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Abstract

Sketching and streaming algorithms are in the forefront of current research directions for
cut problems in graphs. In the streaming model, we show that (1− ε)-approximation for Max-
Cut must use n1−O(ε) space; moreover, beating 4/5-approximation requires polynomial space.
For the sketching model, we show that r-uniform hypergraphs admit a (1 + ε)-cut-sparsifier
(i.e., a weighted subhypergraph that approximately preserves all the cuts) with O(ε−2n(r +
log n)) edges. We also make first steps towards sketching general CSPs (Constraint Satisfaction
Problems).

1 Introduction

The emergence of massive datasets has turned many algorithms impractical, because the standard
assumption of having (fast) random access to the input is no longer valid. One example is when
data is too large to fit in the main memory (or even on disk) of one machine; another is when the
input can be accessed only as a stream, e.g., because its creation rate is so high, that it cannot
even be stored in full for further processing. Luckily, the nature of the problems has evolved too,
and we may often settle on approximate, rather than exact, solutions.

These situations have led to the rise of new computational paradigms. In the streaming model
(aka data-stream), the input can be accessed only as a stream (i.e., a single pass of sequential
access), and the algorithm’s space complexity (storage requirement) must be small relative to the
stream size. In the sketching model, the input is summarized (compressed) into a so-called sketch,
which is short and suffices for further processing without access to the original input. The two
models are related – sketches are often useful in the design of streaming algorithms, and vice versa.
In particular, lower bounds for sketch-size often imply lower bounds on the space complexity of
streaming algorithms.

Graph problems. Recently, the streaming model has seen many exciting developments on graph
problems, where an input graph G = (V,E) is represented by a stream of edges. The algorithm
reads the stream and should then report a solution to a predetermined problem on G, such as graph
connectivity or maximum matching; see e.g. the surveys [Zha10, McG14]. Throughout it will be
convenient to denote n = |V |, and to assume edges have weights, given by w : E → R+. While
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initial efforts focused on polylogarithmic-space algorithms, various intractability results have shifted
the attention to what is called the semi-streaming model, where the algorithm’s space complexity
is Õ(n).1 In general, this storage is not sufficient to record the entire edge-set.

Cuts in graphs is a classical topic that has been studied extensively for more than half a century,
and the last two decades have seen a surge of attention turning to the question of their succinct
representation. The pioneering work of Benczúr and Karger [BK96] introduced the notion of cut
sparsifiers: given an undirected graph G = (V,E,w), a (1 + ε)-sparsifier is a (sparse) weighted
subgraph G′ = (V,E′, w′) that preserves the value of every cut up to a multiplicative factor 1 + ε.
Formally, this is written as

∀S ⊂ V, 1 ≤ w′(S, S̄)

w(S, S̄)
≤ 1 + ε;

but it is sometimes convenient to replace the lefthand-side with 1 − ε or 1
1+ε , which affects ε ≤ 1

2
by only a constant factor. In addition to their role in saving storage, sparsifiers are important
because they can speed-up graph algorithms whose running time depends on the number of edges.
Observe that sparsifiers are a particularly strong form of graph-sketches since on top of retaining
the value of all cuts, they hold the additional property of being subgraphs, rather than arbitrary
data structures.

Ahn and Guha [AG09] built upon the machinery of cut sparsifiers to present an Õ(n/ε2)-space
streaming algorithm that can produce a (1 + ε)-approximation to all cuts in a graph. Further
improvements handle also edge deletions [AGM12a, AGM12b, GKP12], or the stronger notion of
spectral sparsification (see [KLM+11] and references therein). These results are nearly optimal,
due to a space lower bound of Ω(n/ε2) for sketching all cuts in a graph [AKW14] (which improves
an earlier bound of [AG09]).

Recent Directions. These advances on sketching and streaming of graph cuts inspired new
questions. One direction is to seek space-efficient streaming algorithms for specific cut problems,
such as approximating Max-Cut, rather than all cuts. A second direction concerns hypergraphs,
asking whether cut sparsification, sketching and streaming can be generalized to hypergraphs.
Finally, viewing cuts in graphs and hypergraphs as special cases of constraint satisfaction problems
(CSPs), we ask whether other CSPs also admit sketches. Currently, there is a growing interest
in generalizing graph cut problems to broader settings, such as sparsifying general set systems
using small weighted samples [NR13], high-dimensional expander theory [KKL14], sparsest-cuts in
hypergraphs [LM14, Lou14], and applications of hypergraph cuts in networking [YOTI14].

1.1 Our Results

We first address a natural question raised in [IMNO11, Question 10], whether the well-known
Max-Cut problem admits approximation strictly better than factor 1/2 by streaming algorithms
that use space sublinear in n. Here, Max-Cut denotes the problem of computing the value of
a maximum cut in the input graph G (and not the cut itself), since reporting a cut requires
space Ω(n) (see Subsection 2.2 for a short proof). We prove that for every fixed ε ∈ (0, 1

5),

streaming algorithms achieving (1 − ε)-approximation for Max-Cut must use n1−O(ε) space. In
fact, even beating 4/5-approximation requires polynomial space. Our result is actually stronger
and holds also in a certain sketching model. Previously, it was known that streaming computation

1We use Õ(f) to denote O(f polylog f), which suppresses logarithmic terms.
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of Max-Cut exactly requires Ω(n2) bits [Zel11]. Our proof is by reduction from the Boolean
Hidden Hypermatching problem, and captures the difficulty of distinguishing, under limited
communication, whether the graph is avertex-disjoint union of even-length cycles (in which case
the graph is bipartite) or of odd-length cycles (in which case we can bound the maximum cut
value). See Section 2 for details.

