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ABSTRACT

The 95" percentile method for calculating a customer’s billable

transit volume has been the industry standard used by transit providers

for over a decade due to its simplicity. We recently showed [1] that
95" percentile billing can be unfair, in that it does not reflect a
customer’s contribution to the provider’s peak load. The 95" per-
centile method is also inflexible, as it does not allow a provider
to offer incentives to customers that contribute minimally to the
provider’s peak load. In this paper we propose a new transit billing
optimization framework that is fair, flexible and computationally
inexpensive. Our approach is based on the Provision Ratio, a met-
ric that estimates the contribution of a customer to the provider’s
peak traffic. The proposed mechanism has fairness properties sim-
ilar to the optimal (in terms of fairness) Shapley value allocation,
with a much smaller computational complexity.

1. INTRODUCTION

Transit providers are an important piece of the Internet ecosys-
tem, providing customers with access to the rest of the Internet.
But the future role of transit providers is uncertain, given contin-
uously falling transit prices and increased propensity for networks
to interconnect directly (peering) [2, 3], essentially routing around
traditional transit providers. These business risks increase the pres-
sure on transit providers to optimize their transit billing schemes to
remain competitive. This work offers a new metric and associated
framework to support such optimization.

There are two components to today’s Internet transit billing scheme:

the volume of traffic for which a customer network is billed (the
billing volume), and a function that computes price based on this
volume. The industry standard for determining the billing volume
is the 954" percentile method [4, 5]: a transit provider measures the
utilization of a customer link in 5-minute bins throughout a month,
and then computes the 95" percentile of these values as the billing
volume. The 95" percentile method has three attractive properties:
it is simple to implement; it uses data that the provider typically al-
ready collects; and it approximates the load a customer imposes
on the provider’s network while forgiving a few anomalous traffic
bursts. An important aspect of the second billing component (the
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pricing function) is that providers generally offer volume discounts,
such that the per-bit price decreases as billing volume increases [2].

In our recent examination of the first aspect of transit billing —
the 95th percentile method — we showed that this mechanism can
be unfair, as it charges all customers at the same percentile, and
does not account for the load that a customer actually imposes on
the provider. While solutions such as the Shapley value method
exist to assign billing volumes to customers in a fair manner, they
are computationally too expensive to implement at scale without
approximations. Further, those methods are not flexible enough to
accommodate all the constraints of transit providers, e.g., restrict-
ing billing percentiles to a certain range or offering incentives to
certain classes of customers.

In this work we present a framework for determining the billing
volume for each customer in a manner that is fair, computationally
inexpensive, and flexibly allows the provider to provide incentives
(discounts) to certain customers. Our billing framework is based on
anew metric called the Provision Ratio, which reflects a customer’s
contribution to the provider’s peak traffic load. By assigning billing
volumes per-customer, providers can exercise fine-grained control
over their billing and provide discounts to customers that contribute
minimally to the provider’s peak traffic. The transit provider can
use such incentives as a means for attracting new customers.

2. MEASURING BILLING VOLUMES

We present a framework for percentile-based measurement of
billing volumes. Consider a transit provider with [V customers in-
dexed by i, ¢ € {1,2,..., N}. Each month, the transit provider
must determine the billing volumes of each customer.

The relationship between billing volume and billing percentile
can be expressed using the cumulative distribution function (CDF)
of the customer network’s traffic. First, both the inbound and out-
bound traffic volumes are measured in 5-minute intervals, and are
used to calculate the average transmission rates during each inter-
val. Denote the empirical CDFs of customer network i’s transmis-
sion rates by F(;n) () and F;(ous)(.), for inbound and outbound
directions, respectively. Also, denote the inverse cumulative distri-
bution functions by Fi_(z.ln) (.) and z?olu + (). If the CDF function is
not one-to-one, the inverse will be an interval (due to monotonicity
of the CDF function). If this is the case, we take the supremum of
the interval to be the value of the inverse, i.e.,

