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A multiprover interactive proof system for
the local Hamiltonian problem

Joseph Fitzsimons∗ Thomas Vidick†

Abstract

We give a quantum interactive proof system for the local Hamiltonian problem onn qubits in which
(i) the verifier has a single round of interaction with five entangled provers, (ii) the verifier sends a
classical message onO(log n) bits to each prover, who reply with a constant number of qubits, and
(iii) completeness and soundness are separated by an inverse polynomial inn. As the same class of
proof systems, without entanglement between the provers, is included inQCMA, our result provides
the first indication that quantum multiprover interactive proof systems with entangled provers may be
strictly more powerful than unentangled-prover interactive proof systems. A distinguishing feature of
our protocol is that the completeness property requires honest provers to share a large entangled state,
obtained as the encoding of the ground state of the local Hamiltonian via an error-correcting code. Our
result can be interpreted as a first step towards a multiprover variant of the quantum PCP conjecture.

1 Introduction

The PCP theorem [AS98, ALM+98] asserts that any language inNP admits proofs of membership that can
be efficiently verified using a randomized procedure which makes the correct decision with high probability
while only ever reading a constant number of bits of the proof. An equivalent formulation of the PCP
theorem, that has been particularly useful in applicationsto hardness of approximation [Hås01] as well as
in devising further improvements to the theorem [Raz98], uses the language of multiplayer games. A two-
player gameG is specified by question setsQ, Q′, answer setsA, A′, a distributionπ on Q × Q′ and a
verification criterionV ⊆ (A × A′)× (Q × Q′). The valueω of G is defined as the maximum, over all
assignmentsf : Q → A, f ′ : Q′ → A′, of the average number of valid answers given by the assignments:
ω(G) = sup f , f ′ ∑q,q′ π(q, q′)V( f (q), f ′(q′); q, q′). The PCP theorem is equivalent to the statement that
ω(G) is NP-hard to approximate to within a constant additive factor, even for the case of answer setsA,
A′ of constant size. To see the connection, consider the following “consistency game”: the verifier, instead
of directly reading bitsi1, . . . , ik of the proof, asks a first player for the entries at those locations and a
second player for the entry corresponding to a single location ij, wherej is chosen uniformly at random in
{1, . . . , k}. The verifier accepts if and only if the first player’s answerscorrespond to entries that he would
have accepted had he read them directly from the proof,and the second player’s answer is consistent with
that of the first. It is not hard to see that the value of the consistency game is directly related to the fraction
of checks satisfied by the optimal PCP proof, so that the respective complexities of deciding whether either
is close to1 (under the appropriate gap promise) are identical.
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The quantum analogue of the local proof checking problem wasintroduced by Kitaev [KSV02]. An
instance of thek-local Hamiltonian problem (LH) is specified bym local HamiltoniansH1, . . . , Hm, where
eachHi is a Hermitian matrix of norm at most1 acting on at mostk out of a total ofn qubits. The instance
is positive if there exists a quantum proof (a quantum state|Ψ〉 on then qubits) satisfying a fraction at least
(1 − a) of the constraints; precisely, ifH = ∑i Hi (where eachHi is implicitly tensored with the identity
on the remaining qubits) has an eigenvalue at mostam. If all eigenvalues ofH are larger thanbm for some
b > a the instance is negative. The introduction of the local Hamiltonian problem initiated what is now
the burgeoning field of Hamiltonian complexity [Osb12, GHL14], expanding well beyond the initial formal
connection with classical constraint satisfaction problems to encompass the computational study of a range
of problems motivated by condensed-matter physics.

Kitaev proved the “quantum Cook-Levin theorem”: he introduced the classQMA of languages that
admit efficiently verifiable quantum proofs, and showed thatthe local Hamiltonian problem isQMA-
complete for somea, b satisfyingb − a = Θ(poly−1(n)). The natural question of whether a quantum
analogue of the PCP theorem holds was first posed in [AN02]; itasks whether the local Hamiltonian prob-
lem remainsQMA-hard for valuesb − a = Ω(1). This problem has captured the imagination of many
researchers [Aar06, Has13, FH13], but very little is known.If anything recent results [BH13, AAV13] place
strong limitations on the parameters, including the locality k or the degree of the constraint graph, for which
the conjecture may be valid, showing that it may only hold forranges of parameters that appear to be much
more limited than those for which the classical PCP theorem is known to be true.

In this paper we shed new light on the complexity of the local Hamiltonian problem by recasting it in the
language of quantum interactive proofs with entangled provers. In doing so we are motivated by the existing
classical connection between local proof verification and multiplayer games, which as already mentioned
has been instrumental both in the development of the PCP theorem (and in particular its second proof by
Dinur [Din07]) and for applications. Does this connection extend to the quantum setting? While quantum
multiprover interactive proof systems have been intenselystudied for their own sake [KM03, KKMV09,
IV12], prior to our work no nontrivial relation was known between the classQMAEXP, the exponentially
scaled-up version ofQMA, and the classesQMIP∗ or QMIP of languages having quantum interactive
proof systems with entangled or unentangled provers respectively. In fact, the latter is known to equal
NEXP [KM03], while the former was only recently shown tocontainNEXP [IV12]. However, no upper
bound onQMIP∗ is known, so that one may ask — couldQMIP∗ be alarger class thanQMIP = NEXP?
The only distinction between the two classes is the presenceof entanglement between the provers, which
until now (and with some rare exceptions [KKMV09]) has for the most part been understood as a nefarious
resource that could used by the provers in order to break a protocol’s soundness. Giving a positive answer to
the question, however, requires finding abeneficialuse of entanglement, as it entails devising a protocol in
which even honest provers arerequiredto share an entangled state over a superpolynomial number ofqubits
in order to succeed on positive instances.1

A natural target for going beyondNEXP ⊆ QMIP∗ consists in devising protocols establishing the
inclusion of QMAEXP in QMIP∗. Proving such inclusion, however, immediately runs into a number of
serious difficulties. To see why, consider the following attempt at designing a quantum interactive proof
system for the local Hamiltonian problem that mimics the classical construction of the consistency game
(which, as described earlier, easily leads to a proof ofNEXP ⊆ MIP assuming the PCP theorem). Suppose
that the first player is asked to provide a constant-sized subset of the proof qubits, corresponding to a local
constraintHj which the verifier can then check. In the classical case, the second player is asked for just one

1The classQMIP(l.e.) of languages having quantum multiprover interactive proofsystems in which the provers share an entan-
gled state on at most a polynomial number of qubits is also known to be included inNEXP[KM03].
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of the bits asked to the first player; this is used to verify that the first players’ answers to any of the bits he
was asked about depends on that bit only, and not on the subsetof which it is part. In the quantum case this
approach is all but ruled out by the no-cloning principle: any given proof qubit can be placed in the hands
of one player only, but it cannot be duplicated! Hence the direct quantum analogue of the consistency game
does not havecompleteness: even satisfiable instances of the local Hamiltonian problem may not lead to a
winning strategy for the players.

