Performance Prediction for Set Similarity Joins

Christiane Faleiro Sidney
Federal University of Lavras, Brazil
Department of Computer Science

christiane.faleiro@lemaf.ufla.br

Leonardo Andrade Ribeiro
Federal University of Goias, Brazil
Instituto de Informatica
laribeiro@inf.ufg.br

ABSTRACT

Query performance prediction is essential for many impor-
tant tasks in cloud-based database management including
resource provisioning, admission control, and pricing. Re-
cently, there has been some work on building prediction
models to estimate execution time of traditional SQL queries.
While suitable for typical OLTP/OLAP workloads, these
existing approaches are insufficient to model performance of
complex data processing activities for deep analytics such as
cleaning and integration of data. These activities are largely
based on similarity operations—radically different from reg-
ular relational operators. In this paper, we consider predic-
tion models for set similarity joins. We exploit knowledge of
optimization techniques and design details popularly found
in set similarity join algorithms to identify relevant features,
which are then used to construct prediction models based
on statistical machine learning. An extensive experimental
evaluation confirms the accuracy of our approach.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query process-
ing; C.4 [Computer Systems Organization]: Perfor-
mance of Systems—Modeling techniques

General Terms

Algorithms, Management, Measurement, Performance

Keywords

Set Similarity Join, Performance Prediction, Cloud Databases

1. INTRODUCTION

Predicting query execution time has been widely recog-
nized as a key-enabling technology behind (multi-tenant)
data management services hosted in the cloud [5, 1, 9].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’15 April 13-17, 2015, Salamanca, Spain.

Copyright 2015 ACM 978-1-4503-3196-8/15/04...$15.00.
http://dx.doi.org/10.1145/2695664.2695694

Diego Sarmento Mendes
Federal University of Lavras, Brazil
Department of Computer Science

diego.mendes@posgrad.ufla.br

Theo Harder
University of Kaiserslautern, Germany
Department of Computer Science
haerder@cs.uni-kl.de

These systems have the challenging task of managing shared
resources in a cost-effective way while meeting service-level
agreements (SLAs). Accurate estimates of query execution
time can support many important system management de-
cisions in such a context, including:

e Resource Provisioning: Assessing achievable perfor-
mance for a given hardware configuration is instrumen-
tal to minimize the risk of resource underprovisioning
or overprovisioning.

e Admission Control: Incoming queries can be blocked,
queued, or scheduled for immediate execution depend-
ing on their estimated runtime.

e Pricing: Instead of virtualized resources such as CPU,
I/0, and memory, providers can define SLAs based on
the assurance of high-level, measurable performance
metrics such as query response time and throughput.

Recently, there has been a flurry of recent work on predict-
ing execution time (and resource usage) of SQL queries [6,
5, 8, 1, 15]. Most proposals use machine learning techniques
to uncover statistical relationships between measured query
runtimes and features, such as occurrence count of each op-
erator type in the query plan and optimizer estimates of op-
erators’ cardinalities and costs. Another approach consists
in directly tuning the cost model and calibrating cardinality
estimates of the chosen query plan to predict runtimes [15].

The popularization of cloud computing and the ever in-
creasing hype around “Big Data” have been fueling a need for
on-demand deep analytics support in cloud-based database
services [3]. But current approaches to performance predic-
tion of SQL queries are insufficient to model complex data
processing activities involved in deep analytics. Examples of
such activities are data integration and cleaning, which are
largely based on operations beyond traditional SQL queries.

The set similarity join is a core operation for text data
cleaning and integration [4, 2, 11, 16, 12], which pairs strings
represented as sets, whose similarity is not less than a spec-
ified threshold. A set similarity function is employed in the
join predicate to mathematically approximate the underly-
ing notion of similarity. The set similarity join is attractive
owing to its efficiency in dealing with large datasets and
versatility in supporting a variety of similarity functions.

Predicting the runtime of set similarity joins is a difficult
task. Most set similarity join algorithms adopt a processing
model based on inverted lists [13, 2, 11, 16, 12], which is radi-
cally different from approaches based on relational database
technology [4]. Moreover, runtimes of different executions

Training Data Model Building
A
r \
Statistics ~ Thresholds Runtimes Model Trees
Std. Dev. L w1 30s) +
Mean P | 123 Boosti
oosting
Skew [0 S
Similarity Join Sorted Set Collection
Pre-processing %%EE‘E
> oo
~ oo
o,
Cloud Databases ~ |_| Offline
~ e
< £ 4
Estimates

ooy
%} Statistics predict Runtime
S | Std. Dev. rediction
T Mean |:> Model Runtime
Figure 1: Our framework for performance modeling.

can vary dramatically depending on threshold values and
data distribution. Algorithms based on inverted lists de-
liver considerably better performance than the ones on top
of SQL engines (e.g., see experiments in [16]) and, therefore,
are likely to be the preferred solution in cloud-based systems
with strict scalability requirements.

