
A Probabilistic Graphical Model-based Approach for
Minimizing Energy Under Performance Constraints

Nikita Mishra Huazhe Zhang John D. Lafferty Henry Hoffmann
University of Chicago

{nmishra,huazhe,hankhoffmann}@cs.uchicago.edu, lafferty@galton.uchicago.edu

Abstract
In many deployments, computer systems are underutilized
– meaning that applications have performance requirements
that demand less than full system capacity. Ideally, we would
take advantage of this under-utilization by allocating system
resources so that the performance requirements are met and
energy is minimized. This optimization problem is compli-
cated by the fact that the performance and power consump-
tion of various system configurations are often application –
or even input – dependent. Thus, practically, minimizing en-
ergy for a performance constraint requires fast, accurate es-
timations of application-dependent performance and power
tradeoffs.

This paper investigates machine learning techniques that
enable energy savings by learning Pareto-optimal power
and performance tradeoffs. Specifically, we propose LEO,
a probabilistic graphical model-based learning system that
provides accurate online estimates of an application’s power
and performance as a function of system configuration. We
compare LEO to (1) offline learning, (2) online learning, (3)
a heuristic approach, and (4) the true optimal solution. We
find that LEO produces the most accurate estimates and near
optimal energy savings.

This work was funded by the U.S. Government under the DARPA PER-
FECT program, the Dept. of Energy under DOE DE-AC02-06CH11357,
NSF grant IIS-1116730 and ONR grant N000141210762. The views and
conclusions contained herein are those of the authors and should not be in-
terpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14-18, 2015, Istanbul, Turkey..
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694373

Categories and Subject Descriptors
C.4 [Modeling Techniques]: Design Techniques; I.6.5 [Com-
puting Methodologies]: Model Development—Modeling
methodologies

General Terms
Design, Experimentation, Measurement, Performance

Keywords
Adaptation; Dynamic systems; Statistics; Probabilistic Graph-
ical models; Energy minimization.

1. Introduction
This paper addresses two trends in modern computing sys-
tems. First, energy is increasingly important; reducing en-
ergy consumption reduces operating costs in datacenters and
increases battery life in mobile devices. Second, computer
systems are often underutilized, meaning there are signif-
icant portions of time where application performance de-
mands do not require the full system capacity [3, 41].

These two trends raise the problem of allocating available
resources to meet the current performance demand while
minimizing energy consumption. This problem is a con-
strained optimization problem. The current utilization level
represents a performance constraint (i.e.,an amount of work
that must be completed in a given time); system energy con-
sumption represents the objective function to be minimized.

This problem is challenging because it requires a great
deal of knowledge to solve. More than knowledge of the
single fastest, or most energy efficient system configuration
solving this problem requires knowledge of the power and
performance available in all configurations and the extrac-
tion of those configurations that represent Pareto-optimal
tradeoffs. Acquiring this knowledge is additionally compli-
cated by the fact that these power/performance tradeoffs
are often application – or even input – dependent. Thus,
there is a need for techniques that accurately estimate these
application-dependent parameters during run-time.

Machine learning techniques represent a promising ap-
proach to addressing this estimation problem. Offline learn-
ing approaches collect profiling data for known applications

267

http://crossmark.crossref.org/dialog/?doi=10.1145%2F2694344.2694373&domain=pdf&date_stamp=2015-03-14

and use that to predict optimal behavior for unseen applica-
tions (examples include [10, 33, 35, 50, 59]). Online learn-
ing approaches use information collected while an applica-
tion is running to quickly estimate the optimal configura-
tion (examples include [1, 34, 37, 40, 44, 45, 52]). Offline
methods require minimal runtime overhead, but suffer be-
cause they estimate only trends and cannot adapt to particu-
lars of the current application. Online methods customize to
the current application, but cannot leverage experience from
other applications. In a sense, offline approaches are depen-
dent on a rich training set that represents all possible behav-
ior, while the online approaches generate a statistically weak
– i.e.,inaccurate – estimator due to small sample size.

In this paper, we present LEO (Learning for Energy Op-
timization), a learning framework that combines the best of
both worlds, i.e.,the statistical properties both offline and on-
line estimation. We assume that there is some set of appli-
cations for which the power and performance tradeoffs are
gathered offline. LEO uses a graphical model to integrate a
small number of observations of the current application with
knowledge of the previously observed applications to pro-
duce accurate estimations of power and performance trade-
offs for the current application in all configurations. LEO’s
strength is that it quickly matches the behavior of the current
application to a subset of the previously observed applica-
tions. For example, if LEO has previously seen an applica-
tion that only scales to 8 cores, it can use that information to
quickly determine if the current application will be limited
in its scaling.

LEO is a fairly general approach in that it supports many
types of applications with different resource needs. It is not,
however, appropriate for all computer systems, especially
ones, which run many small, unique jobs. Instead, it focuses
on supporting systems that 1) execute longer running jobs
(in the 10s of seconds) or many repeated instances of short
jobs, 2) run at a wide range of utilizations, and 3) might
have phases where optimal tradeoffs may change online. For
systems that meet these criteria, LEO provides a powerful
ability to reduce the energy consumption. For systems that
service short (< 1 second), largely unique jobs, LEO will
work, but other approaches are probably better matched to
those specific needs.

We have implemented LEO on a Linux x86 server and
tested its ability to minimize energy for 25 different applica-
tions from a variety of different benchmark suites. We first
compare LEO’s performance and power prediction accuracy
to (1) the true value, (2) an offline approach, and (3) an on-
line approach (See Section 6.2). On average, LEO is within
97% of the true value while the offline and online approaches
only achieve 79% and 86% accuracy, respectively. We then
use LEO to minimize energy for various performance re-
quirements (or system utilizations) (See Section 6.4). Over-
all we find that our approach is within 6% of the true opti-
mal energy, while the offline approach exceeds optimal en-

ergy consumption by 29% and online approach by 24%. Fi-
nally, we show that LEO provides near optimal energy sav-
ings when adapting to phases within an application.

This paper makes the following contributions:
• To the best of our knowledge, this is the first application

of probabilistic graphical models for solving crucial sys-
tem optimization problems such as energy minimization.

• It presents a graphical model capable of accurately es-
timating the application-specific performance and power
of computer system configurations without prior knowl-
edge of the application. (See Section 5).

• It makes the source code for this learning system avail-
able in both Matlab and C++1.

• It evaluates LEO on a real system. (See Section 6).
• It compares the accuracy of LEO’s estimations to both

the truth and to offline and online learning approaches
(See Section 6.3).

• It integrates LEO into a runtime for energy optimization
and finds this learning framework achieves near-optimal
energy savings. Furthermore, LEO significantly reduces
energy compared to both offline and online approaches
as well as the popular race-to-idle heuristic. (See Sec-
tion 6.4).
The rest of the paper is organized as follows. Section 2

provides a motivational example to build intuition. Section 3
presents notation. Section 4 formalizes the energy mini-
mization problem as a linear program and discusses the
application-specific parameters of this problem. Section 5
elaborates our probabilistic graphical model and describes
LEO in full detail. Section 6 presents empirical studies on
LEO. Related work is discussed in Section 7 and the paper
concludes in Section 8.

