
65

Efficient Correction of Anomalies in Snapshot Isolation Transactions

HEINER LITZ, Stanford University
RICARDO J. DIAS, NOVA-LINCS, NOVA University of Lisbon
DAVID R. CHERITON, Stanford University

Transactional memory systems providing snapshot isolation enable concurrent access to shared data with-
out incurring aborts on read-write conflicts. Reducing aborts is extremely relevant as it leads to higher
concurrency, greater performance, and better predictability. Unfortunately, snapshot isolation does not pro-
vide serializability as it allows certain anomalies that can lead to subtle consistency violations. While some
mechanisms have been proposed to verify the correctness of a program utilizing snapshot isolation transac-
tions, it remains difficult to repair incorrect applications. To reduce the programmer’s burden in this case,
we present a technique based on dynamic code and graph dependency analysis that automatically corrects
existing snapshot isolation anomalies in transactional memory programs. Our evaluation shows that cor-
rected applications retain the performance benefits characteristic of snapshot isolation over conventional
transactional memory systems.

Categories and Subject Descriptors: D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming

General Terms: Experimentation, Algorithms, Performance

Additional Key Words and Phrases: Transactional memory, snapshot isolation, concurrency, consistency

ACM Reference Format:
Heiner Litz, Ricardo J. Dias, and David R. Cheriton. 2014. Efficient correction of anomalies in snapshot
isolation transactions. ACM Trans. Architec. Code Optim. 11, 4, Article 65 (December 2014), 24 pages.
DOI: http://dx.doi.org/10.1145/2693260

1. INTRODUCTION

Transactional memory (TM) improves performance and scalability over locking tech-
niques by increasing concurrency. In the case of locks, concurrency is limited by the size
of the critical regions and contention. In TM, concurrency is restricted by the number
of data conflicts. As a consequence, techniques that reduce the probability for conflicts
are key for improving system performance.

Existing TM algorithms [Herlihy and Moss 1993; Rajwar and Goodman 2002;
Hammond et al. 2004; Rajwar et al. 2005; Ananian et al. 2005; Moore et al. 2006;
Chung et al. 2006; Bobba et al. 2008; Tomić et al. 2009; Yoo et al. 2013] follow a
conservative approach, based on two-phase locking (2PL) for detecting conflicts. The
approaches are conservative in that they abort transactions on all read-write conflicts
even if committing the transaction would lead to correct behavior. To address this
problem, Ramadan et al. [2008], Aydonat and Abdelrahman [2008], Ramadan et al.

Author’s addresses: H. Litz and D. R. Cheriton, Computer Science Department, Stanford University,
353 Serra Mall, Stanford, CA 94305; email: heiner.litz@stanford.edu, cheriton@cs.stanford.edu; R. J.
Dias, Informatics Department, FCT–NOVA University of Lisbon, 2829-516 Caparica, Portugal; email:
ricardo.dias@fct.unl.pt.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1544-3566/2014/12-ART65 $15.00

DOI: http://dx.doi.org/10.1145/2693260

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

http://dx.doi.org/10.1145/2693260
http://dx.doi.org/10.1145/2693260
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2693260&domain=pdf&date_stamp=2015-01-09

65:2 H. Litz et al.

[2009], and Qian et al. [2014] have proposed supporting conflict serializability (CS),
which avoids some of these noncritical conflicts, reducing transaction aborts. CS
systems track additional transaction dependencies to check whether a committing
transaction violates the global consistency in the case it conflicts with other concurrent
transactions.

Snapshot Isolation (SI) [Berenson et al. 1995] has been shown to even further reduce
aborts over CS [Litz et al. 2014], in particular for applications that utilize read-only or
read-heavy transactions. SI avoids read-write conflicts entirely by taking a snapshot of
the system state at the start of the transaction and serving all reads from this snapshot,
isolating the transaction from external writes. While 2PL and CS implementations are
exposed to conflicting writes whenever those are made visible, SI transactions remain
isolated from writes even after they are committed to memory. This is particularly
useful for long-running read-only transactions that are permitted to commit in the
presence of many conflicting update transactions by operating on an older, consistent
snapshot. By virtue of these properties, SI is preferred over CS and has been adopted
as the de facto default isolation mechanism for transactional database systems, while
receiving only little attention by the TM community. Although, as shown by Dias et al.
[2011] and Litz et al. [2014], SI-based TM systems (SI-TM) provide considerably higher
performance and scalability than both 2PL and CS systems, SI-TM’s dismissal can be
explained by its susceptibility to consistency anomalies, which can lead to incorrect
program behavior. SI algorithms allow two kinds of consistency anomalies: the write-
skew and the SI read-only anomalies. Hereafter, we will refer to both anomalies as SI
anomalies.

For instance, a write-skew occurs if two transactions have disjoint write sets, and both
transactions concurrently read data items that are modified by the other transaction.
This can result in an application constraint violation, leading to incorrect execution
[Berenson et al. 1995].

The feasibility of SI in the TM setting greatly depends on the following two issues:

—How to determine whether a program is susceptible to incorrect execution due to
si-anomalies

—How to correct a program if it exhibits si-anomalies

The first issue is addressed by previous works such as Dias et al. [2012] and Kuru
et al. [2014]. In the former, the authors developed an automatic verification technique
to assert whether a program executed under SI may generate si-anomalies during its
execution. In the latter, a program annotated with its invariants is statically verified
to check whether it is equivalent to a serializable execution when executed under SI.

The second issue is challenging, particularly for large programs, as determining the
distinct memory operations that inflict an SI anomaly can be a complex task. We ad-
dress this challenge in this article by presenting a technique that automatically corrects
SI anomalies without programmer intervention and with minimal impact on perfor-
mance. The technique is based on promoting dangerous read operations. Promoted
reads [Fekete et al. 2005] are incorporated in the conflict detection phase of the SI-TM
implementation, and in the case of SI anomalies, force one of the affected transactions
to abort. In a hardware TM (HTM) system, promoted reads are realized by adding a
prefix to the mov instruction, which adds the address to the write set of the transaction,
which in the case of an HTM generally is the L1 cache. In a software TM (STM) system,
the compiler instruments the read operation to enforce write set insertion. Note that
in both implementations, the entries in the write set do not necessarily correspond
with the entries in the write buffer holding speculative writes. To avoid maintaining a
separate data structure, a single bit can be used in the write set to distinguish writes
from promoted reads.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:3

Fig. 1. SI correction tool lifecycle.

Choosing the read operations that should be promoted to eliminate an SI anomaly is
known to be an NP-Complete problem from previous work in databases [Jorwekar et al.
2007]. We address this problem by proposing a novel representation of an SI anomaly
using a dependency graph focusing on read operations. Additionally, we reduce the
problem of choosing the best read operations to be promoted to a graph coverage
problem for which there are known polynomial algorithms that can approximate the
optimal solution with high accuracy.

To use our correction technique, we need to know the set of read operations that
contribute to an SI anomaly. We found that previous approaches on the detection of SI
anomalies could not be scaled easily for medium-sized examples, such as the STAMP
benchmarks [Cao Minh et al. 2008]. We use execution traces to obtain information
about SI anomalies. In this article, we explain how these traces are collected and how
we process them to correct the SI anomalies in the application’s source code. We focus on
SI-based HTMs, although our techniques are equally applicable to STMs. In particular,
a program that is corrected with our methodology can be both executed on SI HTMs as
well as STMs.

We developed a tool that integrates with the SI-HTM simulator [Litz et al. 2014]
to automatically correct the SI anomalies exposed by applications. Figure 1 shows the
lifecycle of our tool. In our methodology, an application that exhibits write-skew is first
analyzed using PIN [Luk et al. 2005] to collect transaction dependency information.
If the obtained dependency information exposes any SI anomaly, we compute a set of
source-code read locations that need to be modified using read promotion in order to
correct the exposed SI anomalies. For each of the computed source-code read locations,
the tool automatically modifies the application’s source code. The changes made to the
application’s source code are sufficient to prevent all SI anomalies exposed in the former
execution. However, to increase confidence, the corrected application can be analyzed
again to find more SI anomalies that were not exposed in previous executions. If no
further SI anomalies can be found, the process terminates.

We evaluated our correction technique with a broad range of transactional memory
applications. For each we show the impact of the correction on the throughput and
abort rates when compared to an uncorrected snapshot isolation version, and with
a 2PL serializable TM algorithm. Our results show that, after the correction of SI
anomalies, most tested applications retain their high performance characteristic of SI
over conventional transactional memory systems.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:4 H. Litz et al.