Natural workarounds to this difficulty run into different obstacles. For instance, consider splitting the
proof (e.g. the ground state of the local Hamiltonian instance) qubits into two (or more) setsS1 and S2,
and only asking proveri for qubits coming from setSi. While this leads to a game which does have perfect
completeness, the fact that the sets need to be specified a priori can, at least in some cases, prevent the
soundnessproperty from holding. To see why, consider the simple example of a one-dimensional nearest-
neighbor Hamiltonian in which each term is a projection on the orthogonal complement of an EPR pair split
across two adjacent qubits. This Hamiltonian is highly frustrated, as any qubit can only form an EPR pair
with its left or right neighbor, not both. Nevertheless, the correspondinggame in whichS1 (resp. S2) is
the set of all even-numbered (resp. odd-numbered) qubits has a perfect strategy: the players share a single
EPR pair and systematically send back their respective half, independently of the question they are asked!
Although in this particular case the issue is easily fixed by choosing a different splitting of the proof qubits,
in general it seems like any such splitting will be arbitraryand could be taken advantage of by the provers.

1.1 Results

Our main result is the design of an interactive proof system for the local Hamiltonian problem which circum-
vents the aforementioned difficulties. This is the first timea multiprover interactive proof system is given
for a QMA-complete, instead ofNP-complete, problem, and it provides strong indication thatentangled
proof systems may be strictly more powerful than their unentangled counterparts. Formally, we show the
following.

Theorem 1. Letk be an integer. There exists constantsC, c > 0 depending onk only such that the following
holds. LetH = ∑

m
i=1 Hi be an instance of thek-local Hamiltonian problem onn qubits, such that the

number of constraints ism = poly(n). There exists a one-round interactive protocol between a quantum
polynomial-time verifier andr = 5 entangled quantum provers such that:

• The verifier sendsO(log n)-bit classical messages to each prover,

• The provers respond with at mostk qubits each,

• If there exists a state|Γ〉 such that〈Γ|H|Γ〉 ≤ am then there is a strategy for the provers that is
accepted with probability at least1 − a/2,

• If for every state|Ψ〉, 〈Ψ|H|Ψ〉 ≥ bm then any strategy of the provers is accepted with probability at
most1 − Cb/nc.

The local Hamiltonian problem is known to beQMA-complete fork = 2, a that is exponentially small
andb at least an inverse polynomial [KKR06]. The following corollary, which we state using the language
of multiplayer games, is thus a direct consequence of Theorem 1:

Corollary 2. The problem of approximating, to within an additive inversepolynomial, the referee’s maxi-
mum acceptance probability in a quantum multiplayer game inwhich questions from the referee are classical
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on O(log n)-bits and answers from the players are quantum onO(1) qubits isQMA-hard. Furthermore
the same holds when restricted to games in which there is a single round of interaction between the referee
and at most5 players.

The same problem but with no entanglement between the players is contained inQCMA: the play-
ers’ constant-sized quantum answers can be given as a classical description [KM03]. It is also known to
be NP-hard, even when restricted to classical answers from the players and for constant additive approx-
imations [Vid13]. However, noupper boundis known on the complexity of the problem considered in
Corollary 2, which is not even known to be decidable [SW08, JNP+11] (and there is no known a priori
bound on the amount of entanglement that may be beneficial to the players). Corollary 2 provides the first
indication that entanglement indeedincreasesthe verifying power of the referee, at least in the range of
inverse-polynomial approximations, showing that unlessQCMA = QMA the complexity of entangled
(quantum) games is strictlylarger than that of non-entangled (quantum) games.

Consequences for interactive proof systems with entangled provers. We can scale up our result to
QMAEXP, the exponential-witness size version ofQMA (see Section 2 for the definition) to obtain a formal
separation between quantum multiprover interactive proofsystems with and without entanglement between
the provers. LetQMIP∗(r, t, c, s) be the class of languages that have quantum interactive-proof systems
with r provers,t rounds of interaction, completenessc and soundnesss (see Section 2 for the complete
definition).

Corollary 3. There exists a polynomialq such that

QMAEXP ⊆ QMIP∗(5, 1, 1 − 2−(q+1), 1 − 2−q)

and hence
QMIP(5, 1, 1 − 2−(q+1), 1 − 2−q) ( QMIP∗(5, 1, 1 − 2−(q+1), 1 − 2−q)

unlessNEXP = QMAEXP.

The corollary follows from the fact thatQMIP(5, 1, 1 − 2−(q+1), 1 − 2−q) ⊆ NEXP [KM03] and
NEXP ⊆ MIP∗(3, 1, 1, 1 − 1/ poly) [IV12] together with the observationMIP∗(3, 1, 1, 1 − 1/ poly) ⊆
QMIP∗(5, 1, 1 − 2−(q+1), 1 − 2−q).

We note that even though it is known thatMIP∗ = QMIP∗ [RUV13] the above corollary falls short
of proving a separation betweenMIP = NEXP andMIP∗. The reason is that the transformation from a
QMIP∗ to aMIP∗ protocol in [RUV13] requires the completeness and soundness parameters of theQMIP∗

protocol to be separated by an inverse polynomial in the input size, whereas our construction only gives an
inverse exponential separation.

1.2 Proof idea

Suppose given an instanceH = ∑ Hj of the local Hamiltonian problem, where each termHj acts on a
subsetSj = {i1, . . . , ik} of at mostk out of then qubits. Given an explicit description ofH, the goal of
the verifier is to decide whether there exists a “proof”|Ψ〉 that satisfies most termsHj, i.e. such that the
total “energy” 〈Ψ|H|Ψ〉 is below a certain threshold value. As already mentioned, the main challenge in
achieving this is that the verifier will only ever receive, atbest, a logarithmic number of qubits of the proof
from the provers. Although this easily allows him to estimate the energy〈Ψ|Hj|Ψ〉 of any local termHj, the
difficulty is to ensure that the qubits received in response to different queries, associated with different local
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termsHj, areglobally consistent— that they can be “patched together” into an actual proof|Ψ〉 that has
low energy with respect toH. This difficulty is unique to the case of quantum proofs: if wewere working
with classical assignments, as explained earlier a simple consistency check would be sufficient to enforce
that the provers’ answers can be combined into a single assignment satisfying most clauses. But how does
one devise a consistency check for quantum proofs, when in general it is not even possible to check whether
two quantum states agree locally?2

We suggest the following workaround. Our main goal is to ensure that, when a prover is asked for its
share of a certain qubitiℓ, or iℓ′ , of the proof, the actual qubits that it sends back to the verifier in each case do
indeed correspond to distinct physical qubits — that they donot “overlap”, or even correspond to the same
physical qubit, as was the case in our description of a strategy for the frustrated Hamiltonian projecting on
overlapping EPR pairs. To enforce this, instead of asking the (honest) provers to directly split the qubits of
the original proof between themselves we ask them to share anencodingof the proof: each “logical” qubit
of |Ψ〉 should be individually encoded into five “physical” qubits using a quantum error-correcting code.
Each of five provers should then be given one of the five shares associated with each of the original proof’s
qubits. (Five is the smallest number of qubits for a quantum error-correcting code satisfying the properties
we need; although we did not investigate this further a four-qubit error-detecting code may also suffice.)

