
Towards Transparent and Efficient
Software Distributed Shared Memory

Daniel J. Scales and Kourosh Gharachorloo
Western Research Laboratory

Digital Equipment Corporation
{scales,kourosh} @pa.dec,com

Abstract

Despite a large research effort, software distributed shared mem-
ory systems have not been widely used to run parallel applications
across clusters of computers. The higher performance of hardware
multiprocessors makes them the preferred platform for develop-
ing and executing applications. In addition, most applications are
distributed only in binary format for a handful of popular hardware
systems. Due to their limited functionality, software systems cannot
directly execute the applications developed for hardware platforms.
We have developed a system called Shasta that attempts to address
the issues of efficiency and transparency that have hindered wider
acceptanceof software systems. Shastais adistributedsharedmem-
ory system that supports coherence at a fine granularity in software
and can efficiently exploit small-scale SMP nodes by allowing pro-
cesses on the same node to share data at hardware speeds.

This paper focuses on our goal of tapping into large classes of
commercially available applications by transparently executing the
same binaries thatrun on hardware platforms. We diicussthe issues
involved in achieving transparent execution of binaries, which in-
clude supporting the full instruction set architecture, implementing
an appropriate memory consistency model, and extending OS ser-
vices across separatenodes. We also describe the techniquesusedin
Shastatosolvetheabovepmblems. TheShastasystemisfullyfunc-
tional on a prototype cluster of Alpha multiprocessors connected
through Digital’s Memory Channel network and can transparently
run parallel applications on the cluster that were compiled to run on
a single shared-memory multiprocessor. As an example of Shasta’s
flexibility, it can execute Oracle 7.3, a commercial database engine,
across the cluster, including workloads modeled after the TPC-B
and TPC-D database benchmarks. To characterize the performance
of the system and the cost of providing complete transparency, we
present performance results for microbenchmarks and applications
running on the cluster, include preliminary results for Oracle runs.

1 Introduction

There has beenmuch research on supportiug a shared address space
in software across a cluster of workstations or servers. A variety of
such distributed shared memory (DSM) systems have been devel-
oped, using various techniques to miniie the software overhead

permission to make digital/hard copy of part or all this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage, the copyright notice, the title of the publication and its date
appear, end notice is given that copying is by permission of ACM.
Inc. To copy otherwise, to republish, to post on servers. or to
redistribute to fists, requires prior specific permission and/or e fee.
SOSP-16 IO/97 Saint-Malo, France
@ 1997 ACM o-89791~916-5197/0010...$3.50

for supporting the shared address space. The most common ap-
proach uses the virtual memory hardware to detect access to data
that is not available locally [2,7,9,19]. These systems communi-
cate data and maintain coherence at a fixed granularity equal to the
size of a virtual page.

Despite all the research on software DSM systems, software
platforms have yet to make an impact on mainstream computing. At
the same time, hardware shared memory systems have gained wide
acceptance. The higher performance of hardware systems makes
them the preferred platform for application development. Software
vendors typically distribute applications in binary format only for
a few popular hardware p1atform.s. Due to their limited function-
ality, software systems cannot directly execute these applications,
and thus fail to capitalize on the increasing number of applications
available for hardware systems. For example, software systems
typically require the use of special constructs for synchronization
and task creation and severely limit the use of system calls across
the cluster. We have attempted to address some of the above issues
of efficiency and transparency in the Shasta system [14]. Shasta is
a software DSM system that supports sharing of data at a fine gran-
ularity by inserting code in au application executable that checks
if data being accessed by a load or store is available locally in the
appropriate state. This paper focuses on the issues in transparently
executing hardware binaries in the context of the Shasta system.

Transparent execution of binaries encompasses several chal-
lenging problems which fall into two broad categories, correctly
supporting the complete instruction set architecture and extending
OS services across separate nodes. As an example in the instruc-
tion set category, software systems have to directly support atomic
read-modify-write instructions as opposed to depending on special
high-level synchronization constructs (as is done in virtually all cur-
rent software DSM systems). Software systems must also correctly
support the memory consistency model specified by a given in-
struction set architecture. Much of the recent research on software
DSM systems involves protocol innovations related to exploiting
or further relaxing the memory consistency model to solve false
sharing problems that arise from page-level coherence. However,
many important commercial architectures, including the Intel x86
architecture, support rather strict memory consistency models that
disallow virtually all the critical performance optimizations that are
usedin such page-basedDSM systems. Evenarchitectures that sup-
port aggressive relaxed models (i.e., Alpha, PowerPC, and Sparc)
fail to provide suf&zient information (in the executable) to allow
many of the optimizations based on release consistency that are ex-
ploited by several of the software systems [l, 7j. Furthermore, the
above issues related to hardware memory consistency models are
unlikely to change in the foreseeable future.

Transparently executing applications that useOS services leads
to another set of challenging problems. Some of the issues are sim-
ilar to those faced by cluster operating systems such as Locus [l 11,

157

http://crossmark.crossref.org/dialog/?doi=10.1145%2F268998.266673&domain=pdf&date_stamp=1997-10-01

Sprite [lo], and Solar&MC [S]. The functionality of the OS must
be extended so that system calls work transparently across the clus-
ter as if all processeswere on the same machine. However, there are
a number of additional issues when software is also used to support
shared memory across the cluster. One problem is that the OS is typ-
ically unaware of the software DSM layer that is providing shared
memory across the nodes. Therefore, all parameters to system calls
that are located in shared memory (and therefore may not currently
be local) must be validated before the system call is made. Other
problems can occur in complex applications becauseindividual ap-
plication processes maintain protocol state information about the
application data. This arrangementworks well for typical scientific
applications in which a fixed number of long-lived processes are
created at startup that are all active until the computation has been
finished. However, many difficult issues arise if the application
dynamically creates and destroys processes or if the application ex-
ecutes with more processes than available processors (to help hide
J/O latency, for example). Our general solution to theseproblems is
to ensure that oneprocessper processor remains running regardless
of how many application processes are created and destroyed, and
to allow all processes running on the same processor (or node) to
handle each other’s incoming messages.

In this paper we discuss the above issues in detail and describe
the corresponding solutions that we have adopted in Shasta. We
have implemented a complete solution for supporting the full Al-
pha instruction set architecture. Due to the large amount of effort
necessary to extend all OS services, we chose a short-term goal of
supporting sufficient functionality to execute a commercialdatabase
such as Oracle, which still uses a relatively rich set of OS services.
‘IheShastasystemisfullyfunctionalonourprototypeclusterwhich
consists of a total of sixteen 300 MHz Alpha processors connected
through the Memory Channel [6]. We can currently run the Oracle
7.3 executable across the cluster using Shasta and execute applica-
tions that are similar to the TPC-B and TPC-D benchmarks. We
presentperformanceresults forvariousmicrobenchmarksandappli-
cations, including Oracle, running on the above cluster. Overall, our
results show that transparent execution of binaries can be achieved
in most cases with only a small reduction cost in performance.

The following section describes the basic design of Shasta.
Sections 3 and 4 discuss issues related to supporting a hardware
instruction set architecture and extending OS services across nodes,
respectively, and describe the solutions that we have adopted in
Shasta. Section 5 discusses some issues related to the use of code
modification in Shasta. We present detailed performance results in
Section 6. Finally, we describe related work and conclude.

2 Basic Design of Shasta

This section presents an overview of the Shasta system, which is
described more fully in previous papers on support for fine-grain
coherence [14], the basecachecoherenceprotocol[12], andprotocol
extensions to exploit SMP nodes [13].

2.1 Cache Coherence Protocol

Shasta divides the virtual address space of each processor into pri-
vate and shared regions. Data in the shared region may be cached
by multiple processors at the same time, with copies residing at the
same virtual address on each processor. Shared data in the Shasta
system has three basic states at each processor: invalid - the data
is not valid on this processor; shared- the data is valid on this
processor and other processors have copies of the data as well; and

e~Zzcsive-thedataisvalidonthisprocessorandnootherproccssoIs
have copies of this data. Communication is required if a processor
attempts to read data that is in the invalid state, or attempts to writ0
data that is in the invalid or shared state. In this case, WC say that
there is a sharedmiss. Shasta inserts code in the application oxc-
cutable at each load and store to determine if there is a shared miss
and, if necessary, invoke protocol code.

Shasta divides up the shared address space into ranges of mcm-
ory called blocks. All data within a block is in the same state and
is always fetched and kept coherent as a unit. A unique aspect of
the Shasta systemis that the block size can be different for difforont
program data. To simplify the inlhre code, Shasta divides up tho
blocks into fixed-sizeranges called Zincs (typically 64 or 128 bytes)
and maintains state information for each line in a slate fable.

Coherence is maintained using a directory-based invalidation
protocol. The protocol supports three types of requests: read, read-
exclusive, and exclusive (or upgrade, if the requesting processor
already has the line in shared state). A home processor is associated
with each block and maintains a&rectory for that black, which con-
tains alist of the processors caching a copy of the block. Bccauso
of the high cost of handling messages via interrupts, mcssagos from
other processors are serviced through a polling mechanism, Tho
Shasta implementation polls for incoming messages whcncvor the
protocol waits for a reply. To ensure reasonable rosponso times,
Shasta also insert polls at every loop backedgo. Pollhrg is incxpcn-
sive (three instructions) in our Memory Channel cluster bocauso tho
implementation arranges for a single cachable location that can bc
tested to determine if a message has arrived.