2. Motivational Example
This section presents an example to motivate LEO and build
intuition for the formal models presented subsequently. We
consider energy optimization of the Kmeans benchmark
from Minebench [43]. Kmeans is a clustering algorithm used
to analyze large data sets. For this example, we run on a 16-
core Linux x86 server with hyperthreading (allowing up to
32 cores to be allocated)2. We assume that Kmeans may be
run with different performance demands and we would like
to minimize energy for any given performance demand. To
do so for Kmeans on our 32-core system we must estimate its
performance and power as a function of the number of cores
allocated to the application. Given this information, we can
easily select the most energy efficient number of cores to use
for any performance demand.

To illustrate the benefits of LEO, we will compare it with
three other approaches: a heuristic, offline learning, and on-
line learning. The heuristic uses the well know race-to-idle

1 leo.cs.uchicago.edu
2 Our full system evaluation tests more parameters than simply core alloca-
tion. See Section 6 for details.

268

(a) (b) (c)

Figure 1. Power estimation for Kmeans clustering application using LEO, Online and Offline algorithms. The estimations are
made using only 6 observed values (Cores) out of 32.

strategy – simply allocating all resources (cores, clockspeed,
etc.) to Kmeans and then idling the system once the applica-
tion completes. The offline learning approach builds a statis-
tical model of performance and power for each configuration
based on prior measurements of other applications. The on-
line approach uses polynomial regression to learn the trade-
offs for each configuration while Kmeans is running. (More
details on the specifics of these approaches can be found in
Section 6.2).

Each of these three approaches has their limitations. The
heuristic approach simply assumes that the most energy effi-
cient configuration is the one where all the system resources
are in use, but that has been shown to be a poor assumption
for this type of application [21, 41]. The offline approach
predicts average behavior for a range of applications, but it
may be a poor predictor of specific applications (Kmeans,
in this case). The online approach will produce a good pre-
diction if it takes a sufficient number of samples, but the re-
quired number of samples may be prohibitive.

LEO combines the best features of both the offline and
online approaches. At runtime, it changes core allocation
(using process affinity masks), observes the power and per-
formance, and combines this data with that from previously
seen applications to obtain the most probable estimates
for other unobserved cores. The key advantage of LEO’s
graphical model approach is that it quickly finds similari-
ties between Kmeans and previously observed applications.
It builds its estimation not from every previous application,
but only those that exhibit similar performance and power
responses to core usage. This exploitation of similarity is
the key to quickly producing a more accurate estimate than
either strictly online or offline approaches.

Figure 1 shows the results for this example. Figure 1a
shows each approach’s performance estimates as a func-
tion of cores, while Figure 1b shows the estimate of power
consumption. These runtime estimates are then used to de-
termine the minimal energy configuration for various sys-
tem utilizations. Figure 1c shows the energy consumption
data where higher utilizations mean more demanding per-

formance requirements. As can be seen in the figures, LEO
is the only estimation method that captures the true behav-
ior of the application and this results in significant energy
savings across the full range of utilizations.

Learning the performance for Kmeans is hard because
the application scales well to 8 cores, but its performance
degrades sharply with more. It is quite challenging to find
the peak without exploring every possible number of cores.
We observe the power and performance at 6 uniformly dis-
tributed values (5, 10, · · · , 30 cores). The offline learning
method predicts the highest performance at 32 cores because
that is the general trend over all applications. The online
method predicts peak performance at 24 cores, so it learns
that performance degrades, but requires many more samples
to correctly place the peak. LEO – in contrast – leverages its
prior knowledge of an application whose performance peaks
with 8 cores. Because LEO has previously seen an applica-
tion with similar behavior, it is able to quickly realize that
Kmeans follows this pattern and LEO produces accurate es-
timates with just a small number of observations.

The next three sections formalize this example. Section 3
describes the notation we will use. Section 4 presents a gen-
eral formalization of this energy minimization problem for
any configurable system (not just cores). Section 5 presents
the technical description of how LEO incorporates online
and offline approaches to find similar applications and pro-
duce accurate runtime estimates of power and performance.

3. Notations
The set of real numbers is denoted by R. Rd denotes the
set of d-dimensional vectors of real numbers; Rd×n denotes
the set of real d × n dimensional matrices. We denote the
vectors by lower-case and matrices with upper-case bold-
faced letters. The transpose of a vector x (or matrix X) is
denoted by xT or just x′. ‖x‖2 is the L2 norm of vector x,

i.e. x =
√∑d

i=1 x
2[i]. ‖X‖F is the Frobenius norm of ma-

trix X; i.e.,‖X‖F =
√∑d

i=1

∑n
i=1X

2[i][j]. Let A ∈ Rd×d

denote a d-dimensional square matrix. tr(A) is the trace of

269

the matrix A and is given as, tr(A) =
∑d

i=1 A[i][i]. And,
diag(x) is a d-dimensional diagonal matrix B with the di-
agonal elements given as, B[i][i] = x[i] and off-diagonal
elements being 0.

We now review the standard statistical notation used be-
low. Let x,y denote any random variables in Rd. The no-
tation x ∼ D represents that x is drawn from the distribu-
tion D. Similarly, the notation x,y ∼ D represents that x
and y are jointly drawn from the distribution D, and finally
x|y ∼ D represents that x is drawn from the distribution
after observing (or conditioned on) the random variable y.
The following are the operators on x: E[x] : expected value
of x, var[x] : variance of x, Cov[x,y] : covariance of x and
y. x̂ denotes the estimated value for the random variable x.

4. Energy Minimization
This section formalizes the problem of minimizing an ap-
plication’s energy consumption for some performance con-
straint; i.e.,work that should be accomplished by a particular
deadline. We assume a configurable system where each con-
figuration has different application-specific performance and
power characteristics. Our aim is to select the configuration
that finishes the work by the deadline while minimizing the
energy consumption.

Formally, the application must accomplish W work
units in time T . The system has a set of configurations
(e.g.,combinations of cores and clockspeeds) denoted by C.
Assuming that each configuration c ∈ C has an application-
specific performance (or work rate) rc and power consump-
tion pc, then we formulate the energy minimization problem
as a linear program in Equation (1):

min
t≥0

∑
c∈C

pctc,

subject to
∑
c∈C

rctc = W,∑
c∈C

tc ≤ T.

(1)

where pc: Power consumed when running on cth configura-
tion; rc: Performance rate when running on cth configura-
tion; W : Work that needs to be done by the application; tc:
Time spent by the application in cth configuration; T : Total
run time of the application. The linear program above finds
the times tc during which the application runs in the cth con-
figuration so as to minimize the total energy consumption
and ensure all work is completed by the deadline. The val-
ues pc and rc are the key to solving this problem. If they are
known, the structure of this linear program allows the mini-
mal energy schedule to be found using convex optimization
techniques [6].

This formulation is abstract so that it can be applied to
many applications and systems. To help build intuition, we
relate it to our Kmeans example. For Kmeans the workload

is the number of samples to cluster. The deadline T is the
time by which the clustering must be completed. Configu-
rations represent assigning Kmeans different resources. In
Section 2, we restricted configurations to be assignment of
cores. In Section 6, we will expand configurations to include
assignment of cores, clockspeed, memory controllers, and
hyperthreads. For Kmeans, each assignment of resources re-
sults in a different rate of computation (points clustered per
time) and power consumption.

