+Ω(δ log T ))

then so is E[|h(D)|]. It is also easy to see that the maximum value of h(s)2 is
polynomial in T . This fact combined with our assumption about D′, E[h(D′)2] =
O(E[|h(D′)|]2) implies that E[h(D)2] = O(E[|h(D)|]2). Applying Lemma D to
distributionD we get that deviation

√
T (1+Ω(δ log T )) is achieved with constant

probability as required.

So to reiterate, we need to prove two things:-

– E[|h(D′)|] is
√
T (1 +Ω(δ log T ))

– E[h(D′)2] = O(E[|h(D′)|]2)

From now on, we denote by ST a random sequence S drawn from the distribu-
tion D′(T ). The random variable h(ST ) can be written as h(AT/2)+h(BT/2)+R

where R is δ
√
T/2 if h(AT/2) > 0 and −δ

√
T/2 otherwise. Here the pairs of vari-

ables (AT/2, BT/2) and (BT/2, R) are independent. Now define hT := h(ST ). We
see that,

E[h2T ] = E[h(ST )2]

= E[(h(AT/2) + h(BT/2) +R)2]

= E[h(AT/2)2] + E[h(BT/2)2] + E[R2] + 2E[hAR]

= 2E[h2T/2] + δ2
√
T/2 + 2δ

√
T/2E[|hA|]

≥ 2E[h2T/2] + δ
√

2TE[|hT/2|]

The following claim gives a lower bound for E[|hT |].

Claim 19

E[|hT |] ≥
E[h2T ]2

E[h4T ]3/4

Proof: Let the random variables X,Y be defined as X := |hT |1/2, Y := |hT |3/2.
By Cauchy-Schwartz,
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E[XY ]2 ≤ E[X2] · E[Y 2]

=⇒ E[h2T ]2 ≤ E[|hT |] · E[|hT |3]

≤ E[|hT |] · E[h4T ]3/4

=⇒ E[|hT |] ≥
E[h2T ]2

E[h4T ]3/4

Thus, we can say that

E[h2T ] ≥ 2E[h2T/2] + δ
√

2TE[|hT/2|]

≥ 2E[h2T/2] + δ
√

2T
E[h2T/2]2

E[h4T/2]3/4

= 2E[h2T/2] + δ
√

2T
√

E[h2T/2]

(
E[h2T/2]

E[h4T/2]

)3/4

First, let’s complete the proof assuming that
E[h2

T ]
2

E[h4
T ]
≥ C for all T where C is

an absolute constant. Let’s substitute g2T := E[h2T ]/T . Then,

E[h2T ] ≥ 2E[h2T/2] +Ω(δ)
√

2T
√

E[h2T/2]

=⇒ T · g2T ≥ 2 · (T/2) · g2T/2 +Ω(δ) ·
√

2T ·
√
T/2 ·

√
g2T/2

=⇒ g2T ≥ g2T/2 +Ω(δ) · gT/2
= (gT/2 +Ω(δ))2 −O(δ2)

=⇒ gT ≥ gT/2 +Ω(δ)

For the base case, we have E[h2l ] = l, thus g2l = 1. Thus,

gT ≥ 1 +Ω(δ) · log(T/l) = 1 +Ω(δ) · log T 1/4 = 1 +Ω(δ log T )

Thus, E[h2T ] ≥ T · g2T = T (1 +Ω(δ log T )2). By Lemma 19 and Lemma 2, this

implies E[|hT |] ≥
√
T (1+Ω(δ log T )). These statements together imply both the

guarantees we set out to prove about D′.
It remains to prove the following lemma.

Lemma 2.
E[h2

T ]
2

E[h4
T ]
≥ C for all T where C is an absolute constant.

Proof: Recall that for ST drawn according to AOpt-FRWl,δ(T ), we have
h(ST ) = h(AT/2) + h(BT/2) + R. We already saw that E[h2T ] ≥ 2E[h2T/2]. Let

rT :=
E[h4

T ]

E[h2
T ]

2 . We need to show that rT ≤ C. We have,
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rT =
E[h4T ]

E[h2T ]2
≥ E[h4T ]

4E[h2T/2]2

Now, let’s write a recurrence for E[h4T ].