Second, we study sparsification of cuts in hypergraphs, and prove that every r-uniform hyper-
graph admits a sparsifier (weighted subhypergraph) of size Õ(rn/ε2) that approximates all cuts
within factor 1 ± ε. This result immediately implies sketching and streaming algorithms (follow-
ing [AG09]). Here, the weight of cut (S, S̄) in a hypergraph H = (V,E,w) is the total weight of
all hyperedges e ∈ E that intersect both S and S̄.2 This question was raised by de Carli Silva
et al. [dCHS11, Corollary 8], who show that every r-uniform hypergraph has a sparsifier of size
O(n) that approximates all cuts within factor Θ(r2). As hypergraph cuts can be viewed as set-
systems, sparsifiers of size O(n2), regardless of r, follow implicitly from [NR13]. Along the way, we
establish interesting, if not surprising, bounds on the number of approximately minimum cuts in
hypergraphs. Technically, this is our most substantial contribution, see Section 3 for details.

Finally, as a step towards understanding a wider range of CSPs, we show that k-SAT instances
on n variables admit a sketch of size Õ(kn/ε2) that can be used to (1 + ε)-approximate the value
of all truth assignments. We prove this result in Section 3.3 by reducing it to hypergraph spar-
sification. We remark that sketching of SAT formulae was studied in a different setting, where
some computational-complexity assumptions were used in [DvM10] to preclude a significant size-
reduction that preserves the satisfiability of the formula. Our sparsification result differs in that it
approximately preserves the value of all assignments.

Related Work. Independently of our work, Kapralov, Khanna and Sudan [KKS14] studied the
same problem of approximating Max-Cut in the streaming model. They first prove that for every
fixed ε > 0, streaming algorithms achieving (1− ε)-approximation for Max-Cut must use n1−O(ε)

space. (This is similar to our Theorem 2.1.) They then make significant further progress, and show
that achieving an approximation ratio strictly better than (the trivial) 1/2 require Ω̃(

√
n) space.

In fact, this result holds even if the edges of the graph are presented in a random (rather than
adversarial) order.

2 Sketching Max-Cut

The classical Max-Cut problem is perhaps the simplest Max-CSP problem. Therefore, it has
been studied extensively, leading to fundamental results both in approximation algorithms [GW95]
and in hardness of approximation [KKMO04]. It is thus natural to study Max-Cut also in the
streaming model. As mentioned above, preserving the values of all cuts in a graph requires linear
space even if only approximate values are required [AG09, AKW14], which raises the question
whether smaller space suffices to approximate only the Max-Cut value (as mentioned above, it is
natural to require the algorithm to report only the value of the cut as opposed to the cut itself, see
Section 2.2).

2Another possible definition, see [dCHS11, Corollary 7], is
∑
e∈E we · |e ∩ S| · |e ∩ S̄|. The latter definition seems

technically easier for sparsification, although both generalize the case of ordinary graphs (r = 2).
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Sketching all cuts in a graph clearly preserves also the maximum-cut value, and thus an Õ
(
n
ε2

)
space streaming algorithm for a (1 − ε)-approximation of Max-Cut follows immediately from
[AG09]. Yet since the maximum cut value is always Ω(m), where m is the total number (or weight)
of all edges, a similar result can be obtained more easily by uniform sampling (achieving εm additive
approximation for all cuts) [Zel09, Theorem 21]. The latter approach has the additional advantage
that it immediately extends to hypergraphs.

It turns out that this relatively straightforward approach is not far from optimal, as we prove
that streaming algorithms that give a (1− ε)-approximation for Max-Cut require n1−O(ε) space.

Theorem 2.1. Fix a constant ε ∈ (0, 1
5). Every (randomized) streaming algorithm that gives

a (1 − ε)-approximation of the Max-Cut value in n-vertex graphs requires space Ω(n1−1/t) for
t = b 1

2ε −
1
2c, which in particular means space n1−O(ε).

To prove this result, we consider the somewhat stronger one-way two-party communication
model, where instead of arriving as a stream, the set of edges of a graph is split between two parties,
who engage in a communication protocol to compute (approximately) the graph’s maximum-cut
value. Since a lower bound in this model immediately translates to the original streaming model,
the theorem above follows immediately from Theorem 2.3 below.

2.1 Proof of Theorem 2.1

Definition 2.2 (Max-Cutε). Let G = (V,EA ∪ EB) be an input graph on |V | = n vertices with
maximum cut value3 c∗, and ε > 0 some small constant. Max-Cutε is a two player communication
game where Alice and Bob receive the edges EA and EB respectively and need to output a value c′

such that with high probability (1− ε)c∗ ≤ c′ ≤ c∗.