Listing 1. Withdraw code exhibiting write-skew.

The contributions of this article are the following:

—A novel representation of SI anomalies using a dependency graph focusing on read
operations,

—A set of graph coverage algorithms that minimize the number of read promotions
—A thorough evaluation, with several benchmarks, that exposes the variation of abort

rate and throughput according to different promotion strategies
—A description of a tool that can be applied to the source code of arbitrary C/C++ TM

applications for removing existing SI anomalies

The remainder of this article is structured as follows. Section 2 provides background
information on SI and its consistency anomalies. Section 3 introduces our technique
to correct SI anomalies from applications. Section 4 describes optimization techniques
to determine the best modifications to be applied to the code. Section 5 presents our
tool, while Section 6 evaluates our technique, the different optimization mechanisms,
and their effect on the abort rate. Section 7 provides an overview of related work and
Section 8 presents conclusions.

2. BACKGROUND

Before introducing our technique, we provide a definition of the SI-based TM model as
well as an example of one of the SI anomalies, the write-skew anomaly.

2.1. Snapshot Isolation

Snapshot isolation [Berenson et al. 1995] represents a consistency mechanism that pro-
vides higher concurrency than existing TM systems by allowing simultaneous reads
and writes to the same data item. SI achieves this property by providing every trans-
action with a memory snapshot that is taken at transaction begin and stored in a local
buffer. All reads are served from the snapshot, thus are isolated from other transac-
tions’ writes. Transactions conflict only if they simultaneously write to the same data
item, creating a write-write conflict that is handled by aborting the latter of the trans-
actions. SI-based TM systems have been proposed by Riegel et al. [2006], Dias et al.
[2011], and Litz et al. [2014]. They use timestamp-based mechanisms to store multiple
versions of the same data item, which are then used to provide abort-free read-only
transactions. Furthermore, transactions in general ignore read-write conflicts and only
abort on write-write conflicts.

SI is appealing for performance reasons; however, it may lead to nonserializable
executions, resulting in two kinds of consistency anomalies, which we call SI anomalies:
the write-skew [Berenson et al. 1995] and the SI read-only anomaly [Fekete et al. 2005].
Consider the following example, which suffers from the write-skew anomaly. A bank
client can withdraw money from a checking and a savings accounts represented by c
and s. Executing two instances of the program in Listing 1 can lead to the following
transaction history, where we denote RT (var, val) as a read of variable var that returns
the value val by transaction T . WT (var, val) represents a write operation of transaction
T to variable var with value val and CT the commit of transaction T .

H1 : R1(c, 20) R2(c, 20) R1(s, 80) R2(s, 80) W1(c,−60) C1 W2(s, 0) C2.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:5

Listing 2. Linked list code exhibiting write-skew.

Executing the history H1 under SI leads to the final sum of both accounts of −60,
a negative value that contradicts the invariant of c + s > 0. This execution would be
impossible in a serializable TM, as transaction 2 would have to abort due to a read-write
conflict on c.

Another, more complex, example of write-skew is given in Listing 2. Consider the
following linked list with four elements: A �→ B �→ C �→ D. The remove(B) operation
will transform the list into A �→ C �→ D, while the remove(C) operation transforms
the list into A �→ B �→ D. Executing both operations concurrently does not induce a
write-write conflict; therefore, both operations will be committed, leaving the list in an
inconsistent state in which Apoints to a nonexisting element, dropping D from the list.

2.2. Dependency Graph Analysis

Fekete et al. [2005] proposed to utilize dependency graph analysis to resolve SI anoma-
lies (both the write-skew and the SI read-only anomalies) in transactional database
systems running under SI. Each transaction T is defined by its set of read and write ac-
cesses T = {r0(x0), . . . , rn(xn), w0(y0), . . . , wm(ym)}. Two kinds of read-write dependencies
exist between pairs of transactions: two transactions T0 and T1 exhibit a write-read
dependency T0

wr−x−−−→ T1, if T1 reads a variable r(x) that was written w(x) by T0; and
two transactions T0 and T1 exhibit a read-write dependency T0

rw−x−−−→ T1, if T0 reads a
variable r(x) that is concurrently written w(x) by T1. A dynamic dependency graph is
then defined as an ordered pair D = (V, A) with

—V , the vertex set of all transactions generated by the execution of a TM program
—A, a set of ordered triples (T0, x, T1) where T0 and T1 exhibit a dependency

T0, T1 ∈ V | T0
wr−x−−−→ T1 ∨ T0

rw−x−−−→ T1

Fekete et al. [2005] showed that the necessary condition for an SI anomaly is a depen-
dency cycle in the dependency graph called dangerous structure, which has the same
properties for both write-skew and SI read-only anomalies. By detecting these cycles
and aborting transactions accordingly, an SI-based system provides serializable seman-
tics. The mechanism is based on dynamic dependency graphs that are constructed by
analyzing in-flight transactions at runtime. The challenge of dynamic anomaly detec-
tion is that a transaction needs to check for dependency cycles at commit time against
all other concurrent transactions even against those that have been committed already.
Especially for long-running transactions, this leads to state explosion as an unbounded
history of already committed transactions needs to be stored, rendering it impractical
for a hardware implementation.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:6 H. Litz et al.

This overhead problem led to the development of techniques based on static analysis
to detect SI anomalies in TM programs, as in Dias et al. [2012], and Kuru et al. [2014].
These techniques, however, only allowed detection of SI anomalies and did not address
the problem of correcting them. In this article, we start where previous works stopped,
by focusing on the correction of SI anomalies by making changes to the source code of
TM programs.

3. SI ANOMALY CORRECTION

In this section, we present a technique to correct existing SI anomalies from TM pro-
grams. In order to prove our concept, we need to collect information about SI anomalies
in several applications, such as traditional TM benchmarks. Previous proposed ap-
proaches to detect SI anomalies in TM programs are limited to small examples, and in
the particular case of Kuru et al. [2014] they do not provide the necessary information
to correct an SI anomaly.

Due to these limitations, we choose a pragmatic approach based on execution traces
of TM applications running under snapshot isolation and analyze those traces to find
SI anomalies. This technique, as all techniques based on dynamic execution traces,
does not guarantee that we can find all SI anomalies that could be triggered by the
application, but we can detect all SI anomalies triggered in a particular run of the
application. From our experiments, as shown in Section 6, we obtain a sufficient number
of SI anomalies to evaluate our correction technique.

As a first step, applications are profiled to generate the so-called transaction traces.
These traces are then postprocessed to extract all dependencies between transactions
and detect the SI anomalies. We detect both the write-skew and SI read-only anomalies
by detecting dangerous structures in the generated dependency graph. Then, optimiza-
tion techniques are applied to determine the particular source code modifications that
resolve the detected SI anomalies with minimal impact on performance. Finally, a script
automatically applies the required modifications to the application’s source code.

3.1. Trace Generation

Two conditions are necessary for SI anomalies to occur. The affected transactions need
to temporally overlap and the transactional read and write operations need to access
the same data items. This information can be represented by a transaction trace, as
shown in Figure 2 using the following notation.
StartTRX<ID, TS>, and End<ID, TS> denote transaction delimiters with their cor-

responding globally unique timestamp TS and a unique transaction ID assigned to
each transaction defined in the source code. Instances of the same transaction thus
use the same ID but can be disambiguated by their timestamps. Write<ADDR> de-
notes a transactional write operation targeting address ADDR, while Read<ID, ADDR>
denote transactional read operations, where ID represents a unique identifier assigned
to each read operation listed in the source code. ID can be, therefore, expressed as a
concatenation of source code file and line number in that file.

Notation 3.1. Hereafter, we denote as read location the source code location of a call to
a transactional memory read function (compile-time property). And as read operation,
the execution of a TM read function (runtime property). A single read location may
generate many distinct read operations during the execution.

The trace depicted in Figure 2 includes the following information: (1) start and
end timestamps that define temporal overlap of transactions; (2) memory writes;
(3) memory reads, colored depending on their ID; and (4) read-write dependencies,
symbolized by arrows, in consequence to shared data access. Note that a trace may con-
tain multiple instances of the same transactions, as in the case of the two transactions

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:7

Fig. 2. Example of a transaction trace.

Fig. 3. Dynamic dependency graph.

started at TS = 1 and TS = 3. Furthermore, a read operation with a certain ID may
occur multiple times within a single transaction if it is repeatedly invoked, as in a loop.

