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A multiprover interactive proof system for
the local Hamiltonian problem

Joseph Fitzsimoris Thomas Vidick

Abstract

We give a quantum interactive proof system for the local Himmian problem om qubits in which
(i) the verifier has a single round of interaction with five amgled provers, (ii) the verifier sends a
classical message an(logn) bits to each prover, who reply with a constant number of gukzind
(iif) completeness and soundness are separated by anerpelgomial inn. As the same class of
proof systems, without entanglement between the proveiaciuded inQCMA, our result provides
the first indication that quantum multiprover interactive@f systems with entangled provers may be
strictly more powerful than unentangled-prover intergefproof systems. A distinguishing feature of
our protocol is that the completeness property requiregs$tgorovers to share a large entangled state,
obtained as the encoding of the ground state of the local kawman via an error-correcting code. Our
result can be interpreted as a first step towards a multipr@aréant of the quantum PCP conjecture.

1 Introduction

The PCP theoreni [AS98, ALKO8] asserts that any languageNiP admits proofs of membership that can
be efficiently verified using a randomized procedure whickesahe correct decision with high probability
while only ever reading a constant number of bits of the pro&h equivalent formulation of the PCP
theorem, that has been particularly useful in applicattonsardness of approximation [Ha$01] as well as
in devising further improvements to the theorém [Raz983sube language of multiplayer games. A two-
player gameG is specified by question se, Q’, answer setsA, A, a distributionst on Q x Q" and a
verification criterionV C (A x A’) x (Q x Q'). The valuew of G is defined as the maximum, over all
assignmentg : Q — A, f': Q' — A/, of the average number of valid answers given by the assigtsme
w(G) = sups e Y q (9,9 )V (f(q),f'(9');9,9"). The PCP theorem is equivalent to the statement that
w(G) is NP-hard to approximate to within a constant additivedaatven for the case of answer sets

A’ of constant size. To see the connection, consider the follpiiconsistency game”: the verifier, instead
of directly reading bitsy, ..., i, of the proof, asks a first player for the entries at those looatand a
second player for the entry corresponding to a single londfi wherej is chosen uniformly at random in
{1,...,k}. The verifier accepts if and only if the first player's answewsrespond to entries that he would
have accepted had he read them directly from the paralthe second player’'s answer is consistent with
that of the first. It is not hard to see that the value of the sbaiscy game is directly related to the fraction
of checks satisfied by the optimal PCP proof, so that the otispecomplexities of deciding whether either
is close tal (under the appropriate gap promise) are identical.
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The quantum analogue of the local proof checking problem imasduced by Kitaev[[KSV02]. An
instance of thé-local Hamiltonian problem (LH) is specified by local HamiltoniansH+, . .., H;;, where
eachH; is a Hermitian matrix of norm at mogtacting on at most out of a total ofn qubits. The instance
is positive if there exists a quantum proof (a quantum gtiijeon then qubits) satisfying a fraction at least
(1 — a) of the constraints; precisely, H = }_; H; (where eactH; is implicitly tensored with the identity
on the remaining qubits) has an eigenvalue at mastlf all eigenvalues oH are larger thamm for some
b > a the instance is negative. The introduction of the local H@mian problem initiated what is now
the burgeoning field of Hamiltonian complexity [Osbi2, GHI,lexpanding well beyond the initial formal
connection with classical constraint satisfaction protde¢o encompass the computational study of a range
of problems motivated by condensed-matter physics.

Kitaev proved the “quantum Cook-Levin theorem”: he introéld the clas€)MA of languages that
admit efficiently verifiable quantum proofs, and showed tiin&t local Hamiltonian problem I©MA-
complete for soma, b satisfyingb —a = @(polyfl(n)). The natural question of whether a quantum
analogue of the PCP theorem holds was first posed in [ANOakkis whether the local Hamiltonian prob-
lem remainsQMA-hard for values» —a = Q(1). This problem has captured the imagination of many
researchers [Aar06, Has13, FH13], but very little is knolfianything recent results [BH13, AAV13] place
strong limitations on the parameters, including the lagdlior the degree of the constraint graph, for which
the conjecture may be valid, showing that it may only holdréorges of parameters that appear to be much
more limited than those for which the classical PCP theoekmown to be true.

In this paper we shed new light on the complexity of the locairtitonian problem by recasting it in the
language of quantum interactive proofs with entangled gngvin doing so we are motivated by the existing
classical connection between local proof verification andtiplayer games, which as already mentioned
has been instrumental both in the development of the PCPdimetand in particular its second proof by
Dinur [Din07]) and for applications. Does this connectiottedd to the quantum setting? While quantum
multiprover interactive proof systems have been intenstlgied for their own saké [KM03, KKMV09,
IV12], prior to our work no nontrivial relation was known beten the clas®MAgyp, the exponentially
scaled-up version ocdMA, and the classe©MIP* or QMIP of languages having quantum interactive
proof systems with entangled or unentangled provers réspbc In fact, the latter is known to equal
NEXP [KMQ3], while the former was only recently shown tontainNEXP [[V12]. However, no upper
bound onQMIP* is known, so that one may ask — col@MIP* be alarger class tharQMIP = NEXP?
The only distinction between the two classes is the presefieatanglement between the provers, which
until now (and with some rare exceptions [KKMV09]) has foe timost part been understood as a nefarious
resource that could used by the provers in order to breaktaqois soundness. Giving a positive answer to
the question, however, requires findingpeneficialuse of entanglement, as it entails devising a protocol in
which even honest provers aegjuiredto share an entangled state over a superpolynomial numleibds
in order to succeed on positive instandes.