Theorem 2.3. Fix a constant ε ∈ (0, 1
5). Then the randomized one-way communication complexity

of Max-Cutε is Ω(n1−1/t) for t = b 1
2ε −

1
2c.

The proof is by a reduction from the following communication problem studied in [YV11].

Definition 2.4 (BHHt
n). The Boolean Hidden Hypermatching problem is a communication

complexity problem where

• Alice gets a boolean vector x ∈ {0, 1}n where n = 2kt for some integer k,

• Bob gets a perfect hypermatching M on n vertices where each edge has t vertices and a boolean
vector w of length n/t.

Let Mx denote the length-n/t boolean vector (
⊕

1≤i≤t xM1,i , . . . ,
⊕

1≤i≤t xMn/t,i
) where (M1,1, . . . ,M1,t)

, . . . ,(Mn/t,1, . . . ,Mn/t,t) are the edges of M. It is promised that either Mx⊕w = 1n/t or Mx⊕w =

0n/t. The problem is to return 1 in the former case, and to return 0 in the latter.

Lemma 2.5 ([YV11, Theorem 2.1]). The randomized one-way communication complexity of BHHt
n

where n = 2kt for some integer k ≥ 1 is Ω(n1−1/t).

3For the proof of the lower bound it suffices to restrict our attention to unweighted graphs, with all edges having
unit weight.
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Proof of Theorem 2.3. We show a reduction from BHHt
n to Max-Cutε. Consider an instance

(x,M,w) of the BHHt
n problem: Alice gets x ∈ {0, 1}n, and Bob gets a perfect hypermatching M

and a vector w ∈ {0, 1}n/t.
We construct a graph G for the Max-Cutε problem as follows (see Figure 2.1 for an example):

• The vertices of G are V = {vi}2ni=1 ∪ {ui}2ni=1 ∪ {wi}
2n/t
i=1 .

• The edges EA given to Alice are: for every i ∈ [n], if xi = 0, Alice is given two “parallel” edges
(u2i−1, v2i−1), (u2i, v2i); if xi = 1, Alice is given two “cross” edges (u2i−1, v2i), (u2i, v2i−1).

• The edges EB given to Bob are: for each hyperedge Mj = (i1, i2, . . . , it) ∈ M (where the
order is fixed arbitrarily):

– For k = 1, 2, . . . , t− 1, Bob is given (u2ik−1, v2ik+1−1) and (u2ik , v2ik+1
)

– For k = t, Bob is given (u2it , w2j) and (v2it−1, w2j−1);

– If wj = 0 Bob is given two “parallel” edges (w2j , v2i1) and (w2j−1, v2i1−1); if wj = 1, Bob
is given two “cross” edges (w2j , v2i1−1) and (w2j−1, v2i1)

By definition, for each j ∈ [n/t], if Mj = (i1, i2, . . . , it) ∈ M and (Mx)j ⊕ wj = 0 we have∑t
k=1 xik ⊕ wj = 0. Since the number of 1 bits in the latter sum is even, when we start traversing

from u2i1 we go through an even number of “cross” edges and complete a cycle of length 2t + 1.
Similarly when starting our traversal at u2i1−1 we complete a different cycle of the same length.
Therefore if (x,M,w) is a 0-instance the graph consists of 2n

t paths of (odd) length 2t + 1 each.
Therefore the maximum cut value is c∗0 = 2t · 2n

t = 4n.
On the other hand if (Mx)j ⊕wj = 1, starting our traversal at u2i1−1, we pass an odd number

of cross edges and end up at u2i1 , from where we once again pass an odd number of cross edges, to
complete a cycle of total length 2 · (2t+1) = 4t+2 that ends back in u2i1−1. Therefore, if (x,M,w)
is a 1-instance the graph consists of n/t paths of (even) length 4t+2 each. The maximum cut value
in this case is c∗1 = 4n+ 2nt .

Observing that c∗0/c
∗
1 = 4n

4n+2n/t = 2t
2t+1 < 1 − ε, we conclude that a randomized one-way

protocol for Max-Cutε (on input size n′ = 4n+n/t = O(n)) gives a randomized one-way protocol
for BHHt

n. By Lemma 2.5 the Theorem follows.

Proof of Theorem 2.3. Any streaming algorithm for Max-Cutε leads to a one-way communication
protocol in the two party setting. Moreover the communication complexity of this protocol is
exactly the space complexity of the streaming algorithm. Hence by Theorem 2.3 the streaming
space complexity is at least as high as the one way randomized communication complexity.

2.2 Reporting a Vertex-Bipartition (rather than a value)

We show a simple Ω(n) space lower bound for reporting a vertex-bipartition that gives an approx-
imate maximum cut.

