
Minimizing Energy Consumption of Fat-Tree Data Center
Networks∗

Qing Yi
Department of Computer Science

Portland State University
Portland, OR 97207
yiq@cs.pdx.edu

Suresh Singh
Department of Computer Science

Portland State University
Portland, OR 97207

singh@cs.pdx.edu

ABSTRACT
Many data centers are built using a fat-tree network topol-
ogy because of its high bisection bandwidth. There is a
need to develop analytical models for the energy behavior
of fat-tree networks and examine strategies to reduce en-
ergy consumption. The most effective strategy is to power
off entire switches, if possible. In this paper, we derive for-
mulas for the minimum number of active switches needed in
a fat-tree data center network for arbitrary types of load-
ing. We also derive expressions for the expected traffic loss
when these networks are overloaded with external (Inter-
net) traffic. Results of detailed simulations conducted using
well-known traffic models for data center networks [4] closely
match our derived formulas. We show that a fat-tree net-
work incurs significant energy cost (approximately 45% of
the energy cost of the data center) even when very lightly
loaded. In order to further reduce energy consumption, we
need to consolidate traffic into fewer switches. We derive
expressions for energy cost versus load assuming traffic con-
solidation and show linear scaling. Finally, we observe that
traffic patterns have a significant impact on energy consump-
tion and this fact is evident in the analytical formulas.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Network
Communications

General Terms
Performance, Design

Keywords
Data center, simulation, fat-tree, analysis

1. INTRODUCTION
Networks in data centers tend to consume about 10%-20%

of energy in normal usage [10], but it accounts for up to
50% energy [7] during low loads since at those times servers
can be put into low power states. Unlike servers, which
have many lower power states, powering off switches is not
a good option unless the time between powering on and

∗This work was funded by the NSF under award No.
1217996.

Copyright is held by author/owner(s).

off is at least of the order of tens of minutes (due to the
need for link and network initialization). Therefore, it is of
interest to develop a better understanding of network energy
consumption under varying types of loads with the eventual
goal of designing more energy efficient data center networks.

This paper considers the fat-tree network which has been
a popular choice for commercial data centers due to its full
bisection bandwidth (which minimizes latency and boosts
throughput). Unfortunately, the energy consumption of this
or any other network is very dependent on the type of traffic,
the traffic load and the selected routing algorithm. For in-
stance, if most of the traffic is between servers located in the
same pod (see Figure 1), the core switches are never used
even at high loads, resulting in significant energy savings.
On the other hand, if most of the traffic is between servers
in different pods, then savings are small even at light loads
since more switches in the network will need to be utilized for
routing. Routing also plays an important part in the poten-
tial for energy savings. Thus, routing algorithms that seek
to minimize only latency will distribute flows over unused
paths when possible ensuring that a majority of switches
are kept busy (albeit at very low loads). Alternatively, if
paths can be consolidated into a few, there is potential to
save energy at the idle switches.

The idea of pushing traffic to the “left” in a fat-tree was
explored in ElasticTree [10]. In the present paper, we derive
an analytical formula for energy consumption, and then ex-
plore additional savings made possible by use of a hardware
device called a merge network [12], which further consoli-
dates the traffic to fewer switches (See discussion in Section
3). The merge network pushes all the traffic to the leftmost
interface of a switch so that even more switches can be put
into low power modes.

1.1 Paper Summary
In this paper, we provide a systematic analysis of the en-

ergy efficiency of a fat-tree network using modeling and de-
tailed simulations. The key question we ask is how does
energy usage scale with total load as well as with different
types of loading. To answer this question, we build a detailed
analytical model that gives the lower bound on the fraction
of active switches required for a given load and type of load.
We show that fat-trees have a minimal cost of about 40-
50% (i.e. about half the switches need to remain active at
all times) but beyond that, the lower bound scales almost
linearly with the total offered load. Next we develop a model
for fat-tree networks with merge networks and show a 50%
reduction in energy consumption relative to the case without

merge networks at low loads. We conduct a detailed simu-
lation of a fat-tree network where we use different types of
load and different amounts of total load. We compute rout-
ing tables empirically every second for the next second and
compute the fraction of needed active switches. The simula-
tion demonstrates that the models we develop are accurate
in predicting switch activity and by modifying the routing
algorithms, we can potentially save significant amounts of
energy in real networks.