2.2 Shared Miss Checks

Shasta inserts the shared miss checks in the application cxocutablo
using a moditied version of ATOM [18]. An efficient shared miss
check requires about seven instructions. Since the static and stack
dataareasarenotshamd,Shastadoesnotinsertchecksfor any loads
or stores that are clearly to these areas. Shasta also uses a numbcr of
other optimizations thatreduce the checking overhead to an avorago
of about 20% (including polling overhead) across the SPLASH-
2 applications [14]. The two most important optimizations arc
described below.

Whenever a block on a processor becomes invalid, the Shasta
protocol stores a particular “flag” value in each 4-byte word of tho
block If the loaded value is not equal to the flag value, the data
must be valid and the application code can continue immediately.
If the loaded value is equal to the flag value, then the protocol coda
also checks the state of the block to distinguish an actual miss from
a “false miss” (i.e., when the application data actually contains tho
gag value). Since fake misses almost never occur in practice, the
above technique can greatly reduce the load miss chock ovorhcad,

Shastaalso attempts to batch together checks for multiple loads
and stores. There are often sequences of loads and stores to ad-
dresses which are a small offset from the contents of a base register.
These loads and stores therefore access nearby data within conscc-
utive lines. If all the lines are in the correct state, then the batch of
loadsandstorescanproceedwithoutfurtherchocking. Thcbatching
techniquealso applies to loads andstoresviamuhiple basorcgistcrs.

2.3 Exploiting SMP Nodes

Commercial small-scale SMPs (symmetric multiprocessors) arc an
attractive building block for software distributed shared memory
systems. The primary advantage of SMP nodes is that processors

158

within an SMP cansharememory via the hardware, thus eliminating
software intervention for intra-node data sharing. The widespread
availability of SMP servers has led researchers to consider their
use in page-based systems [l, 3, 4, 19, 221, with SoftFLASH [4]
and Cnshmere [19] being the only actual implementations based on
commercial multiprocessor nodes.

Exploiting SMP nodes efficiently in the context of a fine-grain
system like Shasta is a bit more complex. The primary diificulty
arises fmm race conditions caused by the fact that the state check
inserted at a load or store does notexecuteatomically with the actual
load or store of shareddata, since the two actions consist of multiple
instructions. In contrast, the virtual memory hardware provides
atomic state check and data access in page-based systems. An
example of the race condition that can arise is as follows. Assume
processors PI and P2 are on the same node, and that an exclusive
copy of the data at address A is cached on this node. Assume
Pl detects the exclusive state at its inline check for address A
and proceeds to do a store to the address, while P2 is servicing
aread request from another node. The undesirablerace arises if P2
downgrades the data to a shared state and reads the value of A before
Pi’s store is complete and visible to P2. One possible solution is to
add sufficient synchronization to ensure that P2 cannot downgrade
the state and read the value of A in between the inliue state check
and store on Pl. However, thii solution results in a large increase
in the checking overhead at every load or store to shared data.

We have implemented a solution that allows sharing of memory
among processors on the same node and avoids the race conditions
described above without the use of costly synchronization in the
inline checking code [13]. The overall solution depends on the
selective use of explicit messages between processors on the same
node for protocol operations that can lead to the race conditions
involving the inline checks. In addition to a shared state table for
all processes on the same node, each process maintains a private
state table that is only modified by the owner. Explicit messages
are sent to another process if servicing an incoming requestrequires
downgrading an entry in the private state table of that process (e.g.,
an incoming read that changes the state of a line from exclusive
to shared). Because processes are allowed to read each other’s
private state tables, explicit downgrademessagesare only sentto the
processes that are actively sharing that line. We refer to the system
with the abovemodifications as SMP-Shastaand the original system
as Base-Shasta. When using SMP-Shasta on a cluster of SMP
nodes, we have observed significant performance improvements
(of as high as two times) in applications over Base-Shasta because
of the reduced number of remote misses and software protocol
messages [13]. As we will see, the SMP-Shasta implementation is
also important for running efficiently when an application executes
with more than one process per processor.

2.4 Avoiding OS Interactions for Frequent Protocol Ac-
tions

One of the key philosophies in the design of Shasta is to avoid ex-
pensive OS interactions for frequent protocol actions. By far the
mostimportant designdecisionin Shastais to useinliue statechecks
instead of depending on virtual memory hardware to detect sharing
misses. This approach frees Shasta from supporting coherence at
the fixed large granulari~ dictated by a system’s page size. Physical
page sixes have remained large (e.g., miniium SKB pages under
Digital Unix, and 16KB pages under SGI Irix) primarily as a way
to reduce the number of TLB misses. These large page sizes exac-
erbate problems such as false sharing that arise from maintaining
coherence at a page-level. Aside from allowing Shasta to support

m-again:
Id-1 to, O(a0)

W to, try-again
or to, 1, to
stl-c to, O(a0)
beq to, try_again

Figure 1: Example use of load-locked and store-conditional to im-
plement a binary lock.

coherence at a Ene granularity, inline state checkseliminate the need
for expensive OS interactions for manipulating page protection and
detecting protection faults. Shasta also avoids OS interactions for
sending and receiving messages. Instead of depending on expensive
interrupts, Shasta uses an efficient polling mechanism (described in
Section2.1) to detectincomingmessages. Finally, OS interaction is
avoided for sending messages by exploiting networks, such as Dig-
ital’s Memory Channel, that provide protected user-level access.

3 Fully Supporting an Instruction Set Archi-
tecture

‘This section discusses some of the challenging issues that arise
in fully supporting an instruction set architecture, and describes
how Shasta solves them in the context of the Alpha architecture.
We focus on issues related to supporting atomic read-modify-write
instructions and correctly implementing the required memory con-
sistency model.

3.1 Atomic Read-Modify-Write Instructions

All software DSM systems that we are aware of support only a
limited number of high-level synchronization constructs, such as
locks and barriers. Furthermore, such synchronization is typically
not implemented on top of the shared memory abstraction, but is
supported through specialized messages and handlers. While this
approach leads to efficient support for synchronization, it is not
general and fails to support transparent execution of binaries which
achieve synchronization through either normal loads and stores or
through specialized atomic read-modify-write instructions.

3.1.1 Semantics of Load-Locked and Store-Conditional .

The Alpha architecture provides a pair of instructions, load-locked
and store-conditional, that can be used together to support atomic
read-modify-write functionality [16]. Similar instruction pairs are
provided by the MB’S and IBM PowerPC architectures. Figure 1
shows an example of how acquisition of a lock can be implemented
usingthispairofinstructions. Thecurrentvalueforthelocklocation
is read by the load-locked (LL). This value is Erst checked to see
whetherthelockisfiee. Incasethelockisfiee,thestore-conditional
(SC) is used to store the modiEed “lock-taken” value. The SC
succeeds if no other processor has done a successful store to the
same cache line since this processor did the LL, otherwise, the SC
fails, no store is done, and failure is signalled through a zem return
value. LL and SC instructions are quite general and can be used
to implement numerous other atomic operations such as compare-
and-swap, fetch-and-add, etc..

The exact semantics of the Alpha LL and SC instructions are as
follows. The Alpha architecture includes a logical notion of a lock-
address and a lock-fag per physical processor. The LL instruction
sets the lock-flag and the lock-address. The lock-flag is reset if

159

another processor successfully writes to the cache line specified by
lock-address. An SC instruction succeeds if the lock flag is set, and
fails otherwise. To ensure that an SC does not succeed incorrectly,
the lock flag is also reset when there is a process switch and when
an SC is executed, regardless of its success or failure. There are
also situations in which an implementation may reset the lock flag,
e.g., if there are any loads, stores, or taken branches in the execution
path between the LL and SC, orif the LL and SC are not to the same
16-byte aligned address. Finally, to avoid livelock, an SC that fails
should not cause failure of other LUSC sequences; for example,
livelock may occur if a-failed SC still sends out invalidations to
other copies of the line.

3.1.2 Solution in Shasta

A straightforward way of implementing LL and SC instructions in
software is to directly emulate the lock-flag and lock-address func-
tionality as described above. However, this solution requires saving
the load-locked address and setting the lock-flag on every LL in-
struction and checking and resetting the lock-flag at every SC, even
if the sequencedoes not involve any remote misses. Instead, we use
a more efficient implementation that applies to LUSC sequences
that satisfy the following conditions: (a) for every SC, there is a
unique LL that dominates the SC, (b) there are no load, store, LL,
or SC instructions between the unique LL and SC, and (c) the LL
and SC are to the same cache line. Since the Alpha architecture
deprecates use of sequences that fail the above conditions, virtually
all sequences in real applications fall in the simple category. ’

Our solution uses the state of the line prior to the LL as an
indication of whether the SC can run directly in hardware or requires
software intervention. In the case when the line is in the exclusive
state, the LL can proceed without entering the protocol. Since there
are no other loads or stores between the LL and SC, the state will
still be exclusive at the SC and the SC can be directly executed
without entering the protocol. The hardware then ensures that the
SC succeeds if and only if no other process on the same node has
written to the line. The Shasta protocol is called at the SC for all
other cases. The protocol returns failure if the state of the line
before the SC is either invalid or pending. In the case of a shared
state, the success or failure of the SC must be determined by the
directory at the home processor. We have extended the protocol
with a new exclusive (or upgrade) request for store-conditionals.
The exclusive request is serviced (i.e., invalidations are sent out)
if the directory still indicates the node is a sharer; otherwise, a
failure responseis sent back. The store (corresponding to the store-
conditional) is completed within the protocol in the successfulcase.
In all cases, the return from the protocol code jumps around the
actual SC instruction in the application.