Unfortunately, power and performance are entirely appli-
cation dependent. For many applications, these values also
vary with varying inputs. Hence, for any new application in
use we do not know the values of these coefficients. One
way to solve the problem would be run this new applica-
tion on each configuration in a brute force manner. But, as
we pointed out earlier, we might have very large number
of configurations and the brute force approach may not be
tractable. Alternatively, we can just run the application in
small subset of configurations and use these measurements
to estimate the behavior of unmeasured configurations. We
might also consider using the data from other applications
from the same system to estimate these parameters (we can
collect this data offline). The question now is how do we
utilize this data to find our estimates. One simple yet clever
thing would be to simply take a mean of pc (similarly for
rc) across all the applications. Now, this offline method will
work well for any application that follows the general trend
exhibited by all prior applications. Another quick solution
could be to just use the small subset of collected sample and
run a multivariate polynomial regression on the configura-
tion parameters vs pc (or rc) to predict power (performance)
in all other configurations. This online method might not
work for all the applications s because they might have local
minima or maxima that are not captured by a small sample.
In the next section, Section 5 we give details of LEO, our
solution to this problem which uses both the data from the
current application and previously seen applications for fast,
accurate estimates.

5. Modeling Power and Performance
5.1 Introduction to Probabilistic Graphical Models
We present an introduction to graphical models in general
before we delve into the details of LEO specifically. Directed
graphical models (or Bayesian networks) are a type of graph-
ical model capturing dependence between random variables.
Each node in these models denotes a random variable and the
edges denote a conditional dependence among the connect-
ing nodes. The nodes which have no edges connecting them
are conditionally independent. By convention shaded nodes
denote an observed variable (i.e.,one whose value is known),
whereas the unshaded ones denote an unobserved variable.
In Figure 2a, variables A and B are dependent on C. If C is
observed, A and B would be independent in Figure 2b.

270

Figure 2. Conditional dependence in Bayesian Model.

The dependence structure in Bayesian networks can be
understood using a coin flipping example with a biased coin.
Suppose A represents the outcome of the first coin flip,
B represents that of second coin flip and C represents the
coin’s bias. Suppose we know this bias is P (Heads) = 0.7,
then both the flips are independent — irrespective of the
first flip the second flip gives heads with probability 0.7.
If the bias is unknown, however, then the value of B is
conditionally dependent on A. Thus, knowing that A =
Heads increases belief that the bias is towards Heads – that
C > 0.5. Therefore, the probability that the second coin flip
gives Heads (i.e.,B = Heads) increases.

LEO exploits this conditional dependence in the presence
of hidden, or unobserved, random variables. LEO models
the performance and power consumption of every system
configuration as a random variable drawn from a Gaussian
probability distribution with unknown mean and standard
deviation. Therefore, previously observed applications will
condition LEO’s estimations of the performance and power
for new, unobserved applications.

5.2 Hierarchical Bayesian Model
Hierarchical Bayesian Models are slightly more complex
Bayesian networks, usually with more than one layer of hid-
den nodes representing unobserved variables. LEO utilizes
these hidden nodes to improve its estimates for a new appli-
cation using prior observations from other applications. The
intuition is that knowing about one application should help
in producing better predictors for other applications. In our
examples, learning about one biased coin flip should tell us
something about another. Similarly, learning about another
application that scales up to 8 cores should tell us something
about Kmeans. LEO utilizes this conditional dependence in
the problem of performance and power prediction for an ap-
plication using other applications. LEO’s model is explained
in the figure Figure 3,

Suppose we have n = |C| configurations in our system.
We have a target application whose energy we wish to min-
imize, while meeting a performance requirement (as in (1)).
Additionally, we have a set ofM−1 applications whose per-

formance and power are known (as they have been measured
offline).

We will illustrate how LEO estimates power as a func-
tion of system configuration. The identical process is used
to estimate performance. Let the vector yi ∈ Rn represent
the power estimate of application i in all n configurations
of the system; i.e.,the cth component of yi is the power for
application i in configuration c (or yi[c] = pc). Also, let
{yi}Mi=1 be the shorthand for the power estimates for all ap-
plications. Without loss of generality, we assume that the
first M − 1 columns, i.e.,{yi}M−1i=1 represent the data for
those applications whose power consumption is known (this
data is collected offline). The M th column, yM represents
the power consumption for the new, unknown application.
We have some small number of observations for this applica-
tion. Specifically, for the M th application we have observed
configurations belonging to the set ΩM where |ΩM | � n;
i.e.,we have a very small number of observations for this ap-
plication. Our objective is to estimate the power for applica-
tion M for all configurations that we have not observed. The
model is described in terms of statistical equations below,

yi|zi ∼ N(zi, σ
2I),

zi|µ,Σ ∼ N(µ,Σ),

µ,Σ ∼ N(µ0,Σ/π)IW (Σ|ν,Ψ),

(2)

where yi ∈ Rn, zi ∈ Rn, µ ∈ Rn, Σ ∈ Rn×n.
It describes that the power (denoted by yi) for each of the
ith application, is drawn from multivariate-Gaussian distri-
bution with mean zi and a diagonal covariance matrix σ2I.
Similarly, zi is from multivariate-Gaussian distribution with
mean µ and covariance Σ. And, µ and Σ are jointly drawn
from normal-inverse-Wishart distribution with parameters
µ0, π,Ψ, ν. The parameters for our model are µ,Σ, whereas,
µ0, π,Ψ, ν are the hyper-parameters, which we set as µ0 =
0, π = 1,Ψ = I, ν = 1.

The first layer in this model as described in Figure 3, is
the filtration layer and accounts for the measurement error
for each application. Interestingly, even if we have just a sin-
gle measurement of each configuration for each application,
this layer plays a crucial role as it creates a shrinkage effect.
The shrinkage effect penalizes large variations in the appli-
cation and essentially help in reducing the risk of the model
(See [15] for shrinkage effect and [42] for shrinkage in hier-
archical models). The second layer on the other hand binds
the variable zi for each application and enforces that they
are drawn from the same distribution with unknown mean
and covariance. We work with a normal-inverse-Wishart dis-
tribution as described in [19] as our hyper prior on µ,Σ,
since this distribution is the conjugate prior for a multivari-
ate Gaussian distribution. Thus, we essentially have a normal
means model at the first level of our hierarchy for each of the
different apps and we have a Gaussian prior on the parameter
of this model. Now, if the mean µ, covariance Σ and noise
σ were known, yi are conditionally independent given these

271

Figure 3. Hierarchical Bayesian Model.

parameters. Since they are unknown we have introduced a
dependence amongst all the yis. This is a similar situation
to our coin flipping example in Figure 2, where the value of
one coin influences our prediction about the other coin. Σ
captures the correlation between different configurations as
depicted in Figure 4.