A natural target for going beyondEXP C QMIP* consists in devising protocols establishing the
inclusion of QMAgyp in QMIP*. Proving such inclusion, however, immediately runs intouanher of
serious difficulties. To see why, consider the followingeatpt at designing a quantum interactive proof
system for the local Hamiltonian problem that mimics thessieal construction of the consistency game
(which, as described earlier, easily leads to a prodlBXP C MIP assuming the PCP theorem). Suppose
that the first player is asked to provide a constant-sizededutf the proof qubits, corresponding to a local
constraintH; which the verifier can then check. In the classical case,gbersl player is asked for just one

The cIassQMIPU'e') of languages having quantum multiprover interactive pgystems in which the provers share an entan-
gled state on at most a polynomial number of qubits is alsevkinto be included ilNEXP[KMO3].



of the bits asked to the first player; this is used to verifyt tha first players’ answers to any of the bits he
was asked about depends on that bit only, and not on the sofbsbich it is part. In the quantum case this
approach is all but ruled out by the no-cloning principley given proof qubit can be placed in the hands
of one player only, but it cannot be duplicated! Hence thealiguantum analogue of the consistency game
does not haveompletenesseven satisfiable instances of the local Hamiltonian prolfeay not lead to a
winning strategy for the players.

Natural workarounds to this difficulty run into differentstacles. For instance, consider splitting the
proof (e.g. the ground state of the local Hamiltonian ins&grgubits into two (or more) setg and S,,
and only asking proveirfor qubits coming from se$;. While this leads to a game which does have perfect
completeness, the fact that the sets need to be specifiedraqan, at least in some cases, prevent the
soundnesgroperty from holding. To see why, consider the simple eXampa one-dimensional nearest-
neighbor Hamiltonian in which each term is a projection andhthogonal complement of an EPR pair split
across two adjacent qubits. This Hamiltonian is highly tiated, as any qubit can only form an EPR pair
with its left or right neighbor, not both. Nevertheless, the correspondemge in whichS; (resp. S») is
the set of all even-numbered (resp. odd-numbered) quists fpeerfect strategy: the players share a single
EPR pair and systematically send back their respective inaiépendently of the question they are asked!
Although in this particular case the issue is easily fixed hyosing a different splitting of the proof qubits,
in general it seems like any such splitting will be arbitrand could be taken advantage of by the provers.

1.1 Results

Our main result is the design of an interactive proof systenthe local Hamiltonian problem which circum-
vents the aforementioned difficulties. This is the first timmultiprover interactive proof system is given
for aQMA-complete, instead aNP-complete, problem, and it provides strong indication #watngled
proof systems may be strictly more powerful than their uaegled counterparts. Formally, we show the
following.

Theorem 1. Letk be an integer. There exists consta@{s > 0 depending otk only such that the following
holds. LetH = }", H; be an instance of thé-local Hamiltonian problem om qubits, such that the
number of constraints i81 = poly(n). There exists a one-round interactive protocol betweenantum
polynomial-time verifier and = 5 entangled quantum provers such that:

e The verifier send®(log n)-bit classical messages to each prover,
e The provers respond with at mdstubits each,

e If there exists a statel') such that(T'|H|T') < am then there is a strategy for the provers that is
accepted with probability at leagt— a/2,

o If for every statd¥), (‘¥Y|H|¥) > bm then any strategy of the provers is accepted with probatalit
mostl — Cb/n°.

The local Hamiltonian problem is known to KM A-complete fork = 2, a that is exponentially small
andb at least an inverse polynomial [KKRO6]. The following cdany, which we state using the language
of multiplayer games, is thus a direct consequence of Thedke

Corollary 2. The problem of approximating, to within an additive invepsgynomial, the referee’s maxi-
mum acceptance probability in a quantum multiplayer gamvehiich questions from the referee are classical



on O(log n)-bits and answers from the players are quantum@i) qubits iSQMA-hard. Furthermore
the same holds when restricted to games in which there isghesinund of interaction between the referee
and at mosb players.

The same problem but with no entanglement between the glagerontained irQCMA: the play-
ers’ constant-sized quantum answers can be given as aceladsscription[[KMO3]. It is also known to
be NP-hard, even when restricted to classical answers from tgepd and for constant additive approx-
imations [Vid13]. However, naipper boundis known on the complexity of the problem considered in
Corollary[2, which is not even known to be decidalile [SWO08PIMNI] (and there is no known a priori
bound on the amount of entanglement that may be beneficibktplayers). Corollarl]2 provides the first
indication that entanglement inde@ttreasesthe verifying power of the referee, at least in the range of
inverse-polynomial approximations, showing that unle&8MA = QMA the complexity of entangled
(quantum) games is strictharger than that of non-entangled (quantum) games.

Consequences for interactive proof systems with entangled provers. We can scale up our result to
QMA«gxp, the exponential-witness size versior@¥A (see Sectiohl2 for the definition) to obtain a formal
separation between quantum multiprover interactive psgsfems with and without entanglement between
the provers. LeQMIP*(r,t,¢,s) be the class of languages that have quantum interactiva-pystems
with » provers,t rounds of interaction, completenesand soundness (see Sectiofi]2 for the complete
definition).

Corollary 3. There exists a polynomiglsuch that
QMAgxp € QMIP*(5,1,1 — 2701, 1 — 271)

and hence
QMIP(5,1,1 — 2~ 1+, 1 —279) C QMIP*(5,1,1 — 2~ 1 —277)

UnIeSSNEXP — QMAEXP .