Fitimy W) = sup {@| Figiny (x) =y}, (1)

and similarly for outbound traffic. We then decide on whether the
traffic is inbound or outbound dominated by comparing the 95"
percentile volumes of the two, i.e., we compare Vj(;,)(0.95) =
F; b 1(0.95) with V;(ou)(0.95) = F; L., (0.95). We choose the

i(in) i(out)
overall CDF of the customer i's traffic to be the one with the larger



95" percentile . Thus, if Vi(in) (0.95) > Vi(out)(0.95), then we
set Fi(x) = F;(in)(x). Correspondingly, the volume billed by the
95" percentile scheme is V;(0.95) = F, ' (0.95), and the sum to-
tal volume of billed traffic is Vos = S°v, Vi(0.95). As described
in Section 1, the 95" percentile method is unfair because it does
not account for the fact that the temporal traffic profile of customers
might impose very different loads on the transit provider. For in-
stance, a customer whose traffic is concentrated in the peak peri-
ods of overall traffic would require the transit provider to provision
more capacity than one whose traffic is in the off-peak periods. A
fair scheme should ensure that the amount of resources used by a
customer should be reflected in its corresponding billing volume.

2.1 Shapley Value

The Shapley value is a means of representing the contribution of
each group member to the overall value of a group. It is generally
considered fair as it is equal to the average marginal increase in the
value of the group due to the presence of each member. It is also
efficient in that the sum of Shapley values is the total value of the
group. In our case, the members are the customer ISPs, and the
value is actually the cost of the network capacity needed to sup-
port their traffic. In earlier work, Stanojevic et al. [6] showed that
the Shapley value can be used to assign costs to different customer
ISPs based on their traffic profiles. We describe a similar scheme,
modified to convert Shapley values into billing percentiles.

In order to calculate the Shapley value, we first need to define
a value function. This value function maps each possible subset
of customers to a real number. We define the value function of a
group as the 95" percentile of the total traffic obtained by adding
the traffic of all members in the group. The ISP needs to provi-
sion for this quantity of traffic (it is also the volume for which
the ISP would be billed by its own transit provider). The Shap-
ley value (¢;) of customer ¢ is obtained by the equation ¢; =
71 omert V(S(m, i) — V(S(m,i)\i)) , where V is the value func-
tion, II is the set of all possible permutations of players N and
S (m, 1) is the set of all customer ISPs in ordering 7 before 7 includ-
ing 7. Essentially, to calculate the Shapley value of a customer %, we
calculate the difference in the value of a group with ¢ and without
4, and average over all possible groups.

Once we determine the Shapley values, we normalize them ac-
cording to o; = ¢;/ Zj\’: 1 @5 Then, if we wish to ensure that

the same volume is billed as with the 95" percentile method, but
assign these volumes according to the Shapley value, we should
choose billing volumes as S; = o; * Vys. Finally, for purposes of
comparison with the 95°" percentile scheme, we can translate these
values to a Shapley value percentile (SVP) using pf = Fi(S;).

We determined the SVPs for customers over a month using two
different data traces. We provide more details on the data in Sec-
tion 4. We found that the SVP is as low as 0.58 for some customers,
and as high as 0.98 for some others. Thus, some customers’ billing
volume should be lower (than the 95th percentile) since their re-
source usage corresponds to off-peak periods. The 95" percentile
billing mechanism ignores this difference between customers, and
calculates all their billing volumes using the same percentile. From
a resource usage perspective, this means that some customers are
billed for too much, while others are billed for too little.

Though the SVP gives a fair way of calculating billing volumes,
the calculation of Shapley value is computationally intensive as the
complexity is O(N!). For a network with 50 customers, this is of
the order of 10°%. In our earlier work [1], we developed a proxy for
Shapley value called the Provision Ratio. This method of calculat-
ing contribution addresses complexity issue of the Shapley value.

2.2 Provision Ratio

We define the Provision Ratio of a network as the average frac-
tion of its traffic that occurs during the times when the provider’s
total traffic is at its peak [1]. Peak slots are time slots during which
the total traffic exceeds a threshold. We used a threshold of 95"
percentile of total traffic to define peak slots. However, the Provi-
sion Ratio is fairly robust to the threshold that we choose.