We use θ = {µ,Σ, σ} to denote the unknown parame-
ters in the model. It can be shown that yM is Gaussian given
θ (See [60]). Thus, the problem boils down to estimating
θ. Maximum-likelihood estimators are the set of values of
the model parameters that maximizes the likelihood function
(or the probability function of the observed outcomes given
the parameter values). Essentially, the maximum-likelihood
estimates of parameters are those values which most agree
with the model. Suppose φ(y) is the set of the observed en-
tries in vector y. Ideally, we would like to find the maximum
likelihood estimate of the parameter θ by maximizing the
probability of yM conditioned on φ(yi)

M
i=1 and then use the

expectation of yM given φ(yi)
M
i=1 and θ̂ and as our estima-

tor for yM . Due to the presence of latent variables (layer
1 and layer 2 in Figure 3) , we do not have a closed form
for Pr(yM |{φ(yi)}Mi=1, θ) and we have to resort to the itera-
tive algorithms like Expectation Maximization algorithm to
solve this problem.

5.3 Expectation Maximization Algorithm
The EM (Expectation Maximization) algorithm is a popu-
lar approach in statistics for optimizing over analytically in-
tractable problems. The EM algorithm switches between two
steps: expectation (E) and maximization (M) until conver-
gence. During the E step, a function for the expectation of
the log of the likelihood is found using the current estimate
for the parameters. In the M step, we compute parameters
maximizing the expected log-likelihood found on the E step.
These parameter estimates are then used to determine the
distribution of the latent variables in the next E step. We have

left out some details of the algebra here, but a more detailed
proof on similar lines can be found here [60].

As described earlier, Ωi is the set of observed indices
for ith application. Let L denote the indicator matrix with
L(i, j) = 1 if j ∈ Ωi and 0 otherwise. That is, L(i, j) = 1
if we have observed application i in system configuration
j. We are using Li for L(:, i) for ith application for shorter
notation. We can write the expectation and covariance for zi
given θ as following,

Cov(zi) =

(
diag(Li)

σ2
+ Σ−1

)−1
and

E(zi) = Ĉi

(
diag(Li)yi

σ2
+ Σ−1µ

)
.

(3)

We use Ĉi as shorthand for Cov(zi) and ẑi denotes
E(zi). Later, we maximize log-likelihood w.r.t. θ and tak-
ing derivative w.r.t. Σ, σ and µ and setting them to 0 gives,

µ =
1

M + π

M∑
i=1

ẑi,

Σ =
1

M + 1

(
M∑
i=1

Ĉi + (ẑi − µ)(ẑi − µ)′

)
+ πµµ′ + I,

σ2 =
1

‖L‖2F

M∑
i=1

tr
(

diag(Li)(Ĉ
′
i + (ẑi − yi)(ẑi − yi)

′)
)
,

(4)
LEO iterates over the E step (equation (3)) and M step

(equation (4)) until convergence to obtain the estimated pa-
rameters θ. Then, conditioned on those values of the param-
eters, LEO sets yM as E(zM |θ) given by (3). LEO uses the
same algorithm to estimate performance as well.

Given performance and power estimates, the energy min-
imization problem can be solved using existing convex opti-
mization techniques [24, 27, 36, 61]. LEO simply first take
the estimates, then finds the set of configurations that rep-
resent Pareto-optimal performance and power tradeoffs, and

272

Figure 4. A illustrative example of covariance Σ between
different configurations, in equation (2)

finally walks along the convex hull of this optimal tradeoff
space until the performance goal is reached. The configura-
tion representing this this point in the Pareto-optimal space
is the desired tradeoff.

5.4 Example
We illustrate how LEO can be applied to our running ex-
ample of Kmeans from Section 2. We have 32 configura-
tions (hence n = 32) corresponding to cores. We also have
24 other applications (hence M = 25) with all the data
for different configurations collected offline and denoted by
{yi}M−1i=1 ; yM denotes the power data for Kmeans. Refer-
ring to Figure 3, Kmeans is the final node, labeled “Target
Application,” whereas the rest of the applications would be
the remaining nodes in any order. LEO estimates zM , the
node above yM in Figure 3, which is an unbiased estimator
for yM . LEO collects data yM for 6 different configurations
(5, 10, · · · , 30 cores). Hence, ΩM = {5, 10, · · · , 30} and
yM [j] is known iff j ∈ ΩM . Also, Li or L(:, i) is an all one
vector of length n if i 6= M and L(j, i) = 1 if j ∈ ΩM and
L(j, i) = 0 otherwise.

Now, we describe the main steps of LEO. The algorithm
starts by setting some initialization for the parameter θ =
{µ,Σ, σ} and then evaluates equation (3) for each ith and
later uses these values of ẑi and Ĉi to evaluate equation
(4), which is fed back to expectation (3) and so on. This
alternating step between equation (3) and (4) runs until the
algorithm converges. The algorithm uses ẑM as the estimate
of Kmeans power (i.e.,pc = ẑM [c],∀c ∈ C in equation
(1)). Similarly, LEO estimates the performance rc. After the
estimation step the linear program in equation (1) is solved
to obtain the best configuration.

5.5 Discussion
The key to LEO is that it does not assume any parametric
function to describe how the power varies along the underly-
ing configuration knobs such as cores, memory controllers or
speed settings. The upside of this representation is that LEO

captures a much wider variety of applications, whereas the
downside is a higher computational load. LEO finds covari-
ance in the configurations and exploits these relationships to
estimate the data for each of the configurations (See Fig-
ure 4). We want to again point out how our modeling of
the problem is markedly different from some of the previ-
ous approaches (such as [12]), which assume that power and
performance are convex functions of the configuration knobs
and employ algorithms similar to gradient descent to find the
optimal configuration. While such methods work well for
most applications, it may not be suitable for more compli-
cated applications. In contrast, LEO assumes that there will
be many local minima and maxima in the functions mapping
system configuration to power and performance – LEO is
designed to be robust to the presence of local extrema, but
this property is achieved at a cost of higher computational
complexity.

We describe some of the properties of LEO. The EM
algorithm’s convergence is dependent on the initial model
[56]. We can initialize the algorithm randomly. Empirically,
however, we observe that the initialization of µ with the es-
timates from the online or offline approaches (given in Sec-
tion 6.2) improves LEO’s accuracy. Experimentally we have
observed that the algorithm converges quickly for our bench-
mark sets, generally requiring 3-4 iterations to reach the de-
sired accuracy. We discuss the overhead of LEO further in
Section 6.7.

6. Experimental Results
This section evaluates LEO’s performance and power esti-
mates, and its ability to use those estimates to minimize en-
ergy across a range of performance requirements. We be-
gin by describing our experimental setup and the approaches
to which we compare LEO. We discuss LEO’s accuracy for
performance and power estimates. We then show that LEO
provides near optimal energy savings using these estimates.
We conclude the evaluation with a sensitivity analysis show-
ing how LEO performs with respect to different sample sizes
and a measurement of LEO’s overhead.

6.1 Experimental Setup
Our test platform is a dual-socket Linux 3.2.0 system with a
SuperMICRO X9DRL-iF motherboard and two Intel Xeon
E5-2690 processors. We use the cpufrequtils package
to set the processor’s clock speed. These processors have
eight cores, fifteen DVFS settings (from 1.2 – 2.9 GHz),
hyper-threading, and TurboBoost. In addition, each chip has
its own memory controller, and we use the numactl library
to control access to memory controllers. In total, the sys-
tem supports 1024 user-accessible configurations, each with
its own power/performance tradeoffs3. According to Intel’s
documentation, the thermal design power for these proces-

3 16 cores, 2 hyperthreads, 2 memory controllers, and 16 speed settings (15
DVFS settings plus TurboBoost)

273

Figure 5. Comparison of performance (measured as speedup) estimation by different techniques for various benchmarks. On
an average (over all benchmarks), LEO’s accuracy is 0.97 compared to 0.87 and 0.68 for Online and Offline respectively. The
results are normalized with respect to the Exhaustive search method.