3.2. Dynamic Dependency Graph

The technique of Fekete et al. [2005] can be used to transform a transaction trace
into a dynamic dependency graph (DDG) to enable the detection of SI anomalies.
As an example, Figure 3 shows the dynamic dependency graph for the previously
shown transaction trace. It shows four dependency cycles, thus four SI anomalies:
(1) between TRX<1,1> and TRX<2,2>; (2) between TRX<1,1> and TRX<1,3>; (3)
between TRX<1,1> , TRX<1,3>, and TRX<2,2>; and (4) between TRX<2,2> and

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:8 H. Litz et al.

TRX<3,5>. DDGs are useful for detecting SI anomalies and have been deployed in
transactional database systems for eliminating SI anomalies at runtime. However, as
graph analysis introduces significant overheads to TM systems, we propose profiling
applications only once, determining all read operations that participate in a cyclic de-
pendency, and then removing them from the source code entirely. Subsequently, the
application can be executed with no runtime overheads.

Eliminating SI anomalies through source code modifications requires determination
of the memory read operations that induce cyclic dependencies. DDGs enable detec-
tion of SI anomalies, however, they do not identify the memory operations that cause
the dependencies. Furthermore, while DDGs denote only a single edge between two
transactions even if there exists more than a single dependency, our approach needs
to determine all possible memory operations that can lead to a dependency as it re-
solves the SI anomalies at compile time instead of by aborting transactions at runtime.
Finally, the size of a DDG is unbounded, growing linearly with the execution time,
exacerbating its analysis overhead. To address these issues, we introduce the notion of
read dependency graphs (RDGs).

3.3. Read Dependency Graph

Our technique applies read promotion [Fekete et al. 2005] to enable correct program
execution. Given the set of all SI anomalies in an application, serializable execution
of snapshot transactions can be enforced by promoting the read operations that form
dependency cycles. A promoted read conflicts with a write operation that targets the
same memory address, leading to the abort of one of the transactions. Promoted reads
neither conflict with other promoted reads nor with conventional read operations. By
applying promotion, we observe the following: A cyclic dependency involves two or
more read operations and promoting only one of them is sufficient to avoid the SI
anomaly. Furthermore, memory read operations can be part of multiple SI anomalies
and promoting reads might have varying implications on performance. As an example,
consider the linked list remove operation in Listing 2, which iterates over the list ele-
ments in line 6. Promoting that read location is likely to affect performance negatively
as it is executed more frequently than other read locations. Our objective is to choose
the set of read locations to be promoted that minimizes the number of new conflicts
while maintaining the performance benefits of SI.

To succeed in this objective, we will represent an SI anomaly, which corresponds to
a cyclic dependency in a DDG, as a hyperedge1 connecting all read locations (vertices
of a hypergraph) that are part of the SI anomaly. As a result, we can identify the read
locations that participate in multiple SI anomalies by computing the degree of each
vertex. This identification procedure is equivalent to a graph coverage problem.

To perform the transformation of the representation of SI anomalies for promot-
ing read locations, we introduce the following definitions. A DDG generated from the
execution trace of a program P may contain several cyclic dependencies. Each cyclic
dependency corresponds to a single SI anomaly. We denote as Cycles(P) the set of cyclic
dependencies generated from the execution of program P.

Definition 3.2 (Static SI anomaly read-set). Given a cyclic dependency c ∈ Cycles(P)
composed by a set of edges T0

x−→ T1
y−→ · · · z−→ T0, let the static SI anomaly read-set

ARS (c) be the set of read locations associated with the read operations that occur in
each dependency of the cycle:

ARS (c) = {ri | (, ri(x),) ∈ c},

1A hyperedge is a graph edge that can connect more than two vertices.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:9

Fig. 4. Read dependency graph.

where the read subscript i represents the unique identifier of the read operation in the
source code.

The static SI anomaly read-set corresponds to a sound overapproximation of the con-
crete read operations that compose the SI anomaly. This overapproximation is achieved
by dropping the data item information x from the read operation ri(x), maintaining only
its unique identifier.

LEMMA 3.1 (STATIC SI ANOMALY READ-SET SOUNDNESS). The static SI anomaly read-set
is a sound overapproximation of the concrete set of read operations that compose the
respective SI anomaly.

PROOF. An SI anomaly is composed of a set of concrete read operations ri(x) where ri
denotes the source code point of such a read operation and x represents the data item
accessed. Thus, the set of all distinct read locations ri without the data item represents
all read operations issued at location ri for any data items.

Next, we define the RDGs, in which vertices represent read locations, and each edge
represents a single SI anomaly.

Definition 3.3 (Read dependency graph). Let G = (R, p) be an RDG with R =
r1, . . . , rn, the set of all read locations defined in the source code of a TM program and
p, a set of unordered n-tuples of read locations representing the set of SI anomalies

p = {ARS (c) | c ∈ Cycles(P)}
The RDG as defined has the following properties:

—It exposes distinct memory read locations that are part of an si-anomaly.
—It expresses multitransaction cyclic dependencies.
—Its size is bounded by the number of read locations defined in the source code.

Figure 4 shows the RDG for the trace in Figure 2. There is one node for each read
location that is part of at least one cyclic dependency. Each (hyper)edge of the graph
shows one particular SI anomaly. An SI anomaly between two instances of the same
transaction is shown in the case of Read, which contains an edge to itself. Cyclic
dependencies that compose more than two transactions are shown using hyperedges, as
in the case of the SI anomaly between Read<A>, Read, and Read<C>. Each node
is assigned a weight, indicating the number of times the read was executed during
dynamic analysis.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:10 H. Litz et al.

Given a graph G, the problem of finding a valid set of read promotions that eliminate
all SI anomalies can be formulated as a vertex cover problem:

Definition 3.4 (Hypergraph Vertex Cover Set). A vertex cover of a given hypergraph
G = (V, E) is a subset C ⊆ V such that for all edge e ∈ E, there exists a vertex v ∈ C
that is contained in e (v ∈ e).

We can eliminate all SI anomalies captured from the DDG by promoting each read
location from the vertex cover set of the RDG. This technique to avoid SI anomalies is
captured by the following theorem.

THEOREM 3.2 (SI ANOMALY CORRECTION). The promotion of all read locations of an
RDG’s vertex cover set avoids all the SI anomalies identified from the execution trace of
a program P.

PROOF. Each hyperedge of the RDG represents a cyclic dependency on the DDG.
Promoting a read location has the effect of removing the read operation from the DDG.
Given the set of read locations that are contained in every hyperedge—the cover set—
by promoting each of these read locations, the dependency cycles from which the read
locations were extracted are broken and thus the SI anomalies are avoided.

4. CHOOSING A VERTEX COVER

Several vertex cover sets exist for the same graph, therefore given a number of valid
vertex covers C0, C1, . . . , Cm ∈ CSet(G), where CSet(G) is the set of all cover sets of
graph G, which one should we choose? Every promoted read location participates in
conflict detection, thus the selection of C affects both abort rate and performance. In
the following, we present three algorithms to determine a valid C.

4.1. Naive Vertex Cover

The most simple and correct solution for the vertex cover problem is to include every
vertex of the RDG. Thus, in the example RDG shown in Figure 4, a naive vertex cover
is given by C = {Read<A>, Read, Read<C>, Read<D>}.

4.2. Approximate Minimum Vertex Cover

The following technique minimizes the number of promoted read operations to limit
the read operations that participate in conflict detection.

Definition 4.1 (Minimal Vertex Cover Set). Let |C| be the number of vertices in C.
A vertex cover C0 ∈ CSet(G) of a given hypergraph G = (V, E) is minimal if ∀Ci ∈
CSet(G) : |C0| = min(|C0|, |C1|, . . . , |Cm|). Such C0 is called a minimum vertex cover
(MVC) of G.

Finding an MVC for an arbitrary G is NP-hard [Garey and Johnson 1979]; however,
there are approximation algorithms that execute in polynomial time. We chose to apply
a greedy algorithm that picks the vertex with the largest number of edges, removes
the vertex and its edges from the graph, and continues until all vertices are covered.
Although Papadimitriou and Steiglitz [1998] proved that this heuristic produces vertex
covers that can be log(|V |) times larger than the optimal solution, the greedy algorithm
showed close to optimal results for the graphs we studied.

In particular, the obtained results on realistic graphs proved to be superior to
the algorithm proposed by Leiserson et al. [2001] based on selecting random edges.
Algorithm 1 shows the greedy approximation algorithm. We implemented this al-
gorithm to find an approximate MVC of the RDG within the read promotion step.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:11

Applying Algorithm 1 to the example in Figure 4 leads to a vertex cover of C0 =
{Read<A>, Read}, which represents an MVC.