E[h4T ] = E[h(S4
T )]

= E[(hA + h(s1) +R)4]

= E[h4A] + E[h(s1)4] + E[R4] + 6E[h2Ah(s1)2] + 6E[h2AR
2]+

6E[h(s1)2R2] + 4E[hAR
3] + 4E[h3AR]

= 2E[h4T/2] + δ4(T/2)2 + 6E[h2T/2]2 + 12δ2(T/2)E[h2T/2]+

4δ3(T/2)3/2E[|hT/2|] + 4δ
√
T/2E[|hT/2|3]

≤ 2E[h4T/2] +O(δ4T 2) + 6E[h2T/2]2 +O(δ2TE[h2T/2])+

O(δ3T 3/2)
√
E[h2T/2] +O(δ

√
T )E[h4T/2]3/4

Dividing both sides by 4E[h2T/2]2 and using the fact that E[h4T ] ≥ E[h2T ]2 ≥ T 2,
we get:-

rT ≤
E[h4T ]

4E[h2T/2]2

≤ (1/2) · rT/2 +O(δ4) + (3/2) +O(δ2) +O(δ3) +O(δ)r
3/4
T/2

≤ (3/4) · rT/2 +O(1)

which is clearly bounded above by an absolute constant for all T .

Thus, the theorem is proved.

Theorem 20. The distribution D := FRWl,δ is O(δ)-unpredictable in a weak
sense i.e. Es,I [As(I)] ≤ O(δ) · h|I| where hn := Es∼D(n)[|h(s)|]. Here s, I and A
are as in Definition 1. Note that the expectation on the left is taken over I as
well as the prefix s as opposed to Definition 1 where s is fixed and the expectation
is over I only.

Proof: [Sketch]
It can be shown that the process FRWl,δ has very similar properties if in Step

2 of the construction, instead of changing exactly δ · h(s1) bits in s2 we change

each bit (of appropriate sign) in s2 with probability δ·h(s1)
n . Here we assume this

fact without proving it.
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We need to show that Es,I [As(I)] ≤ O(δ) · h|I|. We may assume that I is an
aligned interval (Claim 11). Let s(i) be the suffix of length i in s. Then,

Es[EI [As(I)]

≤
log |I|∑
i=0

δ · Es[|h(s(2i))|] +

∞∑
i=log |I|+1

δ · Es[|h(s(2i)|] · |I|
2i

≤O(δ) · Es[|h(s(|I|))|]+
O(δ) · Es[|h(s(|I|))|](1/21/4 + 1/41/4 + . . .)

≤O(δ) · Es[|h(s(|I|))|]
=O(δ) · h|I|

where the second inequality uses hT = T 1/2+Θ(δ) ≤ T 3/4 (Theorem 7).

Claim 21 For n = 2i · l, S ∼AFRWl,δ(n),

h(S) =
∑
U⊆[i]

r|U |h(XU ) (B.1)

where r = (1 + δ) and each XU is independently and uniformly distributed in
{−1, 1}l.

Proof: We will prove the claim by induction on i. For i = 0, the claim clearly
holds.

Assume that the claim holds for i = k, and let n := 2i+1 · l. Let S = S1 ·S′2 be
the sequence produced by the distribution as described above where S1 and S′2
are random sequences of length n/2 each. Because of step Augment, it is clear
that h(S′2) = h(S2) + δh(S1) which means h(S) = (1 + δ)h(S1) + h(S2). Thus,

h(S) = rh(S1) + h(S2)

=
∑
U⊆[k]

r(r|U |h(XU )) +
∑
V⊆[k]

r(r|V |h(XV ))

=
∑
U⊆[k]

r|U∪{k+1}|h(XU∪{k+1}) +
∑
V⊆[k]

r(r|V |h(XV ))

=
∑

U⊆[k+1]

(r|U |h(XU ))

Lemma 3. Median of |h(AFRWl,δ)| is n1+Ω(δ).
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Proof: In the notation of Theorem 28 we think of each term in Equation B.1
as a random variable. There are exactly 2i terms. It is clear that E[XS ] = 0 for
all S ⊆ [i]. Also, E[X2