The corollary follows from the fact thaDMIP(5,1,1 —2-(@+1),1 — 2-9) C NEXP [KM03] and
NEXP C MIP*(3,1,1,1 — 1/ poly) together with the observatioMIP*(3,1,1,1 — 1/ poly) C
QMIP*(5,1,1 —2-(4+1),1 - 279),

We note that even though it is known theiP* = QMIP* [RUV13] the above corollary falls short
of proving a separation betwe&ilP = NEXP andMIP*. The reason is that the transformation from a
QMIP* to aMIP* protocol in [RUV13] requires the completeness and sourslpasameters of th @MIP*
protocol to be separated by an inverse polynomial in thetiajae, whereas our construction only gives an
inverse exponential separation.

1.2 Proof idea

Suppose given an instané¢ = }_ H; of the local Hamiltonian problem, where each teHp acts on a
subsetS; = {i1,...,ix} of at mostk out of then qubits. Given an explicit description @f, the goal of
the verifier is to decide whether there exists a “propF) that satisfies most termid;, i.e. such that the
total “energy” (¥Y|H|¥) is below a certain threshold value. As already mentionee nthin challenge in
achieving this is that the verifier will only ever receive baist, a logarithmic number of qubits of the proof
from the provers. Although this easily allows him to estientite energy'¥|H;|Y') of any local termH;, the
difficulty is to ensure that the qubits received in respongdifterent queries, associated with different local

4



termsH;, areglobally consistent— that they can be “patched together” into an actual pi8of that has
low energy with respect tél. This difficulty is unique to the case of quantum proofs: if were working
with classical assignments, as explained earlier a simpisistency check would be sufficient to enforce
that the provers’ answers can be combined into a singlerassigt satisfying most clauses. But how does
one devise a consistency check for quantum proofs, whemiargkit is not even possible to check whether
two quantum states agree Iocaﬂy?

We suggest the following workaround. Our main goal is to emsbat, when a prover is asked for its
share of a certain quhit, ori;, of the proof, the actual qubits that it sends back to thdieein each case do
indeed correspond to distinct physical qubits — that theyalo‘overlap”, or even correspond to the same
physical qubit, as was the case in our description of a glydts the frustrated Hamiltonian projecting on
overlapping EPR pairs. To enforce this, instead of askiegtionest) provers to directly split the qubits of
the original proof between themselves we ask them to shaemewdingof the proof: each “logical” qubit
of [¥) should be individually encoded into five “physical” qubitsing a quantum error-correcting code.
Each of five provers should then be given one of the five shasscated with each of the original proof’s
qubits. (Five is the smallest number of qubits for a quantamoreorrecting code satisfying the properties
we need; although we did not investigate this further a fpulit error-detecting code may also suffice.)

Given this (presumed) splitting of the proof, we introdulee tollowing protocol, comprised of two tests
each applied with probability /2 by the verifier. Observe first that under our encoding it remaasy
for the verifier to estimate the energy of akyocal termH;: he can ask each of the five provers for its
corresponding share of each qubit on which a randomly chbgertts, decode the results, and measure the
energy of the resulting qubits with respectto. This only requires each prover to send badubits to the
verifier, and constitutes the first test in our protocol.

Next consider the following additional test. The verifienokes &-element subset = {iy, ..., i} of
{1,...,n} uniformly at random. He also selects anindex {1,...,k} at random and asks four out of the
five provers (again chosen at random) for their respectiaeestf qubiti, only. To the last prover he asks
for its respective shares of all qubitsSn (Note that in casé corresponded to the set bfjubits on which a
local termH; acts the last prover cannot distinguish whether it is thisdethe first that is being performed,
and this will be important for the proof.) The verifier chethkat all shares that he received associated with
qubiti, lie in the codespace, and rejects the provers if not.

In this second test the messages sent back by the first fougrgronly depend on qubit. The key point
is that, informally, given their four respective answer igaithere can exist at most one additional qubit that is
entangled with them in a way that completes a valid codewloideed (and again informally), if there were
two such qubits it would imply that it is possible for the “@mmnment” to entangle itself with a codeword
through acting on a single qubit and without being detectethb code — this possibility is excluded as
long as the code is required to correct (or even just detdct)ngle-qubit errors. Thus this additional test
enforces that the qubit sent back by the fifth prover in respda queryi, is uniquely specified by the query
ig; this is acheived by “locking” the qubit with the other fouopers’ answers via the codespace.

Although the above provides some intuition, proving sowss$of the protocol remains technically chal-
lenging. We need to show how a complete prgbf serving as a witness for the energy of the Hamiltonian
H can (at least in principle) be reconstructed from proveatsgies that are successful in the protocol. For-
mally each prover’s strategy is specified by a pair of urégrone for each type of query from the verifier.

2Pure quantum staté¥) and|®) can be compared using the so-called SWAP test. However, ii@drstates this test no
longer works, and in fact checking consistency of reduceatkithe matrices, even when specified explicitly, is itsel©QdA-
complete problen[Liud6]. We refer t6 J[AAV13] for more on thiéficulties posed by locally checking consistency of quamt
states.



The difficulty in proving that these unitaries are “compktitand can be composed so as to reconstiigt
from the provers’ entangled registers — indeed, note a pnmay apply an arbitrary transformation to its
private space before answering any of the verifier's quer@sr proof specifies an explicit circuit, based
on the provers’ unitaries, for reconstructif§) from their initial entangled state. The depth of this citcui
is linear in the number of qubits, and it is ultimately thisiafhleads to the polynomial dependence of the
soundness parameter on the number of qubits in the proof.

1.3 Open questions

Our work gives the first indication that multi-prover intetige proof systems with entangled provers may
be strictly more powerful than their purely classical cauparts. Our protocol relies on the use of quantum
communication from the provers to the verifier. Althougtsiknown that quantum communication does not
increase the power of entangled-prover interactive prgstesns QMIP* = MIP* [RUV13], the technique
used in [RUV13] to replace quantum messages by classical intreduce a polynomial amount of error
that, at least if applied naively, would close the compiets/soundness gap of our protocol. We thus
leave the possibility of achieving the same results as ots thuwough a purely classical interaction as an
interesting open question.