The following describes the inline code used to implement the
LL and SC instructions. Code inserted immediately before the
LL instruction loads the state of the line into a register, and calls
protocolcodetogetthelatestcopyofthelineifthestateisinvalidor
pending. No explicit polls are inserted in the simple path between
the LL and the SC, so as to make sure that incoming requests
(or downgrade messages in SMP-Shasta) can’t change the state of
the line. Code inserted before the SC also checks the state in the
register and proceeds to execute the SC instruction if the line is
in the exclusive state. Otherwise, the code calls the protocol to
handle an SC miss as described above. Note that the above scheme
actually depends on the functionality of the LL and SC instructions

‘For correctness, the Shasta implement&n reverts to the less efficient way of
implementing atomic sequences (i.e., by emulating the lock-flag and lock-address) in
thcuolikelycase ofao applicationthatexhibitsdeprecatedscquenccs.

on the underlying hardware only if (a) we are exploiting the SMP
extensionof Shasta, and (b) the line is locally in exclusive state, ‘lb
achieve correct behavior in this case, we ensure that we do not add
any taken branches, loads, or stores in the success path from the LL
to the SC.

The above solution satisfies our goal of executing atomic sc-
quences virtually at hardware speeds (and with no protocol invo-
cation) when the line is already held in exclusive state WC hnva
also implemented another optimization to speedup cases whom tho
local node does not have a copy of the line. The atomic scquenco
typically leads to two remote misses: one to fetch a shared copy
of the line for the LL, and another to fetch ownership for thc SC.
By adding a singleprefetch-exclusive (as part of the binary rcwrite
phase) that fetches the line in exclusive state bcforo the start of the
atomic sequence, we can achieve a successful sequence with only
a single remote miss. We insert the prefetch-exclusive prior to the
loop containing the LL and SC so it is executed only once, in ordor
to avoid the possibility of livelock among multiple sequences.

3.13 Implementation in Other Software DSM Systems

It would be very difficult to implement LL and SC instructions (or
other atomic memory operations) correctly on most cxistlng soft-
ware DSM systems, because (as we discuss in the next section)
most assume that there are no races on memory locations. For
example, multi-writer protocols assume that there are no unsyn-
chronized writes to the same location and delay propagating writes,
A page-basedDSM systemusing a single-writer protocol (e.g. Soft-
FLASH) could potentially implement LL and SC in a manner similar
to Shasta, but these operations would probably be very cxpcnsive.
It would be crucial to send only “diffs” upon a read request; othcr-
wise, a single atomic operation could involve transferring an ontlre
virtual memory page.

3.2 Memory Consistency Model Issues

The memory consistency model is a fundamental issue to considcr
for software DSM systems, especially when the goal is to transpar-
ently support binaries for commercial architectures.

33.1 Current Software DSM Systems

Much of therecentresearchin software DSM systems has been ded-
icated to relaxing memory consistency models furthcr and dcvol-
oping protocols that aggressively exploit such models [l, 2,7, 191.
In general, the use of a relaxed memory model allows a system to
delay protocol actions, since the ordering requirements on memory
operations are relaxed. Pago-based systems typically USC protocols
that delay the effects of writes in order to alleviatc false sharing
issues that arise because of the large coherence granularity. The use
of a relaxed model also allows a system to reduce communication
overhead by coalescing outgoing requests.

In order to exploit especially aggressive opthnizations based
on relaxed memory models, a large number of pago-based DSM
systems heavily depend on programs being properly labclod [5].
They also typically require that applications synchtoni via a few
high-level constructs, such as locks and barriers, that arc directly
implemented through message passing as opposed to on top of tho
shared-memory abstraction, Because of these two assumptions,
all memory operations that are supported by the softwaro sharod-
memory layer are guaranteed to be race-free. This prop&y often
simplifies the underlying software cache coherence protocol and al-

160

lows for a large number of further optimizations. For example, the
software protocols typically do not enforce serialization of writes
to the same location. Similarly, writes are not guaranteed to even-
tually be visible to other nodes in the absence of explicit release
and acquire operations (as a result of aggressively delaying pro-
tocol actions). Finally, explicit knowledge of acquire and release
synchronization allows for further optimizations such as lazily fol-
lowing synchronization chains across different processors to avoid
communicating unnecessary data (as in implementations of lazy
release consistency [1,7J).

3.2.2 Commercial Architectures

Many of the above optimizations and simplifications lead to incor-
rect behavior if applied to binaries from commercial architectures,
either because the corresponding memory model is more strict or
because the binary does not provide sufficient information about
memory operations.

Several important commercial architectures support relatively
strict memory consistency models. The MIPWSGI architecture re-
quires the system to support sequential consistency, while the pop-
ular Intel x86 architecture supports processor consistency [5] which
is a little less strict. The requirement to support either model would
virtually disallow all the key performance optimizations exploited
in page-based systems.

A number of commercial architectures, including Alpha, Pow-
erPC, and Sparc, support more relaxedmodels, which allow aggres-
sive reordering of read and write operations. The foUowing discus-
sion focuses on the Alpha memory model, but the issues raised also
apply to the PowerPC and Sparcmodels due to the simifarity among
lbese models. The Alphamemory model [16] provides special fence
instructions, called memory-barrier (MB) instructions, for enforc-
ing program order among memory operations where necessary. A
memory barrier instruction ensures that aU read and write opera-
tions preceding the MB are performed prior to any reads and writes
following the MB. The Alpha model allows aggressive reordering
of memory operations between memory-barrier instructions; hence,
the opthnizations allowed by the model are similar to weak or-
dering or release consistency. Nevertheless, even a commercial
architecture such as Alpha that aggressively exploits relaxed mod-
els disallows a number of important optimizations that are typically
exploited in page-based systems.

The fundamental issue with respect to commercial memory
models such as the Alpha is that ordering information is only con-
veyed through special fence instructions, such as the MB, as op-
posed to through special flavors of loads and stores as in the release
consistency model?. Therefore, the coherence protocol must con-
servativelyassumethatanyread(s)precedmgamemorybarriermay
potentiaUy behave as an acquire synchronization for operations fol-
lowing the memory barrier, and any write(s) following a memory
barrier may potentially behave as areleasesynchronizationfor oper-
ations preceding the memory barrier. This property fundamentally
disallows aggressiveoptimizations, such as implementations of lazy
release consistency [I, 71, that require exact knowledge about the
synchronization chain across multiple processors.

Because any operation may be involved in a race, the Alpha
memory model also requires that (i) aU writes must eventually be
propagated and made visible to other processors and (ii) writes to
the same location be serialized (i.e., appear in the same order to all

%&is will not change in the foresceablc futuresinceinstructions are still 32 bits in
lengch(eventhougharchitectureshavemovedto64-bitdataandaddress~),aadadding
flnvorssuchasacquireandrelwseforeverytypeofloadandstoreis notaviableoption
due to opcodcspacc limitations.

5 E E E
A=l; A=2; while (Flag1 != 1) ; while (Flag2 != 1) ;
MB; MB; while (J?Iag3 != 1) ; whiIe (Flag4 != 1) ;
Flagl= 1; Flag3= 1; MB; MB;
EIag2=1; Flag4=1; rl=A; r2=A;

Figure 2: Example to illustrate. issues with commercial memory
models.

processors). Theserequirementsdisallowmanyoftheoptimizations
even in systems that do not exploit lazy release consistency (e.g.,
Cashmere [19]). Figure 2 presents a contrived example to illustrate
why a number of these opthnizations are not correct under the
Alpha memory model. The example shows Pl and P2 both writing
to location A and setting some flags, while P3 and P4 wait for the
flags to be set and then read location A. Assume aU locations are
initialized to 0. Under the Alpha memory model, the only allowable
outcomes are (rl,r2)=(1,1) or (rl,r2&(2,2). The Erst thing to note
is that the both fiag writes folIowing the MB on Pl (or P2) behave
as release synchronization, and both reads of the flags on P3 (or
P4) behave as acquire synchronization. Therefore, as mentioned
above, it would be incorrect to assume that only the operations that
immediately precede or follow an MB behave as synchronization.
In addition, an approach that lazily delays propagation of writes
and servicing of invalidates until the next MB will not behave
correctly. Therefore, the system has to periodically propagate writes
and service invalidates even in the absence of MB instructions.
Finally, the system must enforce serialization of writes to the same
location to disallow outcomes such as (rl,r2)=(1,2) (which occurs
if P3 and P4 observe the writes to A in different orders).

Overall, supporting commercial memory models, even those
that are quite aggressive, may lead to drastic performance losses in
the case of page-based systems, because the protocol optimizations
that are required to achieve good performance cannot be used.

3.23 Approach in Shasta

The Shasta coherenceprotocol closelyresembles that of a hardware
DSM system, especially since coherence is maintained at a fine
granularity. Therefore, many of the correctness and performance
issues are similar to those in hardware systems. We describe a few
of the issues that arise because we are supporting shared memory in
software.