Total traffic of ¢ during peak slots / # of peak slots
95" percentile of 4’s traffic

Ri=

The Provision Ratio is the average traffic during peak slots divided
by the peak traffic (ignoring the top 5% bursts). This is an im-
portant parameter for billing because it captures the contribution
of a customer network’s traffic to the provider’s peak. We showed
in earlier work [1] that, in general, the order of two customers’
Shapley values is also the order of their Provision Ratios, which
enables us to use Provision Ratio as a low complexity alternative.
As with the Shapley value, we normalize the Provision ratio using
pi = R/ Zj\;l R;, and we can design a percentile-based billing
mechanism using these normalized values.

While both the Shapley value and Provision Ratio can be trans-
lated into percentile-based volume measurement methods, they do
not directly allow us to restrict the range of acceptable billing per-
centiles. As our objective is to incentivize customers to occupy off-
peak periods, while not excessively dis-incentivizing those who do
not, we desire a framework that incorporates both fairness as well
as flexibility in choosing billing percentiles.

3. OPTIMIZATION FRAMEWORK

We seek a scheme whereby customers occupying off-peak pe-
riods are given rebates, while those that do not are charged extra.
However, we also wish to ensure that the billing percentiles are not
overly large or small. Finally, this must be done at no loss of net
revenue to the transit provider. How can we achieve these goals?

Suppose that the transit provider uses a price function B(.) to
translate traffic volumes into dollar charges. Often, this function
is (approximately) concave and increasing [2] to ensure discounts
for large volume customers. We do not propose to alter the billing
function, but instead use B(.) as is. Let the revenue obtained through
95" percentile based volume measurement be Mos. Then the so-
lution to the following optimization problem attains our goals:

N N
0.95 — p;) wi — 0.95 — p;)? 2
13)??;( pi)w v(;( ) )
st. L<p <H, Yie{l,2,... N} 3)
N ~
> B(F @) > Mos @
=1

Here, the objective (2) is to ensure that the billing volume per-
centile is reduced below 0.95 as much as possible, i.e. provide
the maximum possible incentives to customers. To provide incen-
tives for off-peak customers, we set the weight w; = (1/p;)%,
where o > 1. Since the weight varies inversely with the normal-
ized Provision Ratio, maximizing the objective would assign larger
p; values to customers with smaller weights i.e., high occupancy
during peak times. The second term in the objective is to smooth it,
as otherwise the solution would be to set p; to extreme high or low
values. Parameter + is used to decide the desired smoothing.

We next have a (convex) constraint (3) that ensures that the per-
centiles output by the optimization lie in an acceptable interval be-
tween [L, F|. Constraint (4) ensures that the transit provider does
not suffer any loss of revenue (as compared to 95" percentile based



volume measurements). As defined above, 3(.) is a concave billing
function. Now, since the inverse CDF of traffic, }71, is empirical,
it might not have any particular form. Hence, we approximate it
using a concave function .7?;1 in the range [L, F|. In practice, we
employed an approximation of the form F! () = a+bx+cyzx
with ¢ > 0. Notice that the concave approximation immediately
implies that the constraint becomes convex.

Our problem formulation is in the form of convex optimization,
and hence the solution can be easily computed using convex solvers.
If we ensure that 0.95 € [L, H], then 0.95 satisfies the constraints.
Then setting p; = 0.95 for all ¢ would result in an objective value
of zero. Maximization of the objective can only increase the value,
which means that the optimal value should be non-negative. We
denote the set of percentile values that solve the optimization prob-
lem (2)—(4) by {p;}, and refer to them as the optimal weighted
percentiles (OWPs). In the next section we calculate the OWPs for
customer networks using multiple data traces, and compare the val-
ues with the equivalent Shapley value percentiles (SVPs), in order
to gauge the fairness achieved by this method.

4. DATA ANALYSIS

We compare the fairness achieved by SVP versus OWP, using
data sets of traffic seen by real transit providers. Our first data
set (the “SWITCH?” data set) is from SWITCH, a European transit
provider that serves educational institutions and some commercial
organizations. The second data set (the “IXP” data set) is parsed
from MRTG graphs published by three European Internet exchange
points (IXPs): SIX, BIX and ILAN. From both data sets we extract
traffic rates of each customer network at 5-minute intervals.