The main drawback of our protocol is the scaling of the cotgpless/soundness gap with the size of the
local Hamiltonian instance. The most important questiat the leave open for future work is to increase
this gap from inverse exponential to inverse polynomiahdiag to the inclusiofQMAgyy € QMIP*.
Together withQMIP* = MIP* [RUV13] such a result would in particular reprove the masuteof [IV12],
and we expect it to pose a significant challenge. Of impodandtself, research on this question could
lead to the development of techniques useful to the studpefquantum PCP conjectule J[AAV13]. To
stimulate its exploration we propose that the inclus@MAgyy, C QMIP* be taken as a second variant
of “quantum PCP conjecture” — one we could call the “intekeezproof QPCP”, in contrast to the “proof-
checking QPCP” that has so far been the accepted formul@@me.g. Conjecture 1.4 in [AAVL3]). No
implication is known between the two conjectures; our wadvmes a first step towards the former, making
it potentially more approachable than the latter.
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2 Preliminaries

Notation. Given a stringx we let |x| denote its length. For a sét |S]| is its cardinality. For a positive
integern we abbreviate{1,...,n} by [n]. We use a calligraphié{ to denote finite-dimensional Hilbert
spaces, and roman lettds R, . . . to denote quantum registers. The Hilbert space associatbdegister
R is Hr. We will often, though not always, index kets and bras formjum states by the names of the
registers on which the state lies, e[ff.)or means that¥) is a bipartite state oflq @ Hgr. L(Hq, Hr) is
the set of all linear mapklq — Hr. Pos(# ) is the set of positive operators &{t D(H) the set of density



matrices. GivenF,G € L(H,H) we letF o G denote their composition. If there aressuch mapsF,, we
let Oj_Fy:= Fso---o0Fy.

Given two registers) and R associated to isomorphic Hilbert spacHs), Hr respectively we let
SWAPGr be the unitary that swaps their contents: for any two orthmab basegu;) for Hq and [v;)
for HR, SWAPQR = Zi,j |Ul', I/l]'><1/t]', Ui’.

Complexity classes. We give relatively informal definitions of the quantum irgtetive proof classes con-
sidered in this paper. For formal definitions we refer theleedo the book [KSV02] and the survey [Walt09].

QMA is the class of all promise problenis= (Lyes, L,,) such that there exists a polynomjabnd a
guantum polynomial-time verifier such that:

e (completeness) For every € L., there exists a statgt) on p(|x|) qubits such thal/(x, [Y))
accepts with probability at leagy 3,

e (soundness) For evenye L,, and every|'¥) onp(|x|) qubits,V (x, |'¥)) accepts with probability at
most1/3.

We further note that using an amplification technique of hd#trand Watrous [MWO05] one can show that
for any fixed polynomial the completeness and soundness parameters can be reptaced2b?(1*)) and
2-9(*) respectively without changing the definition @MA. Furthermore the amplification procedure
in [MWO5] preserves the witness length, so that the polyrbmidoes not need to grow if one increases
g (only the complexity of the verification procedure incregseWe define the exponential-size version
of QMA, QMAgyp, by allowing the witness to be o?(1*l) qubits and the verifier to run in quantum
exponential time.

MIP(r,t,c,s) is the class of all promise problenis= (L., Ly,) such that there exists a polynomjal
and a classical polynomial-time verifi&t, interacting withr non-communicating provers throughmounds
of interaction in each of which at mogt|x|) bits of communication are exchanged between the verifier and
the provers, such that:

e (completeness) For evety € L., there exists a strategy for the provers that is acceptedhdy t
verifier with probability at least,

e (soundness) For evenye L, any strategy of the provers is accepted by the verifier wittbability
at mosts.

QMIP(r, t,¢,s) is defined in the same way, except the verifier and commuaoit&kchanged are allowed
to be quantumMIP* (7, t, ¢, s) (resp.QMIP*(r, t,¢c,s)) is defined aMIP(r, ¢, c,s) (resp.QMIP(r, t,¢c,s))
but the provers are allowed to share an arbitrary entandgétd as part of their strategy. (In this paper we
only consider protocols for which the number of rounds oénattion ist = 1.)

It follows from [BFL91,[KMO03] that, for any polynomialg;, p, andps,

MIP(p1, p2,2/3,1/3) = QMIP(p1, p2,2/3,1/3)
= MIP(2,1,1,2"7) = QMIP(2,1,1,2~7*) = NEXP.

In fact, [KMO3] even show that the same equalities hold @vIIP* when the provers are limited to a
polynomial number of qubits of entanglement.



The local Hamiltonian problem. Letk be a fixed integer and, b : IN — [0, 1] such thatz(n) < b(n)
for all integersn. The k-local Hamiltonian problem (LH) is defined as follows. Their is a classical
description of a local Hamiltoniahl = Y, H; € L(C%,C%") acting onn qudits of dimension each.
Here eacltH; is a positive semidefinite matrix of norm at mdsacting on at most out of then qudits, and
can thus be represented by a matrix of dimensforx d*; when we writeH = Y_; H; we implicitly mean
that eachH; should be tensored with the identity acting on the remaifing k) qudits. We label the qudits
from 1 to n, and denote by; the set ofk qudits on whichH; acts. The problem is to determine which of
the following two cases holds:

1. (YES) There exists a-qudit statelT") such thatT'|H|T') < am,
2. (NO) For all state$¥), (¥|H[Y) > bm.
Kempe, Kitaev and Regev showed the following:

Theorem 4 ([KKRO06]). For any fixed polynomiad, there is a polynomiap such that the-local Hamil-
tonian problem, where the number of qubitss specified in unary, IQMA-complete fork = 2, d = 2,
a=2"1"andb = 1/p(n).