Given this (presumed) splitting of the proof, we introduce the following protocol, comprised of two tests
each applied with probability1/2 by the verifier. Observe first that under our encoding it remains easy
for the verifier to estimate the energy of anyk-local termHj: he can ask each of the five provers for its
corresponding share of each qubit on which a randomly chosenHj acts, decode the results, and measure the
energy of the resulting qubits with respect toHj. This only requires each prover to send backk qubits to the
verifier, and constitutes the first test in our protocol.

Next consider the following additional test. The verifier chooses ak-element subsetS = {i1, . . . , ik} of
{1, . . . , n} uniformly at random. He also selects an indexℓ ∈ {1, . . . , k} at random and asks four out of the
five provers (again chosen at random) for their respective share of qubitiℓ only. To the last prover he asks
for its respective shares of all qubits inS. (Note that in caseS corresponded to the set ofk qubits on which a
local termHj acts the last prover cannot distinguish whether it is this test or the first that is being performed,
and this will be important for the proof.) The verifier checksthat all shares that he received associated with
qubit iℓ lie in the codespace, and rejects the provers if not.

In this second test the messages sent back by the first four provers only depend on qubitiℓ. The key point
is that, informally, given their four respective answer qubits there can exist at most one additional qubit that is
entangled with them in a way that completes a valid codeword.Indeed (and again informally), if there were
two such qubits it would imply that it is possible for the “environment” to entangle itself with a codeword
through acting on a single qubit and without being detected by the code — this possibility is excluded as
long as the code is required to correct (or even just detect) all single-qubit errors. Thus this additional test
enforces that the qubit sent back by the fifth prover in response to queryiℓ is uniquely specified by the query
iℓ; this is acheived by “locking” the qubit with the other four provers’ answers via the codespace.

Although the above provides some intuition, proving soundness of the protocol remains technically chal-
lenging. We need to show how a complete proof|Ψ〉 serving as a witness for the energy of the Hamiltonian
H can (at least in principle) be reconstructed from prover strategies that are successful in the protocol. For-
mally each prover’s strategy is specified by a pair of unitaries, one for each type of query from the verifier.

2Pure quantum states|Ψ〉 and |Φ〉 can be compared using the so-called SWAP test. However, for mixed states this test no
longer works, and in fact checking consistency of reduced density matrices, even when specified explicitly, is itself aQMA-
complete problem [Liu06]. We refer to [AAV13] for more on thedifficulties posed by locally checking consistency of quantum
states.
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The difficulty in proving that these unitaries are “compatible” and can be composed so as to reconstruct|Ψ〉
from the provers’ entangled registers — indeed, note a prover may apply an arbitrary transformation to its
private space before answering any of the verifier’s queries. Our proof specifies an explicit circuit, based
on the provers’ unitaries, for reconstructing|Ψ〉 from their initial entangled state. The depth of this circuit
is linear in the number of qubits, and it is ultimately this which leads to the polynomial dependence of the
soundness parameter on the number of qubits in the proof.

1.3 Open questions

Our work gives the first indication that multi-prover interactive proof systems with entangled provers may
be strictly more powerful than their purely classical counterparts. Our protocol relies on the use of quantum
communication from the provers to the verifier. Although it is known that quantum communication does not
increase the power of entangled-prover interactive proof systems,QMIP∗ = MIP∗ [RUV13], the technique
used in [RUV13] to replace quantum messages by classical ones introduce a polynomial amount of error
that, at least if applied naı̈vely, would close the completeness/soundness gap of our protocol. We thus
leave the possibility of achieving the same results as our ours through a purely classical interaction as an
interesting open question.

The main drawback of our protocol is the scaling of the completeness/soundness gap with the size of the
local Hamiltonian instance. The most important question that we leave open for future work is to increase
this gap from inverse exponential to inverse polynomial, leading to the inclusionQMAEXP ⊆ QMIP∗.
Together withQMIP∗ = MIP∗ [RUV13] such a result would in particular reprove the main result of [IV12],
and we expect it to pose a significant challenge. Of importance in itself, research on this question could
lead to the development of techniques useful to the study of the quantum PCP conjecture [AAV13]. To
stimulate its exploration we propose that the inclusionQMAEXP ⊆ QMIP∗ be taken as a second variant
of “quantum PCP conjecture” — one we could call the “interactive-proof QPCP”, in contrast to the “proof-
checking QPCP” that has so far been the accepted formulation(see e.g. Conjecture 1.4 in [AAV13]). No
implication is known between the two conjectures; our work provides a first step towards the former, making
it potentially more approachable than the latter.

Acknowledgments. This work was started while both authors were hosted by the Simons Institute in
Berkeley, whose financial support we gratefully acknowledge. The second author is grateful to Dorit
Aharonov and Umesh Vazirani for pressing him to expose the question investigated in this paper during
an open problems session organized at the institute. JosephFitzimons’ research is supported by the Singa-
pore National Research Foundation under NRF Award No. NRF-NRFF2013-01. Thomas Vidick’s research
was supported in part by the Simons Institute and the Ministry of Education, Singapore under the Tier 3
grant MOE2012-T3-1-009.

2 Preliminaries

Notation. Given a stringx we let |x| denote its length. For a setS, |S| is its cardinality. For a positive
integern we abbreviate{1, . . . , n} by [n]. We use a calligraphicH to denote finite-dimensional Hilbert
spaces, and roman lettersQ, R, . . . to denote quantum registers. The Hilbert space associated with register
R is HR. We will often, though not always, index kets and bras for quantum states by the names of the
registers on which the state lies, e.g.|Ψ〉QR means that|Ψ〉 is a bipartite state onHQ ⊗HR. L(HQ,HR) is
the set of all linear mapsHQ → HR. Pos(H) is the set of positive operators onH; D(H) the set of density
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matrices. GivenF ,G ∈ L(H,H) we letF ◦ G denote their composition. If there ares such mapsFℓ, we
let ©s

ℓ=1Fℓ := Fs ◦ · · · ◦ F1.
Given two registersQ and R associated to isomorphic Hilbert spacesHQ, HR respectively we let

SWAPQR be the unitary that swaps their contents: for any two orthonormal bases|ui〉 for HQ and |vj〉
for HR, SWAPQR = ∑i,j |vi, uj〉〈uj, vi|.

Complexity classes. We give relatively informal definitions of the quantum interactive proof classes con-
sidered in this paper. For formal definitions we refer the reader to the book [KSV02] and the survey [Wat09].

QMA is the class of all promise problemsL = (Lyes, Lno) such that there exists a polynomialp and a
quantum polynomial-time verifierV such that:

• (completeness) For everyx ∈ Lyes, there exists a state|Ψ〉 on p(|x|) qubits such thatV(x, |Ψ〉)
accepts with probability at least2/3,

• (soundness) For everyx ∈ Lno and every|Ψ〉 on p(|x|) qubits,V(x, |Ψ〉) accepts with probability at
most1/3.