To support the Alpha memory model, we need to correctly im-
plement the functionality associated with memory barriers. This
requires invoking protocol code at every MB to make sure opera-
tions before the memory barrier are completed and any incoming
invalidations that are received are serviced. The binary rewrite ca-
pability in Shasta allows us to easily insert an appropriate caU to the
protocol after each MB instruction; we still execute the hardware
MB instruction as weU to ensure that proper ordering is maintained
withinanSMPnode. Withrespectto eventualpropagationofwrites,
Shasta supports arelatively eager protocol that leads to timely pmp-
agation. In addition, by inserting polls at every loop backedge,
Shasta ensures that invalidations will also be serviced in a timely
fashion (e.g., consider a loop waiting for a flag to be set). Finally,
serialization of writes to the same location is achieved in a similar
way to hardware DSM systems.

The Shasta protocol can also support more strict memory mod-
els. For sequential consistency, the protocol simply stalls on every
store miss until all invalidation acknowledgments have been re-
ceived. The handling of batch misses remains the same, except

161

that some more complicated processing must be done in the rare
case that the miss handler cannot fetch all lines in the correct state.
However, in contrast to page-based systems, the performance of
Shastais quite good even when we supporta strictmodel [12]. This
effect is primarily because Shasta supports coherence at a fine gran-
ularity, and therefore does not depend heavily on relaxed memory
models for alleviating problems associated with larger coherence
granularities. Section 6.4 presents results that illustrate this point.

4 Providing OS Functionality

This section describes the techniques we have used to allow trans-
parent execution of applications that use a rich set of operating
system services. Compared to the problems solved by cluster oper-
ating systems, a number of new issues arise becausewe also support
shared memory in software. There are three main areas that must
be addressed. First, all arguments to system calls must be validated,
since they may reference shared data that may not be available lo-
cally. Second, all system calls and OS services (or some specified
subset) must be implemented to work correctly across a cluster of
machines running independent operating systems. Third, we must
address issues that arise when applications create or destroy pro-
cesses dynamically or create more processes than processors. Our
Shasta implementation runs under Digital Unix 3.2 and 4.0, but all
of these issues apply generally to most operating systems.

4.1 Validating System Call Arguments

In most software DSM systems, the operating system as a whole
is unaware of the shared memory layer that is supported through
software. Therefore, a system call may not operate correctly if one
of its arguments references data that is located in the global shared
memory (i.e., one of its argument is a pointer to the shared memory
area). For example, in a page-based software DSM, the operating
systemmay encounter a page protection error whenit references the
system call arguments. Similarly, in Shasta, a read by the system
call may return invalid data if the referenced line is not cached
locally, and a write by the system call may be lost if the line is not
already held in exclusive state (since exclusive ownership for the
line will never be requested).

A simple method for validating systemcall argumentsis to copy
shared data referenced by the system call into local memory, using
a copy routine that fetches the latest version of the shared data.
‘lie system call can then be invoked with arguments that point to
the local copy of the data. When the system call returns, any data
that has been written by the system call must be copied back to the
shared region in a coherent fashion. The obvious disadvantage of
this approach is the extra copying overhead, especially for system
calls that may read or write a large amount of data (e.g., the read
and write system calls).

A better approachis to ensure that the shareddatareferenced by
a system call is in the correct state before invoking the system call, so
the system call can operate on the original arguments. The protocol
may need to request exclusive copies of data that is written to, and
shared or exclusive copies of data that is read by the system call.
Interestingly, the exact same functionality is required to implement
batches of loads and stores, as described in Section 2.2. A system
call can be logically treated as a batch of loads and stores to several
ranges of lines, with validation done in the same way as for a
batch. We do thii validation by replacing system call routines with
“wrapper” routines that validate any regions in shared memory that
are referenced by the arguments (according to the semantics of the

system call).

The Shastaroutine forhandling batches goes through each range
of data and makes the appropriate requests when lines are not in the
correct state. However, it cannot guarantee that the lines will all be
in the appropriate state once all the replies have come back, For
example, the batch miss handler may request a line for reading and
receive the contents of the line, but may subsequently receive an
invalidate request for the line while it is still waiting for some of
its other requests to complete. However, even though a line may
not be in the right state, loads to the line will still get the correct
value (assuming a relaxed model such as the Alpha memory model)
as long as the original contents of the line remain in memory. We
therefore delay storing the invalid flag value (see Section 2.2) for
invalidatedlines until after the end of the batch. Similarly, the batch
miss handlermayrequest aline in exclusive state, but lose exclusive
access while it is still waiting for other requests. We may therefore
also have to reissue stores to lines that were not in the exclusive (or
pending-shared) state when the batch miss handler returned and the
batched code was executed. The above invalidations and reissues
are done at the time of the next entry into the protocol code (due to
explicit polls or misses) after the batch code is complctc.

4.2 Extending System Calls across the Cluster

The issues of extending OS functionality across a cluster have been
addressed extensively by a number of systems [S, 10, 1 I]. These
systems typically attempt to provide almost complete transparency
by reimplementing all system calls so that they work across the
cluster. However, these systems are usually not concerned with
efficient software support for shared memory across the cluster.
Conversely, software DSM systems support shared memory across
the cluster, but do not typically support system calls across the
cluster. In fact, applications are typically required to limit system
calls to the master process that spawns the other processes. Such
limitations can be tolerated for scientific applications, but make
it impossible to execute applications such as databases that make
extensive use of OS functionality.

Since our goalis to extend therange of applications that can be
executed on software DSM systems, we are primarily interested in
ensuring that the most common systemcalls execute correctly ncross
the cluster. Our short-term goal of executing the Oracle database
on Shasta requires us to support several classes of system calls:
calls for managing processes, calls for managing shared memory
segments, and calls for accessing a common file system.

Our approach for supporting system calls across a cluster in-
volves replacing the system call routine in the original executable
with a routine that implements the new functionality. Regarding
process management, Shasta supports system calls such ns fork,
wait, kill, pidbiock, pid-wblock, and getpid. Our fork call cre-
ates a copy of an existing process that can run on the same node
or another node on the cluster. We implement the cluster fork by
explicitly copying all of the writable, non-shared data of the parent
process (the stack and the static data) to the new process. Because
local process ids on diierent nodes might conflict, Shasta assigns
a unique global process id to each of the processes executing an
application. When a process exits, Shasta arranges for information
to be sent to the parentprocess so that system calls such as IV& can
be implemented correctly. Shasta also uses messages to implement
system calls, such as kill and pidunblock, that are used to change
the state of other processes.

The system calls for creating and mapping shared memory seg-
ments, shmget and shmat, are implemented by allocating sufficient

162

space in the shared memory region for that segment and returning
the starting address of the region. A mapping between the segment
id and the region is maintained at each process so that later calls
that refer to the segment work correctly. Because the shared mem-
ory segment must be allocated in the shared region, Shasta does
not support the option of attaching a shared memory segment at a
specified address.

The default model of memory provided by Shasta supports ap-
plications that share memory among multiple processes via shared
memory segments. To support thread-based applications that share
the entire address space, Shasta would have to insert inline checks
for loads and stores to both the static and the stack data segments.
However, the overhead of these extra checks, especially for the
slack accesses, may lead to lower performance. Since the stack is
not commonly accessed by multiple threads except during thread
creation and termination, an interesting alternative is to support
shared access to stack segments via a simple page-based proto-
col (that supports the Alpha instruction set), while using Shasta to
support sharing of static and dynamically allocated data.

To support the use of system calls that access files across the
cluster, in general we need to implement a distributed file system
such as Frangipani [20]. Frangipani provides all nodes with co-
herent access to a shared set of files and is highly available despite
component failures. We do not currently have a distributed file
system available for our cluster, and instead approximate a dis-
tributed file system by mounting the same filesystems at the same
locations on each node via NFS. Accesses to files by diierent nodes
are not kept strictly coherent, because of the caching and buffering
required for good NFS performance. However, this functionality is
sufficient for running decision support database applications (like
TPC-D) which execute mainly read operations on the database.

There are numerous limitations to our cluster extensions to sys-
tem calls. For example, we do not currently support the passing of
open file descriptors between processes. Also, our current imple-
mentation of a remotefork does not implement the full semantics of
the UNIXfork. Jn particular, it does not duplicate process state such
as the current open files, memory mappings, signal mask, etc. In
addition, there are many system calls which we have not extended
at all. However, we believe that the OS requirements of Oracle
are extensive enough to bring out many of the important issues. In
addition, there are many sets of applications which make use of the
same or a lower level of OS services.

4.3 Handling Complex Process Graphs

One of the most interesting issues that arises when supporting com-
plex applications on software DSM systems is dealing with appli-
cations that have complex process creation graphs. Software DSM
systems have almost exclusively been used to run applications which
createaExednumberofprocessesatstartupthatisequalto thenum-
ber of processors and do not create or destroy processes during the
remainder of the execution. Such a structure can be easily applied
to most scientific applications, but is inappropriate for many com-
mercial applications. For example, a database application such as
Oracle creates a number of long-lived “daemon” processes, while
“server” processes that do most of the work may be created and
destroyed in response to client requests. In addition, the number of
database processes may exceed the number of physical processors,
because of the use of daemon processes and extra server processes
as a way to help hide J/O latencies.