For the case 0dDMAgyp essentially the same construction yields the following @kso [GI09]):

Theorem 5 ([KKRO6]). For any fixed polynomig{, there is a polynomiap such that the-local Hamilto-
nian problem, where the number of qubNsis specified in binary (hence can be exponential in the input
size), iISQMAgyp-complete fok = 2,d = 2,a = 2-7N) andb = 1/p(N).

Error-correcting codes. Our protocol relies on the use of a quantum error-correctogeC that has the
following properties:

e C encoded logical qubit intor physical qubits.
e (C detects and corrects all single-qubit Pauli errors on desigqgbit.
e The reduced density matrix of any codeword<’inn a single qubit is the totally mixed stdi& /2.

An example of a code satisfying all three conditions for= 5 ande = 1 is the 5-qubit stabilizer
code [BDSW96| LMPZ96]. Givem single-qubit register®;, ..., R, we let DEG,..r, : D((C?)*") —
D(CZ) be the completely positive trace-preserving (CPTP) mapesponding to the decoding operation.
We also let CHECH,..g, € Pos((C2)®r) be the projection onto the code space.

3  Proof of Theorem[I

In this section we prove Theordr 1. The protocol is describétigure[1. The first two properties claimed
in the theorem, on the structure of the protocol, are clémretis a single round of interaction, and using the
5-qubit stabilizer code fo€ the protocol can be executed with= 5 provers. Messages from the verifier
to the provers are either the label of a qubit or the desonptif a set of sizé, which requireO(log 1) bits

to specify. Messages from any prover to the verifier are eithwr k qubits. In Sectioh 3]1 we establish the
completeness property of the protocol; soundness is priovBdctior 3.P.



Protocol P

Let H = Y| H; be an instance of thielocal Hamiltonian problem given as input, andhe number
of qubits on whichH acts. LetC be an error-correcting code which encodeegical qubit intor
physical qubits and satisfies the three conditions destabéne end of Sectidd 2.

The verifier performs each of the following tests with proligb1/2 each:

Test (a) Select ac [m] uniformly at random, and led; C [1] be the set ok qubits on which the local
term H; acts. Ask the provers for their respective share of all guinit5;. Upon receiving the
shares, apply the decoding map independently to each @&f gheups ofr shares and measure
the resulting state usingH;, Id —H;,}. Reject if the outcome isH;’.

Test (b) Select a qubite [n] uniformly at random, and a s6t C [n] uniformly at random among all
sets of sizek that containi. With probability 1/2, ask one of the provers at random fergtiare
of all qubits inS, and the remaining — 1 provers for their respective share of thilh qubit only.
With probability 1/2, ask all provers for their respectivease of thei-th qubit. In both cases,
verify that all provers’ shares of theth qubit together lie in the codespace. Reject if not.

Figure 1: Protocol for the verification of an instance of thedl Hamiltonian problem.

3.1 Completenessanalysis

Lemma 6. Suppose that there exists a st#fe such that(T'|H|I') < am. Then there exists a strategy for
the provers in ProtocoP that is accepted with probability at least— a/2.

Proof. We describe a strategy for the provers. Lt be such tha{T'|H|I') < am. Before the protocols
start, the provers generate a shared entangled|¥ta@verrn qubits by independently encoding each qubit
of |T') into r qubits using the cod€ prescribed by the protocol. Each of thprovers keeps qubits of|'¥),
corresponding to a share of each of the encoded qubji) ofVhen asked for its share of any set of qubits,
the prover complies and sends it to the verifier. It is cleat this strategy is accepted with probabilityn
item[(B], and with probability

m
Ly —H)Ir) > 14
mia
in item[(@). Using that each test is performed with probgbili/2, the overall success probability for the
strategy is at least — a/2. O

3.2 Soundness analysis

In this section we analyze the soundness of protétdin sectior 3.2J1 we introduce the notation used to
describe the most general strategy that the provers mayogmpthe protocol. In section 3.2.2 we show
that, provided that all eigenvalues Hfare larger than some inverse polynomial, any strategy &opthvers

is rejected by the verifier with inverse polynomial probéil



Register| Use
Before application P! Provert's register in stat¢'¥')
of LIi, Vs.
After application Qf Register sent back by proveif asked for the-th qubit.
of U;, Vs St Provert’s remaining private registers.
Auxiliary | R/, R! | Initialized as an EPR pair.
registers

Figure 2: Notation for the provers’ registers.

3.21 Theprovers strategies

We denote an arbitrary strategy for therovers in protocolP via a triplet(ulj, Vg, |'¥)) (or sometimes

(Ul, Vi, p)). Here|¥) (or p) denotes the initiat-partite entangled state shared by the provers,l&ntfs
the unitaries that they apply upon receiving questigi$srespectively. More precisely, in the protocol
a prover is asked two types of questions. Either it is aske@ fgingle qubit;, in which case we call the
unitary uf (wheret indexes the prover), or it is asked for a sekofubitsS, in which case we call the unitary
Vst. We sometimes omit the superscriptas the labeling of the provers will often be clear from cghte
We denote the associated completely positive trace-piese(CPTP) maps by/! : o — Ulo(U!)t and
Vi o Vie(VHT.
Fort € [r] we write P! for the register containing thieth prover’s share of¥). After application of

the unitaryU! or V{, we relabel registers associated to the prove$'a®!, ..., Q!,. Here then registers

',...,Ql are each single-qubit registers such that regite(resp. register@f1 . -Qf.k) is sent back
to the verifier when the prover is asked for qubiresp. set of qubit§ = {i,...,i}). Note that all
registersQ! may not exist simultaneously; which ones do depends on ti@ryi!! or V¢ that was applied.
The remaining registe$’ is an auxiliary register of arbitrary dimension. In additidor each provet ¢