The remainder of the paper is organized as follows. Sec-
tion 2 presents a detailed derivation of our analytical model
for the lower bound on energy consumption. The next sec-
tion describes the experiment for a fat-tree enhanced with
merge networks. The subsequent section presents results
from our simulations. We describe related work in section 5
and conclude in section 6.

2. MODELING ENERGY USAGE

k serversk servers

Pod 1 Pod 2

k edge

switches

k aggregation

switches

k core switches
2

2k pods

1 2 k k+1 k
2

Figure 1: Fat tree network model.

As it is shown in Figure 1, a fat-tree is made up of 2k
“pods” which are connected to k2 core switches. Within
each pod, there are k aggregation switches and k edge switches.
Each edge switch is in turn connected to k servers. There-
fore, each pod has k2 servers and the data center network
has a total of 2k3 servers. Each core switch has one link
connected to each of the 2k pods. The ith port of a core
switch is connected to an aggregation switch in pod i. The
left-most k core switches are connected to the leftmost ag-
gregation switch of each of the 2k pods. The next set of k
core switches are connected to the second aggregation switch
of each of the pods, and so on.

Our goal here is to derive analytical expressions for min-
imal energy consumption of fat-trees for different type of
loading. The metric we use for energy consumption is frac-
tion of active switches. We use three parameters to model
different types of loading. A packet from a server goes
to another server connected to the same edge switch with
probability p1, it goes to a server in the same pod but an-
other edge switch with probability p2, and with probability
p3 = 1 − p1 − p2 it goes to a server in a different pod.
Thus p1 of the traffic is never seen by either the core or the
aggregation switches, while p2 of the traffic is not seen by
the core switches. Obviously, by varying p1 and p2, we can
model very different types of traffic. Finally, we model ex-

ternal traffic (i.e. traffic going to/from the Internet) as the
fraction q.

Let λ denote the average internal load offered by each
server expressed as a fraction of link speed (which we nor-
malize to 1). This load refers to packets that will stay within
the data center. Thus, the total offered load per server is
λ + q. For simplicity, we assume that load λ + q is the
same for all the servers in the data center. Thus, the total
load in the data center is 2k3(λ+ q). We have the following
equalities for total traffic at the level of edge switches, pod
aggregation switches and core switches:

Traffic per edge switch = (λ+ q)k

Traffic for all aggregation switches in a pod
= ((1− p1)λ+ q)k2

Traffic for all core switches = ((1− p1 − p2)λ+ q)k2 × 2k

Note that traffic flow is symmetric and the numbers above
correspond to both, traffic into and out of a switch or switches.

Let us assume that traffic coming into the data center is
2k3qin, which is equally distributed among all the servers,

and traffic going out is 2k3qout and is also equally gener-
ated by each server. It is easy to see that λ + qin ≤ 1 and
λ+ qout ≤ 1 since the normalized capacity of the link con-
necting each server to the edge switch is 1. Before proceed-
ing with the derivations below, note that a switch interface
is typically bi-directional. As a result, even if there is no
traffic in one direction, the entire interface is functioning
and running link layer protocols to maintain connectivity.
Therefore, instead of considering qin and qout separately,
we only need to consider the maximum of the two. Let

q = max{qin, qout}

And thus the total external traffic is thus 2k3q.

2.1 Number of Active Switches
In large data centers, a small subset of core switches have

external links providing connectivity to the Internet, and
these switches are equipped with much higher rate links.
Let us assume that of the k2 core switches, C switches (k ≥
C ≥ 1) have external connectivity. We assume that each of
these C core switches is equipped with additional interfaces
with a total normalized capacity of Q and is connected to
a border switch or router. Assume further that these C
switches are connected to the aggregation switches using
links of capacity l ≥ 1. All remaining links in the network
have a capacity of 1. Clearly, Q ≤ 2kl and l ≤ k. The
latter inequality makes sense since an aggregation switch is
connected to k edge switches with capacity-one links and
thus there is little point in connecting it to a core switch by
a link of capacity greater than k. Without loss of generality,
assume that the C core switches are 1, 1 + k, 1 + 2k, · · · , 1 +
(C − 1)k. Thus aggregation switches 1, · · · , C in each pod
are connected with a link of capacity l to these special core
switches.