In this paper, we present an approach to performance pre-
diction of set similarity joins. To the best of our knowledge,
this is the first contribution addressing this problem. We
analyze the impact of popular optimization techniques and
algorithm design details to judiciously select a compact set
of data statistics that primarily dictates the corresponding
algorithm performance. These statistics are used along with
threshold values as input to a machine learning technique.
In this context, we adopt an experiment-driven modeling
approach to cover a representative space of possible data
distributions and threshold values. We present a framework
that deploys our model to predict the runtime of similar-
ity queries. All statistical features can be easily collected in
a pre-preprocessing phase of set similarity join algorithms.
Finally, we conduct an extensive evaluation to validate the
accuracy of our approach.

The rest of this paper is organized as follows. Our frame-
work is introduced in Section 2 and background material is
provided in Section 3. Our performance modeling approach
is presented in Section 4. We describe the experimental
setup and discuss our results in Section 5. Relevant related
work is discussed in Section 6, before we wrap up with con-
clusions in Section 7.

2. OUR PREDICTION FRAMEWORK

In this section, we give an overview of our approach. Fig-
ure 1 illustrates the main operations encompassing the per-
formance modeling of set similarity joins. We adopt statis-
tical learning techniques to build a performance prediction
model. As in previous work [6, 8, 1], the model is built offline
using training data and deployed online to obtain runtime
estimates. However, there exist unique aspects in our ap-
proach owing to key differences between a single similarity
join operator and execution plans of regular SQL queries.
On the other hand, prediction models built in our approach
can be—in principle—composed with other models in an
operator-level modeling approach [1] in cases where similar-
ity joins appear as part of a larger query (see Section 6).

In the offline phase, we mainly use statistics collected from
semi-synthetic data as training features. In our experiment-
driven modeling approach, we generate new data from orig-
inal real-world data to substantially increase the coverage

of possible data distributions and thresholds (see Section
5). The similarity threshold is the single feature extracted
from similarity join instances. This aspect sharply contrasts
with approaches targeting SQL queries, where a rich feature
space can be extracted from query plans. Together with the
query execution time as dependent variable, statistics and
threshold values are used as input to a statistical learning
technique based on boosted model trees [14, 10].

In the online phase, the prediction model built offline is
deployed to estimate execution time of incoming queries be-
fore they start executing. To this end, we need the statis-
tics of the same kind as used for training. We can obtain
these statistics using offline sampling —therefore, avoiding
the relative high runtime overhead associated with online
sampling. An alternative is to collect statistics during the
pre-processing phase of the similarity join algorithm, which
is usually performed offline anyway.

Cloud-based data integration services are prominent ex-
amples of systems that can benefit from our framework to
performance prediction of similarity joins. But, an even
more compelling example is perhaps cloud-based support
of data exploration for deep analytics [3]. In this scenario,
instead of being used in “single-shot” data integration activ-
ities, similarity join operations could be repeatedly invoked
by different users with varying thresholds during the data
exploration process.

Finally, we only consider performance prediction of a sin-
gle, stand-alone similarity join query. Predicting execution
time of multiple queries running concurrently is an impor-
tant and challenging problem left for future work.

3. BACKGROUND

We map strings to sets of tokens using the popular concept
of g-grams, i.e., substrings of size ¢ obtained by ”sliding“ a
window over the characters of a given string. For example,
the string "token” can be mapped to the set of 2-gram tokens
{to,ok,ke,en}. As the result can be a multi-set, we append
the symbol of a sequential ordinal number to each occurrence
of a token [4] to convert multi-sets into sets.

We associate a weight with each token to obtain weighted
sets. A widely adopted weighting scheme is the Inverse Doc-
ument Frequency (IDF), which associates a weight w (t) to
a token t as follows: w (¢)=In (1 + N/df (t)), where df (t) is
the document frequency, i.e., the number of strings a token
t appears in a database of IV strings. The intuition behind
using IDF is that rare tokens are more discriminative, usu-
ally carry more content information, and, thus, are more
important for similarity assessment. We obtain unweighted
sets by associating the value of 1 to each token. The size
of a set r, denoted by |r|, is given by the number of tokens
in r, whereas the weight of r, denoted by w (r), is given by
weight summation of its tokens, i.e., w (r) =Y, ., w (t); we
have |r| = w (r) for unweighted sets.