{1,...,r} we introduce2n auxiliary register’, ..., R}, andﬁi, ... ,ﬁ;, and define

r n
9) 1= 9) @ Q5 (100 + 1)) )
=1 i1 V2 o o
i.e. |¥) is |¥) adjoined withn EPR pairs for each prover, created in the auxiliary registae write
o =|¥)(¥|andp = |¥)(¥|. See Figur&l2 for a summary of our nomenclature for regisWeswill often
abbreviate); for the union of the,, j € [r], and writlet for the union of allQ/, for j € [r]\{t}.
We introduce a new set of unitaries which act on a prover'sesbf{¥) as

Cl = (U))"(SWAPyg ®1d)U;  and  Dlg := (V&)"(SWAPyg ®1d)VE, 2)

wherel! andV¢ are implicitly tensored with the identity on the auxiliasgisters. We denote the associated
CPTP maps by; : ¢ — Cjo(C})" andD} : ¢+ Djs0(D}s)". In order not to overload the notation we
often do not specify precisely on which registers the idgrdtts (sometimes we even omit the symhbl
altogether), as it should always be clear from context. Immff corresponds to applyinlj{ , Swapping
the registeiQ! containing the output qubit with theth ancilla registeR!, and applying(U!)*. Fori € S,
Dj s is defined a<C] but from the unitaryV’; instead ofUl}, while still swapping the output qubit in register
Q! only (and not the others). For any sub%et S we defineDtT,S in the same ways d§f,5 except all qubits

10



in the subsefl” are swapped out; in partlculﬂ{ s = Df{s andDg s = Id. The following observation,
which follows fromV{(V{)T = 1d, will be useful:

VT CS,VieS\T,  DisDhs = DDl = Db )

Since SWAP= SWAP it also holds thatC!)" = C! and (D% ;)" = D ..
Finally, we define am-qubit mixed state

r

o= (@PEGy ) (T i (R -0 (e (€)@

t=1
i.e. o is the state obtained by, first applying unitar€s...,C!, fort = 1,...,r, to the original state
|'¥) and the auxiliary registers (initialized as EPR pairs)ntlracing out all but the:r auxiliary registers
Ri,...,R fort =1,...,r, and finally applying the decoding map for cadéndependently to each group
of r auxiliary registerk} - - - R’

3.2.2 Analysisof the strategy

In this section we prove the following lemma, which estdi#is soundness of protocB!

Lemma 7. There exists a universal constant > 0 (depending ork only) such that the following holds.
Suppose a strategy for the provers is accepted with proibahbil leastl — ¢ in each of the tests of protocsl
for somee > 0. Then the state defined inf@) satisfies: Tr(Ho) = O(n%e).

The proof of the lemma follows from a sequence of claims. Titst diraws a useful consequence of the
condition that the provers succeed in (b) with high abality.

Claim 8. Suppose the strateg{)Ll{, Vé, |'¥)) succeeds in teft (b) with probability at ledst- ¢. For any
t € [r],i € [n]andS C [n] of cardinalityk such that € S,

3\ |12
[(Cf = Dis) @1d[%)||” = O(n'e), (5)
where|¥) is defined fron{'¥) in (X). Furthermore, for any se§’ C [n] of cardinalityk andT C SN S/,
=\ 112
|(Df s — Dh o) @ 1d[F)]|” = O(n'e). (6)
Proof. For anyt € [r],i € [n] and setS C [n] such that € S let

i) = ®cw and  |gis) = Dis(@CH)[¥), ()
p#t

where for ease of notation the dependenceafri ;) and|g; s) is leftimplicit. By definition, this strategy’s
success probability in telst {b) of the protocol is exactly

%Z%Z T L (1 @ur) crecky o (@U)I
t=1 p=1 p=1

i= SeS

+()(i@UY) cHECKy o (W@ U)I®)).

p#t p#t
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Let CK; := CHECKg:. .. Given the definition o€; andD}  in @), success — ¢ in tes{(b) of the protocol
can be rewritten as

Y 5

—1/) S:ieS

({gdCKilg) + (gisICilpis)) = 1 ey, ®)

—_
~~
>3
|
_
~—

where theg; satisfy(1/7)(e; + - - - +¢,) = e. Decompose the action of the unitady ;(C!)" as
Dis(CH" = Tdg ®@W/s + Xpr © Wi + Ye @ Wis + Zge @ W, (9)

where the Pauli operatofdd, X, Y, Z} act on thei-th auxiliary registeR! associated with theth prover,
and thveS are arbitrary operators (not necessarily unitary) of notrmast1 acting on the remaining
registersQ; - - - Q;, andS'. Note that botfC; andDj 5 are such that T (C}) = Trge(Dj5) = Ider...qust,
hencewgs = 1d. Let

¢5) == (CK;@1d)]g;) and |¢/) == ((1d—CK;) @1d)|g;),

so that|¢;) = |¢) + |go{). By assumption the cod€ corrects all single-qubit Pauli errors, and since by
definition the reduced density ¢p7) on registersR} --- R} is in the codespace, for any single-qubit Pauli
errorEx: € {X,Y, Z} acting on registeR!,

CHECKg:..x (Ere ®1d ) [g) = 0. (10)
As a consequence, starting from the definition¢afs) and using the decompositidn (9) we get
CKilgis) = CK;- (Df,s(cf)+ ®Id> i)
= CK;- (IdR; @ 1d +Xpr ® Wis + Ype © Wis + Zg @ 4s) i)
= CK; ®1d |;) + (CK; - X ® Wi + CK; - Ve ® W5 + CK; - ZRt®w $)l9f)