We further note that using an amplification technique of Marriott and Watrous [MW05] one can show that
for any fixed polynomialq the completeness and soundness parameters can be replaced by 1 − 2−q(|x|) and
2−q(|x|) respectively without changing the definition ofQMA. Furthermore the amplification procedure
in [MW05] preserves the witness length, so that the polynomial p does not need to grow if one increases
q (only the complexity of the verification procedure increases). We define the exponential-size version
of QMA, QMAEXP, by allowing the witness to be on2p(|x|) qubits and the verifier to run in quantum
exponential time.

MIP(r, t, c, s) is the class of all promise problemsL = (Lyes, Lno) such that there exists a polynomialp
and a classical polynomial-time verifierV, interacting withr non-communicating provers throught rounds
of interaction in each of which at mostp(|x|) bits of communication are exchanged between the verifier and
the provers, such that:

• (completeness) For everyx ∈ Lyes, there exists a strategy for the provers that is accepted by the
verifier with probability at leastc,

• (soundness) For everyx ∈ Lno any strategy of the provers is accepted by the verifier with probability
at mosts.

QMIP(r, t, c, s) is defined in the same way, except the verifier and communication exchanged are allowed
to be quantum.MIP∗(r, t, c, s) (resp.QMIP∗(r, t, c, s)) is defined asMIP(r, t, c, s) (resp.QMIP(r, t, c, s))
but the provers are allowed to share an arbitrary entangled state as part of their strategy. (In this paper we
only consider protocols for which the number of rounds of interaction ist = 1.)

It follows from [BFL91, KM03] that, for any polynomialsp1, p2 andp3,

MIP(p1, p2, 2/3, 1/3) = QMIP(p1, p2, 2/3, 1/3)

= MIP(2, 1, 1, 2−p3) = QMIP(2, 1, 1, 2−p3) = NEXP.

In fact, [KM03] even show that the same equalities hold forQMIP∗ when the provers are limited to a
polynomial number of qubits of entanglement.
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The local Hamiltonian problem. Let k be a fixed integer anda, b : N → [0, 1] such thata(n) < b(n)
for all integersn. The k-local Hamiltonian problem (LH) is defined as follows. The input is a classical
description of a local HamiltonianH = ∑

m
i=1 Hi ∈ L

(

Cdn
, Cdn)

acting onn qudits of dimensiond each.
Here eachHi is a positive semidefinite matrix of norm at most1 acting on at mostk out of then qudits, and
can thus be represented by a matrix of dimensiondk × dk; when we writeH = ∑i Hi we implicitly mean
that eachHi should be tensored with the identity acting on the remaining(n− k) qudits. We label the qudits
from 1 to n, and denote bySj the set ofk qudits on whichHj acts. The problem is to determine which of
the following two cases holds:

1. (YES) There exists an-qudit state|Γ〉 such that〈Γ|H|Γ〉 ≤ am,

2. (NO) For all states|Ψ〉, 〈Ψ|H|Ψ〉 ≥ bm.

Kempe, Kitaev and Regev showed the following:

Theorem 4 ([KKR06]). For any fixed polynomialq, there is a polynomialp such that thek-local Hamil-
tonian problem, where the number of qubitsn is specified in unary, isQMA-complete fork = 2, d = 2,
a = 2−q(n) andb = 1/p(n).

For the case ofQMAEXP essentially the same construction yields the following (see also [GI09]):

Theorem 5 ([KKR06]). For any fixed polynomialq, there is a polynomialp such that thek-local Hamilto-
nian problem, where the number of qubitsN is specified in binary (hence can be exponential in the input
size), isQMAEXP-complete fork = 2, d = 2, a = 2−q(N) andb = 1/p(N).

Error-correcting codes. Our protocol relies on the use of a quantum error-correctingcodeC that has the
following properties:

• C encodes1 logical qubit intor physical qubits.

• C detects and corrects all single-qubit Pauli errors on a single qubit.

• The reduced density matrix of any codewords inC on a single qubit is the totally mixed stateId /2.

An example of a code satisfying all three conditions forr = 5 and e = 1 is the 5-qubit stabilizer
code [BDSW96, LMPZ96]. Givenr single-qubit registersR1, . . . , Rr we let DECR1 ···Rr : D

(

(C2)⊗r
)

→
D
(

C2
)

be the completely positive trace-preserving (CPTP) map corresponding to the decoding operation.
We also let CHECKR1···Rr ∈ Pos

(

(C2)⊗r
)

be the projection onto the code space.

3 Proof of Theorem 1

In this section we prove Theorem 1. The protocol is describedin Figure 1. The first two properties claimed
in the theorem, on the structure of the protocol, are clear: there is a single round of interaction, and using the
5-qubit stabilizer code forC the protocol can be executed withr = 5 provers. Messages from the verifier
to the provers are either the label of a qubit or the description of a set of sizek, which requireO(log n) bits
to specify. Messages from any prover to the verifier are either 1 or k qubits. In Section 3.1 we establish the
completeness property of the protocol; soundness is provedin Section 3.2.
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Protocol P

Let H = ∑
m
i=1 Hi be an instance of thek-local Hamiltonian problem given as input, andn the number

of qubits on whichH acts. LetC be an error-correcting code which encodes1 logical qubit intor
physical qubits and satisfies the three conditions described at the end of Section 2.

The verifier performs each of the following tests with probability 1/2 each:

Test (a) Select aj ∈ [m] uniformly at random, and letSj ⊆ [n] be the set ofk qubits on which the local
term Hj acts. Ask the provers for their respective share of all qubits in Sj. Upon receiving the
shares, apply the decoding map independently to each of thek groups ofr shares and measure
the resulting state using{Hj, Id−Hj}. Reject if the outcome is ‘Hj’.

Test (b) Select a qubiti ∈ [n] uniformly at random, and a setS ⊆ [n] uniformly at random among all
sets of sizek that containi. With probability 1/2, ask one of the provers at random for his share
of all qubits inS, and the remainingr − 1 provers for their respective share of thei-th qubit only.
With probability 1/2, ask all provers for their respective share of thei-th qubit. In both cases,
verify that all provers’ shares of thei-th qubit together lie in the codespace. Reject if not.

Figure 1: Protocol for the verification of an instance of the local Hamiltonian problem.

3.1 Completeness analysis

Lemma 6. Suppose that there exists a state|Γ〉 such that〈Γ|H|Γ〉 ≤ am. Then there exists a strategy for
the provers in ProtocolP that is accepted with probability at least1 − a/2.

Proof. We describe a strategy for the provers. Let|Γ〉 be such that〈Γ|H|Γ〉 ≤ am. Before the protocols
start, the provers generate a shared entangled state|Ψ〉 overrn qubits by independently encoding each qubit
of |Γ〉 into r qubits using the codeC prescribed by the protocol. Each of ther provers keepsn qubits of|Ψ〉,
corresponding to a share of each of the encoded qubits of|Γ〉. When asked for its share of any set of qubits,
the prover complies and sends it to the verifier. It is clear that this strategy is accepted with probability1 in
item (b), and with probability

1

m

m

∑
i=1

〈Γ|(Id−Hi)|Γ〉 ≥ 1 − a

in item (a). Using that each test is performed with probability 1/2, the overall success probability for the
strategy is at least1 − a/2.