S ] = r2|S| · l and E[|X3
S |] = r3|S| · l,

σ2 :=
∑
S

r2|S| · l = (r2 + 1)i · l ≈ (2 + 2δ)i · l ≈ n1+Θ(δ)

Also, maxS ρS/σS = maxS r
|S| = ri ≈ nΘ(δ). Thus, we have

|S −N(0, σ2)| ≤ n−1/2 · nO(δ) ≤ n−Ω(1)

Thus, the distribution of |h(AFRWl,δ)| is very close to a half-normal dis-
tribution with variance σ2 and thus the median of |h(AFRWl,δ)| is Ω(σ) =
n1/2+Ω(δ).

Claim 22 The probability that step Augment is executed at a particular step
is at most T−10.

Proof: This is a simple application of Theorem 27.
Let’s say we are at the step where the length of the sequences is n := 2i · l. We

consider random variables YS := r|S| ·XS where XS is as in Lemma 3. Observe
that a single random variable YS is actually a sum of l independent random
variables each of which take values in {−r|S|, r|S|}. Let us denote these random

variables as YS,i so that XS =
∑l
i=1 YS,i. Thus, in the notation of Theorem 27,∑

S,i

(bS,i − aS,i)2 = 4
∑
S,i

r2|S| = 4l
∑
S

r2|S| = n1+O(δ)

where σ2 is as in Lemma 3.
The step Augment is executed only when hS ≥ n − δn or hS ≤ −(n − δn).

Thus, we have the bound

Pr[|hS | ≥ n−δn] ≤ Pr[|hS | ≥ n/2] ≤ 2·exp

(
− n2

n1+O(δ)

)
≤ 2·exp

(
− l2

l1+O(δ)

)
≤ T−10

as desired.

Claim 23 If distribution D(T ) is ε-unpredictable with respect to all aligned in-

tervals then it is c ·ε-unpredictable with respect to all intervals, where c :=
√
2√

2−1 .

Proof: Consider an interval I of size x. If I is an aligned interval we are done,
otherwise we write it as the minimal union of aligned intervals (take out the
largest aligned interval in I and repeat). There are three possibilities:-

1. I = I1 ∪ I2 is a union of two intervals of size x/2 each (eg. the interval
[T/4 + 1, 3T/4])
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2. I = I1∪I2∪ . . .∪Ik, where each Ij is of a different size. Note that all interval
sizes on the right are powers of 2 and strictly less than x

3. I = J ∪ J ′ where each J can be written as a union of intervals as in 1 or 2
above

In the first case,

|E[hI ]| ≤ |E[hI1 ]|+ |E[hI1 ]| ≤ 2 · ε ·
√
x/2 =

√
2 · ε ·

√
x

In the second case,

|E[hI ]| ≤
k∑
j=1

|E[hIj ]| ≤ ε ·
√
x ·

∞∑
j=1

√
1/2j =

1√
2− 1

· ε ·
√
x

In the third case,

|E[hI ]| ≤ |E[hJ ]|+ |E[h′J ]| ≤ 1√
2− 1

· ε ·
√
|J | +

1√
2− 1

· ε ·
√
|J ′| ≤

√
2√

2− 1
· ε ·

√
|I|

C Fractal nature of deterministic inverting sequences

We will argue that the optimal sequence with height h and inversion ratio α is
achieved by the following fractal-like recursive process. To construct a sequence
of height h, recursively generate a sequence s1 of height (1 + α/2) · h and s2
of height α · h respectively. Concatenate s1, an inverted copy of s2 followed by
another copy of s1. For simplicity for explanation we will ignore rounding errors
from the discretization.

It turns out that for large h, the ratio of lengths of s1 and s2 is fixed to(
1+α
2

)1/θ
: α1/θ where θ is a constant defined below.

Claim. The above process produces an α-inverting sequence for α smaller than
some constant.