Proposition 2.6. Let ε ∈ (0, 1
2) be some small constant. Suppose sk is a sketching algorithm that

outputs at most s = s(n, ε) bits, and est is an estimation algorithm, such that together, for every n-
vertex graph G, (with high probability) they output a vertex-bipartition that gives an approximately
maximum cut; i.e., est(sk(G)) = S such that w(S, S̄) ≥ (1− ε)w̃ where w̃ is the maximum cut in
G. Then s ≥ Ωε(n).
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Figure 1: An example of a gadget constructed in the proof of Theorem 2.3 for t = 3, a matching M
that contains the hyperedge M1 = (1, 2, 3), x1 = 1, x2 = 0, x3 = 1 and w1 = 0. The result is two
paths of length 7. Alice’s and Bob’s edges are colored black and red respectively. %vspace20pt

Proof. Let C ⊂ {0, 1}n be a binary error-correcting code of size |C| = 2Ω(n) with relative distance ε.
We may assume w.l.o.g. that for every x ∈ C the hamming weight |x| is exactly n/2 (for instance
by taking C′ = {xx̄ : x ∈ C} where x̄ denotes the bitwise negation of x), and that there are no
x, y ∈ C such that |x− ȳ| ≤ ε

2n (since for every x ∈ C there could be at most one “bad” y, and we
can discard one codeword out of every such pair).

Fix a codeword x ∈ {0, 1}n and consider the complete bipartite graph Gx = (V,E) where
V = [n] and E = {(i, j) : xi = 0 ∧ xj = 1}. The maximum cut value in Gx is obviously w̃ = n2/4.
Let y ∈ {0, 1}n such that 1

2εn ≤ |x− y| ≤
n
2 . Identifying x, y with subsets Sx, Sy ⊆ [n], and using

the fact that |Sx4Sy| = |x− y| ≥ 1
2εn, the value of the cut (Sy, S̄y) in Gx is

|E(Sy, S̄y)| =
n2

4
− |Sx \ Sy|

(n
2
− |Sy \ Sx|

)
− |Sy \ Sx|

(n
2
− |Sx \ Sy|

)
< (1− Ω(ε))

n2

4

Let sk(Gx) be the sketch of Gx, and let est(sk(Gx)) = S be the output of the estimation
algorithm on the sketch of Gx. Therefore if the sketch succeeds (which by our assumption happens
with high probability) and the cut (S, S̄) has value at least (1 − Ω(ε))w̃, then by the preceding
argument the corresponding vector xS is of relative hamming distance smaller than ε

2 from x and
then one can decode x from S.4 By standard arguments from information theory, the size s of a
sketch that succeeds with high probability must be at least Ω(log |C|) = Ωε(n).

2.3 2/3-Approximation of Max-Cut in the Two Party Model

We remark that in the one-way two-party model, the parameter range ε ∈ (0, 1
5) in Theorem

2.3 is tight and not merely a technical limitation of our analysis. In that model, the problem of

4Since the cuts (S̄, S) has the same value as (S, S̄), the vector xS can actually be ε-close to x̄, but by taking our
code to have no codeword being close to the negation of another codeword we can always try decoding both xS and
x̄S .
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giving a 2t
2t+1 -approximation of the maximum cut exhibits an exponential gap in the communication

complexity between the case of t ≥ 2, where we have shown that a polynomial number of bits is
necessary, and the case t = 1, for which logarithmically many bits suffice, as follows from the
following simple protocol.

Proposition 2.7. Let G = (V,EA ·∪ EB) be an input graph on |V | = n vertices. Let wA and wB
be the maximum cut values in GA = (V,EA) and GB = (V,EB) respectively. Then it holds for the
maximum cut value w in G

2
3(wA + wB) ≤ w ≤ wA + wB

Proof. Consider cuts CA, CB : V → {0, 1} such that w(CA) = wA and w(CB) = wB. Let
C : V → {0, 1} be a cut chosen uniformly at random from {CA, CB, CA + CB}. For an edge
e = (u, v) ∈ CA, either CB(u) +CB(v) = 1 or (CA +CB)(u) + (CA +CB)(u) = (CA(u) + CA(v)) +
(CB(u) + CB(v)) = 1 + 0 = 1. Either way PrC∈R{CA,CB ,CA+CB}[e ∈ C] = 2

3 . Similarly the same
holds for an edge e ∈ CB. Therefore by linearity of expectation a random cut in {CA, CB, CA+CB}
has value at least 2

3(wA + wB). The second inequality is trivial.

Corollary 2.8. The one-way communication complexity of Max-Cut1/3 is O(log n).

Proof. Alice computes the value wA and sends it to Bob. Bob computes the value wB and outputs
2
3(wA + wB).

3 Sketching Cuts in Hypergraphs

In a celebrated series of works, Karger [Kar95, Kar98, Kar99] and Benczúr and Karger [BK96, BK02]
showed an effective method to sketch the values of all the cuts of an undirected (weighted) graph
G = (V,E,w) by constructing a cut-sparsifier, which is a subgraph with different edge weights, that
contains only Õ

(
n/ε2

)
edges, and approximates the weight of every cut in G up to a multiplicative

factor of (1 ± ε). We generalize the ideas of Benczúr and Karger to obtain cut-sparsifiers of
hypergraphs, as stated below. Such sparsifiers (and sketches) can be computed by streaming
algorithms that use Õ(rn) space for r-uniform hypergraphs using known techniques (of [AG09] and
subsequent work).

Theorem 3.1. For every r-uniform5 hypergraph H = (V,E,w) and an error parameter ε ∈ (0, 1),
there is a subhypergraph Hε (with different edge weights) such that:

• Hε has O
(
n(r + log n)/ε2

)
hyperedges.