To compute the number of active core switches, we have
two assumptions. First, each pod is assumed to be identical
to other pods and generates an equal amount of external
traffic. Second, in the computation of the number of core
switches needed to support the external traffic, we assume
that all the external traffic is put into as few core switches
as possible rather than spreading it out among all the core
switches. This design is more energy efficient since we can
minimize the number of active switches.

As the total external traffic load is 2qk3 and the traffic is
uniformly distributed among all the servers, the total num-
ber of externally-connected core switches that need to be
active is thus given by

m =
2qk3

Q

Since m may be greater than C or have a fractional part,
we obtain

mext
core = min{C, dme}

The mext
core active core switches may not use all of their link

capacity and thus they can be used for routing internal traf-
fic as well. Each of the 2k interfaces of the active externally-
connected core switches (facing towards the servers) has a
capacity of l. Each of these switches has capacity of 2kl to
handle traffic coming/going from/to the connected pods.

If C < dme, then mext
core = C, and the external traffic

exceeds the total external capacity. All mext
core switches are

using their full external capacity Q, leaving f = (2kl−Q)C
free capacity. Also, traffic losses occur since the external
traffic exceeds the capacity. We will discuss the traffic loss
later in Section 2.2.

If dme < C, mext
core = dme. bmc of these core switches is

using their full external capacity Q to handle Qbmc exter-
nal traffic, leaving (2kl − Q)bmc free capacity for internal
traffic. One additional externally-connected core switch will
be using less capacity for external traffic of (2qk3 −Qbmc),
leaving (2kl − (2qk3 − bmcQ)) free capacity. The total free

capacity for the mext
core active core switches is thus f =

(2kl − Q)bmc + (2kl − (2qk3 − bmcQ)). The total inter-
nal traffic that needs to be forwarded by core switches is
2(1− p1− p2)λk3. Therefore, the number of additional core
switches we need is,

maddl
core =

{
0 2(1− p1 − p2)λk3 ≤ f⌈

2(1−p1−p2)λk3−f
2k

⌉
otherwise

(1)
We divide the second term above by 2k because 2k is the
degree of the additional core switches used. Since it is pos-
sible that the above number exceeds the available number
of free core switches, we can write the final answer as

mtotal
core = min

{
k2, mext

core +maddl
core

}
(2)

We then compute the number of aggregation switches re-
quired per pod. Within each pod, the total external traffic is
qk2 and this is forwarded to/from the externally-connected

core switches using mext
core aggregation switches. This is the

case because of the way we are performing the minimiza-
tion forces traffic from/to each pod to be identically routed.
The total internal traffic that needs to be handled by the
aggregation switches in a pod is (1− p1)λk2.

Consider the aggregation switches in a pod that are con-
nected to the active externally-connected core switches. Say
the high-capacity link (of capacity l) carries external traffic
a. This traffic is evenly distributed over the k capacity-one
links connecting one aggregation switch to edge switches.
In other words, each of the edge switches can send up to
(1 − a/k) internal traffic to the aggregation switch. In all,
the k connected edge switches can send (k − a) total inter-
nal traffic to this aggregation switch. Consider the k links
from this switch connected to the core switches. One of the

links is capacity l while the other (k − 1) links are capacity
1 each. Thus, the total available capacity of these links is
(l−a)+(k−1) = (k−a)+(l−1). Since (k−a) < (k−a)+(l−1)
the total internal capacity that can be handled by this ag-
gregation switch is (k − a).

In a pod, if mext
core = dme then there are bmc aggregation

switches where a = Q/2k (corresponding to the bmc core
switches that run their external links at full capacity), and at
most one switch (dme−bmc) where a = (2qk3−Qbmc)/2k.
In total, these dme aggregation switches handle internal traf-
fic equal to

taggr = bmc(k − a) + (dme − bmc)(k − a)
= bmc(k − Q

2k
)+

(dme − bmc)(k − (2qk3−Qbmc)
2k

)

(3)

If mext
core = C, then all C aggregation switches have a =

Q/2k. Thus

taggr = (k −Q/2k)C (4)