The following section describes some of the issues that arise in
the presence of complex process graphs in more detail. We next

present our general solution to these problems. Our solution is not
specific to Shasta and may apply to other software DSM systems.
Next, we describe our implementation in Shasta which includes a
number of simplifications to the general solution. Finally, we de-
scribe a method for reducing the number of downgrade messages in
SMP-Shasta that is especially critical when the number of applica-
tion processes exceeds the number of processors.

43.1 Issues

Along with application data, softwareDSM systems typically main-
tain some global protocol information in each application process.
For instance, in Shasta’s directory-based protocol, each block of ap-
plication data has an assigned “home” process that is responsible for
maintaining the directory information for that block. Application
processes that are dynamically created and destroyed raise a num-
ber of issues with respect to maintainmg such protocol state. First,
how should protocol state be preserved if a process is terminating?
Second, how should the responsibility for maintaining protocol in-
formation be distributed among processes to provide good protocol
efficiency? Should protocol responsibility be continually redis-
tributed as processes are created or should a Exed set of processes
automatically be created at startup so that they can start maintaining
and serving protocol information immediately (even though they
may not execute application code until later)? Similar issues arise
with respect to application data. For example, how should the ap-
plication data be preserved if a process is terminating, given that it
may hold exclusive copies of some data?

Another set of issues arise when an application creates more
processes than processors. Applications may be structured in this
way for reasonsof security or modularity, or as a way of overlapping
computation with II0 operations. Since all requests from other
nodes am served in software by the application processes, a request
can be greatly delayed if it is sent to a process that is currently not
active. Becausethe time sliceof thecurrentpmcessmust end before
thetargetpmcessis scheduled3, thelatencyof therequestcaneasily
increase to several milliseconds (which is two orders of magnitude
larger than the nominal latencies in Shasta). We assume here that
context switches are caused only by an application’s own processes.
Problems resulting from switches between processes of different
applications can potentially be dealt with through techniques such
as dynamic coscheduling [17].

Even if there is only one process per processor, a process can
be suspended due to a system call. For instance, a process in a
database application may be frequently suspended waiting for I/O
systemcallsto completeorfor asignalfromanotherpmcess. Again,
aresponseto any incoming requests will be delayed until the system

call completes and the process resumes execution.

A Enal issue has to do with load balancing. In a complex appli-
cation, some processes may be very active, while other processes
may be mostly inactive. What if one node ends up with more active
processes than another node? In general, the most active processes
must be distributed evenly among the nodes, and this balance may
need to be adjusted dynamically during a run.

4.3.2 Our General Solution

In this section, we describe our general solution to the issues de-
scribed above. In the next section, we describe our greatly simplified
but still workable implementation of the general solution.

‘We ere assuming that incoming messages are detected through polling instead
of interrupts. becase interrupts am much more expensive and would lead to higher
latencics in the frequent cases when the target processes are scheduled.

163

The general solution is as follows. The user (or application)
somehow specifies the pool of nodes on which to run the applica-
tion and exactly how many processors to use. When the application
starts, we immediately create one protocol process per processor
which remains alive during the entire application. The protocol
processand all applicationprocessesassignedto thesameprocessor
shareprotocoldatastructuresandmemory. As applicationprocesses
are created, they are mapped to run on a processor in accordance
with a particular load-balancing policy. Application processes are
allowed to terminate whenever they wish to exit. Since the associ-
ated protocol process always exists, no protocol or application data
is ever lost as application processes are destroyed.

In order to avoid the problem of long latencies that result when
a request is made to a process that is not currently running, it is
essential that all processes assigned to the same processor can serve
all incoming requests for any of the processes. Each application
process (and the protocol process) on a processor is able to ac-
cess the incoming message queues of all the other processes. The
shared access to message queues may require locking that was not
previously required for private message queues.

Protocol processes have a lower priority than application pro-
cesses and run a simple loop that checks for and handles incoming
messages. If there are any active application processes, they will
take over the processor and serve all incoming messages. However,
if there are no application processes (none have been created or all
have terminated), then the protocolprocess will executeandrespond
to requests. Similarly, the protocol process will run if all apphca-
tion processes are suspended in system calls. Protocol processes
are analogous to the shared-memory hardware in a multiprocessor,
since they preserve all the protocol and application data and are
always available to serve requests.

If a cluster consists of SMP nodes, then we have a choice of
using one protocol process per processor or per SMP node. If there
is one protocol process per processor, then we associate application
processes with specihc protocol processes and may attach protocol
and application processes to specific processors. In this case, lock-
ing costs are reduced, since we only share message queues among
processes running on the same processor. If there is only one pro-
tocol process per node, then we no longer need to attach processes
to specific processes. However, synchronization costs are higher,
since the message queues of all processes on the node must be
shared.

43.3 Our Implementation

We currently have an implementation that simplifies the above gen-
eral design in a number of ways but still functions usefully. In
particular, there are no protocol processes. Instead, the user spec-
ifies a fixed number of Shasta processes that are created when an
application starts up. This number should be the maximum number
of processes that will ever be alive during the application run. The
user also specifies the assignment of these processes to processors
on the various nodes in the cluster. The user can additionally specify
which processes should maintain directory information and serve
directory requests. We do not currently have a load-balancing algo-
rithm that moves active processes among nodes, so we require the
user to do an assignment that achieves good load balance.

New application processes that are created byfork are assigned
to the existing Shasta processes. Applications that are assigned
to the same processor share application memory and protocol data
structures. We essentially use the SMP-Shasta protocol and treat
these processes as part of the same SMP (even if they are running on

a uniprocessornode). In addition, processes on the same processor
use shared message queues, so that any active process can servo
incoming messages for all processes. One current limitation of our
protocol is that only the process that made a request for data can
handle the response to thatrequest.

When an application process terminates, the original Shasta
processremains alive and continues to serverequests for its protocol
and application data (since there are no protocol processes). It can
also be reused to run another application process. Howevor, a
terminated process that doesn’t receive requests for a while is put
to sleep for successively longer time periods to not take CPU thno
away from other active processes.

We also allow new processes to join an existing group of Shasta
processes that are sharing memory. This functionality is impor-
tant for database and other commercial applications, where scrvcr
processes can be started up by a new client long after the initial ap-
plication processes have been started. The joining process notitlcs
the existing processes via a signal that it wants to join the group, So
that they establish communication with it.

Using our simplified implementation, we are currently able to
start up an Oracle 7.3 database on our cluster using Shasta and
run applications modeled after the TX-B and TPC-D benchmarks.
Such runs involve creating a number of daemon processes (as well
several processes that die almost immediately) and then creating
server processes that do most of the database work. We will give
performance results for the Oracle application in Section 6.

4.3.4 Reducing the Number of Downgrades Messages

There is one remaining case in the Shasta protocol where a process
may need to contact an inactive process. The SMP-Shnsta hnplo-
mentation sometimes needs to send explicit downgrade mcssngcs
to other processes as part of servicing an incoming request (as dc-
scribed in Section 2.3). Even though Shasta sends these mcssagcs
selectively, the long latency problem may still arise if the target of
the downgrade message is not currently scheduled. WC havo dovcl-
oped a technique called direct downgrade that greatly reduces tho
number of downgrade messages that must be sent.

WeobservethataprocessPl candirectlydowngradctheprivatc
statetableentryofanotherprocessP2ifP2is notin applicationcode,
since then the races described in Section 2.3 cannot occur, Thcrc-
fore, all protocol routines and system calls set a per-process flng
when called and reset the flag when they return to the application,
Given proper synchronization, a process Pl can then directly down-
grade a private state table entry of process P2 if P2’s flag indicates
that it is not in application code? This optimization is crucial for
cases where processes may block in system calls (e.g, plddlock)
for long periods of time, since otherwise the response to the orig
inal request will be delayed until the process finally wakes up and
handles the downgrademessage.

5 Code Modification Issues

Shasta depends extensively on code modification both for support-
ing fine gram coherence and for supporting transparent execution.
This section briefly discusses someof the issues related to code mod-
ification, which largely arise because the executed code is different
from the original application code.

4The protocol keeps track of the shared-memorynddrcsses that ma bo acccsscd
by a system call, and disallows this optimization if the line that is to bo d owngradcdis
withii those ranges.

164

One issue is how and when code modification is triggered. We
currentlydotheShastacodemodiEcationasanexlxastepin building
an application, and explicitly invoke the new executable when we
want to execute the application on a cluster. However, this process
can be automated by augmenting the system loader to trigger the
modification at application load time when the user tries to run the
application. The system loaders for most modem UNIX systems
already provide a related functionality for automatically linking in
any necessary shared libraries.

As with dynamically linking libraries, one issue with doing
codemodification at load time is the amount of extra time required.
We provide some data on code modification times under Shasta in
Section 6.3. The loader can address some of the speed issues by
caching translations of the most commonly executed applications
in the file system. Thii technique is also useful for ensuring that
multiple invocations of the same application share the same mod-
iEed text image. For systems that use shared libraries, the loader
can also cache translations of the most common shared libraries,
thereby reducing the amount of code that must be modified when a
new application is executed.

Code modification may also become an issue for developers
who attempt to debug a Shasta application. When it modifies an
application, our version of ATOM correctly updates the symbol
table for the application to reflect the code changes. Therefore,
source code debugging functions normally, and code changes are
completely invisible for a programmer debugging at the source
code level. ’ The code modifications are currently visible if the
programmer debugs at the machine codelevel, but the code changes
could be mostly hidden even at this level with some modiEcations
to the debugger.