• The weight of every cut in Hε is (1± ε) times the weight of the corresponding cut in H.

A key combinatorial property exploited in the Benczúr-Karger analysis is an upper bound on the
number of cuts of near-minimum weight [Kar93]. It asserts that in the number of minimum-weight
cuts in an n-vertex graph is at most n2 (which had been previously shown by [LP72] and [DKL76]),
and more generally, there are at most n2α cuts whose weight is at most α ≥ 1 times the minimum.
Correctly generalizing this property to r-uniform hypergraphs appears to be a nontrivial question.
A fairly simple analysis generalizes the latter bound to nrα, but using new ideas, we manage to
obtain the following tighter bound.

5Throughout this work we allow r-uniform hypergraphs to contain also hyperedges with less than r endpoints (for
instance by allowing duplicate vertices in the same hyperedge).
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Theorem 3.2. Let H = (V,E,w) be a weighted r-uniform hypergraph with n vertices and minimum
cut value ŵ. Then for every half-integer α ≥ 1, the number of cuts in H of weight at most αŵ is
at most O(2αrn2α).

We prove this “cut-counting” bound in Section 3.1. With this bound at hand, we prove Theo-
rem 3.1 similarly to the original proof of [BK96] for graphs, as outlined in Subsection 3.2.

Cuts in hypergraphs are perhaps one of the simplest examples of CSPs, with the hypergraph
vertices becoming boolean variables, and the hyperedges becoming constraints defined by the pred-
icate Not-All-Equal. A natural question is whether general CSPs admit sketches as well, where
a sketch should provide an approximation to the value of every assignment to the CSP (as usual,
the value of an assignment is the number of constraints it satisfies). Although we are still far from
answering this question in full generality, we prove that for the well-known SAT problem, sketching
is indeed possible.

Theorem 3.3. For every error parameter ε ∈ (0, 1), there is a sketching algorithm that produces
from an r-CNF formula Φ on n variables a sketch of size Õ(rn/ε2), that can be used to (1 ± ε)-
approximate the value of every assignment to Φ.

3.1 Near-Minimum Cuts in Hypergraphs

In this subsection we prove our upper bound on the number of near-minimum cuts (Theorem 3.2).
We generalize Karger’s min-cut algorithm to hypergraphs, and then show that its probability to
output any individual cut is not small (Theorem 3.4), which immediately yields a bound on the
number of distinct cuts. Finally, we show that the exponential dependence on r in Theorem 3.2 is
necessary (Section 3.1.3).

3.1.1 A Randomized Contraction Algorithm

Consider the following generalization of Karger’s contraction algorithm [Kar93] to hypergraphs.

Algorithm 3.1 ContractHypergraph

Input:
an r-uniform weighted hypergraph H = (V,E,w)
a parameter α > 1

Output: a cut C = (S, V \ S)
1: H ′ ← H
2: while |V (H ′)| > αr do
3: e← random hyperedge in H ′ with probability proportional to its weight
4: contract e by merging all its endpoints and removing self-loops6

5: C ′ ← random cut in H ′ (bipartition of V (H ′))
6: return the cut C in H induced by the cut C ′

6Here by self-loops we refer to hyperedges that contain only a single vertex. Note also that the cardinality of an
edge can only decrease as a result of contractions.
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Theorem 3.4. Let H = (V,E,w) be a weighted r-uniform hypergraph with minimum cut value ŵ,
let n = |V |, and let α ≥ 1 be some half-integer. Fix C = (S, V \ S) to be some cut in H of weight

at most αŵ. Then Algorithm 3.1 outputs the cut C with probability at least
Qn,r,α

2αr−1−1
for

Qn,r,α =
2α+ 1

(r + 1)

(
n− α(r − 2)

2α

)−1

Since Theorem 3.4 gives a lower bound on the probability to output a specific cut (of certain
weight), and different cuts correspond to disjoint events, it immediately implies an upper bound
on the possible number of cuts of that weight, proving Theorem 3.2.

Proof. Fix C = (S, V \ S) to be some cut of weight αŵ in H. For t = 1, . . . , n, denote by It the
iteration of the algorithm where H ′ contains t vertices. Since a contraction of a hyperedge may
reduce the number of vertices by anywhere between 1 and r − 1, in a specific execution of the
algorithm, not necessarily all the {It}nt=1 occur. Similarly, let the random variable Et be the edge
contracted in iteration t.

We say that an iteration It is bad if Et ∈ C (i.e., the hyperedge contains vertices from both
S and V \ S). Otherwise, we say it is good (including iterations that do not occur in the specific
execution such as I1, . . . , Iαr). For any fixed en, . . . , et+1 ∈ E define

qt(en, . . . , et+1) = Pr [It, It−1, . . . , I1 are good|En = en, . . . , Et+1 = et+1]

Note that qn is simply the probability that all iterations of the algorithm are good i.e., no edge of
the cut C is contracted. When that happens, in step 5 of the algorithm, there exists a cut C ′ in H ′

that corresponds to the cut C in H. Since at that stage, there are at most αr vertices in H ′, the
probability of choosing C ′ is at least 1

2αr−1−1
. Hence the overall probability of outputting cut C is

at least qn · 1
2αr−1−1

. We thus need to give a lower bound on qn. To this end we prove the following
lemma.