Figure 6. Comparison of power (measured in Watts) estimation by different techniques for various benchmarks. On an
average (over all benchmarks), LEO’s accuracy is 0.98 compared to 0.85 and 0.89 for Online approach and Offline approach
respectively. Again, the results are normalized with respect to the Exhaustive search method.

sors is 135 Watts. The system is connected to a WattsUp me-
ter which provides total system power measurements at 1s
intervals. In addition, we use Intel’s RAPL power monitor to
measure chip power for both sockets at finer-grain intervals.
We use 25 benchmarks from three different suites including
PARSEC (blackscholes, bodytrack, fluidanimate,
swaptions, x264) [4], Minebench (ScalParC, apr, semphy,
svmrfe, Kmeans, HOP, PLSA, non fuzzy kmeans

(Kmeansnf)) [43], and Rodinia (cfd, nn, lud,
particlefilter, vips, btree, streamcluster, backprop,
bfs) [8]. We also use a partial differential equation solver
(jacobi), a file intensive benchmark (filebound and the
swish++ search web-server [25]. These benchmarks test
a range of important multi-core applications with both
compute-intensive and i/o-intensive workloads. All the ap-
plications run with up to 32 threads (the maximum supported

in hardware on our test machine). In addition, all workloads
are long running, taking at least 10 seconds to complete.
This duration gives sufficient time to measure system behav-
ior. All applications are instrumented with the Application
Heartbeats library which provides application specific per-
formance feedback to LEO [22, 27]. Thus LEO is ensured of
optimizing the performance that matters to the application.
All performance results are then estimated and measured in
terms of heartbeats/s. In the Kmeans example, this metric
would represent the samples clustered per second.

To evaluate LEO quantitatively, we measure the accuracy
of the predicted performance and power values ŷ with re-
spect to the true data y is measured as,

accuracy(ŷ,y) = max

(
1− ‖ŷ − y‖22
‖y − ȳ‖22

, 0

)
. (5)

274

(a) (b) (c)

Figure 7. Examples of performance estimation using LEO. Performance is measured as application iterations (or heartbeats)
per second. (See Section 6.1).

(a) (b) (c)

Figure 8. Examples of power estimation using LEO. Power is measured as total system power.

6.2 Points of Comparison
We evaluate LEO in comparison to four baselines:
1. Race-to-idle – This approach allocates all resources to

the application and once it is finished the system goes to
idle. This strategy incurs almost no runtime overhead, but
may be suboptimal in terms of energy, since maximum
resource allocation is not always the best solution to the
energy minimization equation (1) [7, 21, 32].

2. Online – This strategy carries out polynomial multivari-
ate regression on the observed dataset using configuration
values (the number of cores, memory control and speed-
settings) as predictors, and estimates the rest of the data-
points based the same model. Then it solves the linear
program given by (1). This method uses only the obser-
vations and not the prior data.

3. Offline – This method takes the mean over the rest of
the applications to estimate the power and performance
of the given application and uses these predictions to
solve for minimal energy. This strategy only uses prior
information and we does not update based on runtime
observations.

4. Exhaustive search – This brute-force approach searches
every possible configuration to determine the true perfor-
mance, power, and optimal energy for all applications.

6.3 Power and Performance using LEO
We compare LEO’s estimates to the online, offline, and ex-
haustive search methods described in Section 6.2. We de-
ploy each of our 25 applications on our test system and esti-
mate performance and power. We allow LEO and the online
method to sample randomly select 20 configurations each.
Unlike online method, which only uses these 20 samples,
LEO utilizes these 20 samples along with all the data from
the other applications for the estimation purpose. For both
LEO and the online approach, we take the average estimates
produced over 10 separate trials to account for random vari-
ations. The offline approach does no sampling. The exhaus-
tive approach samples all 1024 configurations.

The performance and power estimation accuracies are
shown in Figure 5 and Figure 6, respectively. Each chart
shows the benchmarks on the x-axis and estimation accuracy
(computed using Equation 5) on the y-axis. Unity represents
perfect accuracy. As seen in these charts, LEO produces sig-
nificantly higher accuracy for both performance and power.
On average – across all benchmarks and all configurations
– LEO’s estimations achieve 0.97 accuracy for performance
and 0.98 for power. In contrast, the online approach achieves
accuracies of 0.87 and 0.85, while the offline approach’s ac-
curacies are 0.68 and 0.89. Even for difficult benchmarks

275

(a) (b) (c)

Figure 9. Pareto frontier for power and performance estimation using different estimation algorithms. We compare estimated
Pareto-optimal frontiers to the true frontier found with exhaustive search, providing insight into how LEO solves equation
(1). When the estimated curves are below optimal plots, it represents worse performance i.e. missed deadlines, whereas the
estimations above the optimal waste energy.

(a) (b) (c)

Figure 10. Energy consumption vs utilization for different estimation algorithms.

Figure 11. Comparison of average energy (normalized to optimal) by different estimation techniques for various benchmarks.
On an average (taken over all the benchmarks); LEO consumes 6% over optimal, as compared to the Online, Offline, and
Race-to-idle approaches, which respectively consume 24%, 29% and 90% more energy than optimal.

276

(like Kmeans), LEO produces accurate estimations despite
sampling less than 2% of the possible configuration space.

To further illustrate LEO, we include some individual
estimations for three representative applications: Kmeans,
Swish, and x264. Kmeans is the same application used in
our example (Section 2), now extended to consider all 1024
configurations of the test system. Swish is an open source
search web server. x264 is a video encoder. All three are
representative of our target applications: they are long run-
ning and they may be launched with different performance
demands. Furthermore, all three represent some unusual
trends: performance for Kmeans peaks at 8 cores, for Swish
it peaks at 16 cores, and for x264 it is (essentially) constant
after 16 cores.

Despite this behavior, LEO produces highly accurate es-
timates of performance (Figure 7) and power (Figure 8).
Each figure shows the configuration index on the x-axis and
the predicted performance (or power) on the y-axis. Each
chart shows both the estimated values and the measured data
points, but LEO is so accurate that it is hard to distinguish
the two. The figures (Figure 7 and Figure 8) are saw-tooth
in appearance since the speed settings vary from low to high
along the Configuration index multiple times. The saw-tooth
nature of the curves arises from two sources: (1) the extrema
that naturally arise (e.g.,response to cores) and (2) we have
flattened a multi-dimensional configuration space into the
configuration index. The number of memory controllers is
the fastest changing component of configuration, followed
by clockspeed, followed by number of cores. LEO captures
the peak performance configuration for all three applications
and it captures local minima and maxima. These accurate es-
timates of unusual behavior make LEO well-suited for use in
energy minimization problems.