Given two sets r and s, a set similarity function sim (r, s)
returns a value in [0, 1] to represent their similarity; a larger
value indicates that r and s have a higher similarity. Defi-
nitions of widely used set similarity functions, namely, Jac-
card, Dice, and Cosine, are shown in Table 1. Given two set
collections Cr and Cg, a set similarity function sim, and a
threshold 7, the set similarity join between Cr and Cgs re-
turns all scored set pairs {(r, s),7/) s.t. (r,s) € Cr x Cs and
stm (r,s) = 71 > 7. Henceforth, we use the term similarity
function (join) to mean set similarity function (join).

Table 1: Set similarity functions.

Function| Definition | overlap (r, s)

| [minw (1) , mazw (r)]l

Jaccard 55:83 T'(w(fi:_w(s)) [‘r ~w (r), @]
. 2-w(rNs) .) dw (s Tw(r) (2—1)-w(r)
Dice et o - (w()2+1 () [win), 3w T }
w(rNs) w(r
Cosine ot wis) | TV (r)-w(s) [7'2 ~w(r), ‘:2)]

All similarity functions considered measure the overlap
between two input sets to derive a similarity value. Thus,
predicates involving similarity functions can often be equiv-
alently represented in terms of an overlap bound [4]. For-
mally, the overlap bound between the sets r and s, denoted
by overlap (r, s), is a function that maps a threshold 7 and
the weights of r and s to a real value, s.t. sim(r,s) > 7
iff w(rnNs) > overlap (r,s). Now, the similarity join can be
reduced to the problem of identifying all set pairs r and s
whose overlap is not less than overlap (r,s). Further, sim-
ilar sets have, in general, roughly similar weights. We can
thus derive bounds for immediate pruning of candidate pairs
whose weights differ enough. Formally, the weight bounds
of r, denoted by minw (r) and mazw (r), are functions that
map 7 and w (r) to a real value s.t. Vs, if sim (r,s) > 7,
then minw (r) < w(s) < mazw (r) (originally defined as
size bounds for unweighted sets [13]). Thus, given a set r,
we can safely ignore all sets whose weights do not fall within
the interval [minw (r) , mazw (r)]. Table 1 shows the overlap
and weight bounds of the previous similarity functions.

We can also prune a large share of the comparison space
by exploiting the prefiz filtering principle [13, 4]. Prefixes
allow selecting or discarding candidate pairs by examining
only a fraction of the original sets. First, fix a global order-
ing O; tokens of all sets are then sorted according to this
ordering. A set v’ C r is a prefix of r if ' contains the first
|r’| tokens of r. Further, prefs (r) is the shortest prefix of r,
the weights of whose tokens add up to more than 8. It can
be easily shown: for any two sets r and s, if w(rnNs) > a,
then prefg, (r) N prefs, (r) # @, where 5, = w(r) — a and
Bs = w(s) — a, respectively [4]. By taking a = overlap,
we can use prefix filtering with any similarity function. Pre-
fix overlap is a condition necessary, but not sufficient to
satisfy the original overlap constraint: an additional verifi-
cation must be performed on the candidate pairs. Finally,
the number of candidates can be reduced by using document
frequency ordering, Og, as global token order to obtain sets
ordered by increasing token frequency in the collection C.
The idea is to minimize the number of sets agreeing on pre-
fix elements and, in turn, candidate pairs by shifting lower
frequency tokens to the prefix positions.

EXAMPLE 1. Consider the weighted sets r ={(b, 9),(c,
7).(d, 7),(e; 7),(h, 5)(1, 5} and s ={(a, 10),(b, 9)(c,
H.(d, 7,(e, 7),(f, 5),(h, 5)} —note the token-weight as-
sociation (t,w (t)) and assume that both sets are already
sorted. We have w (r) = 40, w (s) = 50, and w(rnNs) =
35. Considering Sim as the Jaccard similarity, we have
Sim (r,s) = w?;gzn;gs) = 40+33735 ~ 0.64. For T = 0.6, we
have overlap (r, s) = 33.75, [minw (r) , mazw (r)] = [24, 66.7],

prefs, (r)={(b, 9} and prefs, (s)={(a, 10),(v, 9)}.

Algorithm 1: General (self-) similarity join algorithm.