3.2 Soundness analysis

In this section we analyze the soundness of protocolP. In section 3.2.1 we introduce the notation used to
describe the most general strategy that the provers may employ in the protocol. In section 3.2.2 we show
that, provided that all eigenvalues ofH are larger than some inverse polynomial, any strategy for the provers
is rejected by the verifier with inverse polynomial probability.

9



Register Use
Before application Pt Provert’s register in state|Ψ〉

of Ui, VS.
After application Qt

i Register sent back by provert if asked for thei-th qubit.
of Ui, VS St Provert’s remaining private registers.

Auxiliary Rt
i , Rt

i Initialized as an EPR pair.
registers

Figure 2: Notation for the provers’ registers.

3.2.1 The provers’ strategies

We denote an arbitrary strategy for ther provers in protocolP via a triplet (U j
i , V

j
S, |Ψ〉) (or sometimes

(U
j
i , V

j
S, ρ)). Here|Ψ〉 (or ρ) denotes the initialr-partite entangled state shared by the provers, andUi, VS

the unitaries that they apply upon receiving questionsi, S respectively. More precisely, in the protocol
a prover is asked two types of questions. Either it is asked for a single qubiti, in which case we call the
unitaryUt

i (wheret indexes the prover), or it is asked for a set ofk qubitsS, in which case we call the unitary
Vt

S. We sometimes omit the superscriptt, as the labeling of the provers will often be clear from context.
We denote the associated completely positive trace-preserving (CPTP) maps byU t

i : σ 7→ Ut
i σ(Ut

i )
† and

V t
S : σ 7→ Vt

Sσ(Vt
S)

†.
For t ∈ [r] we write Pt for the register containing thet-th prover’s share of|Ψ〉. After application of

the unitaryUt
i or Vt

S, we relabel registers associated to the prover asSt, Qt
1, . . . , Qt

n. Here then registers
Qt

1, . . . , Qt
n are each single-qubit registers such that registerQt

i (resp. registersQt
i1
· · · Qt

ik
) is sent back

to the verifier when the prover is asked for qubiti (resp. set of qubitsS = {i1, . . . , ik}). Note that all
registersQt

i may not exist simultaneously; which ones do depends on the unitary Ut
i or Vt

S that was applied.
The remaining registerSt is an auxiliary register of arbitrary dimension. In addition, for each provert ∈
{1, . . . , r} we introduce2n auxiliary registersRt

1, . . . , Rt
n andR

t
1, . . . , R

t
n, and define

|Ψ̃〉 := |Ψ〉
r

⊗

t=1

n
⊗

i=1

1√
2

(

|00〉
Rt

i R
t
i
+ |11〉

Rt
i R

t
i

)

, (1)

i.e. |Ψ̃〉 is |Ψ〉 adjoined withn EPR pairs for each prover, created in the auxiliary registers. We write
ρ = |Ψ〉〈Ψ| andρ̃ = |Ψ̃〉〈Ψ̃|. See Figure 2 for a summary of our nomenclature for registers. We will often

abbreviateQi for the union of theQj
i, j ∈ [r], and writeQ 6=t

i for the union of allQj
i for j ∈ [r]\{t}.

We introduce a new set of unitaries which act on a prover’s share of |Ψ̃〉 as

Ct
i := (Ut

i )
†(SWAPQt

iR
t
i
⊗ Id)Ut

i and Dt
i,S := (Vt

S)
†(SWAPQt

iR
t
i
⊗ Id)Vt

S, (2)

whereUt
i andVt

S are implicitly tensored with the identity on the auxiliary registers. We denote the associated
CPTP maps byC t

i : σ 7→ Ct
i σ(C

t
i )

† andDt
i,S : σ 7→ Dt

i,Sσ(Dt
i,S)

†. In order not to overload the notation we
often do not specify precisely on which registers the identity acts (sometimes we even omit the symbolId
altogether), as it should always be clear from context. In words,Ct

i corresponds to applyingUt
i , swapping

the registerQt
i containing the output qubit with thei-th ancilla registerRt

i , and applying(Ut
i )

†. For i ∈ S,
Dt

i,S is defined asCt
i but from the unitaryVt

S instead ofUt
i , while still swapping the output qubit in register

Qt
i only (and not the others). For any subsetT ⊆ S we defineDt

T,S in the same ways asDt
i,S except all qubits

10



in the subsetT are swapped out; in particularDt
{i},S

= Dt
i,S andD∅,S = Id. The following observation,

which follows fromVt
S(V

t
S)

† = Id, will be useful:

∀T ⊂ S, ∀i ∈ S\T, Dt
i,SDt

T,S = Dt
T,SDt

i,S = Dt
T∪{i},S. (3)

Since SWAP= SWAP† it also holds that(Ct
i )

† = Ct
i and(Dt

T,S)
† = Dt

T,S.
Finally, we define ann-qubit mixed state

σ :=
(

n
⊗

i=1

DECR1
i ···Rr

i

)(

Tr∪t((∪iR
t
iQ

t
i )S

t)

((
r

⊗

t=1

Ct
n · · · Ct

2Ct
1

)

|Ψ̃〉〈Ψ̃|
(

r
⊗

t=1

(Ct
1)

† · · · (Ct
n)

†
)))

, (4)

i.e. σ is the state obtained by, first applying unitariesCt
1, . . . , Ct

n, for t = 1, . . . , r, to the original state
|Ψ〉 and the auxiliary registers (initialized as EPR pairs), then tracing out all but thenr auxiliary registers
Rt

1, . . . , Rt
n for t = 1, . . . , r, and finally applying the decoding map for codeC independently to each group

of r auxiliary registersR1
i · · · Rr

i .

3.2.2 Analysis of the strategy

In this section we prove the following lemma, which establishes soundness of protocolP.

Lemma 7. There exists a universal constantc3 > 0 (depending onk only) such that the following holds.
Suppose a strategy for the provers is accepted with probability at least1− ε in each of the tests of protocolP,
for someε > 0. Then the stateσ defined in(4) satisfies1

mTr(Hσ) = O(nc3 ε).

The proof of the lemma follows from a sequence of claims. The first draws a useful consequence of the
condition that the provers succeed in test (b) with high probability.

