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1. INTRODUCTION

The cloud computing marketplace has evolved into a highly complex economic
system. Cloud providers are not homogeneous, and a vertical market structure has
emerged where Infrastructure-as-a-Service (IaaS) and Provider-as-a-Service (PaaS)
cloud providers rent out the use of (physical or virtual) platforms, servers, storage,
networks, etc. While Software-as-a-Service (SaaS) deliver applications for users,
and often run on top of an IaaS or PaaS. For example, Dropbox is an SaaS running
on top of Amazon EC2, which is an IaaS.
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This letter summarizes our recent work, [Anselmi et al. 2014], which looks at the 
consequences of this vertical market structure. In particular, we introduce a new 
model of the cloud marketplace where providers at each layer of the vertical struc-
ture are profit maximizing. The key features included by the model are (i) users 
strategically determine which SaaS provider to use depending on a combination of 
performance and price; (ii) SaaS providers compete by strategically determining 
their price and the IaaS/PaaS provider they use in order to maximize profit, which 
depends on the number of users they attract; (iii) IaaS/PaaS providers compete by 
strategically determining their price to maximize their profit; (iv) the performance 
experienced by the users is affected by the congestion of the resources procured 
at the IaaS/PaaS chosen by the SaaS, and that this congestion is a result of the 
combination of congestion at dedicated resources, where congestion depends only 
on traffic from the SaaS, and shared resources, where congestion depends on the 
total traffic to the IaaS/PaaS.

Using this model, the goal of our work is to provide insights into fundamental 
questions such as “How profitable are SaaS providers as compared to PaaS/IaaS 
providers?” and “Is the market structure such that increased competition among 
cloud providers yields efficient resource allocation?”
Our analysis highlights a number of qualitative insights with respect to these 

questions. For example, our results highlight that SaaSs extract profits only as a 
result of dedicated latency; while IaaS/PaaS providers extract profits from both 
shared and dedicated latencies. However, the profit of IaaS/PaaS providers reduces 
significantly as competition grows, and converges to zero in the limit, while services 
remain profitable even when there are a continuum of services. This highlights that 
SaaS providers maintain market power over IaaS/PaaS providers even when services 
are highly competitive, and that one should not expect the cloud marketplace to 
support a large number of IaaS/PaaS providers.
This observation is similar to the relationship of content providers to ISPs in the 

internet ([Musacchio et al. 2009; Economides and T̊ag 2012]). However, because 
IaaS/PaaS providers can extract profits from both shared and dedicated latencies 
they remain reasonably profitable relative to services as long as competition is 
not extreme. This highlights that the cloud market structure seems not to be as 
susceptible as the internet to a lack of incentives for infrastructure investment.

But, our analysis highlights an issue with the current market structure: the in-
teraction of SaaS providers and IaaS/PaaS providers serves to protect inefficient 
IaaS/PaaSs. That is, even if one IaaS/PaaS provider is extremely inefficient com-
pared to another, the inefficient provider still obtains significant profit. Given the 
suggestion from the results discussed above that the profitability of IaaS/PaaS 
providers will limit the market to a small level of competition, this “protection” of 
inefficient providers is a dangerous phenomenon.

2. MODEL OVERVIEW
We begin by briefly summarizing the model introduced in [Anselmi et al. 2014], 
which focuses on the interaction among three parties in the cloud marketplace: 
users, SaaS providers (services for short) and IaaS/PaaS providers (providers for 
short).



Providers: We consider P providers who sell resources to services, as done by
Amazon EC2 and Google Cloud. The resources sold can represent virtual machines,
in the case of an IaaS, or platforms provided for development, in the case of a PaaS.
Each provider p charges a price βp per unit of data flow for services that use its
infrastructure. This charge-per-flow model is very common, e.g., it is used by
Google App Engine. We let yp denote the total flow of provider p and model the
profit of provider p by

Provider-Profit(p) = βpyp. (1)

Services: We consider S ≥ 2 services interacting both with users and providers.
Again according to the charge-per-flow model, each service pays the provider that
it has chosen to join for infrastructure and charge users for usage. We assume
that each service s chooses only one provider, denoted by fs. So, f : {1, . . . , S} →
{1, . . . , P} is the service-to-provider mapping. Further, each service s charges a unit
price αs to users each time they access to s. Let xs denote the flow (users/time) of
service s, which implies yp =

∑
s:fs=p xs. Then, the profit of service s is

Service-Profit(s) = (αs − βfs)xs. (2)

Users: The customer base of cloud services is typically quite large, and so we
use a nonatomic model in order to capture their aggregate behavior. We model the
total user flow to the services as inelastic, and denote it by λ. Thus, we have

λ =
∑

p

∑
s:fs=p

xp =
∑

p
yp.