A final problem with code modification relates to applications
that actually examine or generate their own code. For example, an
application may do a checksum on its own code as a security mea-
sure, or may dynamically generate code as a way of improving its
performance. Since there is no easy solution for cases such as these,
Shasta cannot necessarily be used to execute such applications.

6 Performance Results

lhis section presents performance results for the Shasta implemen-
tation. We first describe our prototype SMP cluster. We next pro-
vide results for a few microbenchmarks that characterize the cost
of transparently executing hardware binaries. The next set of re-
sults characterize the static and dynamic overheads associated with
inline checks for SPLASH-2 applications and the Oracle database.
Finally, we present a number of parallel performance results for the
SPLASH-2 applications and for Oracle.

6.1 Prototype SMP Cluster

Our SMP cluster consists of four AlphaServer 4100s connected by
a Memory Channel network. Each AlphaServer 4100 has four 300
MHz 21164 proce&rom, which each have 8 Byte on-chip instruc-
tion and data caches, a 96 Kbyte on-chip combined second-level
cache, and a 2 Mbyte board-level cache. The individual processors
are rated at 8.1 SpecInt95 and 12.7 SpecFP95, and the system bus
has a bandwidth of 1 Gbytels. The Memory Channel is a memory-
mapped network that allows a process to transmit data to a remote
process without any operating system overhead via a simple store

‘The use of Shasta is visible in ihe dcbuggcr. however, in that some date may be
invalid in the local process, end this data is not automatically fetched by Shasta when
examined by the debugger.

Cached latency

MP SM SM locks
locks locks with prefetch
1.11 1.88 1.91

Uncontendedmisslatency 11 15.63 1 44.12 1 25.70
Contendedmisslatency II 81.02 I 136.48 I 137.90

Table 1: Lock acquire latencies (in microseconds).

to a mapped page 163. The one-way latency from user process to
user process over Memory Channel is about 4 microseconds, and
each network link can support a bandwidth of 60 Mbyteslsec. Each
node in our cluster is connected to a single network link.

Shasta uses a message-passing layer that runs efEciently on
top of the Memory Channel, and exploits shared memory segments
within an SMP when the communicating processors are on the same
node. In ‘the base Shasta protocol, the miniium latency to fetch
a 64-byte bIock from a remote node (two hops) via the Memory
Channel is 20 microseconds, and the effective bandwidth for large
blocks is about 35 Mbytes/s.

6.2 Synchronization and Validation Costs

Shasta supports two different ways for applications to do synchro-
nization. Applications can make use of high-level lock and barrier
routines provided by Shasta that use an efficient message-passing
protocol. Alternatively, as described in Section 3.1, applications
can use atomic Alpha instructions which are transparently supported
by Shasta. As a way of measuring the costs of supporting trans-
parency, Table 1 shows the average time to acquire a lock via the
message-passing protocol (labeled MP) and via Alpha load-locked
and store-conditional instructions (labeled SM for shared memory>
in SMP-Shasta. The last column represents SM locks augmented
with a single prefetch-exclusive before the load-locked instruction
(as described in Section 3.1.2). The first row gives the time for
acquiring a lock that is free and is cached locally. Even though
the load-locked and store-conditional are executed in hardware for
SM locks, the protocol must still be called to enforce the memory
barrier operation that is called after acquiring the lock. The second
row gives the time for acquiring a tiee lock that resides on a remote
node. The MP locks have the lowest latency, because they require
sending only a single request to the remote node. SM locks result
in two round-trip requests, one for the load-locked and another for
the store-conditional. SM locks with the prefetch-exclusive opti-
mization have a lower latency than standard SM locks because they
eliminate one of the round-trip requests. The lastrow gives the time
for acquiring a lock from a remote node when there is contention.
TheMP locks havelowestlatency under contention as well, because
they are queue-based. The prefetch-exclusiveoptimization does not
help in this case because the lock is not free when the prefetch is is-
sued. As expected, the message passing implementation is superior
to transparently supporting the Alpha synchronization instructions.
However, as we will see, the effect of this difference on the overall
performance of an application can be much smaller.

We have measured the cost of doing a memory barrier with no
outstanding stores pending as 0.32 microseconds for Base-Shasta
and 1.68 microseconds for SMP-Shasta (vs. 0.03 microseconds for
a standard SMP application). The cost for a memory barrier in
Base-Shasta is to make a call into the protocol to check if there are
any outstanding requests. The extra cost for a memory barrier in
SMP-Shasta is because of the use of per-processor request counts
as a way of reducing contention during individual load and store
misses. The cost of a memory barrier could potentially be reduced

165

I 11 Standard 1 Shasta aDD I

Open
Read of 4 bytes

aw
58
12

Base-Shasta SGP-Shasta
66 79_
16 20 ’

Read of 8192 bytes 1 51 1 -70 126 ’
Read of 65536 bytes 1 370 (576 845

Table 2: Average times for system calls (in microseconds) for stan- .
dard and Shasta applications.

by making the appropriate check directly in inline code. In the
case of SMP-Shasta, the protocol would have to modiied to allow
a simpler memory barrier check. Alternately, we could completely
eliminate the memory barrier check by making the Shasta protocol
sequentially consistent (m particular, stalling on all store misses).

We have also measured the costs of validating the arguments
to system calls. Table 2 gives the average times to execute an
open system call, and a read of 4 bytes, 8192 bytes, and 65536
bytes. The first column gives times for a standard application, and
the second and tbiid columns give times for a Shasta application
using Base-Shasta and SMP-Shasta, respectively. The file name
argument of the open call and the read buffer argument of the read
call are in shared memory, so the Shasta times include the validation
overhead. The times are higher for SMP-Shasta because of locking
costs. The Shasta validation overheads are certainly measurable,
but not excessive. In addition, these results are for files that have
been recently accessed, so no disk operations are involved. The
relative overhead of validation would be much less for system calls
that accessed the disk. _

6.3 Applications and Overhead Measurements

We report results for nine of the SPLASH-2 applications [21]. Ta-
ble 3 shows the input sixes used in our experiments along with the
sequential running times. We have increased some of the standard
input sizes in order to make sure that the applications run for at
least a few seconds on our cluster. Table 3 also shows the single
processorexecution times for each application after the Shastamiss
checks are added, along with the percentage increase in the time
over the original sequential time (which averages 21.7%). .‘s The
last column indicates the increase in the static code size due to the
Shasta miss checks.

The last three rows of the table gives the overheads for Oracle
7.3 executing a transaction processing application (OLTP) modeled
on the TPC-B database benchmark and decision, support queries
@S-l and DSS-2) modeled on the TPC-D database benchmark.
The first number in each row reports the time for the standard Oracle
executable to rnn on a single Alpha processor. The second number
gives the time for the Shasta version,of the Oracle executable to
perform the same run on a single processor. Although multiple
processes are used in the Oracle run, we set up the processes to still
share memory via UNIX shared memory segments rather than via
Shasta so that we can isolate the checking overhead. Therefore, the
indicated overhead corresponds solely to the extra cost of doing the
inline Shasta checks and polls., The overhead for DSS-1 is fairly
high. We believe this effect is because the DSS-1 benchmark has
fairly good locality (as it searches entire tables), but does not have
any simple inner loop whose accesses can be batched. The overhead
of DSS-2, a much larger query, is somewhat lower.

?be runaing times of LU and LU-Contig are much shorter than those in previous
papers [X2,13] becauseof much baa optimization by the compiler in Digital Unix
4.0. The more efficient sequential rum also reduce the parallel speedups attainable
with Shasta for a given input size.

We also measured the time to generate the new Shasta cxc-
cutables. For the SPLASH-2 applications, which have from 255 to
485 procedures, the time ranges from 4.0 to 7.3 seconds. About 3
seconds of that time is the cost of reading in the old executable and
writing out the new executable, and the remainder is the ovcrhcad
for doing the Shasta analysis and code insertion. For Oracle 7,3,
which has over 12000 procedures, the conversion time is 202 scc-
onds. Of this time, about 26 seconds is to read the old and writc
the new executable, 104 seconds is to do the necessary dntnflow
analysis, and 72 seconds is to do the other Shnsta analysis and coda
insertion. We have not optimized any of the Shasta processing
phases, and believe that the datatlow analysis routines and the other
Shasta analysis routines can be signiticnntly sped up. The code
modification delays for the SPLASH-2 applications seem acccpt-
able, especially if optimizations lower them to 2-3 seconds. While
the modification time for Oracle is large, we assume this initial
conversion time is not significant for such production applications
which are executed for long periods of time.

6.4 SPLASH-2 Parallel Performance

This section presents the parallelperformance of the SPLASH-2 np-
plicationsrunning on Shasta. In ourresults, two- and four-processor
runs always execute entirely on a singIe node, and 8-processorruns
usetwonodes. WeareusingtheShastaSMPprotocol(SMP-Shnstn)
that allows processes on the same SMP node to sham application
data through the hardware coherence mechanism. Processors on
the same node share the Memory Channel bandwidth when sending
messages to destinations on other nodes. We use n fixed Shnsta Hnc
size of 64 bytes. For FMM, LU-Contiguous and Ocean, WC USC tbc
standard home placement optimization, as is done in most studios
of the SPLASH-2 applications.