Lemma 3.5. qt(en, . . . , et+1) ≥ Qt,r,α for every t = αr, . . . , n, and every en, . . . , et+1 ∈ E \ C.

Using the lemma for t = n bounds the overall probability of outputting cut C and proves
Theorem 3.4.

3.1.2 Proof of Lemma 3.5

By (complete) induction on t. For the base case, note that qt(en, . . . , et+1) = 1 for t = 1, . . . , αr
since no contractions take place in those iterations.

For the general case, fix an iteration It and from now on, condition on some set of values
En = en, . . . , Et+1 = et+1. All probabilities henceforth are thus conditioned, and for brevity we omit
it from our notation. Observe that depending on the cardinality of Et, the next iteration (after iter-
ation It) may be one of It−1, . . . , It−r+1. Let pi = Pr[|Et| = i] and let yi = Pr [|Et| = i ∧ Et ∈ C].7,8

7Since not all iterations occur in all executions, it might be the case that no edge is contracted in iteration t.
However, in that case iteration t is good, and hence by the induction hypothesis the claim holds.

8Note that |e| refers to the edge’s cardinality, whereas w(ei) refers to its weight.
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We can now write a recurrence relation:

qt(en, . . . , et+1) = Pr[It, . . . , I1 are good|En = en, . . . , Et+1 = et+1]

=

r∑
i=2

Pr [|Et| = i ∧ Et /∈ C] · Pr[It−i+1, . . . , I1 are good||Et| = i, Et /∈ C]

=

r∑
i=2

(pi − yi)EEt [qt−i+1(en, . . . , et+1, Et)||Et| = i ∧ Et /∈ C]

≥
r∑
i=2

(pi − yi)Qt−i+1,r,α

For i = 2, . . . , r let Wi =
∑

e′∈H′:|e′|=iw(e′) be the total weight of hyperedges in H ′ of cardinality

i (at iteration t) and let W =
∑r

i=2Wi be the total weight in H ′.
Observe that pi = Wi

W since Et is chosen with probability proportional to the hyperedge’s weight,
and

∑
v∈V ′ deg(v) =

∑r
i=2 i ·Wi since a hyperedge of cardinality i is counted i times on the lefthand

side. By averaging, there exists a vertex v ∈ V (H ′) such that deg(v) ≤ 1
t

∑r
i=2 i ·Wi, and since it

induces a cut in H whose weight is exactly deg(v), we obtain that ŵ ≤ deg(v) ≤ 1
t

∑r
i=2 i ·Wi.

Next note that

r∑
i=2

yi = Pr[Et ∈ C] ≤ αŵ

W
≤ α

t

r∑
i=2

i · Wi

W
= α

t

r∑
i=2

i · pi

where the first inequality uses the conditioning on all previous iterations being good, which means
that all hyperedges in C have survived in H ′, and thus wH(C) = wH′(C).

Altogether, to prove the lemma it suffices to show that the value of the following linear program
is at least Qt,r,α (and from now on we omit the subscripts r and α, denoting Qt = Qt,r,α).

minimize

r∑
i=2

(pi − yi)Qt−i+1

subject to 0 ≤ yi ≤ pi ∀i = 2, . . . , r
r∑
i=2

pi = 1

r∑
i=2

yi ≤ α
t

r∑
i=2

i · pi.

First observe that the last constraint implies

r∑
i=2

yi ≤ α
t

r∑
i=2

i · pi ≤ α
t

r∑
i=2

r · pi = αr
t

r∑
i=2

pi <
r∑
i=2

pi, (1)

which means that in every feasible solution there is always some yi < pi. This implies that in every
optimal solution, the last constraint is tight, since otherwise increasing such a yi will decrease the
value of the solution, without violating any of the other constraints.

10



It is easy to see that this linear program is both feasible and bounded, and therefore has an
optimal solution that is basic (i.e., a vertex of the polytope). The dimension of the linear program
(i.e., the number of variables) is 2r− 2, and thus in a basic feasible solution (at least) 2r− 2 of the
2r constrains must be tight. Therefore there are at most 2 untight constraints among the 2r − 2
constraints 0 ≤ yi ≤ pi, meaning there are at most 2 indices i, j such that pi 6= 0. We proceed by
analyzing the possible cases:

• 0 < yi = pi and 0 < yj = pj . This case is not possible, since that would have implied∑r
i=2 yi =

∑r
i=2 pi, contradicting (1).

• 0 = yi < pi and 0 = yj < pj . This case is also not possible since that would have implied∑r
i=2 yi = 0, contradicting the tightness of the last constraint in an optimal solution.

• 0 = yi < pi and 0 < yj = pj . Since all other p` = 0, the other LP constraints become

pi + pj = 1

0 + pj = yi + yj = α
t (ipi + jpj)

Solving the two equations we obtain:

LP =
(

1− αi
t+αi−αj

)
Qt−i+1 ≥

(
1− αi

t+αi−αr

)
Qt−i+1 = t−αr

t+αi−αrQt−i+1 (2)

To use the induction hypothesis, we distinguish between two cases:

1. t− i+ 1 ≥ αr, in which case it is thus sufficient to prove the following claim.