ALGORITHM 1: Greedy Approximate MVC Algorithm
Input: V : vertex set, E : edge set
Output: C : cover set
C := {};
while V �= ∅ do

determine v ∈ V that has the most edges;
V := V \ {v};
C := C ∪ {v};
forall e ∈ E | v ∈ e do

E := E \ {e};
end
forall u ∈ V do

if � ∃ e ∈ E | u ∈ e then
V := V \ {u};

end
end

end
return C;

4.3. Weighted Approximate Minimum Vertex Cover

The previous algorithm minimizes the number of promoted read operations. However,
different read operations may have varying impact on the abort rate and performance.
In particular, read operations as in line 6 of Listing 2 that are executed frequently, if
promoted, should expose a higher probability for causing a conflict. To study this effect,
for each read location defined in the source code, we count its occurrence in the trans-
action trace and append this information to each node in the RDG, transforming it into
a weighted RDG. With this information, we can compute a vertex cover set that takes
into account the occurrence of read operations and minimizes the promotion of read
operations with high occurrence. We define a minimal weight vertex cover set as follows.

Definition 4.2 (Minimal Weight Vertex Cover Set). Given a hypergraph G = (V, E),
let W be a set of weights w(v) for each v ∈ V and �C = ∑

v∈C w(v). A vertex cover
C0 ∈ CSet(G) is minimal if ∀Ci ∈ CSet(G) : �C0 = min(�C0 , �C1 , . . . , �Cm). Such C0 is
called a minimum weighted vertex cover (MWVC) of G.

Finding an MWVC of G is again NP-hard; however, there have been proposed multi-
ple algorithms [Clarkson 1983; Bar-Yehuda and Even 1981; Pitt 1985; Nemhauser and
Trotter Jr 1975] that provide approximate solutions in polynomial time. All algorithms
provide a vertex cover whose combined weight is less than twice of the optimal solution.
In between the four proposals, we chose to implement Clarkson’s algorithm [Clarkson
1983] shown in Algorithm 2. It provides the lowest runtime and best approximation ra-
tio, of 1.05 on average [Taoka and Watanabe 2012]. This algorithm requires the notion
of vertex degree, which represents the number of edges that contain a specific vertex,
and in our case corresponds to the number of cycles indicating potential SI anomalies
in which a given source code read location occurs. We define a vertex degree as follows:

Definition 4.3 (Vertex Degree). Given a hypergraph G = (V, E), we denote d(v) = |{e |
e ∈ E ∧ v ∈ e}| the degree of node v.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:12 H. Litz et al.

ALGORITHM 2: Clarkson’s Approximate MWVC Algorithm
Input: V : vertex set, E : edge set, w : vertices weights
Output: C : cover set
C := {};
while V �= ∅ do

determine v ∈ V with w(v)/d(v) being minimum;
V := V \ {v};
C := C ∪ {v};
forall e ∈ E | v ∈ e do

E := E \ {e};
forall u ∈ e | u �= v do

w(u) := w(u) - w(v)/d(v)
end

end
forall u ∈ V do

if � ∃ e ∈ E | u ∈ e then
V := V \ {u};

end
end

end
return C

In each iteration of the algorithm, we choose the vertex that has the minimum
w(v)/d(v) ratio. We require the minimum as we favor vertices with lower weight,
that is, read locations with lower occurrence, and simultaneously vertices that have
many edges, as in the MVC algorithm, that is, read locations that are part of more SI
anomalies.

Applying Clarkson’s algorithm to the RDG in Figure 4 leads to the following vertex
cover, C0 = {Read<C>, Read, Read<D>}, which represents an MWVC.

4.4. Discussion: Dependency Generation

Dependency generation can be performed by static or dynamic analysis methods. Our
technique relies on dynamic analysis to eliminate false positives and to minimize read
promotions. Static techniques, on the other hand, need to be more conservative as they
have to trade off precision for soundness and completeness. Conservative dependency
information increases the number of dangerous structures, which in return increases
the number of reads that need to be promoted, leading to a negative effect on perfor-
mance. Besides providing less precise transaction dependency information, compiler-
based approaches also struggle to obtain information about the execution frequency of
a specific read operation, preventing the application of the MWVC algorithm. Never-
theless, static analysis techniques represent a valid alternative whose exploration we
leave for future work.

5. SI-ANOMALY DETECTION TOOL

We have implemented our technique as a tool that determines and resolves SI anoma-
lies in TM programs. We discuss the most important and interesting features in this
section.

5.1. Trace Generation

Obtaining the ID of read operations at runtime, which is required to create fixes for
the source code, is challenging. In particular, when intercepting transactional read
operations, the originating location in the source file that invoked the operation is

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:13

unknown. Our first implementation leveraged glibc’s backtrace() facility, called on
each read operation to determine the location of the TM_READ() function call in the
source code, using stack analysis. While this approach works correctly, it shows the
following disadvantages. The call to backtrace() introduces significant overheads,
which leads to a three-orders-of-magnitude slowdown of the profiled application. This
prohibits the analysis of complex applications and distorts their behavior and degree
of concurrency. Furthermore, it requires modification of the TM library. Finally, it
requires transactional reads and writes to be performed as a function call, which is, as
an example, not the case for Intel’s TSX [Intel Corporation 2012].

To address these issues, we opted to implement trace generation in PIN [Luk et al.
2005], a dynamic binary instrumentation tool developed by Intel that can be used to
inject arbitrary code into application binaries at runtime. PIN provides a rich API to
analyze register context information and to instrument individual instructions. Using
this API PIN tool, developers define a set of instrumentation routines that the PIN
runtime uses to augment the instruction stream at runtime. The PIN runtime instru-
ments the instruction stream only once, then buffers the sequence in a code cache
to enable its execution at native processor speed without further overheads. Conse-
quently, lightweight analysis functions can be injected by PIN with minimal effect on
the execution characteristics of the observed application. In our case, PIN is utilized to
analyze everyTM read and write instruction. Our PIN tool tracks the effective memory
addresses of said instructions as well as their instruction pointer (IP). Subsequently,
the IP can be provided to the addr2line tool of the GNU binary utilities suite to de-
termine the line in the source code that invoked the read operation. To enable stack
analysis in the case in which read operations are indirectly called via a chain of func-
tion calls, our tool maintains a shadow stack within PIN that tracks the instruction
pointer of each call instruction, enabling us to perform low overhead stack analysis.
This PIN-based technique introduces runtime overheads of below 5x, which leads to
acceptable runtime and minimizes the effects on the application behavior. To assess
the impact of instrumentation on the behavior of concurrent applications, we compared
executions with and without our tool. While the deviation of absolute number of aborts
per thread is within 10% for both executions, relative execution time shows the same
trends for both the instrumented and uninstrumented executions. In particular, while
the absolute overhead of our tool depends on the individual application and the time
it spends in transactions, scaling the applications from 1 to 32 threads shows closely
matched speedups for both executions.

5.2. SI-Anomaly Detection

To find the existing SI anomalies for each transaction, the tool needs to determine the
other transactions it overlaps with and then perform conflict detection between the
read and write sets between the transactions. The complexity for validating the read
and write sets depends on their average size k. As each element of the read set needs to
be compared with each element of the write set for both directions, complexity is O(2k2).
This can be reduced to O(2klog(k) + 2k) by presorting the two write sets after address
in klog(k) and then stepping through the two sets in linear time. To determine overlap,
the timestamps of each transaction must be compared with all other transactions.
Therefore, we sort the trace by merging the presorted per-thread traces in linear time
O(|T |) and then compare transaction ti ∈ T only to ti+1, . . . , ti+e where ti+e is the last
transaction whose start timestamp is smaller than the end timestamp of ti. This step
has a worst-case complexity of |T |2, if every transaction in the history overlaps with
every other transaction. On average, the number of overlapping transactions is much
smaller; in particular, transactions of one thread will never overlap with another. In

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:14 H. Litz et al.

the common case, the average overlap is proportional to the number of threads. The
upper bound for the runtime of our tool is thus O(|T |2) + O(|T |(2klog(k) + 2k)).

5.3. Vertex Cover

We implemented both Algorithm 1 and Algorithm 2 to determine a vertex cover of
the generated RDG. The runtime of both algorithms is O(|V |log(|V | + |E|) [Clarkson
1983]. The RDG collapses all instances of a read operation into a single vertex; thus
its size is proportional to the size of the source code, more specifically the number of
instructions in the code segment, of the analyzed application. To achieve coverage for
large applications, the tool requires |T | to be large; therefore it can be assumed that
|V | + |E|
 |T |. As a result, the SI anomaly detection step determines the runtime of
our tool. Nevertheless, it is not feasible to replace the vertex cover heuristics with an
optimal scheme, as its runtime gets prohibitive with |V | > 50.