Figure 3-shows the speedups for the unmodified applications
running onour prototype cluster. The speedups shown arc based on
the execution time of the application running via Shnstn on 1 to 16
processors relative to the execution of the original sequential nppli-
cation (with no miss checks). The left graph gives speedups for the
SPLASH applications when using the message-passing version of
locks and barriers. The right graph gives speedups for SPLASH-2
binaries that are compiled for Alpha hardware multiprocessor plnt-
forms and hence use load-locked, store-conditionnl, nnd memory
barrier instructions to achieve synchronizntion and ordering. Ovcr-
all, the speedups achieved by Shasta are quite promising given the
extremely fast processors (300MHz Alpha 21164) and the smnll
problem sixes used in this experiment.

When using the native Alpha binaries, 16-processorrnns of six
applications slow down by just 2-10%. However, 16-proccssorrnns
of Raytrace, Volrend, and Ocean slow down by78%, 50%, and 34%
respectively. Raytraceslows down becauseit has a custommcmory
allocator protected by a single lock which is highly contcndcd,
and for which the queue-based message-passing implemcntntion
performs much better. Volrend also slows down becnusc of a few
highly contended locks. Ocean slows down because of a high rnto
of executing barriers, which can also lend to contention, since tho
barrier implementation requires each processor to increment tbo
barrier count atomically. We found that doing a prefctch-cxclusivo
prior to a load-locked/store-conditional sequence, ns described in
Section 3.1.2, speeds up some of the lock-intensive applications by
3-7%; however,the applications that exhibit high contention locks
or frequent barriers can slow down by up to 20%. One possiblo
technique is to use runtime information to do prefetchcs only for
addresses which do not have a lot of contention.

lit contrast to page-based software DSM systems, the pcrfor-

166

II problem size
II

sequential
I

with Shasta
II

code size
time miss checks increase I

II II 11 ~~~

Bamps 9.19s 1 10.08s (9.6%) 11 59%

58%

1 Water-Nso II 1OOOmolecules II 8.30s I 10.26si23.6%) II 59% 1
Water-Sp 1728 molecules 6.37s 8.06s (i6.5% j 60%
Oracle OLTP 31.09s 37.06 (19.2%) 96%
Oracle DSS-1 8.83s 14.85s (68.1%) 96%
Oracle DSS-2 83.76s 114.93 (37.2%) 96%

Table 3: Sequential times and checking overheads for the SPLASH-Z applications and Oracle.
.

% Raylrace c+ 9
-a

g 8
&

7

8 Raytrace
+ Water-Nsq
+ FMM
* Water-Sp
* Barnes
4- Volrend

I 1 I I , I 0 1

2 4 8 8 10 12 14 16

Number of Processors

-+ Water-Nsq
+ FMM
* Water-Sp
* Barnes

1 I I I v I I e

2 4 6 8 10 12 14 18

Number of Processors

Figure 3: Speedups of SPLASH-2 applications with message-passing (left) and Alpha (right) synchronization.

writes (becauseof limits on the number of outstanding writes), time
spent stalled on synchronization, and time spent handling messages
while not stalled. The loss in performance from using a more strict
memory consistency model is at most 10% across the SPLASH-
2 applications. This result indicates that Shasta is also suited for
executing commercial binaries that require a strict memory consis-
tency model (e.g., Intel x86). A similar experiment with a typical
page-based system would exhibit a much larger reduction in per-
formance, because page-based systems heavily depend on relaxed
models to alleviate problems such as false sharing that arise due to
the page-sized coherence granularity.

Other

gg

Task

90

80

70

60

50

40

30

20

10

0

6.5 Oracle Performance

We have only preliminary results for running Oracle on Shasta,
because our implementation still suffers from a number of limita-
tions. First, our current protocol implementation allows a process
to serve most incoming messages directed to another process on
the same SMP, but does not allow a process to handle replies to
another process’ request for data. The active process may therefore
stall at a memory barrier because a store made by a now inactive
process can not yet completed. Second, we do not do dynamic load
balancing of processes. In Oracle, a server process will often block
to allow a daemon process to complete its request. However, if the
daemon process is not on the same node as the server processor,
then the daemon process will not be able to take advantage of the
idle processor. Because of these limitations, our Oracle runs are

Figure 4: Effect of nonblocking stores for 6-processorruns.

mance of Shasta is quite insensitive to the underlying memory
consistency model. To illustrate thii point, Figure 4 shows nor-
malized execution times for 16-processorruns (on Base-Shasta) of
the SPLASH-2 applications with blocking stores (labeled SC for
sequential consistency) and with nonblocking stores (labeled RC
for a relaxed model such as release consistency). The figure also
shows the breakdowns of the execution into time spent executing
the application, time spent stalled for reads, time spent stalled for

167

II OracleonSMP I Oracle on Shasta I

One server
lb0 servers

Three servers

8.83s

4.77s

3.06s

extra proc 1 proclserver
15.51s 15.40s

12.57s 19.29s

8.11s 11.11s

Table 4: Run times for DSS-1 on Shasta with varying numbers of
servers.

li
PO
10
0

EX EQ EX EO
2 servers 3 servers

Figure 5: Tie breakdowns for runs of DSS-1.

not performing as well as they might. Finally, we do not currently
have a distributed file system across the cluster. Since transaction
processing runs do frequent writes to the database and require a
coherent file system across the nodes, we are able to execute OLTP
(modeled after TPC-B) only when all processes are on the same
node (but still using Shasta to share memory). We therefore only
report results for decision support runs.

Table 4 gives a small set of results when the DSS-1 query is
run on Oracle using one, two, or three servers to compute the query
response in parallel. These results are for a query which is searching
tables that are already cached in memory by the database. Because
the data being analyzed is cached, the main server processes spend
almost no time in I/O system calls. However, some of the daemon
processes do read and write system calls as part of the normal
database operation. The first column gives the times when the query
isrunonstandardOracleonasingleAlphaServerofourclusterusing
as many processors as servers. The second column gives times when
Oracle is running on SMP-Shasta. All of the database daemons and
one of the servers is placed on one AlphaServer, while the second
and third servers are placed on the second AlphaServer. However,
we use one extra processor on the first AlphaServer so that the
most active daemons do not have to context-switch with the server.
Finally, the last column gives Oracle running on Shasta across two
AlphaServers, but using exactly one processor per server. That is,
all the daemons run on the same processor as the first server. Figure
5 gives time breakdowns for two and three serverruns when using an
extra processor (EX) and equal numbers of servers and processors
(EQ). The segments give the time executing the application (“task”
time), time spent stalled for reads, time spent stalled for writes,
time spent explicitly blocked in pidblock, time spent waiting at a
memory barriers (for stores to complete), and time spent handling
messages while not stalled. The bars are normalized so that the time
for the EX runs is 100%.

We note the base Oracle performance scales well with increas-
ing numbers of servers, because the query is fully parallelizable,
though the servers do interact somewhat in acce&ng common
database control structures. We also get speedup when we run
Oracle on Shasta across the cluster with one extra processor. How-
ever, because of the Shasta checking overhead and communication
of the server with the daemons, three servers are required to get

only slightly better performance than a one-server Oracle run on an
SMP. We note from the time breakdowns that the read stall time
goes down between two and three server runs, because of sharing
via hardware between the second and third servers. When the same
number of processors as servers are used, we no longer get n per-
formance improvement when going from one to two servers. Both
the time spent blocked and time spent stalled at memory barriers
go up significantly, because of the load balancing and message han-
dling limitations described above. The average latency of n read
request also goes up, from 244 ,us to 323 gs for two servers, and
103 ps to 203 ps for three servers. The majority of read rcqucsts
havelatencies of 2040 ps, but the average is increased by requests
that are delayed from effects due to context switching. The direct
downgrade optimization of Section 4.3.4 is very important for all
theseruns; when it is turned off, all of the runs take so long that we
did not measure them.

This workload is not very typical of decision support work-
loads, because it is so small and because all the datn is already
cached in memory. In addition, we would expect worse behavior
fortransactionprocessingworkloads where the databaseis modified
frequentlyandthereismuchmoresharing betweenscrvcrproccsscs.
Themain pointof theseresults is to illustrate that specdupis possible
for databasecoderunning on top of Shasta.

7 Related Work

Shasta’s basic approach to checking loads and stores is derived from
theBlizzard-S work [15]. However, we have substantially cxtcndcd
the previous work in this area by developing several techniques for
reducing the otherwise excessive checking overheads. We have
also designed an efficient protocol that exploits a relaxed consis-
tency model, supports multiple coherence granularities in a single
application, and executes efficiently on SMP clusters, Finally, we
have developed methods to transparently execute unmoditicd mul-
tiprocessor executables.

There are a variety of other software DSM systems that USC the
virtualmemory hardware to detect access to data that is not available
locally in the correct state [1, 2, 4,7,9, 191. None of those sys-
tems have focused on transparently executing SMP binaries. Most
of these page-based systems make use of aggressive protocol opti-
mizations in order to minimize the false sharing problems that can
arise because of the large coherence granularity. As described in
Section3,mostoftheseprotocoloptimizationsviolate thescmantics
of memory models for commercial processor architectures, These
systems would therefore have to use substantially less efticicnt pro-
tocols in order to correctly execute unmodified SMP exccutnbles.
However, our solutions for extending system calls across the cluster
and for dealing with applications that dynamically create and de-
stroy processescanpotentially be adapted for USC by other softwnre
DSM systems.