Claim 3.6. For every half-integer α ≥ 1 and integers r ≥ i ≥ 2 and t ≥ αr + i − 1, it
holds

Qt−i+1,r,α

Qt,r,α
≥ t+αi−αr

t−αr .

Proof. Recall that Qt = 2α+1
(r+1)

(
t−α(r−2)

2α

)−1
and denote t′ = t− αr. Then

LHS =

(
t′+2α

2α

)(
t′−i+2α+1

2α

) =
(t′ + 2α) · · · (t′ + 1)

(t′ + 2α− i+ 1) · · · (t′ + 1− i+ 1)
=

(t′ + 2α) · · · (t′ + 2α− i+ 2)

t′ · · · (t′ − i+ 2)

=

(
1 +

2α

t′

)
· · ·
(

1 +
2α

t′ − i+ 2

)
≥
(

1 +
2α

t′

)i−1

≥ 1 +
2α(i− 1)

t′
≥ 1 +

αi

t′
= RHS

2. t− i+ 1 < αr, in which case Qt−i+1 = 1. Here we get

LP ≥ 1− αi
t−αr+αi ≥ 1− αi

αi+1 = 1
αi+1 ≥

1
αr+1 ≥

2α+1

(r+1)(t−α(r−2)
2α )

= Qt,

where the last inequality follows from the fact that t−α(r−2) ≥ αr+1−α(r−2) ≥ 2α+1.

• 0 < yi < pi and 0 = yj = pj . In this case pi = 1, yi = αi
t , and therefore

LP =
(
1− αi

t

)
Qt−i+1 ≥

(
1− αi

t−α(r−i)

)
Qt−i+1,

which is exactly as in (2) in the previous case.

Having bounded the value of the linear program, this completes the proof of Lemma 3.5.
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3.1.3 Lower Bound

For completeness, we remark that at least for α > 1, the exponential dependence on r in Theorem
3.2 is indeed necessary. Consider a “sunflower” hypergraph on n = rm−m+1 vertices that consists
of m hyperedges of size r, intersecting at a single vertex, supplemented with m two-uniform cliques
of size r each – one for each of the hyperedges. Each of the r-hyperedges is given weight 1 and each
of the two-edges is given weight α−1

2r . The minimum cut value in this graph is 1, since every cut
contains at least one of the r-hyperedges. However, all Ω(m · 2r) cuts given by the 2r bipartitions
of a single r-hyperedge, are of weight at most α.

3.2 Proof Of Theorem 3.1

Since the proof of Theorem 3.1 closely follows the proof in the original setting of graphs (cf. [BK02]),
we refrain from repeating the full details. Instead, we choose to present an outline of the proof, em-
phasizing the key reasons it translates to the hypergraph setting, and handling the key differences,
that require a separate treatment.

The main tool used by Benczúr and Karger is random sampling: each edge e is included in the
sparsifier with probability pe, and given weight we/pe if included. It is thus immediate that every
cut in the sparsifier preserves its weight in expectation. The main task is thus to carefully select
the sampling probabilities pe in order to both obtain the required number of edges in the sparsifier,
and guarantee the required concentration bounds.

As a rough sketch, to guarantee concentration, one needs to apply a Chernoff bound to estimate
the probability that a specific cut (which is a sum of the independent samples of the edges it
contains) deviates from its expectation. Subsequently, a union bound over all cuts is used to show
the concentration of all cuts. Yet a-priori it is unclear whether the Chernoff bound is strong enough
to handle the exponentially many different cuts in the union bound. The remedy comes in the form
of the bound on the the number of cuts of each weight given by Theorem 3.2. It is still unclear
how should the random sampling be tuned to handle both the small and large cuts simultaneously.
If we are to chose the sampling probability to be small enough to handle the exponentially many
large cuts, we run into trouble of small cuts having large variance. On the other hand, increasing
the sampling probability imposes a risk of ending up with too many edges in the sparsifier.

Following Benczúr and Karger, we now show that when no edge carries a large portion of the
weight in any of the cuts, the cut-counting theorem is sufficient to obtain concentration.

Theorem 3.7. Let H = (V,E,w) be a r-uniform hypergraph on n vertices, let ε > 0 be an error
parameter, and fix d ≥ 1. If H ′ = (V,E′, w′) is a random subhypergraph of H where the weights
w′ are independent random variables distributed arbitrarily (and not necessarily identically) in the
interval [0, 1], and the expected weight of every cut in H ′ exceeds ρε = 3

ε2
(r + (d+ 2) lnn), then

with probability at least 1− n−d, every cut in H ′ has weight within (1± ε) of its expectation.

One can verify that the proof of a similar theorem for the case of graphs, as appears in [Kar99],
translates to the hypergraph setting. For the sake of the proof, a cut is merely a sum of indepen-
dently sampled edges/hyperedges. The lower bound on the weight of the minimum expected cut ŵ
allows one to show that probability of a cut of weight αŵ to deviate from its expectation is at most
n−α(d+2) ·e−αr which trades-off nicely with the bound on the number of cuts given by Theorem 3.2.