5.4. Read Promotion

The vertex cover provided by the tool is utilized to promote a corresponding set of read
operations. We therefore provide the address that was obtained in the trace generation
step to the addr2line tool, which outputs the source file and line number. Subsequently,
the transactional read operation in the source code can be exchanged for a promoted
read operation. A promoted read is treated by the SI-based TM system as follows. Its
address is inserted in the write set and a promoted flag is set for this address. In the
case of a write operation to the same address, the flag is cleared. During commit, the
entire write set is checked for conflicts. If a promoted read conflicts with a write by an-
other thread, the transaction is aborted. If there are two overlapping transactions that
accessed the same datum with promoted reads but no writes, both transactions suc-
ceed. After successful validation, a transaction iterates over its write set and commits
all writes for which the promoted flag is not set to global memory.

In an SI-based STM, read promotion can be supported by annotating the code with ad-
ditional instructions to track the addresses of such reads. In an HTM, a mov instruction
prefix can be used to identify promoted reads. We present an example implementation
of such an instruction set architecture (ISA) extension in the evaluation section.

6. EVALUATION

6.1. Methodology

To evaluate our technique, we applied our tool to a broad range of transactional mem-
ory applications. The applications are first analyzed and corrected with our tool and
then run without any tool instrumentation to do performance measurements. First,
we analyze a set of microbenchmarks including a singly and doubly linked list, a bi-
nary tree (BTree) and a red-black tree. Then we analyze medium-sized benchmarks
including LeeTM [Ansari et al. 2008] and STMBench7 [Guerraoui et al. 2007], as well
as a Social Graph and a Pagerank application. Finally, we evaluate seven applications
from the STAMP [Cao Minh et al. 2008] benchmark suite. For all STAMP applications,
we use the default simulator-sized inputs. STAMP, as well as most of the microbench-
marks, have been obtained from the Rochester Software Transactional Memory (RSTM)
[Marathe et al. 2006] framework. All applications have been compiled with GCC 4.7.

As there currently does not exist a processor that implements SI-TM, we perform
simulations. The simulated TM system is implemented within the PIN [Luk et al.
2005]-based Zsim [Sanchez and Kozyrakis 2013] simulator utilizing precise functional
and timing models. Zsim models an out-of-order multicore processor and is calibrated
against Intel Westmere. It simulates a wide range of micro-architectural features in-
cluding branch prediction, μop decoding, limited instruction issue window width, reg-
ister renaming, functional unit contention, load store ordering, and reorder buffer,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:15

and provides detailed cache and memory models. It has been validated using SPEC
CPU2006 and PARSEC [Bienia et al. 2008] and exhibits an average absolute perfor-
mance error of 11.2%.

We also compare the results with a TM system that models Intel’s TSX [Yoo et al.
2013] HTM with eager conflict detection and lazy write buffering. The TSX model
has been calibrated against Intel Haswell using the STAMP benchmark suite and
shows an average error of below 15% for the transaction abort rate as well as absolute
performance. We model infinite read and write sets, excluding the effect of capacity
aborts. This simplification represents an advantage for the TM system, as SI-TM does
not maintain read sets and the read set is usually larger than the write set.

SI-TM is covered in detail by Litz et al. [2014], therefore, we only summarize the
most important features of the system. SI-TM utilizes hardware support for managing
multiple data versions in memory and provides an efficient snapshotting mechanism
based on immutable data and copy-on-write. SI-TM does not copy memory on transac-
tion initiation to form snapshots but rather compiles them on the fly by intercepting
writes such that they create new versions of a data item instead of overwriting data in
place. This implements lazy versioning and lazy conflict detection. Lazy validation sys-
tems may waste processor cycles by executing a condemned transaction in its entirety,
whereas eager systems abort conflicting transactions immediately. The impact of these
zombie [Dice et al. 2006] transactions can be minimized by performing prevalidation.
In prevalidation, writes are validated against the committed state in memory within
a transaction, whenever the on-chip network has low bandwidth utilization. This en-
ables reduction of wasteful work while still providing lazy validation semantics. Lazy
validation also guarantees forward progress, while eager systems suffer from livelock
due to mutual repetitive aborts.

SI-TM does not maintain a read set; however, it tracks writes and promoted reads.
To support promoted reads, SI-TM introduces an ISA extension. Particularly, it defines
an instruction prefix that can be prepended to mov instructions that read from memory.
Memory reads exhibiting such a prefix require the hardware to add the instruction’s
effective address to the hardware-maintained list of promoted reads. To implement
these new instructions in the simulated architecture, Zsim provides so called magic
instructions that can be used to extend the ISA with new capabilities. Conflict detection
in SI-TM is not performed via the cache coherency protocol; instead, the write set is
sent to the validation module during commit similar to Bulk [Ceze et al. 2006]. The val-
idation module obtains a unique commit timestamp for the transaction and compares
the write set, including promoted reads, against the committed state in memory. For
any address in the write set, if there is a data item in memory whose commit timestamp
is greater than the start timestamp of the transaction, the transaction needs to abort.
On commit, the write set is stored to memory by creating a new version tagged with
the end timestamp.

The SI anomaly detection tool has been implemented within the simulator to perform
SI anomaly analysis transparently to software. If the tool detects an SI anomaly, it
proposes a set of read operations for promotion and applies the modifications to the
original source code during a post-processing step. We then re-execute the modified
applications using an SI-based TM system, comparing it to the uncorrected SI baseline
and to the serializable TM system. The main focus of our evaluation is to analyze
the effect of SI anomalies and the different correction mechanisms, thus we omit all
applications that do not exhibit anomalies from the performance study.

6.2. Correctness

Our proposed technique utilizes dynamic code analysis, therefore, like other race de-
tection techniques, does not provide a proof that all SI anomalies have been removed

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:16 H. Litz et al.

Table I. Anomalies of Evaluated Applications

Application Dangerous Reads MVC MWVC Unmodified Modified
Linked List 5 1 1 inconsistent correct
Doubly-Linked List 5 1 1 inconsistent correct
Red-Black Tree 37 15 24 inconsistent correct
Queue 0 correct correct
Heap 0 correct correct
Array 0 correct correct
BTree 12 4 4 inconsistent correct
Bayes2 0 correct correct
Genome 2 1 1 inconsistent correct
Intruder2 0 correct correct
Kmeans 0 correct correct
Labyrinth 0 correct correct
SSCA2 0 correct correct
Vacation2 0 correct correct
LeeTM 5 5 5 correct correct
SB7 0 correct correct
Pagerank 5 2 3 inconsistent correct
Social Graph 7 3 3 inconsistent correct

from a program. The quality of the results—in particular, the percentage of detected
anomalies—depends on the inputs of the tool and the duration of the analysis. In
general, the runtime of the tool needs to increase proportionally with the size of the
analyzed code to provide consistent results. To increase the confidence of the results,
the tool is executed multiple times; with each iteration of the tool we extend its dura-
tion and modify the input parameters. If one execution detects all previously detected
anomalies and does not find new anomalies over the previous run, we terminate the
analysis. At this point, techniques such as those presented by Kuru et al. [2014] can be
applied to verify correctness of the implementation.

Table I shows the output of our tool for the evaluated applications. The Dangerous
Reads column lists the number of read operations that are part of at least one SI
anomaly. Our tool determines a subset of those dangerous reads and promotes them.
The Unmodified column shows whether the application runs without failure under
SI-TM, whereas the Modified column shows whether the application behaves correctly
after applying our tool. We run multiple test cases and if the application fails for at
least one test run we define the execution as failed. Note that we repaired the data
structures using our tool before we ran the STAMP applications that utilize those data
structures. Hence, anomalies that appear in data structures are not shown for the
STAMP benchmarks. It is interesting to note that most detected anomalies appear in
data structures, while real-world applications generally exhibit no SI anomalies apart
from the data structures that they also use. The explanation is that most applications
do not operate directly on primitive data types, but only on data structures.