Claim 8. Suppose the strategy(U j
i , V

j
S, |Ψ〉) succeeds in test (b) with probability at least1 − ε. For any

t ∈ [r], i ∈ [n] andS ⊆ [n] of cardinalityk such thati ∈ S,

∥

∥(Ct
i − Dt

i,S)⊗ Id |Ψ̃〉
∥

∥

2
= O

(

nkε
)

, (5)

where|Ψ̃〉 is defined from|Ψ〉 in (1). Furthermore, for any setS′ ⊆ [n] of cardinality k andT ⊆ S ∩ S′,

∥

∥(Dt
T,S − Dt

T,S′)⊗ Id |Ψ̃〉
∥

∥

2
= O

(

nkε
)

. (6)

Proof. For anyt ∈ [r], i ∈ [n] and setS ⊆ [n] such thati ∈ S let

|ϕi〉 :=
r

⊗

p=1

C
p
i |Ψ̃〉 and |ϕi,S〉 := Dt

i,S

(

⊗

p 6=t

C
p
i

)

|Ψ̃〉, (7)

where for ease of notation the dependence ont of |ϕi〉 and|ϕi,S〉 is left implicit. By definition, this strategy’s
success probability in test (b) of the protocol is exactly

1

r

r

∑
t=1

1

n

n

∑
i=1

1

(n−1
k−1)

∑
S: i∈S

1

2

(

〈Ψ|
(

r
⊗

p=1

U
p
i

)†
CHECKQ1

i ···Qr
i

(
r

⊗

p=1

U
p
i

)

|Ψ〉

+ 〈Ψ|
(

Vt
S

⊗

p 6=t

U
p
i

)†
CHECKQ1

i ···Qr
i

(

Vt
S

⊗

p 6=t

U
p
i

)

|Ψ〉
)

.
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Let CKi := CHECKR1
i ···Rr

i
. Given the definition ofCt

i andDt
i,S in (2), success1− ε in test (b) of the protocol

can be rewritten as

1

n

n

∑
i=1

1

(n−1
k−1)

∑
S: i∈S

1

2

(

〈ϕi|CKi|ϕi〉+ 〈ϕi,S|CKi|ϕi,S〉
)

≥ 1 − εt, (8)

where theεt satisfy(1/r)(ε1 + · · ·+ εr) = ε. Decompose the action of the unitaryDt
i,S(C

t
i )

† as

Dt
i,S(C

t
i )

† = IdRt
i
⊗W1

i,S + XRt
i
⊗ W2

i,S + YRt
i
⊗ W3

i,S + ZRt
i
⊗ W4

i,S, (9)

where the Pauli operators{Id, X, Y, Z} act on thei-th auxiliary registerRt
i associated with thet-th prover,

and theWℓ
i,S are arbitrary operators (not necessarily unitary) of norm at most 1 acting on the remaining

registersQt
1 · · · Qt

n andSt. Note that bothCt
i andDt

i,S are such that TrRt
i
(Ct

i ) = TrRt
i
(Dt

i,S) = IdQt
1···Qt

nSt ,

henceW1
i,S = Id. Let

|ϕs
i 〉 :=

(

CKi ⊗ Id
)

|ϕi〉 and |ϕ f
i 〉 :=

((

Id−CKi

)

⊗ Id
)

|ϕi〉,

so that|ϕi〉 = |ϕs
i 〉+ |ϕ f

i 〉. By assumption the codeC corrects all single-qubit Pauli errors, and since by
definition the reduced density of|ϕs

i 〉 on registersR1
i · · · Rr

i is in the codespace, for any single-qubit Pauli
errorERt

i
∈ {X, Y, Z} acting on registerRt

i ,

CHECKR1
i ···Rr

i

(

ERt
i
⊗ Id

)

|ϕs
i 〉 = 0. (10)

As a consequence, starting from the definition of|ϕi,S〉 and using the decomposition (9) we get

CKi|ϕi,S〉 = CKi ·
(

Dt
i,S

(

Ct
i

)† ⊗ Id
)

|ϕi〉

= CKi ·
(

IdRt
i
⊗ Id+XRt

i
⊗W2

i,S + YRt
i
⊗ W3

i,S + ZRt
i
⊗ W4

i,S

)

|ϕi〉

= CKi ⊗ Id |ϕi〉+
(

CKi · XRt
i
⊗ W2

i,S + CKi · YRt
i
⊗ W3

i,S + CKi · ZRt
i
⊗W4

i,S

)

|ϕs
i 〉

+
(

CKi · XRt
i
⊗W2

i,S + CKi · YRt
i
⊗ W3

i,S + CKi · ZRt
i
⊗W4

i,S

)

|ϕ f
i 〉

= CKi ⊗ Id |ϕi〉+
(

CKi · XRt
i
⊗ W2

i,S + CKi · YRt
i
⊗ W3

i,S + CKi · ZRt
i
⊗W4

i,S

)

|ϕ f
i 〉, (11)

where the last equality follows from (10) and the fact that the W
j
i,S do not act onRt

i . Eq. (8) implies that
both

1

n

n

∑
i=1

1

(n−1
k−1)

∑
S: i∈S

∥

∥|ϕ f
i 〉
∥

∥

2 ≤ 2εt (12)

and
1

n

n

∑
i=1

1

(n−1
k−1)

∑
S: i∈S

∥

∥(Id−CHECKR1
i ···Rr

i
)|ϕi,S〉

∥

∥

2 ≤ 2εt, (13)

where we used that CHECKR1
i ···Rr

i
is a projection. Using the triangle inequality as

∥

∥|ϕi,S〉 − |ϕi〉
∥

∥ ≤
∥

∥|ϕi,S〉 − CKi|ϕi,S〉
∥

∥+
∥

∥CKi|ϕi,S〉 − CKi|ϕi〉
∥

∥+
∥

∥CKi|ϕi〉 − |ϕi〉
∥

∥
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we get
1

n

n

∑
i=1

1

(n−1
k−1)

∑
S: i∈S

∥

∥|ϕi,S〉 − |ϕi〉
∥

∥

2 ≤ 3
(

2εt + 9 · 2εt + 2εt) = O(εt), (14)

where the first bound is obtained from (13), the second from (11), (12) and‖CKi‖, ‖Wℓ
i,j‖ ≤ 1, and the

third from the definition of|ϕ f
i 〉 and (12). Recalling the definition of|ϕi〉 and |ϕi,S〉 in (7), (5) is proved

by noting that the operator(Id⊗p 6=tC
p
i ) is unitary and hence its application does not modify the Euclidean

norm.
The proof of (6) follows the same steps. Defining vectors|ϕT,S〉 and|ϕT,S′〉 and using that (8) is satisfied

for everyi ∈ T we can decomposeDt
T,S(Dt

T,S′)† as in (9), except now the decomposition involves all|T|-
qubit Pauli operators on registersRt

i for i ∈ T. The different qubits are checked independently, and we can
define|ϕs

T,S′〉 := (⊗i∈TCKi)|ϕT,S′〉. The remainder of the derivation follows the same steps, leading to (6)
(where factors polynomial ink are hidden in theO(·) notation, using thatk is a constant independent of
n).