Our comparison of SVP and OWP proceeds as follows. For each
customer i, we first calculate the 95" percentile billing volume
V:(0.95), and use a billing function B(x) = 50z°7 to translate
these volumes into dollar charges. This form of the billing func-
tion is based on real-world transit prices [2] and has been used
in prior work [7, 3]. We refer to the sum total revenue obtained
over all customers as Rgs, and use it as the minimum target rev-
enue that that both the SVP and OWP schemes should assure to the
transit provider. We then compare which customers are targeted
for higher/lower percentile billing in each method to check if both
methods are aligned in their conception of fairness.

To find the Shapley value percentiles (SVPs) corresponding to
the above revenue target, we use the same formulation as Section
2.1. Since calculating the Shapley value is computationally inten-
sive, we used a Monte Carlo approximation [6] with 10000 iter-
ations. Here, the idea is to pick random subsets of customers in
Shapley value evaluation equation, and average the value over such
subsets. Then, for each customer i, we set S; = o0;Rgs, and de-
termine the set of SVPs {p; } using p{ = F;(S;). Note, that for
accurate results even this process is computationally expensive.

To find the optimal weighted percentiles (OWPs), we limit the
allowable percentiles to 3 units above and below 95%, that is L =
92% and H = 98% in (3). We set « = 5 when selecting the
weights, and a smoothing parameter v = 200. We used the Leven-
berg Marquardt algorithm [8] for approximating the inverse CDF
function with a concave function, and found that the normalized
least squares errors are less than 102, The result of our optimiza-
tion is a set of percentiles {p; }. Note that the complexity of these
calculations is small as compared to determining the SVP.

We computed the SVPs and OWPs for four years of SWITCH
data and 3 months of IXP data. When we plotted the distribution
of these percentiles, the support of SVPs varied widely. For ex-
ample the support of SVPs for February 2012 SWITCH data is

[0.83,0.99]. However, by design, the support of all OWP distri-
butions is [0.92, 0.98]. Also, as desired, the OWP scheme reduced
the billing percentiles of many customers, while increasing that of
only a few. Since our conception of fairness is that of the Shap-
ley value, we consider the OWP method fair if the same customers
are targeted for high/low percentile billing as in the SVP method.
We now show this kind of order preservation is largely maintained
between SVP and OWP. We first visualize percentile information
for a month in the SWITCH data set in Figure 1. We place the
individual customers in increasing order of the reciprocal of their
Provision Ratios on the x-axis, and their average traffic on the y-
axis. For example, a customer with a large reciprocal of Provision
Ratio (i.e., it occupies off-peak periods) and small average traffic
would appear in the bottom right of the plot. Each circle or square
represents a customer network, while the size and intensity of fill
color is proportional to the relative percentile used to bill them.
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Figure 1: Inverse Provision Ratio order vs Average traffic order
of SVPs and OWPs for February 2012 SWITCH data

We observe that in the SVP scheme, there is a gradual increase
in billing percentiles from the bottom right to the top left (with a
few exceptions). The same trend is observed in OWP. Although the
actual percentiles used to bill are different, we see that by-and-large
the same customers are targeted in both schemes.

While the visualization indicates the validity of the OWP scheme
in preserving fairness, we would prefer to use numerical metrics.
We define two such metrics, and show that SVP and OWP are well
aligned on both metrics. Our first metric is that of order preserva-
tion. We say that order is preserved between two customers ¢ and
J if p; > pj implies that p; > p;. We compute the percentage of
orders preserved in each month of our data sets. For the SWITCH
data set, this gives 48 samples over four years from 2009 to 2012.
We plot the distribution of percentage of orders preserved in Fig-
ure 2. Here, the x-axis is the percentage of orders preserved in that
sample, while the y-axis is the number of samples that had that
value. We see that all values are above 70% and many values are
around 80%, indicating strong order preservation between SVP and
OWP. We observed similar results for IXP data sets: the percent-
age of orders preserved is above 78%. The second metric that we
consider is the difference in ranks of billing percentiles. Consider
the two sets of billing percentiles {p;} and {p;}, corresponding
to SVP and OWP methods, respectively. We can arrange the per-
centile values in ascending order in each set. Let r; and 7; refer
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Figure 2: Distribution of percentage of orders preserved and
Box and Whisker plot of difference in ranks for four years.