From a practical standpoint, our technique has been proven successful. As it can be
seen in Table I, all applications that exhibit SI anomalies produce inconsistent results
running under SI, while repaired programs function correctly for all test runs. The
STAMP applications utilizing an uncorrected version of Linked List and Red-Black
Tree also fail due to assertions that check for memory consistency; however, they ex-
ecute correctly if they utilize corrected data structures. We emphasize that achieving

2These applications fail when running with uncorrected versions of the list and red-black tree implementa-
tions. However, the applications themselves contain no SI anomalies.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:17

Fig. 5. Abort rates.

absolute correctness is not the main objective of our tool. We regard the proof of cor-
rectness as orthogonal, which is addressed by Dias et al. [2012] and Kuru et al. [2014].
Instead, our goal is to provide programmers with a helpful tool that can automatically
repair both legacy and newly written applications with minimal performance impact.

6.3. Abort Rate

SI promises to increase performance by reducing aborts to write-write conflicts. How-
ever, to address SI anomalies, our technique promotes read operations such that they
participate in conflict detection. In theory, an SI-based TM system should outperform
a conventional TM system as long as the set of all promoted reads is a proper subset
of the read operations defined in the source code. We run all applications that exhibit
SI anomalies (see Table I) using the uncorrected SI baseline and compare it to three
corrected SI variants plus the TM system. The naive implementation (SI-ALL) pro-
motes every read operation contributing to an SI anomaly. SI-MVC utilizes the method
shown in Algorithm 1 to promote reads, whereas SI-MWVC utilizes Algorithm 2.

Figure 5 shows the number of aborts, normalized to SI. We only show applications
that exhibit SI anomalies and that require read promotions. All benchmarks have
been executed with 32 threads. For Linked-List, Doubly Linked-List and Red-Black
Tree we executed 50% lookup, 25% insert, and 25% remove operations on a data
structure with 1000 elements. In the case of Linked-List, SI-ALL promotes five read
operations in the insert and remove operations. These promotions cause an increase
of 50x more aborts over the SI baseline. Delete operations exhibit high abort ratios
as SI-ALL promotes the reads of lines 3, 4, and 9 in Listing 2. Line 4 appears to be
critical as it is called within the loop that is used to traverse the list, although all SI
anomalies can be avoided solely by promoting line 9. SI-MWC and SI-MWVC exploit
this fact and generate a vertex cover that delivers much better results. Both reduce

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:18 H. Litz et al.

aborts by 20x over SI-ALL, having only 2x more aborts than the SI baseline, which
shows the importance of promoting the right set of read operations. In the case of
the Red-Black Tree, SI-MVC provides no advantages over SI-ALL, whereas SI-MWVC
reduces aborts by another 15% over SI-ALL. The benefits of the MVC algorithms are
moderate as the three most performance critical read operations form a dependency
cycle with themselves. In this case, it is mandatory to promote the read operations for
all SI variants.

The binary tree implementation we analyzed supports lookup, insert, and delete
operations. It exhibits 12 dangerous read operations, of which only four are promoted
by the optimization mechanisms. This has a significant impact on the abort rate, as SI-
ALL generates 4x more aborts than the SI baseline, whereas the optimized SI variants
only generate between 5% and 8% more aborts than the SI baseline.

The LeeTM benchmark represents a special case in which the number of dangerous
reads corresponds to the total number of read locations in the benchmark, and both
cover algorithms MWC and MWVC require promotion of all dangerous reads, as in the
SI-ALL approach. After the correction, the SI algorithm has no opportunity to ignore
the presence of read-write conflicts as all read operations were promoted, and as we
can see in Figure 5, the abort rate of SI-ALL, SI-MVC, and SI-MWVC is almost 3x
higher than in the TM algorithm. This result can be explained by the fact that, as
opposed to the lazy validation of SI, the TM algorithm implements an eager validation
strategy that is able to perform better in a workload of high contention, as in the
case of the LeeTM benchmark. Another unexpected result of this benchmark was that,
although our dynamic analysis detects the presence of SI anomalies, the benchmark
always executed correctly under SI without any correction. We further investigated
the SI anomalies detected by our dynamic analysis, and found that these detected SI
anomalies are not harmful, that is, these SI anomalies do not lead to incorrect results
with respect to the benchmark semantics. In the case of SI, which does not promote
reads, the SI algorithm reduces the abort rate by more than half compared to the TM
algorithm.

The Pagerank application maintains a sparse array of vertices and a sparse adjacency
matrix to store undirected edges. We support three operations. The insert operation
inserts a vertex at a random location within the array if it does not yet exist and inserts
a random number of random edges into the adjacency list. As the edges are undirected,
each edge insertion requires two writes. The remove operation deletes a random vertex
and its corresponding edges. Pagerank represents a read-only operation that traverses
the matrix recursively to determine the vertex with the highest edge count. Pagerank
is the most costly operation and touches many locations. In SI-ALL, one of the reads
in Pagerank is promoted, removing its read-only property, which results in high abort
numbers. MWVC promotes three reads instead of two for MVC while reducing aborts by
6% when compared to MVC, which confirms that choosing reads correctly for promotion
is important. Both optimized SI variants have only between 7% and 15% more aborts
than the SI baseline.

Social Graph represents another graph application that utilizes adjacency lists, one
for each vertex, to store its edges. The program supports insert and delete operations
for both vertices and edges as well as a search operation based on iterators that, for ex-
ample, finds all edges that satisfy a condition. Social Graph contains seven dangerous
reads, from which three need to be promoted. Unfortunately, one of the performance
critical reads that occurs within a loop needs to be promoted in all cases, as the vertex
representing this read in the RDG contains an edge to itself. In this case, there exists
no alternative vertex that we can promote instead. Note that the uncorrected SI im-
plementation performs worse than all other implementations both in terms of aborts
and performance. This can be explained by the fact that an existing SI anomaly causes

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:19

Fig. 6. Speedup—effect of reducing aborts on performance.

the delete operation to fail, which after multiple iterations leads to significantly larger
data structures and longer runtimes, as in the correct implementations.

Genome exhibits a write-skew that is conceptually similar to the one shown in the
banking example in Listing 1. In particular, to combine two genome segments, it reads
their individual sizes and then computes the aggregate size, writing one of the length
fields. If two transactions combine the same segments but in a different order, reading
the same size fields but writing to distinct size fields, a write-skew occurs. The write-
skew can be resolved by promoting one of the two read operations, which has no
noticeable impact on the abort rate.

6.4. Performance

The effect of reducing aborts on performance for the different applications is shown
in Figure 6. For Linked-List and Doubly LinkedList, SI-ALL shows a performance
slowdown of 4x while SI-MWC and SI-MWVC show a slowdown of only 1.5x to 2x
when compared to the SI baseline. Still, all corrected SI variants are faster than the
TM algorithm, which is 5x slower that the SI baseline. It is interesting to note that
the benefits provided by SI over TM increase with both a higher lookup ratio and
larger data structures. In the case of larger data structures, lookup operations have
a longer duration on average, as they access more elements. This fact increases the
cost of aborts for read-only transactions in the case of TM. Both tree implementations
benefit substantially from SI. Although the Red-Black Tree exhibits a large number of
anomalies, performance is similar between the different promotion techniques.

Again, in the special case of LeeTM, the algorithms SI-ALL, SI-MWC, and SI-MWVC
perform worse than the TM algorithm, since they detect all read-write conflicts that
may appear during the execution of the benchmark. On the other hand, without the
promotion of the dangerous reads, the SI algorithm is faster than the TM algorithm,

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

65:20 H. Litz et al.

demonstrating the effectiveness of SI in high contended workloads. Pagerank and
Social Graph can both translate reduced abort rates into higher performance. In the
specific case of Pagerank, the optimized promotion SI variants have similar execution
time as the SI baseline, and are 3x faster than the TM algorithm.

In Genome, read promotion has no noticeable impact on performance for all three
promotion strategies. The SI variants show an 8x performance increase over TM.

7. RELATED WORK

In the field of transactional memory, SI has been applied by Riegel et al. [2006], Dias
et al. [2011], and Litz et al. [2014]. The detection of SI anomalies in TM programs
was first approached by Dias et al. [2012], who propose a static analysis technique
to identify possible SI anomalies that can then be manually corrected in the source
code. To the best of our knowledge, our work represents the first proposal of automatic
correction of SI anomalies in TM programs.

The serialization anomalies introduced by the use of SI are a well studied topic in
the database community. In particular, the seminal work of Fekete et al. [2005] laid
the foundation for developing systematic approaches to the detection of SI anomalies
in database applications. The work presents the theory of SI anomaly detection and a
syntactic analysis to detect SI anomalies for the database setting. The proposed analy-
sis is informally described and applied to the database benchmark TPC-C [Transaction
Processing Performance Council 2010]. A sequel of that work [Jorwekar et al. 2007]
describes a prototype that is able to automatically analyze database applications.