For any i ∈ [n] let Fi be the completely positive trace non-increasing map, acting on all provers’
registers, defined by

Fi : σ 7→
(

(

r
⊗

j=1

X
j
i

)†
CKQ1

i ···Qr
i

(

r
⊗

j=1

X
j
i

)

)

σ
(

(

r
⊗

j=1

X
j
i

)†
CKQ1

i ···Qr
i

(

r
⊗

j=1

X
j
i

)

)†
. (15)

Here we use the symbolX
j
i to represent any ofU j

i or V
j
S for any S containingi; we leave the dependence

of Fi on the choice ofX j
i implicit as all bounds proved will hold irrespective of thatchoice. We also write

X j
i : σ → X

j
i σ(X

j
i )

† for the CPTP map associated withX
j
i . Note that, in addition to the presence of the CK

operator, the difference between the mapsFi and e.g.⊗jC j
i is that in the former thet registersQi andRi are

not swapped; in particularFi acts as identity onRi.
Our second claim shows that the property that the qubits extracted from the provers’ strategies through

the mapsX j
i are in the codespace remains preserved even after many layers of application of theFi.

Claim 9. Suppose the strategy(U j
i , V

j
S, |Ψ〉) succeeds in test (b) with probability at least1 − ε. Let s be an

integer andi1, . . . , is ∈ [n]. Then

Tr
((

©s
ℓ=1 Fiℓ

)

(ρ̃
)

)

= 1 −O
(

snkε). (16)

Proof. We prove (16) by induction ons. Fors = 1 it follows immediately by first applying Claim 8 (at most)
r times to replace eachX j

i1
in the definition ofFi1 by U

j
i1

, and then using the assumption of success in the
test, which ensures that the extracted qubits are close to the code space. Suppose (16) verified for somes, and
let K be the constant implicit in theO(·) notation; we show it fors + 1. Writing CKi1 = Id−(Id−CKi1)
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and using thatFi1 reduces to the identity once the operator CKQ1
i1
···Qr

i1

is removed,

Tr
((

©s+1
ℓ=1 Fiℓ

)

(ρ̃
)

)

= Tr
((

©s+1
ℓ=2 Fiℓ

)

(ρ̃
)

)

− Tr
((

©s+1
ℓ=2 Fiℓ

)

◦
(

r
⊗

j=1

X j
i1

)†(

(Id−CKQ1
i1
···Qr

i1

)
(

r
⊗

j=1

X j
i1

)

(ρ̃
)

CKQ1
i1
···Qr

i1

))

≥ 1 − Ksnkε − Tr
(

(Id−CKQ1
i1
···Qr

i1

)
(

r
⊗

j=1

X j
i1

)

(ρ̃
)

)

≥ 1 − Ksnkε −O
(

nkε
)

,

where the first inequality uses the induction hypothesis forthe first term, and that theFi1 are trace non-
increasing for the second, and the last follows from the cases = 1 of (16). ProvidedK is chosen large
enough this establishes the induction step and proves the claim.

The next claim has a similar flavor as the previous one, that the qubits extracted from the provers’
strategies lie in the codespace is preserved even after application of a sequence of mapsC t

i orDt
i,S on one of

the provers’ registers.

Claim 10. There exists a constantc1 > 0 depending onk only such that the following holds. Suppose
the strategy(U j

i , V
j
S, |Ψ〉) succeeds in test (b) with probability at least1 − ε. Let s be an integer and

i1, . . . , is ∈ [n]. Then for anyt ∈ [r] and choice ofY j
iℓ
∈ {C j

iℓ
, D j

iℓ,Sℓ
| iℓ ∈ Sℓ} for j ∈ [r] andℓ ∈ [s],

Tr
(

CKis

((

©s
ℓ=1 Y t

iℓ

)

⊗

j 6=t

Y j
is

)

(

ρ̃
)

)

= 1 −O
(

s2nc1ε
)

. (17)

Proof. For the proof we show that the following holds by downwards induction ons′ from s to 1:

Tr
(

CKis

((

©s
ℓ=s′ Y t

iℓ

)

⊗

j 6=t

Y j
is

)

◦
(

©s′−1
ℓ=1 Fiℓ

)

(

ρ̃
)

)

= 1 −O
(

ss′nc1 ε
)

. (18)

Eq. (18) fors′ = s is equivalent to (16), so Claim 9 proves the base case for the induction. If s′ = 1 it
reduces to (17), which is what we need to prove. Assume thus (18) verified fors′ + 1, and prove it fors′.
By (16) applied withs = s′ we see that the strategy(U j

i , V
j
S, ρ̃s′), whereρ̃s′ = ©s′

ℓ=1Fiℓ(ρ) (it will be more
convenient to leavẽρs′ unnormalized) succeeds in test (b) with probability at least 1 − O(snkε). Here in

the definition ofFis′ we defineX t
is′

asU t
is′

if Y t
is′

= C t
is′

andV t
S′ if Y t

is′
= Dt

is′ ,S
′ ; the remainingX j

iℓ
can be

chosen arbitrarily. Applying Claim 8 we get
∥

∥

∥

(

©s
ℓ=s′+1 Y t

iℓ

)

⊗

j 6=t

Y j
is

)

(

ρ̃s′
)

−
(

©s
ℓ=s′+1 Y t

iℓ

)

⊗

j 6=t

D j
is,S

)

(

ρ̃s′
)

∥

∥

∥

1
= O(sn2kε), (19)

where forS we choose any set containing bothis′ andis. Applying the claim once more, this time starting
from the strategy(U j

i , V
j
S, ρ̃s′−1), we have

∥

∥

∥
Fis′

(

ρ̃s′−1

)

−
(

X t
is′

r
⊗

j 6=t

V j
S

)†(

CKQ1
i
s′
···Qr

i
s′

(

X t
is′

r
⊗

j 6=t

V j
S

)

(

ρ̃s′−1

)

CKQ1
i
s′
···Qr

i
s′

)∥

∥

∥

1
= O(sn2kε). (20)
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Combining (19) and (20) by the triangle inequality and evaluating the overlap with CKis
we get

∣

∣

∣
Tr
(

CKis

((

©s
ℓ=s′+1 Y t

iℓ

)

⊗

j 6=t

Y j
is

)

(

ρ̃s′
)

)

− Tr
(

CKis

(

©s
ℓ=s′+1 Y t

iℓ
◦
(

X t
is′

)†
)(

CKQ1
i
s′
···Qr

i
s′

(

X t
is′

r
⊗

j 6=t

V j
S

)

(

ρ̃s′−1

)

CKQ1
i
s′
···Qr

i
s′

))
∣

∣

∣
= O(sn2kε),

(21)

where we also used the definition ofD j
is′ ,S

to simplify the successive application of unitariesV
j
S and(V j

S)
† on

proversj 6= t in the second term above. The fact that every codeword of the codeC has a reduced density on

any single qubit that is totally mixed implies that if we trace out registersQ 6=t
is′

andR
t
is′

in the (unnormalized)

densityσ̃s′ = CKis′ (X t
is′

⊗

j 6=t V j
S)(ρ̃s′−1)CKis′ , the registersRt

is′
Qt

is′
are jointly in the totally mixed state.