In all these cases, traffic (1− p1)λk2 − taggr is left to be
handled by other aggregation switches. Therefore, the total
number of aggregation switches needed in the entire network
is written as

mtotal
aggr = 2kmin

{
k, mext

core +

⌈
(1− p1)λk2 − taggr

k

⌉}
Adding all these values together, we have

Active Switches = 2k2 +mtotal
core +mtotal

aggr (5)

In the discussion above, the 2k2 edge switches are always
fully powered on because they are connected to servers at
all times. Even if the servers have very light traffic going
to the edge switch, the switch will still be fully powered on,
albeit very lightly loaded. Indeed, as Figure 2 shows, even
at very low loads, more than 60% of switches are still active.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ + q

F
ra

c
ti
o
n
 o

f
a
c
ti
v
e
 s

w
it
c
h
e
s

Modeling Active Switches for k = 6, q=0.25, Q=40, C=6, l=10

p
1
=1.0,p

2
=0.0,p

3
=0.0

p
1
=0.5,p

2
=0.5,p

3
=0.0

p
1
=0.25,p

2
=0.5,p

3
=0.25

p
1
=0.25,p

2
=0.25,p

3
=0.5

p
1
=0.0,p

2
=0.0,p

3
=1.0

Figure 2: Modeling active switches for fat-tree.

2.2 Modeling Traffic Loss
Note that there is no traffic loss for the internal traffic λ

since the fat-tree has full bisection bandwidth and λ ≤ 1.
For the external traffic, on the other hand, loss happens
if the external capacity Q is unable to handle the external

load. When C < dme, the total external traffic that the
network can handle is QC. The total external traffic load is
2qk3 = dmeQ. Since QC < 2qk3, the total external traffic
exceeds the external traffic capacity. This yields a loss of
external traffic of,

Lossext = max {0, 2qk3 −QC}

Theorem 1: The total traffic loss is: Loss = Lossext.

Proof sketch: (We have not included the formal proof here
for space reasons) The intuition behind this result is rela-
tively simple. Consider traffic going up to the core first.
Since λ < 1, there will be no losses seen by the internal
traffic either in the pods, or in the core level switches. Traf-
fic heading out to the Internet is limited by Q, and hence
we will see packet drops if 2kq > Q. Consider traffic com-
ing into the network from the Internet as well as inter-pod
and intra-pod traffic. At the core layer, this traffic will be
2(1 − p1 − p2)λk3 + 2k3q′. The first term is the inter-pod
traffic and the second term is the amount of external traffic
that was not lost due to the limitation on Q. Clearly, q′ ≤ q
and hence, the total traffic flowing into the servers is below
the link capacity (=1), and there will again be no losses.
Therefore, we can write the total loss as Loss = Lossext.

3. MERGING TRAFFIC TO REDUCE EN-
ERGY CONSUMPTION

Consider the case of an edge switch connected to k servers.
Assuming each server offers a load of λ, then the total traffic
to this switch from the servers is kλ. If k = 4, for λ ≤ 0.25,
one switch interface will suffice to handle the traffic from
all four servers. In other words, if there is a way to merge
the traffic from the four servers together, we can potentially
power off three of the four switch interfaces connected to the
servers.

3.1 Merge Network
In previous papers [12], we presented the idea of merging

traffic via a merge network before feeding the traffic to a
switch. A brief summary about the merge network is:

1. The merge network is a fully analog device with no
transceivers, and as a result its power consumption is
below one watt.

2. The merge network, by design, does not cause any
packet loss or increase in delay.

3. Traffic merging is accomplished internally by sensing
packets on links, and automatically redirecting them
to the leftmost output that is free.

4. The merge network downlink 1-1 routing association
is accomplished through special switch software as de-
scribed in [12].

Consider a fat-tree pod with k2 servers connected to k
k-port switches. Normally, all the switch interfaces remain
active even at very low link loads because they need to be
able to forward traffic upstream and downstream. A k2 ×
k2 merge network has k2 downlink connections to the k2

servers and k2 uplink connections to each k interfaces of

k edge switches, shown in Figure 3. The merge network
consolidates the traffic from the k2 servers to the leftmost
of the k edge switches, and ensures switch with no active
interface can be put to low power modes

1 k

merge network

1 k

k, k-port aggregation switches

k, k-port edge switches

k
2 k

2
X merge network

k X k = k servers
2

k ports

k ports

k ports

to core switches

k ports

k
2 k

2
X

Figure 3: Merge network applied to pod in a fat-
tree.