Regarding the correction of SI anomalies, two different lines of research were followed
by the community: offline correction of anomalies and online prevention of anomalies.
The offline correction techniques resolve SI anomalies at compile time. Therefore, the
approaches identify anomalies a priori using dynamic or static analysis methods and
correct them either by modifying the source code of the application or by executing
a subset of the transactions in a stronger isolation level. The work described in this
article fits in this category. Two approaches for offline SI-anomaly correction have been
presented by Fekete et al. [2005]. The first one is based on the injection of a dummy
write operation on a specific data item common to all transactions that participate in
the SI anomaly. The second approach is based on the promotion of read operations,
as we perform in our work. The promotion of a read operation allows the operation to
become part of the transaction validation process, thus it will force a conflict with any
write operation on the same data item. In both techniques, the decision of where to
inject the dummy writes, or which read operations are promoted, is left to the devel-
oper. Our approach improves on those techniques by performing the read promotion
automatically. Furthermore, we determine the minimal subset of read operations that
need to be promoted.

Jorwekar et al. [2007] define the problem of selecting the subset of transactions that
need to be modified in order to remove the existing dangerous structures, thus avoiding
all SI anomalies. In our work, we present several algorithms to tackle this problem
by using a novel read dependency graph representation in which the focus is on read
locations rather than on transactions. Alomari et al. [2008] present a comparative
study on the performance impact imposed by the different correction techniques. They
use a small benchmark to compare the performance overhead imposed by using either
the materialization, promotion, or running under serializable approaches. In our work,
we evaluate the different correction strategies using micro-, medium-, and macro-sized
TM benchmarks. While it is impractical to apply offline techniques to transactional
database systems that need to support ad-hoc queries, for TM applications, the set
of transactions is usually defined at compile time—although there are exceptions,
including self-modifying code and dynamically typed languages.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:21

The online prevention of anomalies is characterized by preventing the anomalies from
occurring during the execution of the program. This requires tracking of dynamic de-
pendencies between transactions and applying lightweight decision procedures when-
ever the transactions need to commit. Cahill et al. [2008], Revilak et al. [2011], Jung
et al. [2011], and Ports and Grittner [2012] follow this approach and guarantee serializ-
ability in centralized, or replicated, databases while using an SI implementation. This
approach introduces nonnegligible overheads, which are tolerable in I/O-constrained
database systems but less so in latency-sensitive TM systems.

Apart from SI, there are other TM systems that relax consistency to improve per-
formance. DATM [Ramadan et al. 2008], SONTM [Aydonat and Abdelrahman 2010],
Wait-n-GoTM [Jafri et al. 2013] as well as OmniOrder [Qian et al. 2014] are systems
that implement conflict serializability. These systems check additional dependencies to
commit transactions in the presence of certain conflicts. The set of transaction histories
supported by CS neither includes, nor is included in, the set of transaction histories of
SI [Normann and Østby 2010] and both SI and CS use different notions for dependency
[Litz et al. 2014]. In particular, SI never aborts read-only transactions, whereas in CS
this is possible. One further advantage of SI is that snapshots are isolated from writes
even after the writes have been committed. It has been shown that SI reduces aborts
and improve performance over CS [Litz et al. 2014].

8. CONCLUSION

Snapshot Isolation is the default consistency mechanism of all major database systems
as it avoids read locks and generally provides the best performance of the established
consistency models. Nevertheless, SI has been almost ignored by the TM community.
The premise of this work is that programmers will be prepared to deal with a relaxed
memory consistency of SI in exchange for higher concurrency and performance if there
is a practical means to detect and correct SI anomalies. SI permits the write-skew and
SI read-only anomalies, which exacerbates reasoning about application correctness. In
this article, we show that it is feasible to automatically detect and correct SI anomalies
in a wide variety of applications written to use SI transactions. In particular, we have
shown that: (1) dynamic analysis provides a feasible tool to detect the exact locations of
SI anomalies in TM programs; (2) choosing the best set of read operations for promotion
is important; and (3) automatically corrected SI transactions maintain performance
benefits over conventional TM systems. Particularly, we show a 50x reduction in aborts
and 4x increase in performance for certain benchmarks.

There is a long history of trading consistency for performance in computer sys-
tems. Examples include sequential consistency in distributed systems, contemporary
multicore systems that have dropped sequential consistency for multithreaded applica-
tions, and recent non-ACID compliant NoSQL databases. The success of such systems
depends on the balance of performance benefits and the increase in programming
complexity. We believe it is time to reconsider the trade-off between performance and
consistency for TM. SI provides significant performance gains for a broad range of
applications, while our technique enables programmers to correct applications auto-
matically with minimal performance impact.

REFERENCES

Mohammad Alomari, Michael Cahill, Alan Fekete, and Uwe Rohm. 2008. The cost of serializability on
platforms that use snapshot isolation. In Proceedings of the 2008 IEEE 24th International Confer-
ence on Data Engineering (ICDE’08). IEEE Computer Society, Washington, DC. DOI:http://dx.doi.org/
10.1109/ICDE.2008.4497466

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

http://dx.doi.org/10.1109/ICDE.2008.4497466
http://dx.doi.org/10.1109/ICDE.2008.4497466

65:22 H. Litz et al.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and S. Lie. 2005. Unbounded transactional mem-
ory. In Proceedings of the 11th International Symposium on High-Performance Computer Architecture
(HPCA’05). IEEE.

Mohammad Ansari, Christos Kotselidis, Kim Jarvis, Mikel Luján, Chris Kirkham, and Ian Watson. 2008.
Lee-TM: A non-trivial benchmark for transactional memory. In Proceedings of the 7th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’08). LNCS, Springer.

Utku Aydonat and Tarek Abdelrahman. 2008. Serializability of transactions in software transactional mem-
ory. In Proceedings of the 2nd ACM SIGPLAN Workshop on Transactional Computing.

Utku Aydonat and Tarek S. Abdelrahman. 2010. Hardware support for relaxed concurrency control in
transactional memory. In Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO’10). IEEE.

Reuven Bar-Yehuda and Shimon Even. 1981. A linear-time approximation algorithm for the weighted vertex
cover problem. Journal of Algorithms 2, 2, 198–203.

Hal Berenson, Phil Bernstein, Jim N. Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. 1995. A critique
of ANSI SQL isolation levels. In Proceedings of the 1995 ACM SIGMOD International Conference on
Management of Data (SIGMOD’95).

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008. The PARSEC benchmark suite:
Characterization and architectural implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques. ACM Press, New York, NY, 72–81.

Jayaram Bobba, Neelam Goyal, Mark D. Hill, MMichael M. Swift, and David A. Wood. 2008. Tokentm: Effi-
cient execution of large transactions with hardware transactional memory. In ACM SIGARCH Computer
Architecture News. IEEE Computer Society.

Michael J. Cahill, Uwe Röhm, and Alan D. Fekete. 2008. Serializable isolation for snapshot databases. In
Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data (SIGMOD’08).
ACM, New York, NY, 729–738. DOI:http://dx.doi.org/10.1145/1376616.1376690

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008. STAMP: Stanford trans-
actional applications for multi-processing. In Proceedings of the IEEE International Symposium on
Workload Characterization (IISWC’08).

Luis Ceze, James Tuck, Josep Torrellas, and Calin Cascaval. 2006. Bulk disambiguation of speculative
threads in multiprocessors. ACM SIGARCH Computer Architecture News 34, 2, 227–238.

JaeWoong Chung, Chi Cao Minh, Austen McDonald, Travis Skare, Hassan Chafi, Brian D Carlstrom,
Christos Kozyrakis, and Kunle Olukotun. 2006. Tradeoffs in transactional memory virtualization. In
ACM SIGARCH Computer Architecture News, Vol. 34. ACM, New York, NY, 371–381.

Kenneth L. Clarkson. 1983. A modification of the greedy algorithm for vertex cover. Inform. Process. Lett.
16, 1, 23–25.

Ricardo J. Dias, Dino Distefano, João C. Seco, and João M. Lourenc̨o. 2012. Verification of snapshot isolation
in transactional memory java programs. In ECOOP 2012—Object-Oriented Programming (Lecture Notes
in Computer Science), James Noble (Ed.), Vol. 7313. Springer-Verlag, Berlin, 640–664.

Ricardo J. Dias, João M. Lourenc̨o, and Nuno M. Preguic̨a. 2011. Efficient and correct transactional memory
programs combining snapshot isolation and static analysis. In Proceedings of the 3rd USENIX Conference
on Hot Topics in Parallelism (HotPar’11). Usenix Association.