+ (CK; - Xt @ Wi + CK; - Y @ Wig + CK; - Zge @ W) o))
= CK; @ 1d [ ;) + (CK; - Xpi @ Wig + CK; - Ypr @ Wis + CK; - Ze @ Wis) o)), (10

where the last equality follows fromh {1L0) and the fact thailmz.{s do not act orR!. Eq. [8) implies that
both

2L o E leDIP < 20 12
i=1 SleS
and L
~) Y. [(Id —CHECKy x)lgis)|” < 221, (13)

=

n—1
i=1 (k 1) S:ieS
where we used that CHEGK .  is a projection. Using the triangle inequality as

¢is) — o |l < ||lgis) — CKil@is) | + ||CKilpis) — CKilgi) || + ||CKil@i) — |@i) ||

12



we get

n
Z n 1

i=1 k 1 S:
where the first bound is obtained from13), the second fifol), (L2) and||CK;||, HWf].H < 1, and the

third from the definition off <p{> and [12). Recalling the definition ¢&;) and|¢;s) in (@), (8) is proved
by noting that the operatdid ®,,#cf) is unitary and hence its application does not modify the iflaah
norm.

The proof of [6) follows the same steps. Defining vectgrss) and| ¢t /) and using thaf(8) is satisfied
for everyi € T we can decompothT,S(DtTls/)’” as in [9), except now the decomposition involves| &l
qubit Pauli operators on registdﬁ fori € T. The different qubits are checked independently, and we can
define|p7 5) := (®ierCK;)|@1,5). The remainder of the derivation follows the same stepsijiegto ()
(where factors polynomial ik are hidden in thé(-) notation, using that is a constant independent of
n). O

::Ir—\

Yo leis) — o) H < 3(2e0+9-2¢ +2¢;) = Ofey), (14)
ieS

For anyi € [n] let F; be the completely positive trace non-increasing map, @atim all provers’
registers, defined by

r r r r

Fito = <(®X{)+CKQ}~~Q5(®X{)) ‘7<(®X{)+CKQ}~~Q§(®X{)>+' (15)

j=1 j=1 j=1 j=1

Here we use the symb(Xj to represent any dtlj or Vj for any S containingi; we leave the dependence
of F; on the choice otX] implicit as all bounds proved will hold irrespective of ti@itoice. We also write
X!: ¢ = XJo (X))t for the CPTP map associated with. Note that, in addition to the presence of the CK

operator, the difference between the mapsnd e.g.®]C{ is that in the former thé register9); andR; are
not swapped; in particulaf; acts as identity oiR;.
Our second claim shows that the property that the qubitaebed from the provers’ strategies through

the mast{ are in the codespace remains preserved even after manyg tyagoplication of theF;.

Claim 9. Suppose the strateg(ydf, Vé, |'¥')) succeeds in teft (b) with probability at ledst- . Lets be an
integer andy, .. .,i; € [n]. Then

Tr(< 05, fié) (p)) = 1-0(sne). (16)

Proof. We provel[(I16) by induction o Fors = 1 it follows immediately by first applying Claiin 8 (at most)

r times to replace eac}i{{1 in the definition of 7;, by U{l, and then using the assumption of success in the
test, which ensures that the extracted qubits are close tmitthe space. Suppokel(16) verified for senaad
let K be the constant implicit in th€(-) notation; we show it fos 4 1. Writing CK;, = Id —(Id —CKj,)

13



and using thaf;, reduces to the identity once the operator &K, is removed,
n B

(O3 7)) = (033 7 ) 0)
~((Oih A o <®X]> (Id—CKle...Q;I)((é)?fﬁ(ﬁ)CKQ}lmQa))

j=1
.
k 1 ~
> 1 — KsnFe — Tr((Id —CKQ}l,.,Q],I) ( g) Xi) (p))
> 1— Ksn*e — O(nke),

where the first inequality uses the induction hypothesigHerfirst term, and that thé; are trace non-
increasing for the second, and the last follows from the sase1 of (16). ProvidedK is chosen large
enough this establishes the induction step and provesadha.cl O

The next claim has a similar flavor as the previous one, thatgtibits extracted from the provers’
strategies lie in the codespace is preserved even aftacajiph of a sequence of maﬁ$ or Df ¢ on one of
the provers’ registers.

Claim 10. There exists a constanj > 0 depending ork only such that the following holds. Suppose
the strategy(U, Vi, [¥)) succeeds in te§t (o) with probability at least- e. Lets be an integer and

i1,...,is € [n]. Then for anyt € [r] and choice ot))] € {C}, D} s,lic € Sy} forje [rlandl € [s],
Tr(CKiS < ( Oj=1 yﬁ) X yi) (ﬁ)) =1-0(s*n"). (17)
jt

Proof. For the proof we show that the following holds by downwardtuiction ons’ from s to 1:
Tr(cki (Ol ) QL) o (071 7)) (p)) = 1 - O(ss'ne). (18)
j#t

Eq. (I8) fors’ = s is equivalent to[(16), so Claifd 9 proves the base case fomtthgction. Ifs’ = 1 it
reduces to[(17), which is what we need to prove. Assume [ljsvified fors’ +- 1, and prove it fors'.