Proof: Observe that by recurrence any interval that is contained within s1 or s2
is α-inverting. The full interval consisting of the three concatenated strings also
has an α-inversion; and so are the intervals that span the first two and the last
two strings. So we only need to argue about intervals that span parts of multiple
of these pieces. Consider for example an interval that spans across some suffix
of s1 and some prefix of the inverted copy of s2. Now for small enough α, the
two parts of the interval have heights of opposite signs. So the α-inversion in the
piece with the larger absolute height suffices to produce an α-inversion in the
interval. The same argument can be applied for intervals that span part of the
first and the third sequence.
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Claim. Let s be an α-inverting sequence of length t (Definition 2), where α is
bounded above by a constant. Then the highest deviation that can be achieved
by s for large t is tθ where θ is the solution to the equation 1 = 2((1+α)/2)1/θ+
(α)1/θ. Furthermore, this deviation is actually achieved by the above process.

Proof: [Sketch] We will compute the amount of time t(h) when the process
described above first achieves a height h > 0. By the construction, t(h) satisfies
the recurrence t(h) = 2t · ((1 + α)h/2) + t(αh). In the limit, if this recurrence
has a solution of the form h1/θ then note that h1/θ = 2((1 +α)h/2)1/θ + (αh)1/θ

which means that 1 = 2((1 + α)/2)1/θ + (α)1/θ. The proof can be formalized by
sandwiching the solution to the recurrence in the limit between the functions
h1/θ1 and h1/θ2 where θ1 and θ2 approach θ from above and below.

To prove the lower bound, let t(h) denote the required time to produce a
height of absolute value h for any α-inverting sequence. We will prove that for
large h, t(h) approaches h1/θ. We know that for large enough t there must be
an inversion with ratio α. So to achieve height h in time t there must be a
sub-interval with height less than −αh. So t can be broken into three segments
of lengths t1, t2, t3 with heights h1, h2, h3 such that h = h1 + h2 + h3 where
h2 ≤ −αh. We wish to minimize t(h) = t1 + t2 + t3 ≥ t(h1) + t(h2) + t(h3). Since
t(h) is non-decreasing in h, we may set h2 = −αh and h1+h3 = h−h2 = (1+α)h
giving t(h) = min t(h1) + t(h2) + t(αh) where h1 + h3 = (1 + α)h.

Note that if t(h) is of the form h1/θ then it is convex and so t(h1) + t(h2)

is minimized when h1 = h3 = (1+α)·h
2 giving t(h) = 2t( (1+α)·h

2 ) + t(αh) whose

solution approaches h1/θ in the limit. That the solution must approach h1/θ, by
looking at the behavior of logt h in the limit and sandwiching it between θ1 and
θ2 that approach θ from above and below.

D Miscellaneous Observations

Observation 24 A uniform random sequence is (α, q) inverting (Definition 5)
for some constants α, q. Further the probability parameter q can be made as high
as 1− ε by reducing the inversion ratio α to Θ(1/ log(1/ε)).

Proof: Let us divide the interval of length x into two halves of length x/2 each.
With probability 1/2 the two parts have opposite heights and with constant
probability both heights have magnitude Θ(

√
x). Thus it has an α-inversion with

some constant probability for some constant α. The higher probability statement
is obtained similarly by dividing it into log(1/ε) intervals of equal length.

Observation 25 If a string is sampled from the highest entropy distribution
with deviation k

√
T , then it is possible to get an expected payoff of Ω(1) · k

√
T

for k = Ω(1).

Proof: [Sketch] The algorithm simply predicts the sign of h(s) where s is the
sequence seen in the first half i.e. |s| = T/2. A simple computation proves the
observation.
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The following theorem shows that the FBM with H = 1/2 + δ is not O(δ)-
unpredictable. In fact, an algorithm can get an expected payoff of Θ(xH) on an
interval of size x by predicting the sign of the height of the preceding interval
of length x. (It can also be shown that one cannot do better than this if one is
only allowed to use the sign of the height of some preceding interval.)

Claim. The algorithm that predicts an interval of length x using the sign of the
height of the preceding interval of length x gets an expected payoff of Θ(xH)
where the expectation is taken over all values in the preceding interval. Further
it is optimal to use a preceding interval of length x if one is using the sign of its
height.