6.4 Minimizing Energy
Our original goal, of course, is not just to estimate perfor-
mance and power, but to minimize energy for a performance
(or utilization) target. As described in Section 5.3, LEO uses
its estimates to form the Pareto-optimal frontier of perfor-
mance and power tradeoffs. Figure 9 shows the true con-
vex hull and those estimated by the LEO, Offline and On-
line approaches. Due to space limitations, we show only
the hulls for our three representative applications: Kmeans,
Swish, and x264. In these figures performance (measured as
speedup) is shown on the x-axis and system wide power con-
sumption (in Watts) on the y-axis. These figures clearly show
that LEO’s more accurate estimates of power and perfor-
mance produce more accurate estimates of Pareto-optimal
tradeoffs.

To evaluate energy savings, we deploy each application
with varying performance demands. Technically, we fix the
deadline and vary the workload W from Equation 1 so that
W ∈ [minPerformance,maxPerformance] for each
application. We test 100 different values for W – each rep-
resenting a different utilization demand from 1 to 100% –

(a) (b)
Figure 12. Sensitivity analysis of LEO and Online estima-
tion. Our baseline method (online regression) cannot per-
form below 15 samples because the design matrix of regres-
sion model would be rank deficient – effectively 0 accuracy.
On the other hand, with 0 samples, LEO behaves as the of-
fline method and its accuracy increases with the sample size
until it quickly reaches near optimal accuracy.

for each application. We then use each approach to estimate
power and performance and form the estimated convex hull
and select the minimal energy configuration.

Figure 10 shows the results for our three representative
benchmarks. Each chart shows the utilization demand on the
x-axis and the measured energy (in Joules) on the y-axis.
Each chart shows the results for the LEO, Online, and Of-
fline estimators as well as the race-to-idle approach and the
true optimal energy. As shown in these figures, LEO pro-
duces the lowest energy results across the full range of dif-
ferent utilization targets. LEO is always close to optimal and
outperforms the other estimators. Note that all approaches
do significantly better than race-to-idle. We repeat the above
experiment for all applications, then average the energy con-
sumption for each application across all utilization levels.
These results are shown in Figure 11, which displays the
benchmark on the x-axis and the average energy (normalized
to optimal) on the y-axis. On an average across all the appli-
cations, LEO does only 6% worse than optimal. In contrast,
Online, Offline and race-to-idle methods are 24% , 29% and
90% worse respectively. These results demonstrate that LEO
not only produces more accurate estimates of performance
and power, but that these estimates produce significant – near
optimal – energy savings.

6.5 Sensitivity to Measured Samples
One of the key parameters of LEO is the number of sam-
ples it must measure to produce an accurate estimate. All of
the above measurements were taken with the system config-
ured to sample 20 configurations. In this section, we inves-
tigate the effect of the number of configurations on the ac-
curacy of performance and power estimation. In Figure 12,
we show the accuracy (averaged over all benchmarks) for
performance (a) and power (b) estimation as a function of
sample size. We observe that LEO performs well with an
even smaller sample size, whereas the Online approach does
poorly for very small sample sizes.

277

6.6 Reacting to Dynamic Changes
This section shows that LEO can quickly react to changes in
application workload. In this section we run fluidanimate,
which renders frames, with an input that has two distinct
phases. Both phases must be completed in the same time,
but the second phase requires significantly less work. In
particular, the second phase requires 2/3 the resources of
the first phase. Our goal is to demonstrate that LEO can
quickly react to phase changes and maintain near optimal
energy consumption.

Table 1. Relative energy consumption by various algo-
rithms with respect to optimal.

Algorithm Phase#1 Phase#2 Overall
LEO 1.045 1.005 1.028

Offline 1.169 1.275 1.216
Online 1.325 1.248 1.291

The results of this experiment are shown in Figure 13.
Each chart shows time (measured in frames) on the x-axis.
Figure 13a shows performance normalized to real-time on
the x-axis, while Figure 13b shows power in Watts (subtract-
ing out idle power) on the y-axis. The dashed vertical line
shows where the phase change occurs. Each chart shows the
behavior for LEO, Offline, Online, and optimal approaches.

All approaches are able to meet the performance goal in
both phases. This fact is not surprising as all use gradient
ascent to increase performance until the demand is met. The
real difference comes when looking at power consumption,
however. Here we see that LEO again produces near optimal
power consumption despite the presence of phases. Further-
more, this power consumption results in near optimal energy
consumption as well, as shown in Table 1. These results indi-
cate that LEO produces accurate results even in dynamically
changing environments.

6.7 Overhead
The runtime takes several measurements, incurring minus-
cule sampling overhead. After collecting these samples, it
incurs a one-time cost of executing LEO. After executing
this algorithm, the models are sufficient for making predic-
tions and LEO does not need to be executed again for the life
of the application under control. This is the reason we be-
lieve LEO is best suited for long running applications which
may operate at a range of different utilizations. The one-time
estimation process is sufficient to provide accurate estimates
for the full range of utilizations (see Section 6.4).

Therefore, we measure overhead in two ways. First, we
measure the average time required to execute LEO on our
system. The average execution time is 0.8 seconds across
each benchmarks for each power and performance. Second,
we measure the average total system energy consumption
while executing the runtime, obtaining an energy overhead
of 178.5 Joules. These overheads are not trivial, and they in-

dicate (as stated in the introduction) that LEO is not appro-
priate for all deployments. For applications that run in the
10s of seconds to minutes or more, however, LEO’s over-
heads are easily amortized by the large energy savings it en-
ables. For comparison, the exhaustive search approach takes
more than 5 days to produce the estimates for semphy. For
the fastest application in our suite, HOP, exhaustive search
takes at least 3 hours.

7. Related Work
We discuss related work on energy and power optimiza-
tion. Offline optimization techniques have been proposed
(e.g.,[2, 10, 33, 35, 59], but they are limited by reliance on a
robust training phase. If behavior occurs online that was not
represented in the training data, then these approaches may
produce suboptimal results.

Several approaches augment offline model building with
online measurement. For example, many systems employ
control theoretic designs which couple offline model build-
ing with online feedback control [9, 24, 27, 36, 39, 46, 47,
51, 57, 61]. Over a narrow range of applications the combi-
nation of offline learning and control works well, as the of-
fline models capture the general behavior of the entire class
of application and require negligible online overhead. This
focused approach is extremely effective for multimedia ap-
plications [17, 18, 30, 39, 54] and web-servers [26, 38, 53].
The goal of LEO, however, is to build a more general frame-
work applicable to a broad range of applications. LEO’s ap-
proach is complementary to control based approaches. For
example, incorporating LEO into control-based approaches
might extend them to other domains even when the applica-
tion characteristics are not known ahead of time.

Some approaches have combined offline predictive mod-
els with online adaptation [11, 14, 48, 50, 55, 58, 62]. For
example, Dubach et al. propose such a combo for optimizing
the microarchitecture of a single core [14]. Such predictive
models have also been employed at the OS level to manage
system energy consumption [48, 50]. [58].

Other approaches adopt an almost completely online
model, optimizing based only on dynamic runtime feedback
[1, 34, 37, 44, 45, 52]. For example, Flicker is a configurable
architecture and optimization framework that uses only on-
line models to maximize performance under a power limi-
tation [44]. Another example, ParallelismDial, uses online
adaptation to tailor parallelism to application workload.