On the uplink from the servers to the merge network, all
traffic coming into the merge network is output on the left-
most q ≤ k2 links connected to the q leftmost interfaces
of the switch, where q = dk2λ/2e (assuming a normalized
unit capacity for links). This is accomplished internally by
sensing packets on links and automatically redirecting them
to the leftmost output from the merge network that is free.
On the downlink to the servers, traffic from the switch to
the k2 servers is sent out along the leftmost r ≤ k2 switch
interfaces to the merge network. The packets are then sent
out along the m links attached to the servers from the out-
put of the merge network. Because of the fact that we are
breaking the 1-1 association of a switch interface to a server
interface, several layer 2 protocols will break. In the previ-
ous paper [15], we have addressed this issue as well and show
how the merge network and some additional switch software
can overcome this limitation.

We apply merge networks to the fat-tree topology at two
locations: between the servers and the edge switches, and
between the edge switches and the aggregation switches.
Figure 3 shows the edge and aggregation layer of a single
pod of a fat-tree network after applying the merge network.
As shown, we use one k2×k2 merge network to connect the
servers to the edge switches, and another merge network to
connect the edge switches to the aggregation switches.

3.2 Number of Active Switches with Traffic
Merging

The consequence of applying merge networks is two-fold.
First, traffic from servers is now sent to a merge network,
and thus consolidated to the leftmost edge switches. The
idle edge switches can be put into low power mode to save
energy. The total active edge switches in one pod is therefore
written as

mtotal
edge = 2k × d (λ+ q)k2

k
e = 2kd(λ+ q)ke

Obviously the number of active edge switches changes with
traffic load (λ+ q).

Second, traffic = λp2 going to other subnets within the
same pod is transferred directly with no necessity to go

through the aggregation level switches. Therefore, the pa-
rameters p1 and p2 become p′1 = p1 + p2 and p′2 = 0.
Thus, the internal traffic to be handled by other aggrega-
tion switches will be (1− p1 − p2)λk2 − taggr, where taggr
is calculated as in Equation (3) and (4) and the number of
active aggregation switches required in each pod is

mtotal
aggr = 2k ×min

{
k, mext

core +

⌈
(1−p1−p2)λk2−taggr

k

⌉}
The total number of core switches is the same as the mtotal

core
calculated in Equation (2). Therefore, the total number of
active switches after applying merge networks is

Active Switches = 2kd(λ+ q)ke+mtotal
core +mtotal

aggr

Figure 4 shows the total number of active switches for the
same topology parameters and traffic loads shown in Figure
2. It demonstrates saving around 30% of active switches at
lighter loads. Even for the all near-traffic case (p1 = 1.0),
the number of active switches changes with the load and
shows energy proportionality.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ + q

F
ra

c
ti
o

n
 o

f
a

c
ti
v
e

 s
w

it
c
h

e
s

Modeling Active Switches for k = 6, q=0.25, Q=40, C=6, l=10 with Traffic Merging

p
1
=1.0,p

2
=0.0,p

3
=0.0

p
1
=0.5,p

2
=0.5,p

3
=0.0

p
1
=0.25,p

2
=0.5,p

3
=0.25

p
1
=0.25,p

2
=0.25,p

3
=0.5

p
1
=0.0,p

2
=0.0,p

3
=1.0

Figure 4: Modeling active switches with traffic
merging (compare with Figure 2).

4. SIMULATIONS
We build a simulator for a fat-tree network with k = 6 and

1 Gbps link capacity. Each server generates traffic based on
a two-state On/Off process in which the length of the On
and Off periods follows a lognormal distribution. In the On
state, packet inter-arrival times are also from a lognormal
process [5]. The parameters selected for the lognormal pro-
cesses are based on different types of traffic patterns as well
as different loading patterns. For each packet, the destina-
tion is selected uniformly randomly from the set of all nodes
based on probabilities p1 and p2. In the simulator, we read
these trace files which are generated externally and forward
packets based on routing tables computed every second of
simulated time. The p1 and p2 of the traffic models we used
are as follows:

1. p1 = 0.75, p2 = 0.125;
2. p1 = 0, p2 = 0.75;
3. p1 = 0, p2 = 0;

We assume that external traffic q is 10% in all three cases.
The total traffic load is from 10-70% of the full bandwidth.