Dave Dice, Ori Shalev, and Nir Shavit. 2006. Transactional locking II. In Proceedings of the 20th International
Conference on Distributed Computing (DISC’06). Springer-Verlag, Berlin, 194–208. DOI:http://dx.doi.org/
10.1007/11864219_14

Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha. 2005. Making
snapshot isolation serializable. ACM Trans. Database Syst. 30, 2, 492–528.

Michael R. Garey and David S. Johnson. 1979. Computers and intractability. Vol. 174. Freeman, New York,
NY.

Rachid Guerraoui, Michal Kapalka, and Jan Vitek. 2007. STMBench7: A benchmark for software transac-
tional memory. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Sys-
tems 2007 (EuroSys’07). ACM, New York, NY, 315–324. DOI:http://dx.doi.org/10.1145/1272996.1273029

Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom, John D. Davis, Ben Hertzberg, Manohar
K. Prabhu, Honggo Wijaya, Christos Kozyrakis, and Kunle Olukotun. 2004. Transactional memory
coherence and consistency. In Proceedings of the 31st AnnualInternational Symposium on Computer
Architecture (ISCA’04). IEEE Computer Society, Washington, DC, 102–113.

Maurice Herlihy and J. Eliot B. Moss. 1993. Transactional memory: Architectural support for lock-free
data structures. In Proceedings of the 20th Annual International Symposium on Computer Architecture
(ISCA’93). ACM, New York, NY, 289–300. DOI:http://dx.doi.org/10.1145/165123.165164

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

http://dx.doi.org/10.1145/1376616.1376690
http://dx.doi.org/10.1007/1186421914
http://dx.doi.org/10.1007/1186421914
http://dx.doi.org/10.1145/1272996.1273029
http://dx.doi.org/10.1145/165123.165164

Efficient Correction of Anomalies in Snapshot Isolation Transactions 65:23

Syed Ali Raza Jafri, Gwendolyn Voskuilen, and T. N. Vijaykumar. 2013. Wait-n-GoTM: Improving HTM
performance by serializing cyclic dependencies. ACM SIGARCH Computer Architecture News 41, 1,
521–534.

Sudhir Jorwekar, Alan Fekete, Krithi Ramamritham, and S. Sudarshan. 2007. Automating the detection of
snapshot isolation anomalies. In Proceedings of the 33rd International Conference on Very Large Data
Bases (VLDB’07). VLDB Endowment, Vienna, Austria, 1263–1274.

Hyungsoo Jung, Hyuck Han, Alan Fekete, and Uwe Röhm. 2011. Serializable snapshot isolation for replicated
databases in high-update scenarios. Proc. VLDB Endow. 4, 11, 783–794.

Ismail Kuru, Burcu Kulahcioglu Ozkan, Suha Orhun Mutluergil, Serdar Tasiran, Tayfun Elmas, and Ernie
Cohen. 2014. Verifying programs under snapshot isolation and similar relaxed consistency models. In
Proceedings of the 9th ACM SIGPLAN Workshop on Transactional Computing (TRANSACT’14).

Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, and Thomas H. Cormen. 2001. Introduction to
Algorithms. MIT Press, Cambridge, MA.

Heiner Litz, David Cheriton, John P. Stevenson, Amin Firoozshahian, and Omid Azizi. 2014. SI-TM: Reducing
transactional memory abort rates through snapshot isolation. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS’19).

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff Lowney, Steven Wallace,
Vijay Janapa Reddi, and Kim Hazelwood. 2005. PIN: Building customized program analysis tools with
dynamic instrumentation. In ACM SIGPLAN Notices, Vol. 40. ACM Press, New York, NY, 190–200.

Virendra J. Marathe, Michael F. Spear, Christopher Heriot, Athul Acharya, David Eisenstat, William N.
Scherer III, and Michael L. Scott. 2006. Lowering the overhead of nonblocking software transactional
memory. In Proceedings of the 1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware
Support for Transactional Computing (TRANSACT’06).

Intel Corporation. 2012. Chapter 8: Intel transactional synchronization extensions. In Intel Architecture
Instruction Set Extensions Programming Reference.

Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill, and David A. Wood. 2006. LogTM: Log-
based transactional memory. In Proceedings of the 12th International Symposium on High-Performance
Computer Architecture (HPCA-12). IEEE Computer Society, Austin, TX.

George L. Nemhauser and Leslie E. Trotter Jr. 1975. Vertex packings: Structural properties and algorithms.
Mathematical Programming 8, 1, 232–248.

Ragnar Normann and Lene T. Østby. 2010. A theoretical study of ’Snapshot Isolation’. In Proceedings of the
13th International Conference on Database Theory. ACM Press, New York, NY, 44–49.

Christos H. Papadimitriou and Kenneth Steiglitz. 1998. Combinatorial optimization: algorithms and com-
plexity. Courier Dover Publications, North Chelmsford, MA.

Leonard Brian Pitt. 1985. A simple probabilistic approximation algorithm for vertex cover. Yale University,
Department of Computer Science, New Haven, CT.

Dan R. K. Ports and Kevin Grittner. 2012. Serializable snapshot isolation in PostgreSQL. Proc. VLDB Endow.
5, 12, 1850–1861. http://dl.acm.org/citation.cfm?id=2367502.2367523.

Xuehai Qian, Benjamin Sahelices, and Josep Torrellas. 2014. OmniOrder: Directory-based conflict seri-
alization of transactions. In Proceedings of the 41st Annual International Symposium in Computer
Architecture (ISCA’14).

Ravi Rajwar and James R. Goodman. 2002. Transactional lock-free execution of lock-based programs. In
Proceedings of the 10th International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS’02). IEEE Computer Society.

Ravi Rajwar, Maurice Herlihy, and Konrad Lai. 2005. Virtualizing transactional memory. In Proceedings.
32nd International Symposium on Computer Architecture (ISCA’05). IEEE.

Hany E. Ramadan, Christopher J. Rossbach, and Emmett Witchel. 2008. Dependence-aware transac-
tional memory for increased concurrency. In Proceedings of the 41st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’08). IEEE Computer Society, Washington, DC, 246–257.
DOI:http://dx.doi.org/10.1109/MICRO.2008.4771795

Hany E. Ramadan, Indrajit Roy, Maurice Herlihy, and Emmett Witchel. 2009. Committing conflicting
transactions in an STM. In Proceedings of the 14th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’09). ACM, New York, NY, 163–172. DOI:http://dx.doi.org/
10.1145/1504176.1504201

Stephen Revilak, Patrick E. O’Neil, and Elizabeth J. O’Neil. 2011. Precisely serializable snapshot isolation
(PSSI). In Proceedings of the IEEE International Conference on Data Engineering (ICDE’11). 482–493.

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

http://dl.acm.org/citation.cfm?id$=$2367502.2367523
http://dx.doi.org/10.1109/MICRO.2008.4771795
http://dx.doi.org/10.1145/1504176.1504201
http://dx.doi.org/10.1145/1504176.1504201

65:24 H. Litz et al.

Torvald Riegel, Christof Fetzer, and Pascal Felber. 2006. Snapshot isolation for software transactional mem-
ory. In Proceedings of the 1st ACM SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing (TRANSACT’06).

Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and accurate microarchitectural simulation of
thousand-core systems. In Proceedings of the 40th Annual International Symposium in Computer Archi-
tecture (ISCA’13).

Satoshi Taoka and Toshimasa Watanabe. 2012. Performance comparison of approximation algorithms for
the minimum weight vertex cover problem. In Proceedings of the 2012 IEEE International Symposium
on Circuits and Systems (ISCAS’12). IEEE, 632–635.

S. Tomić, C. Perfumo, C. Kulkarni, A. Armejach, A. Cristal, O. Unsal, T. Harris, and M. Valero. 2009.
EazyHTM: Eager-lazy hardware transactional memory. In Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture. ACM Press, New York, NY, 145–155.

Transaction Processing Performance Council. 2010. TPC-C Benchmark, Revision 5.11.
Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. 2013. Performance evaluation of

intel&Reg; transactional synchronization extensions for high-performance computing. In Proceedings
of the International Conference for High Performance Computing, Networking, Storage and Analysis
(SC’13). ACM, New York, NY, Article 19, 11 pages. DOI:http://dx.doi.org/10.1145/2503210.2503232

Received May 2014; revised November 2014; accepted November 2014

ACM Transactions on Architecture and Code Optimization, Vol. 11, No. 4, Article 65, Publication date: December 2014.

http://dx.doi.org/10.1145/2503210.2503232