In the cloud, the latency experienced by users is determined by the combination of
both the amount of flow at the service chosen, xfs , and the amount of flow using the
provider chosen by the service yfs . Thus, we break down the latency experienced
into two types of congestion costs: 1) the dedicated cost (latency) from the service

ℓ̃fs(xfs) and 2) the shared cost (latency) from the provider ℓ̂fs(yfs). Combining
these latencies with the service price yields the “effective cost” that users seek to
minimize. In particular, for a user who chooses service s, it is modeled by

User-Effective-Cost(s) = αs + ℓ̃fs(xfs) + ℓ̂fs(yfs). (3)

3. EQUILIBRIUM CONCEPTS

To complete the model, we must define the equilibrium concepts used for each level
of the model. We give only a high-level overview here, and refer the reader to
[Anselmi et al. 2014] for the details.
The key assumption in what follows is that the users act at the fastest time scale,

responding to fixed prices of the services and providers, and a fixed mapping of the
services to the providers. The next fastest time scale that we consider is pricing,
with providers setting prices first and services responding optimally to them. Fi-
nally, how services choose the providers to join is modeled as the slowest time scale.
This ordering is motivated by the behavior observed in practice: users move quickly
between cloud services depending on price, service and provider prices also change
quickly (hourly or faster), while the migration of services across providers happens
infrequently.



In this context, we first fix how services distribute themselves among providers, 
and then consider the equilibria of service and provider prices according to a Stack-
elberg model where providers first set their prices and then services observe these 
prices and determine the prices they charge to end users. The user flow is then dis-
tributed according to a Wardrop equilibrium (cf. the latency cost defined in (3)). 
The last component to incorporate into our framework is the equilibrium mapping 
of services to providers, i.e., the distribution equilibrium, which fully characterizes 
the strategic interaction among the three market participants. At a distribution 
equilibrium, we have: (i) service and provider prices form a price equilibrium given 
the particular mapping from services to providers; and (ii) no service has an incen-
tive to change its provider because all providers yield services the same profit.

4. MARKET EFFICIENCY
Given the model described above, one goal of our analysis is to study the market 
efficiency, as measured through the price of anarchy of user performance. In partic-
ular, in [Anselmi et al. 2014] we study the effect of price competition in the cloud 
on the performance experienced by users using the aggregate user latency resulting 
from a distribution equilibrium.

Further, to explore the efficiency loss when the number of providers is large, 
we consider a “replica economy” scaling of providers where there are P types of 
providers and the number of providers of each type scales with n as n increases 
to infinity. In this context, as n increases to infinity, we show that there exists an 
ǫ-equilibrium (among all providers) with ǫ decreasing to zero. We show in [Anselmi 
et al. 2014] that the price of anarchy of a distribution equilibrium cannot exceed 
k + 1, if the latencies are polynomials with degree k.
This result highlights that the price of anarchy will be small in settings when there 

are a large number of providers. For example, the price of anarchy is bounded by 2 in 
the case of linear latencies. Interestingly, this is essentially the same price of anarchy 
as when no market structure exists, i.e., users directly choose providers based on 
congestion costs [Roughgarden and Tardos 2002]. Since the price of anarchy of the 
two-tier model (users and SaaSs) converges to one in the limit as the number of 
services grows [Anselmi et al. 2011], this result reveals that the addition of providers 
into the marketplace “undoes” the efficiency created by competition among services. 
Thus, the vertical market structure creates inefficiency that does not exist if SaaSs 
and PaaSs own their own infrastructure. However, on the positive side, it is this 
inefficiency that allows the IaaSs to extract profits and avoid the falling prey to the 
same market failure that doomed ISPs.

5. RELATED WORK

Note that our work in [Anselmi et al. 2014] is a small part of a broader field that 
focuses on strategic behavior and pricing in cloud systems and, more generally, in 
the internet.
In the context of cloud systems specifically, an increasing variety of network 

games have been investigated and three main areas of attention in this literature 
are resource allocation ([Teng and Magoules 2010; Hong et al. 2011]), load balancing 
([Altman et al. 2008; Chen et al. 2009; Anselmi et al. 2011; Anselmi and Gaujal



2011]), and pricing ([Yolken and Bambos 2008; Ardagna et al. 2012; Acemoglu and
Ozdaglar 2007; Feng et al. 2013]). It is this last line of work that is most related
to the current paper. Within this pricing literature, the most related papers to our
work are [Acemoglu and Ozdaglar 2007; Yolken and Bambos 2008; Anselmi et al.
2011; Ardagna et al. 2012; Song et al. 2012; Feng et al. 2013].
Each of these papers focuses on deriving the existence and efficiency (as mea-

sured by the price of anarchy) of pricing mechanisms in the cloud. For example,
[Ardagna et al. 2012] considers a two-tier model capturing the interaction between
SaaSs and a single IaaS, and studies the existence and efficiency of equilibria allo-
cations. Similarly, [Acemoglu and Ozdaglar 2007; Anselmi et al. 2011; Feng et al.
2013] consider two-tier models capturing the interaction between users and SaaSs
or between SaaSs and PaaSs/IaaSs, and study the existence and efficiency of equi-
librium allocations.
Thus, the questions asked in these (and other) papers are similar to those in our

work. However, the model considered in our work is the first to capture the three-
tier competing dynamics between users, SaaSs, and IaaSs/PaaSs simultaneously.
Further, we model the distinction between congestion from shared and dedicated
resources. Neither of these factors was studied in the previous work; and both lead
to novel qualitative insights about the cloud marketplace (while simultaneously
presenting significant technical challenges to overcome).
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