Proof. E[BH(sx)|BH(x)]/BH(x) = (1/2)(s2H + 1 − |s − 1|2H) (See [5], Section
5.3)

Let us compute the expected payoff if one uses the height of the preceding
interval of length x to predict the following interval of length x.
E[BH((s+1)x)|BH(sx)]/BH(sx) = (1/2)((1+1/s)2H+1−(1/s)2H). E[BH((s+

1)x)−BH(sx)|BH(sx)] = (1/2)((1+1/s)2H−1−(1/s)2H)BH(sx). So by predict-
ing the sign of BH(sx) to predict the following interval of length x the expected
payoff is E[sign(BH(sx))BH(sx)] = (1/2)((1+1/s)2H−1−(1/s)2H)E[|BH(sx)|] =
Θ(sx)H)(1/2)((1 + 1/s)2H − 1− (1/s)2H .

Note that for s = 1, this is Θ(xH). Further this is the best possible value of
the above expression.

Observation 26 With continuous prediction the FBM and its binary (discretized)
variants have a payoff of Ω(δT )

Proof: Observe that if we take a sequence of length 2 the second bit is correlated
to the first by Θ(δ). This is true of every even bit. The observation follows for
the binary variants. For the true FBM the statement holds since if B1 and B2

are the heights in two adjacent unit intervals of the FBM process with hurst
coefficient H = 1/2 +Θ(δ) then
E[B1 +B2 | B1]/B1 = (1/2)(22H + 1− 12H) = 2Θ(δ) (See [5], Section 5.3)
Therefore E[B2 | B1] = (2Θ(δ) − 1) · B1 = Θ(δ) · B1 for δ ≤ 1. So again

by predicting the sign of B1 one can get a payoff of Θ(δ) · B1 · sign(B1) =
Θ(δ)·|B1|. This in expectation isΘ(δ) asB1 is normally distributed with constant
variance.

Claim. For any random variable X that only takes non negative values and
E[X2] = O((E[X])

2
, Pr[X ≥ Ω(E[X]) = Ω(1)

Proof: Let µ = E[X]. The the standard deviation σ = O(µ) = cµ (say) where
c is at most some constant. We will bound E[X|X ≥ µ + rcµ] for any r ∈ N.
Note that Pr[X ≥ µ+ rcµ] ≤ 1/r2.

So E[X|X ≥ µ+ rcµ] ≤ (µ+ rcµ) + µ
∑
i>r 1/i2 ≤ (µ+ rcµ) + cµ/r.

Now µ = E[X] = Pr[X < µ + rcµ]E[X|X < µ + rcµ] + Pr[X ≥ µ +
rcµ]E[X|X ≥ µ+ rcµ] ≤ (1− 1/r2)E[X|X < µ+ rcµ] + (1/r2)(µ+ rcµ+ cµ/r).
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By setting r to be a constant that is at least some large multiple of c, we can
conclude that E[X|X < µ + rcµ] = Ω(µ). So this conditioned random variable
X has maximum value and mean value that are the same upto constant factors.
Thus it must exceed Ω(µ) with constant probability. So the unconditioned ran-
dom variable X must also exceed Ω(µ) with a smaller constant probability.

E Basic tools

Theorem 27 (Hoeffding’s bound). [23]
Let X1, X2, . . . , Xn be independent random variables such that E[Xi] = 0 and

Pr[Xi ∈ [ai, bi]] = 1. Let S :=
∑
iXi. Then,

Pr[|S| ≥ y] ≤ 2 · exp

(
− 2y2∑n

i=1(bi − ai)2

)
Theorem 28 (Berry-Esseen Theorem). [24]

Let X1, X2, . . . , Xn be independent random variables such that E[Xi] = 0,
E[X2

i ] = σ2
i > 0, and E[|X3

i |] = ρi < ∞. Let σ2 :=
∑
i σ

2
i and S := 1

σ

∑
iXi.

Then there is an absolute constant C such that

|S −N(0, σ2)| ≤ C

σ
·max

i

ρi
σi

Here |D−D′| := maxx |Pr[D ≥ x]−Pr[D′ ≥ x]| denotes the statistical distance
between distributions D and D′ and N(µ, σ2) denotes the normal distribution
with mean µ and variance σ2.
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