to the order in which {p; } and {p; }, respectively appear in the or-
dered sets. We call r; and 7; as the ranks of customer ¢ according
to the two schemes, and consider the normalized rank difference
(rj — #;)/N. The difference must lie in [—1, 1], and a large differ-
ence would mean that the ranks are very different, while a small one
indicates that they are close to each other. We group the data into
three-month intervals (quarters) and present a box-whisker plot of
the distributions of the normalized absolute differences over each
quarter. Here, the bottom and top of each “box” represents 1°* and
374 quartiles of the distribution for that quarter (i.e., 50% of the
samples are contained in both boxes together), while the bottom
and top “whiskers” are equal to 1.5 times the 1°* and 3"¢ quartiles
of the distribution. We observe that the distributions tightly con-
centrate around 0, indicating strong preservation of ranks between
the SVP and OWP schemes.

S. DISCUSSION AND FUTURE WORK

In this work, we have presented a billing scheme in which an ISP
can efficiently compute the billing volume on a per-customer basis.
Our formulation is based on a new metric called the Provision Ra-
tio which captures a customer’s contribution to the provider’s peak
traffic load. By using the Provision Ratio as a weight factor in the
optimization scheme, the ISP is able to assign lower percentiles to
users that have a low contribution to the provider’s peak periods.
This scheme achieves a notion of fairness similar to the Shapley
value, is efficient, and can provide rebates to customers that con-
tribute less to the ISP’s peak traffic.

A scheme that charges customers at different percentiles (possi-
bly less than the standard 95" percentile ) raises the question: what
is the incentive for a provider to charge a customer a smaller per-
centile? We believe that ISPs do have the incentive to offer lower
billing percentiles to customers that contribute minimally to the
ISP’s peak. The ISP can identify favorable traffic profiles, and offer
discounts to potential customers that have such traffic profiles. The
ISP can use the fairness of our proposed billing mechanism to at-
tract new customers who would be charged higher billing volumes
by other providers.

A second question is about feasibility. Our proposed scheme
can be expressed as a convex optimization problem, which can be

solved efficiently. ISPs typically already collect traffic counts for
each customer for each 5-minute period, so computing peak slots
and the contribution of each customer is straightforward. A fur-
ther issue with variable percentile billing is that a potential cus-
tomer needs to know what billing percentile an ISP would charge it.
This issue can be addressed as follows: A customer network shares
its traffic profile with the provider. The provider can then add the
potential customer’s traffic profile to its existing set of customers,
and re-run the optimization to determine the billing percentile for
the new customer. While it is possible that a customer could in-
fer the provider’s peak slots and approximate traffic volume by re-
peatedly making this query, we believe that information about peak
and off-peak periods is not extremely sensitive information. Sev-
eral providers already make MRTG traffic graphs available online.
By making some aspects of its traffic profile available publicly, the
provider can also provide transparency into the percentile compu-
tation and demonstrate that it is not cheating.

A third question is whether such a scheme could cause oscilla-
tions as previously off-peak slots become peak slots in the future?
First, since transit customers are generally not end-users, they have
less elastic traffic profiles. Second, we conjecture that even in the
presence of elastic customer traffic, our scheme will not lead to os-
cillations. As a customer is rewarded for moving traffic to off peak
slots, a likely result is that the provider’s overall traffic profile be-
comes smoother rather than peaking at a different time. We defer a
study of the stability of this scheme to future work.

We have assumed that the total traffic load for a provider is the
sum of the traffic from individual customers. In practice, however,
traffic from all customers does not flow over the same infrastruc-
ture.Accounting for this requires knowledge of the provider’s in-
ternal topology and a detailed cost model that determines total cost
based on the traffic load on different portions of the topology. In-
corporating topology information, a more realistic ISP cost model
such as [9], and evaluating our scheme under more realistic settings
are directions we plan to pursue in future work.
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