The routing algorithm is a modified version of Dijkstra’s
algorithm where we force flows to use routes that are already
in use, thus packing flows together. In the algorithm we
assign weights to edges as well as nodes. Edge weights are
constant of 2, but node weights can be 0 or 1. If a node has
been used for forwarding a flow, its weight changes from 1
to 0. Thus, flows are encouraged to reuse the same subset of
nodes (or switches). We eliminate link with zero available
capacity from further consideration in that round of routing
computation.

We use C = 1 and designate the leftmost core switch
as the externally connected core switch. For 10% external
traffic, the link capacity l of the externally connected core
switch has to be greater than 4. Therefore, we use l = 4 and
let Q = 2kl = 48 to avoid traffic loss.

In Figure 5, we plot the fraction of active switches versus
total load using simulation without merge networks and with
merge networks. Figure 6 shows the same metric from the
analytical models described in Section 2 and Section 3. It
is easy to see that, our model is a very close match to the
simulations. The minor difference between the simulations
and model is due to the fact that we estimated the values of
p1 and p2 from the simulations and then used them in the
analysis. The estimated values for these probabilities are
listed in the legend of Figure 6. The implication of this is
that the lower bound of energy efficiency can be achieved in
practice by utilizing the simple routing algorithm described
above.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Traffic load λ + q

F
ra

c
ti
o

n
 o

f
a

c
ti
v
e

 s
w

it
c
h

e
s

Simulation for k = 6, q=0.1, Q=48, C=1, l=4

p
1
=0.75, p

2
=0.125

p
1
=0.0, p

2
=0.75

p
1
=0.0, p

2
=0.0

p
1
=0.75, p

2
=0.125 with merge

p
1
=0.0, p

2
=0.75 with merge

p
1
=0.0, p

2
=0.0 with merge

Figure 5: Simulation results of active switches for
near and far traffic.

When we examine Figure 5, we observe that the type
of loading has a significant impact on energy consumption.
When it comes to allocating tasks to servers, the task man-
ager should be mindful of the type of traffic that will be
generated since we can obtain significant energy savings by
careful scheduling.

5. RELATED WORK
Servers in a data center are interconnected using specific

network topologies. A data center network is designed to
have high scalability, low latency and high throughput. En-
ergy consumption was not the primary consideration when
designing data center networks in the past. But this issue
has caught more attention recently.

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ + q

F
ra

c
ti
o

n
 o

f
a

c
ti
v
e

 s
w

it
c
h

e
s

Modeling Active Switches for k = 6, q=0.1, Q=48, C=1, l=4

p
1
=0.75, p

2
=0.125

p
1
=0.0, p

2
=0.75

p
1
=0.0, p

2
=0.0

p
1
=0.75,p

2
=0.125 with merge

p
1
=0.0,p

2
=0.75 with merge

p
1
=0.0,p

2
=0.0 with merge

Figure 6: Modeling active switches for near and far
traffic.

Several new data center topologies have been studied in-
cluding fat-tree [4], Clos [6], DCell [8], BCube [9], Jellyfish
[13] and flattened butterfly [11], to name a few. Generally,
the common goal shared of the different designs is to max-
imize cross-section bandwidth at minimal link and switch
cost. Related approaches consider building server-centric
topologies with simple switches that push networking to
servers [2].

In the past few years, there has been new work on reduc-
ing energy consumption of data center networks. For exam-
ple, energy-proportional links [1] allow a fine-grained tun-
ing of hardware energy consumption without changing net-
work topology and routing. Besides, some other researchers
propose dynamically right-sizing data center networks. For
example, Heller et al. designed an ElasticTree[10] to com-
pute a minimal subset of network elements for given traffic
and power off unnecessary switches and links dynamically.
CARPO [14] consolidates traffic flows by putting negatively-
correlated flows onto one path and thus uses a smaller set of
switches and links. More recently, Adnan and Gupta pro-
posed an online algorithm to select most-overlapping paths
to consolidate paths and right-size the networks [3]. Their
method outperforms the ElasticTree approach when there is
a large number of flows.