Perhaps the most similar approaches to LEO are others
that combine offline modeling with online model updates
[5, 16, 28]. For example, Bitirgen et al use an artificial neu-
ral network to allocate resources to multiple applications in a
multicore [5]. The neural network is trained offline and then
adapted online using measured feedback. This approach op-
timizes performance but does not consider power or energy
minimization.

278

(a) (b)

Figure 13. Power and performance for fluidanimate transitioning through phases with different computational demands.

Like these approaches, LEO combines offline model
building and with online model updates. Unlike prior ap-
proaches, LEO learns not a single best state, but rather all
Pareto-optimal tradeoffs in the power/performance space
(like those illustrated in Figure 9). These tradeoffs can be
used to maximize performance or to minimize energy across
an application’s entire range of possible utilization. There is
a cost for this added benefit: LEO’s online phase is likely
higher overhead than these prior approaches that focus only
on maximizing performance. In that sense, however, these
approaches complement each other. If fastest performance
is the goal, then prior approaches are likely the best option.
If the goal is to minimize energy for a range of possible
performance, then LEO produces near optimal energy.

8. Conclusion
This paper has presented LEO, a system capable of learning
Pareto-optimal power and performance tradeoffs for an ap-
plication running on a configurable system. LEO combines

some of the best features of both online and offline learning
approaches. Offline, LEO acquires knowledge about a range
of application behaviors. Online, LEO quickly matches the
observed behavior of a new application to previously seen
behavior from other applications to produce highly accu-
rate estimates of performance and power. We have imple-
mented LEO, made the source code available, and tested it
on a real system with 25 different applications exhibiting a
range of behaviors. Across all applications, LEO achieves
greater than 97% accuracy in its performance and power es-
timations despite only sampling less than 2% of the possi-
ble configuration space for an application it has never seen
before. These estimations are then used to allocate resources
and save energy. LEO produces energy savings within 6% of
optimal while purely Offline or Online approaches are both
over 24% of optimal. LEO’s learning framework represents
a promising approach to help generalize resource allocation
in energy limited computing environments and could be used
in conjunction with other control techniques to help develop
a self-aware computing system [13, 20, 23, 29, 31, 49].

279

References
[1] Jason Ansel, Maciej Pacula, Yee Lok Wong, Cy Chan, Marek

Olszewski, Una-May O’Reilly, and Saman Amarasinghe. Sib-
lingrivalry: online autotuning through local competitions. In
CASES, 2012.

[2] Jason Ansel, Yee Lok Wong, Cy Chan, Marek Olszewski,
Alan Edelman, and Saman Amarasinghe. Language and com-
piler support for auto-tuning variable-accuracy algorithms. In
CGO, 2011.

[3] L.A Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40(12):33–37, Dec 2007.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC
benchmark suite: Characterization and architectural implica-
tions. In PACT, 2008.

[5] Ramazan Bitirgen, Engin Ipek, and Jose F. Martinez. Coor-
dinated management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In MICRO,
2008.

[6] S.P. Bradley, A.C. Hax, and T.L. Magnanti. Applied mathe-
matical programming. Addison-Wesley Pub. Co., 1977.

[7] Aaron Carroll and Gernot Heiser. Mobile multicores: Use
them or waste them. In Proceedings of the Workshop on
Power-Aware Computing and Systems, HotPower ’13, pages
12:1–12:5, New York, NY, USA, 2013. ACM.

[8] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,
Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. Ro-
dinia: A benchmark suite for heterogeneous computing. In
IISWC, 2009.

[9] Jian Chen and Lizy Kurian John. Predictive coordination of
multiple on-chip resources for chip multiprocessors. In ICS,
2011.

[10] Jian Chen, Lizy Kurian John, and Dimitris Kaseridis. Model-
ing program resource demand using inherent program charac-
teristics. SIGMETRICS Perform. Eval. Rev., 39(1):1–12, June
2011.

[11] Ryan Cochran, Can Hankendi, Ayse K. Coskun, and Sherief
Reda. Pack & cap: adaptive dvfs and thread packing under
power caps. In MICRO, 2011.

[12] Qingyuan Deng, David Meisner, Abhishek Bhattacharjee,
Thomas F Wenisch, and Ricardo Bianchini. Coscale: Co-
ordinating cpu and memory system dvfs in server systems.
In Microarchitecture (MICRO), 2012 45th Annual IEEE/ACM
International Symposium on, pages 143–154. IEEE, 2012.

[13] Petre Dini, Wolfgang Gentzsch, Mark Potts, Alexander
Clemm, Mazin Yousif, and Andreas Polze. Internet, GRID,
self-adaptability and beyond: Are we ready? Aug 2004.

[14] Christophe Dubach, Timothy M. Jones, Edwin V. Bonilla,
and Michael F. P. O’Boyle. A predictive model for dynamic
microarchitectural adaptivity control. In MICRO, 2010.

[15] Bradley Efron and Carl Morris. Data analysis using stein’s
estimator and its generalizations. Journal of the American
Statistical Association, 70(350):311–319, 1975.

[16] Antonio Filieri, Henry Hoffmann, and Martina Maggio.
Automated design of self-adaptive software with control-
theoretical formal guarantees. In ICSE, 2014.

[17] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for
mobile applications. In SOSP, 1999.

[18] Jason Flinn and M. Satyanarayanan. Managing battery life-
time with energy-aware adaptation. ACM Trans. Comp. Syst.,
22(2), May 2004.

[19] Andrew Gelman, John B Carlin, Hal S Stern, David B Dun-
son, Aki Vehtari, and Donald B Rubin. Bayesian data analy-
sis. CRC press, 2013.

[20] W. Gentzsch, K. Iwano, D. Johnston-Watt, M.A. Minhas, and
M. Yousif. Self-adaptable autonomic computing systems: An
industry view. In Proceedings of the 16th International Work-
shop on Database and Expert Systems Applications, pages
201–205, Aug 2005.

[21] Henry Hoffmann. Racing vs. pacing to idle: A comparison of
heuristics for energy-aware resource allocation. In HotPower,
2013.

[22] Henry Hoffmann, Jonathan Eastep, Marco D. Santambrogio,
Jason E. Miller, and Anant Agarwal. Application heartbeats:
a generic interface for specifying program performance and
goals in autonomous computing environments. In ICAC,
2010.

[23] Henry Hoffmann, Jim Holt, George Kurian, Eric Lau, Mar-
tina Maggio, Jason E. Miller, Sabrina M. Neuman, Mahmut
Sinangil, Yildiz Sinangil, Anant Agarwal, Anantha P. Chan-
drakasan, and Srinivas Devadas. Self-aware computing in the
angstrom processor. In DAC, 2012.

[24] Henry Hoffmann, Martina Maggio, Marco D. Santambrogio,
Alberto Leva, and Anant Agarwal. A generalized software
framework for accurate and efficient managment of perfor-
mance goals. In EMSOFT, 2013.

[25] Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa
Misailovic, Anant Agarwal, and Martin Rinard. Dynamic
knobs for responsive power-aware computing. In ASPLOS,
2011.

[26] T. Horvath, T. Abdelzaher, K. Skadron, and Xue Liu. Dy-
namic voltage scaling in multitier web servers with end-to-end
delay control. Computers, IEEE Transactions on, 56(4), 2007.