By (@8) applied withs = s’ we see that the strategyl] Vi, ps), wheregy = ;/:1]-"1-1, (p) (it will be more
convenient to leav@, unnormalized) succeeds in t¢st](b) with probability attidas O(sn*e). Here in

the definition of7;, we defineX; asuf if yf = Cf cand Vi, if yf = Df g the remalnlng?(] can be
chosen arbitrarily. Applying Clalrlﬁls We get

[(Oevia 1) @) () — (Ohvin %) @ Phs) 2

‘1 — O(sn¥e), (19)

where forS we choose any set containing bathandi;. Applying the claim once more, this time starting
from the strategy U{., Vé, ps—1), we have

Hf,, b1 ( ®vf> (CKQ}S ( ®v1> (ps1)CKqy Q;S,>H1:O(snm‘e). (20)
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Combining [I9) and (20) by the triangle inequality and eatihg the overlap with CK we get

‘Tl’(CKiS (( O%zs/-&-l ylté) ? yl]b) (ﬁs’))
j#t

_ Tr<CKis ( Oy Vo (Xits/)+> (CKQ},MQI,, (Xi, (é) Vé) (ﬁsl,l)CKQ},le,)) ‘ = O(sn%e),
s s j?ét s s
(21)

where we also used the deflnltlonﬁf to simplify the successive application of umtarl@sand V]) on
proversj # t in the second term above The fact that every codeword ofdtie© has a reduced density on
any single qubit that is totally mixed implies that if we teag@ut reglsterQ# andR _inthe (unnormalized)

densitygy = CK;, (X} itV )(ps/ 1)CK;,, the reglsterth Q! are jointly in the totally mixed state.
Swapping the two reglsters thus leaves the state mvaaadtfrom i(Zl) we get

Tr(cKi (O ) ® 1) @)
j#t
_ Tr(CKiS ( o yfz) (CKR; oF (yfs , (é) vg) (Pr1)CKyy Q#>) ‘ = O(sn®e).  (22)
3§/ 3§/ ]#t s gl

Finally, using ClainiP once more, we can remove the apptioadf CKy, oF in the second term in_(22) to
obtain

(0Ot 1) @34 0)) (0K, (O 1) @) 34 =0t

j#t j#t
(23)

To conclude, since the registeﬁ’gét are being traced out, and using Claim 8 for the stra(égl’y Vj, fs'—1)

the application of® V in the second term i (23) can be replaced®y#y’ for ) of our choice.
Using the induction hypothes.18) to bound the first terf@B), this proved (18) fas’ and establishes the
induction step, proving the claim. O

The following corollary is a simple consequence of Claim 8.

Corollary 11. Suppose the strateqyl{, Vé, |'¥)) succeeds in te§t (b) with probability at ledst- ¢. Let
s be an integer andy,...,is € [n]. Then for anyt € [r], setS containingis;, and choice oD)f[ €

{Ci, Dj,lic € Si}fortels—1],
|((coiztyr) @1a) () - ((DLs it %) ©1d) (9) |, = O(s*nhe), (24
wherec; is as in Clain{10.

Proof. ‘Using the freedom in the choice of the operatdts(@I7) from ClaimID shows that the strategy
(uj, v§, (O;21Y}) ®1d)(p)) succeeds with probability — O (s*n'¢) in test[{B) of the protocol. The
corollary then follows directly from Claiml8. O
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Our final claim shows that if the provers have a high succesisgtility in both tests of protocd? the
stateg defined in[(4#) must have low energy with respect to the locahittanian H.

Claim 12. There exists a constant > 0 depending ork only such that the following holds. Léte > 0
be such that the provers succeed in fest (a) of protdowith probability at leastl — ¢, and in tesf (H) with
probability at leastl — . Then

1 _ C
ETr(HU) = O(6+ n%e).

Proof. For anyi € [n] we abbreviate DEG . ., as DEG. By definition,

”::(é%DEC@mm)<ThmmEQﬁU“j)

where .
v = (® (Cho---oCloc))) ().
j=1
Fix a local termH; acting onk qubitsS := S; = {iy,..., i}, and letU = [n ]\S Let Ty = @, and for
s=1,...,kletT, = {iy,...,is}. We show the following by induction an= 0, ..., k:
r ) r ) ,
[Troum, (0) = Trom, (@ (O €)) o (R Phs) ()|, = Olone), 29
]‘:] s j:l

for some constant, > 0. The equation is trivially true fos = 0. Suppose it true for some < k. Let
fs = ®]’-:1 D]qus(p). We again proceed by induction én=is.1, ..., 1 to show

[T, (@ (0 1) () ~ Traue, (@ (O eyl ¢ O eh) @),

= O((iss1 +1— On2le). (26)

For¢ = i;.1 the bound follows from Corollarfy 11 applied to each of thevers, provided? is chosen large
enough. For =1, usingD{sH/S o Djn,s = D§S+1,S, together with the triangle inequality it establishes the
induction step for the proof of (25). Suppo&el(26) verifiedfomel > 1. To prove it for/ — 1, we apply
Corollary[11 to the state

r

(® (05 c) oDl 5011 €) 6)

-1 T,

a number of times: first, the maﬁ% , are replaced bgDé LS for someS’ containing botlY — 1 andi; ;.

Second, théD] s are replaced bgDJ _s- Nextwe use the relatlo@] gD, 1 g=Dj_ g0 Dl .
and perform the same replacements in reverse. This estab86) foré — 1 (providedc is chosen large
enough) and completes the induction step. We have now pi@&n

Using the definition ofDr, s and that bothH; and DEG, for s = 1,...,k, do not act on any of the

registers inQy; or Ry, from (28) we get

r

‘Tr(HjU) —Tr(Hy( é DEC, ) ( g) V) ( (§1) Vi) +> ‘ = O(n%He), 27)
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By definition succes$ — ¢ in tesf (@) of protocoP implies

b L ((@oee) (@v)n(®@¥)) <5

m - .
S]':{ll,...,lk

which together with[(27) proves the claim for an appropriteice ofc,. O

LemmalT now follows directly from Clairh 12 and the fact thay atrategy with success — ¢ in
Protocol P must have success probability at ledst 2¢ in each of the two tesfs (a) apd](b) of the protocol.
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