Our work develops analytical models for energy consump-
tion and thus enables us to study fat-tree DCNs theoreti-
cally. A practical application of our work would be jointly
optimizing task scheduling and flow assignment such that
p1, p2 can be maximized for given job loads. We are cur-
rently studying this problem.

6. CONCLUSIONS
This paper analyzes the problem of energy consumption

in fat-tree networks. We derive expressions for the fraction
of active switches for arbitrary traffic loads and traffic losses.
We show that merge networks can reduce the energy con-
sumption by approximately 30% at light loads, and energy
consumption can scale linearly by appropriately consolidat-
ing traffic flows.

An important conclusion of this paper is that the type
of traffic has a big impact on the potential energy savings.
This is clearly demonstrated in the simulations as well as

in the analytical study. The key idea is to keep traffic local
as much as possible. Another conclusion is that the topol-
ogy enhancements for providing external connectivity can
impact the overall energy consumption. Thus, it is better
to have one or two core switches outfitted with very high
bandwidth links to the Internet rather than having several
core switches providing this connectivity via lower capacity
links.

7. REFERENCES
[1] Dennis Abts, Michael R. Marty, Philip M. Wells,

Peter Klausler, and Hong Liu. Energy Proportional
Datacenter Networks. In ISCA, 2010.

[2] Hussam Abu-Libdeh, Paolo Costa, Antonu Rowstron,
Greg O’Shea, and Austin Donnelly. Symbiotic Routing
in Future Data Centers. In SIGCOMM, pages 51–62,
2010.

[3] Muhhamad Abdullah Adnan and Rajesh Gupta. Path
Consolidation for Dynamic Right-sizing of Data
Center Networks. In Proceedings IEEE Sixth
International Conference on Cloud Computing, 2013.

[4] Mohammad Al-Fares, Alexander Loukissas, and Amin
Vahdat. A Scalable, Commodity Data Center Network
Architecture. In SIGCOMM, pages 63–74, 2008.

[5] Theophilus Benson, Aditya Akella, and David A.
Maltz. Network Traffic Characteristics of Data
Centers in the Wild. In IMC, 2010.

[6] Charles Clos. A Study of Non-Blocking Switching
Networks. The Bell System Technical Journal,
32(2):406–424, March 1953.

[7] Albert Greenberg, James Hamilton, David A. Maltz,
and Parveen Patel. The Cost of a Cloud: Research
Problems in Data Center Networks. In SIGCOMM
CCR, pages 68–73, 2009.

[8] Chaunxiong Guo, Haitao Wu, Kun Tan, Lei Shi,
Yongguang Zhang, and Songwu Lu. DCell: A Scalable
and Fault-tolerant Network Structure for Data
Centers. In SIGCOMM, pages 75–86, 2008.

[9] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu,
Xuan Zhang, Yunfeng Shi, Chen Tian, Yongguang
Zhang, and Songwu Lu. BCube: A High Performance,
Server-centric Network Architecture for Modular Data
Centers. In SIGCOMM, pages 63–74, 2009.

[10] Brandon Heller, Srini Seetharaman, Priya Mahadevan,
Yannis Yiakoumis, Puneet Sharma, Sujata Banerjee,
and Nick McKeown. ElasticTree: Saving Energy in
Data Center Networks. In NSDI, 2010.

[11] John Kim, William J. Dally, and Dennis Abts.
Flattened Butterfly: A Cost-Efficient Topology for
High-Radix Networks. In ISCA, pages 126–137, 2007.

[12] Suresh Singh and Candy Yiu. Putting the Cart Before
the Horse: Merging Traffic for Energy Conservation.
In IEEE Communications Magazine. June 2011.

[13] Ankit Singla, Chi-Yao Hong, Lucian Popa, and
P. Brighten Godfrey. Jellyfish: Networking Data
Centers Randomly. In NSDI, 2012.

[14] Xiaodong Wang, Yanjun Yan, Xiaorui Wang, Kefa Lu,
and Qing Cao. CARPO: Correlation-aware Power
Optimization in Data Center Networks. In
INFOCOM, pages 1125–1133, 2012.

[15] Candy Yiu and Suresh Singh. Merging Traffic to Save
Energy in the Enterprise. In E-Energy, 2011.