[27] Connor Imes, David H. K. Kim, Martina Maggio, and Henry
Hoffmann. Poet: A portable approach to minimizing energy
under soft real-time constraints. In RTAS, 2015.

[28] Engin Ipek, Onur Mutlu, José F. Martı́nez, and Rich Caruana.
Self-optimizing memory controllers: A reinforcement learn-
ing approach. In ISCA, 2008.

[29] J.O. Kephart. Research challenges of autonomic computing.
In ICSE, 2005.

[30] Minyoung Kim, Mark-Oliver Stehr, Carolyn Talcott, Nikil
Dutt, and Nalini Venkatasubramanian. xtune: A formal
methodology for cross-layer tuning of mobile embedded sys-
tems. ACM Trans. Embed. Comput. Syst., 11(4), January
2013.

[31] Robert Laddaga. Guest editor’s introduction: Creating robust
software through self-adaptation. IEEE Intelligent Systems,
14, 1999.

[32] Etienne Le Sueur and Gernot Heiser. Slow down or sleep, that
is the question. In Proceedings of the 2011 USENIX Annual
Technical Conference, Portland, OR, USA, June 2011.

280

[33] B.C. Lee, J. Collins, Hong Wang, and D. Brooks. Cpr: Com-
posable performance regression for scalable multiprocessor
models. In MICRO, 2008.

[34] Benjamin C. Lee and David Brooks. Efficiency trends and
limits from comprehensive microarchitectural adaptivity. In
ASPLOS, 2008.

[35] Benjamin C. Lee and David M. Brooks. Accurate and efficient
regression modeling for microarchitectural performance and
power prediction. In ASPLOS, 2006.

[36] Baochun Li and K. Nahrstedt. A control-based middleware
framework for quality-of-service adaptations. IEEE Journal
on Selected Areas in Communications, 17(9), 1999.

[37] J. Li and J.F. Martinez. Dynamic power-performance adap-
tation of parallel computation on chip multiprocessors. In
HPCA, 2006.

[38] C. Lu, Y. Lu, T.F. Abdelzaher, J.A. Stankovic, and S.H.
Son. Feedback control architecture and design methodology
for service delay guarantees in web servers. IEEE TPDS,
17(9):1014–1027, September 2006.

[39] Martina Maggio, Henry Hoffmann, Marco D. Santambrogio
an d Anant Agarwal, and Alberto Leva. Power optimization
in embedded systems via feedback control of resource alloca-
tion. IEEE Transactions on Control Systems Technology (to
appear).

[40] Martina Maggio, Henry Hoffmann, Alessandro V. Papadopou-
los, Jacopo Panerati, Marco D. Santambrogio, Anant Agarwal,
and Alberto Leva. Comparison of decision-making strategies
for self-optimization in autonomic computing systems. ACM
Trans. Auton. Adapt. Syst., 7(4):36:1–36:32, December 2012.

[41] David Meisner, Christopher M. Sadler, Luiz André Barroso,
Wolf-Dietrich Weber, and Thomas F. Wenisch. Power man-
agement of online data-intensive services. ISCA, 2011.

[42] Carl N Morris. Parametric empirical bayes inference: theory
and applications. Journal of the American Statistical Associ-
ation, 78(381):47–55, 1983.

[43] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary. Minebench: A benchmark suite for data min-
ing workloads. In IISWC, 2006.

[44] Paula Petrica, Adam M. Izraelevitz, David H. Albonesi, and
Christine A. Shoemaker. Flicker: A dynamically adaptive
architecture for power limited multicore systems. In ISCA,
2013.

[45] Dmitry Ponomarev, Gurhan Kucuk, and Kanad Ghose. Re-
ducing power requirements of instruction scheduling through
dynamic allocation of multiple datapath resources. In MICRO,
2001.

[46] R. Raghavendra, P. Ranganathan, V Talwar, Z. Wang, and
X. Zhu. No ”power” struggles: coordinated multi-level power
management for the data center. In ASPLOS, 2008.

[47] R. Rajkumar, C. Lee, J. Lehoczky, and Dan Siewiorek. A
resource allocation model for qos management. In RTSS,
1997.

[48] Arjun Roy, Stephen M. Rumble, Ryan Stutsman, Philip Levis,
David Mazières, and Nickolai Zeldovich. Energy manage-
ment in mobile devices with the cinder operating system. In
EuroSys, 2011.

[49] Mazeiar Salehie and Ladan Tahvildari. Self-adaptive soft-
ware: Landscape and research challenges. ACM Trans. Auton.
Adapt. Syst., 4(2):1–42, 2009.

[50] David C. Snowdon, Etienne Le Sueur, Stefan M. Petters, and
Gernot Heiser. Koala: A platform for os-level power manage-
ment. In EuroSys, 2009.

[51] Michal Sojka, Pavel Pı́sa, Dario Faggioli, Tommaso Cu-
cinotta, Fabio Checconi, Zdenek Hanzálek, and Giuseppe Li-
pari. Modular software architecture for flexible reservation
mechanisms on heterogeneous resources. Journal of Systems
Architecture, 57(4), 2011.

[52] Srinath Sridharan, Gagan Gupta, and Gurindar S. Sohi. Holis-
tic run-time parallelism management for time and energy effi-
ciency. In ICS, 2013.

[53] Q. Sun, G. Dai, and W. Pan. LPV model and its application in
web server performance control. In ICCSSE, 2008.

[54] Vibhore Vardhan, Wanghong Yuan, Albert F. Harris III,
Sarita V. Adve, Robin Kravets, Klara Nahrstedt, Daniel Grobe
Sachs, and Douglas L. Jones. Grace-2: integrating fine-
grained application adaptation with global adaptation for sav-
ing energy. IJES, 4(2), 2009.

[55] Jonathan A. Winter, David H. Albonesi, and Christine A.
Shoemaker. Scalable thread scheduling and global power
management for heterogeneous many-core architectures. In
PACT, 2010.

[56] CF Jeff Wu. On the convergence properties of the em algo-
rithm. The Annals of statistics, pages 95–103, 1983.

[57] Qiang Wu, Philo Juang, Margaret Martonosi, and Douglas W.
Clark. Formal online methods for voltage/frequency control
in multiple clock domain microprocessors. In ASPLOS, 2004.

[58] Weidan Wu and Benjamin C Lee. Inferred models for dy-
namic and sparse hardware-software spaces. In Microarchi-
tecture (MICRO), 2012 45th Annual IEEE/ACM International
Symposium on, pages 413–424. IEEE, 2012.

[59] Joshua J. Yi, David J. Lilja, and Douglas M. Hawkins. A sta-
tistically rigorous approach for improving simulation method-
ology. In HPCA, 2003.

[60] Kai Yu, Volker Tresp, and Anton Schwaighofer. Learning
gaussian processes from multiple tasks. In Proceedings of
the 22nd international conference on Machine learning, pages
1012–1019. ACM, 2005.

[61] R. Zhang, C. Lu, T.F. Abdelzaher, and J.A. Stankovic. Con-
trolware: A middleware architecture for feedback control of
software performance. In ICDCS, 2002.

[62] Xiao Zhang, Rongrong Zhong, Sandhya Dwarkadas, and Kai
Shen. A flexible framework for throttling-enabled multicore
management (temm). In ICPP, 2012.

281