There are a number of distributed operating systems that have
beendevelopedto make a cluster of machines appear as a singlcma-
chine with a single operating system [8,10,11,23]. These systems
haveconcentrated on extending nearly all operating system services
to achieve identical functionality regardless of where they are in.
voked in the cluster. These extensions are typically implcmcntcd
through kernelmodifications that add a global communication layer
among the nodes and route kernel requests to the approprinto node,
The above systems do not typically attempt to support shared mcm-
ory between processes on different nodes, though a few systems
do support sharing via virtual memory mechanisms using a simple
protocol similar to Ivy 191.

168

We have not attempted to support a full distributed operating
system in Shasta. We have instead focused on supporting shared
memory efficiently between processes, and on supporting the nec-
essary operating systemservices to run interesting applications such
as databases. In addition, our method for extending operating sys-
tem services is to modify application executables. rather than to
modify the kernel. This approach allows us to run on commodity
hardware and operating systems.

8 Conclusion

A key goal of the Shasta project is to address the issues that can in-
crease the commercial viability of software DSM systems, namely
good performance and a sufficiently large application base. Our
previous work on Shasta has explored a large number of optimiza-
tions to achieve better performance, including efficient support for
fine-graincoherence[14], effectiveprotocoloptimizations [12], and
effectively exploiting a cluster of SMP nodes [13]. With respectto
increasing the application base, we believe that the most promising
way of addressing this issue is to support transparent executidn of
the increasing number of application binaries available for hardware
DSM systems.

This paper describes the challenging issues that arise in trans-
parcntexecution of binaries, which include supporting the full user-
level instruction set for a commercial architecture and extending
OS services across a cluster to provide a seamless view to an ap-
plication. We also describe the solutions that we have implemented
in the Shasta system. Shasta fully supports the Alpha instruction
set architecture, including atomic memory operations and the Al-
pha memory model. Due to the large amount of effort necessary
to extend all OS services, we chose a short-term goal of supporting
sufficient functionality to execute a commercial database such as
Oracle, which still uses a relatively rich set of OS services. We
have extended the necessary system calls for managing processes,
shared memory segments, and Eles, and deal with issues that arise
when applications dynamically create and destroy processes. In
addition, Shasta validates system call arguments to ensure that the
referenced data is available before the system call is made. The
solutions we have adopted in Shasta are greatly simplified by our
ability to modify binaries, which is also used to support fine-grain
coherence.

The Shasta system is fully functional on our cluster of SMPs
and can transparently execute SPLASH-2 binaries that run on an
Alpha multiprocessor. We can also run Oracle 7.3 across a clus-
ter using Shasta, including runs that are modeled on the TPC-B
and TPC-D benchmarks. Our performance results demonstrate that
supporting transparent binary execution has performance costs but
still allows for good performance. Shasta’s ability to supportcoher-
ence at a fine granularity plays a fundamental role in this result, by
allowing for efficient support of the memory models of commercial
processor architectures. Our research on transparently executing
commercial binaries raises a number of previously unexplored is-
sues in the design of software DSM systems, and in their interaction
with OS services, which we hope will interest researchers in both
communities.

Acknowledgments

WC would like to thank John Heinlein and Anshu Aggarwal for help
with the implementation, Luiz Barroso for assistance in setting up
and using Oracle, and Marc Viredaz and Drew Kramer for their

help in maintaining our cluster of AlphaServers. We also thank the
anonymous referees for their comments.

TPC-B and TPC-D are trademarks of the Transaction Processing
Performance Council.

References
[l] A. B&s, L. Iftode. D. Martin, and J. R Singh. Shared Vial Memory Across

SMP Nodes Using Automatic Update: Protocols and Performance. Techni-
cal Report TR-X7-96. Department of Computer Science, Princeton University,
1996.

[2] ‘J. B. Carter, J. K.Bennett, and W. Zwaenepoel. Implementationand Performance
of Munin. In Pmceedings of the 13th ACM Symposium on Operating Systems
Principles, pages 152-164&t. 1991.

[31

[41

[51

[61

m

[81

[91

A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu. R Rajamony.and W. Zwaenepoel.
SoftwareVersus HardwareShared-MemorvImolementation: A Case Studv. In
Pmceedingsofthe2ls~AnnuallntemationhlSy;nposiumon CompurerAmliitec-
rrrre,pages106-117,Aprill994.
A. Erlichson, N. Nuckolls, G. Chesson. and J. Hennessy. SoftFLASH: Ana-
lyzing the Performance of Clustered Distributed Viial Shared Memory. In
Proceedings of Ihe Sevenrh Znremntional Conference on Architecrural Supporl
forPmgrammingLanguagesand0peratingSys~ems.pages210-220.0ct. 1996.
K. Gharachorloo, D. Lenoski, J. Laudon, l? Gibbons, A. Gupta, and J. Hen-
newsy. Memory Consistency and Event Ordering in Scalable Shared-Memory
Multiprocessors. In Pmceedbqsof the 17~hAnnualZntemationalSymposium on
Compu~erArchitecture, pages 15-26,May 1990.
&t;Gillett. MemoryChmmelNetworkforPCL ZEEEMicm, 16(1):12-18,Feb.

P. Keleher, A. L. Cox, S. Dwarkadaq and W. Zwaenepoel. TreadMark Dis-
tributcd Shared Memory on Standard Workstations and Operating Systems. In
fgeedings of the 1994 Writer Usenix Conference, pages 115-132, January

Y. A. Khalidi. J. M. Bcrnabeu,V. Matena, K. Shiiff, and M. Thadani. Solaris
MC AMultiComputerOS.In Pmceediqsofthe USEZUXl996AnnualTechnicaf
Conference,pages 191-204,San Diego, CA, Jan. 1996.
K. Li and P. Hudak. Memory Coherence in Shared Vial Memory Systems.
ACM%nsactions on Computer Systems, 7(4):321-359,Nov. 1989.

[lo] J. Gusterhouf A. Cherenson, F. Doug&M. Nelson, and B. Welch. The Sprite
NehvorkOperatingSystem. IEEE Compnrer.Feb. 1988.

[ll] G.2Plegkgyd B. Walker. The LOCDS Distribured System Architecture. MIT
* .

1121 D. I. Scales and K Gharachorloo. Design and Performanceof the Shasta Dis-
tributedSharedMemoryPzotoco1. InPmceedingsofrhe 1ZrhACMZnremational
Conference on SupercompuTing, July 1997. fitended version available as West-
ern Research Laboratory technical report97/2 (Feb. 1997).

[13] D.J.Scales,KGharachorloo.andA.Agganval.Eme-GrainSofhvareDiiiutcd
Shared Memory on SMP Clusters. Technical Report 9713. Western Research
Labomtory,Digital EquipmentGxporation.Feb. 1997.

1141 D. J. Scales, K Gharachorloo, and C. A. Thekkath. Shasta: A Low-Overhead
Software-Only Approach to FiieGrain Shared Memory. In Pmceedings of the
Seventh Znremational Conference on Archirecmral Support for Pmgranuning
LangungesnndOpemtingSysrMtr,ppages 174-185,Oct. 1996.

[15] I.Schoinas,B.Falsafi,A.RLebeck,S.R.Reinhardt,J.R.Larus,andD.A.~Vood.
Rue-grain Access Control for Distributed Shared Memory. In Pmceedings of
rhe Sinh Znremational Conference on Architectural Supportfor Pmgramming
Languagesand Operating Systems, pages 297-306,Gct. 1994.

1161 R L.. Sites and RT. VIitek, editors. Alpha AXPAmhitecture Reference Manual.
Digital Press, 1995. Second Edition.

[17] I? Sobalvarro. Demand-based Coscheduling of Parallel Jobs on Muhipm-
grammedMuZripmcessors. PhD thesis, MlT Laboratory for Computer Science,
Feb. 1997.

[18] A. Srivastava and A. E&ace. ATOM A System for Building Customized
Program Analysis Tools. In Pmceedings of the SZGPL4H ‘94 Conference on
Pmgmmming~guage~esignandZmp&mentation.pages196-205,Junel994.

[19] R Stets, S. Dwarkadas, N. Hardavellas, G. Hunt, L. Kontothanassis,
S. Parthasamthy, and M. Scott. Cashmere-2L: Software Coherent Shared Mem-
ory on a Clustered Remote-Write Network. In Pmceedings of rhe 16th ACM
Symposiumon OperatingSystenu PrincipZes, Oct. 1997.

[ZO] C A. Thekkath, T. Mann, and E. K Lee. Frangipani: A Scalable Distributed
File System. In Pmceedingsof the Z6lhACM Symposiumon Operating Systems
Principltx, Oct. 1997.

[21] S. C. Woo. M. Ohara, E. Torrie, J. P. Sir@, and A. Gupta The SPLASH-2
Programs: Characterization and MethodologicalConsiderations. In Proceedings
of the 22nd ZnremationalSymposium on Computer Archirecnrre. pages 24-36,
June 1995.

[22] D. Yeung, J. Kubiatowicz, and A. Agarwal. MGS: A Multigrain Shared Mem-
orv Svstem. In Pmceedinns of Ihe 23rd Annual International Svmaosiwn on
C~mp&erAmhifecture, pa& 4?-56,May 1996.

_ .

[23] R Zajcew et al. An OSF/l UNIX for Massively Parallel Multicomputers. In
Pmceedingsof the Wmrer 1993 USEh’ZXConferrnce,pages 449-468,Jan. 1993.

169