Swapping the two registers thus leaves the state invariant,and from (21) we get
∣

∣

∣
Tr
(

CKis

((

©s
ℓ=s′+1 Y t

iℓ

)

⊗

j 6=t

Y j
is

)

(

ρ̃s′
)

)

− Tr
(

CKis

(

©s
ℓ=s′+1 Y t

iℓ

)(

CK
Rt

i
s′

Q 6=t
i
s′

(

Y t
is′

r
⊗

j 6=t

V j
S

)

(

ρ̃s′−1

)

CK
R1

i
s′

Q 6=t
i
s′

))∣

∣

∣
= O(sn2kε). (22)

Finally, using Claim 9 once more, we can remove the application of CK
R1

i
s′

Q 6=t
i
s′

in the second term in (22) to

obtain
∣

∣

∣
Tr
(

CKis

((

©s
ℓ=s′+1 Y t

iℓ

)

⊗

j 6=t

Y j
is

)

(

ρ̃s′
)

)

− Tr
(

CKis

((

©s
ℓ=s′ Y t

iℓ

)

⊗

j 6=t

V j
S

)

(

ρ̃s′−1

)

)∣

∣

∣
= O(sn2kε).

(23)
To conclude, since the registersQ 6=t

is′
are being traced out, and using Claim 8 for the strategy(U

j
i , V

j
S, ρ̃s′−1)

the application of
⊗

j 6=t V j
S in the second term in (23) can be replaced by

⊗

j 6=t Y j
is

for Y of our choice.
Using the induction hypothesis (18) to bound the first term in(23), this proves (18) fors′ and establishes the
induction step, proving the claim.

The following corollary is a simple consequence of Claim 8.

Corollary 11. Suppose the strategy(U j
i , V

j
S, |Ψ〉) succeeds in test (b) with probability at least1 − ε. Let

s be an integer andi1, . . . , is ∈ [n]. Then for anyt ∈ [r], set S containing is, and choice ofY t
iℓ

∈
{C t

iℓ
, Dt

iℓ,Sℓ
| iℓ ∈ Sℓ} for ℓ ∈ [s − 1],

∥

∥

∥

((

C t
is
©s−1

ℓ=1 Y t
iℓ

)

⊗ Id
)

(

ρ̃
)

−
((

Dt
is,S ©s−1

ℓ=1 Y t
iℓ

)

⊗ Id
)

(

ρ̃
)

∥

∥

∥

1
= O

(

s2nc1+kε
)

, (24)

wherec1 is as in Claim 10.

Proof. Using the freedom in the choice of the operatorsY , (17) from Claim 10 shows that the strategy
(U

j
i , V

j
S, (©s−1

ℓ=1Y t
iℓ
) ⊗ Id)(ρ̃)) succeeds with probability1 − O

(

s2nc1ε
)

in test (b) of the protocol. The
corollary then follows directly from Claim 8.
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Our final claim shows that if the provers have a high success probability in both tests of protocolP the
stateσ defined in (4) must have low energy with respect to the local Hamiltonian H.

Claim 12. There exists a constantc2 > 0 depending onk only such that the following holds. Letδ, ε > 0
be such that the provers succeed in test (a) of protocolP with probability at least1 − δ, and in test (b) with
probability at least1 − ε. Then

1

m
Tr
(

Hσ
)

= O
(

δ + nc2 ε
)

.

Proof. For anyi ∈ [n] we abbreviate DECR1
i ···Rr

i
as DECi. By definition,

σ =
(

n
⊗

i=1

DECR1
i ···Rr

i

)(

Tr∪t(∪i(R
t
iQ

t
i )S

t)

(

τ
)

)

,

where

τ :=
(

r
⊗

j=1

(

C j
n ◦ · · · ◦ C j

2 ◦ C
j
1

)

)

(

ρ̃
)

.

Fix a local termHj acting onk qubitsS := Sj = {i1, . . . , ik}, and letU = [n]\S. Let T0 = ∅, and for
s = 1, . . . , k let Ts = {i1, . . . , is}. We show the following by induction ons = 0, . . . , k:

∥

∥

∥
TrQURU

(

τ
)

− TrQURU

(
r

⊗

j=1

(

©n
i=1
i/∈Ts

C j
i

)

)

◦
(

r
⊗

j=1

D j
Ts,S

)

(

ρ̃
)

)
∥

∥

∥

1
= O

(

snc′2 ε
)

, (25)

for some constantc′2 > 0. The equation is trivially true fors = 0. Suppose it true for somes < k. Let

ρ̃s =
⊗r

j=1 D
j
Ts,S(ρ̃). We again proceed by induction onℓ = is+1, . . . , 1 to show

∥

∥

∥
TrQURU

((
r

⊗

j=1

(

©is+1

i=1
i/∈Ts

C j
i

)

)

(

ρ̃s

)

)

− TrQURU

((
r

⊗

j=1

(

©is+1−1
i=ℓ
i/∈Ts

C j
i

)

◦ D j
is+1,S ©ℓ−1

i=1
i/∈Ts

C j
i

)

)

(

ρ̃s

)

)
∥

∥

∥

1

= O
(

(is+1 + 1 − ℓ)nc′2−1ε
)

. (26)

Forℓ = is+1 the bound follows from Corollary 11 applied to each of the provers, providedc′2 is chosen large

enough. Forℓ = 1, usingD j
is+1,S ◦ D

j
Ts,S

= D j
Ts+1,S, together with the triangle inequality it establishes the

induction step for the proof of (25). Suppose (26) verified for someℓ > 1. To prove it forℓ− 1, we apply
Corollary 11 to the state

(
r

⊗

j=1

(

©is+1−1
i=ℓ
i/∈Ts

C j
i

)

◦ D j
is+1,S ©ℓ−1

i=1
i/∈Ts

C j
i

)

)

(

ρ̃s

)

a number of times: first, the mapsC j
ℓ−1 are replaced byD j

ℓ−1,S′ for someS′ containing bothℓ− 1 andis+1.

Second, theD j
is+1,S are replaced byD j

is+1,S′ . Next we use the relationD j
is+1,S′ ◦ D j

ℓ−1,S′ = D j
ℓ−1,S′ ◦ D j

is+1,S′

and perform the same replacements in reverse. This establishes (26) forℓ− 1 (providedc′2 is chosen large
enough) and completes the induction step. We have now proven(25).

Using the definition ofDTk,S and that bothHj and DECis
, for s = 1, . . . , k, do not act on any of the

registers inQU or RU, from (25) we get

∣

∣

∣
Tr
(

Hjσ
)

− Tr
(

Hj

(
k

⊗

ℓ=1

DECiℓ

)(
r

⊗

t=1

Vt
Sj

)

ρ̃
(

r
⊗

t=1

Vt
Sj

)†)∣
∣

∣
= O

(

nc′2+1ε
)

. (27)
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By definition success1 − δ in test (a) of protocolP implies

1

m ∑
Sj={i1,...,ik}

Tr
(

Hj

(
k

⊗

s=1

DECis

)((
r

⊗

t=1

Vt
Sj

)

ρ̃
(

r
⊗

t=1

Vt
Sj

)†))

≤ δ,

which together with (27) proves the claim for an appropriatechoice ofc2.

Lemma 7 now follows directly from Claim 12 and the fact that any strategy with success1 − ε in
ProtocolP must have success probability at least1 − 2ε in each of the two tests (a) and (b) of the protocol.
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