Informally, the latter theorem implies that in order to obtain the desired concentration bound
in the general case, the sampling probability of an edge must be inversely proportional to the size of
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the largest cut that contains that edge. This motivates the following definitions, and the theorem
that follows them.

Definition 3.8. A hypergraph H is k-connected if the weight of each cut in H is at least k.

Definition 3.9. A k-strong component of H is a maximal k-connected vertex-induced subhypergraph
of H.

Definition 3.10. The strong connectivity of hyperedge e, denoted ke, is the maximum value of k
such that a k-strong component contains (all endpoints of) e.

Note that one can compute the strong connectivities of all hyperedges in a hypergraph in
polynomial time as follows. Compute the global minimum cut, and then proceed recursively into
each of the two subhypergraphs induced by the minimum cut. The strong connectivity of an edge
would then be the maximum among the minimum cuts of all the subhypergraphs it has been a part
of throughout the recursion. The minimum cut in a hypergraph was shown to be computable in
O(n2 log n+mn) time by [KW96]. Note that since the total number of subhypergraphs considered
throughout the recursion is at most n, there are at most n different strong-connectivity values in
any hypergraph.

Theorem 3.11. Let H be an r-uniform hypergraph, and let ε > 0 be an error parameter. Consider
the hypergraph Hε obtained by sampling each hyperedge e in H independently with probability pe =
3((d+2) lnn+r)

keε2
, giving it weight 1/pe if included. Then with probability at least 1−O(n−d)

1. The hypergraph Hε has O
(
n
ε2

(r + log n)
)

edges.

2. Every cut in Hε has weight between (1− ε) and (1 + ε) times its weight in H.

The proof of the theorem for the hypergraph setting is again completely identical to the proof
in [BK02] (c.f., Theorem 2.6). The only thing that needs verifying is that strong-connectivity
induces a recursive partitioning of the vertices of the hypergraph, just as it does when dealing
with graphs. This is in fact the case, mainly because the components considered in the definitions
are vertex-induced, and therefore the cardinality of the hyperedges plays no part. One can then
decompose the hyperedges of the hypergraph to “layers”, based on their strong-connectivity, and
apply Theorem 3.7 to each layer separately.

To complete our discussion we bring the reader’s attention to a couple of places where the
cardinality of the hyperedges has played part:

• The modified parameter pe = 3(r+(d+3) lnn)
keε2

counters the number of cuts from Theorem 3.2

(at most O(2αrn2α) cuts of weight αŵ) and the number of distinct edge-connectivity values,
which is at most n.9

• The number of edges in the sparsifier is (with high probability) O
(
n
ε2

(r + log n)
)

since the
sampling probability is also linear in r.

9In their analysis [BK02] take a union bound over n2 distinct edge-connectivity values. For hypergraphs using the
stronger linear bound (instead of the trivial nr) is crucial.
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3.3 SAT Sparsification

Lemma 3.12. Given an r-CNF formula Φ with n variables and m clauses, there exists an (r+ 1)-
uniform hypergraph H with 2n + 1 vertices, and a mapping Π : {0, 1}n → {0, 1}2n+1 from the set
of all assignments to Φ to the set of all cuts in H, such that for every assignment ϕ, it holds that
valΦ(ϕ) = valH(Π(Φ)).

Proof. Consider an r-CNF formula Φ with variables {xi}i∈[n]. We construct the weighted hyper-
graph H whose vertices are {xi,¬xi}i∈[n] and a special vertex F . For each clause `i1 ∨ `i2 ∨ · · ·∨ `ir ,
we add a hyperedge {`i1 , `i2 , . . . , `ir , F}. Moreover, let Π be the mapping that maps an assignment
to Φ to the cut in H obtained by placing all vertices corresponding to true literals on one side, and
the F vertex together with all vertices corresponding to false literals on the other side.

For an assignment ϕ to Φ, it is clear that a hyperedge is contained in the cut Π(ϕ) if and only
if at least one of the vertices it contains is on the opposite side of F . Therefore the weight of Φ(ϕ)
is exactly the value of ϕ.

Theorem 3.3 follows from Lemma 3.12 and Theorem 3.1.

4 Future Directions

Our results raise several questions that deserve further work.

Sketching Max-Cut. Our results and the results of [KKS14] make progress on the streaming
complexity of approximating Max-Cut, showing polynomial space lower bounds. To fully
resolve this problem, one still needs to determine whether Ω(n) space is necessary for any
non-trivial approximation (i.e., strictly better than 1/2), or whether there is a sublinear-space
streaming algorithm that beats the 1/2-approximation barrier.

Also of interest is the communication complexity of approximating Max-Cut in the multi-
round two-party model, and even a multi-round analogue of Boolean Hidden Hyper-
matching.

Sketching Cuts in Hypergraphs. Can one improve on the linear dependence on r in hypergraph
sparsification (Theorem 3.1)? Or prove a matching lower bound? Such a refinement could be
especially significant when the hyperedge cardinality is unbounded.

General CSPs. Do all CSPs admit sketches of bit-size o(nr), or even Õ(n), that preserve the
values of all assignments? From the other direction (lower bounds), we may even restrict
ourselves to sketches that are sub-instances, and ask whether there are CSPs that require size
Ω(nr) or even nΩ(r)?
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