Input: A sorted set collection C, a threshold 7
Output: A set S containing all pairs (r, s) s.t. Sim (r,s) > 7
1 117[2’~~~I|Z/I\ — 3,8+ o
2 foreach r € C do
foreach ¢ € prefg (r) do
foreach s € I; do
if not filter (r, s)
S «+ S U refine (r,s)
I < I U {T}

N0 oW

8 return S

Similarity join algorithms based on inverted lists are ef-
fective in exploiting the above optimizations [13, 2, 16, 12].
Most of such algorithms have a common high-level structure
following a filter-and-refine framework. Algorithm 1 formal-
izes the steps of this similarity join framework. An inverted
list I stores all sets containing a token t in their prefix. The
input collection C' is scanned and, for each set r, its prefix
tokens are used to find candidate sets in the corresponding
inverted lists (lines 2-4). Each candidate s is checked us-
ing filters based on overlap and weight bounds (line 5); if
the candidate passes through, the actual similarity compu-
tation is performed in the refine step and r and s are added
to the result if they are similar (line 6). Finally, r is ap-
pended to the inverted list (line 7). Algorithm 1 is actually
a self-join. Its extension to a binary join is trivial: we first
index the smaller collection and then go through the larger
collection to identify matching pairs. Also, several optimiza-
tion details such as positional filtering [16] and list reduction
techniques [2, 12] were left unspecified. Nevertheless, these
optimizations are mostly based on bounds and prefixes and,
therefore, our discussion here remains valid. Finally, there
is a pre-processing phase, where each set is sorted according
to Og4r and C is sorted in increasing order of the set weight.
In this phase, we can collect statistics used to build our pre-
diction model, which we describe in the following.

4. MODELING SIMILARITY JOINS

We now present our approach to model similarity joins.
Before we outline the features used as input, we provide the
rationale behind their choice. Our design decisions in this
context were mostly guided by knowledge of the optimiza-
tion techniques and algorithm details described in Section 3.
In this context, we distinguish several performance drivers
with major impact on algorithm runtime.

First, there is a clear correlation between threshold val-
ues and similarity join performance. Invariably, runtime de-
creases or increases following higher or lower threshold val-
ues, respectively. The reason is that higher threshold values
imply larger overlap bounds, shorter prefixes, and tighter
weight and size bounds. As a result, a larger number of
candidate pairs are promptly discarded at earlier stages of
processing or even not considered.

The size of the underlying dataset is an obvious factor
affecting performance of similarity joins. In particular, it
has been observed on several datasets that the candidate
set and, in turn, the runtime grow quadratically with the
dataset size [16]. Note, despite the optimizations discussed
earlier, the output size of any join algorithm is still O (n?)
in the worst-case scenario.

Table 2: Features for the similarity join models.

[Name | Description |
threshold Similarity join threshold value
noSets # of sets
ssCenter Mean set size
ssGeoCenter Geometric mean of set size
ssSpread Set size standard deviation
ssSkew Set size skewness
weiCenter Mean set weight
wesSpread Set weight standard deviation
weiSkew Set weights skewness
tokfCenter Mean token frequency
tokSpread Token frequency standard deviation
tokSkew Token frequencies skewness
tokFp Fp measure of the token frequencies
tokFy F> measure of the token frequencies

The frequency of tokens in the prefix largely dictates the
number of candidates for a given set. The main motiva-
tion for adopting a global token order based on document
frequency is to place rare tokens in the prefixes; as a re-
sult, inverted lists are shorter and there is much less prefix
overlap between dissimilar sets, thereby decreasing the num-
ber of generated candidates. Of course, the effectiveness
of the document frequency ordering totally depends on the
underlying token frequency distribution. For a uniform dis-
tribution, it behaves not better than lexicographical order.
Conversely, highly skewed distributions normally exhibit an
increased number of low-frequency tokens that are shifted
to prefix positions due to the document frequency ordering.

For unweighted sets, larger sets translate into larger pre-
fixes and, therefore, more tokens are used to probe the index
in the candidate generation phase. Moreover, larger subsets
have to be processed in the verification phase. For weighted
sets, prefix sizes are dictated by the set weights (along with
the threshold value); the workload in the verification phase
also depends on set weight, although set size is clearly a
factor, too. Another important data characteristic is the
degree of dispersion of set weights (sizes) as filtering based
on weight bounds becomes substantially more effective as it
is exploited by optimizations based on weight (size) bounds
and the min-prefix principle.

Based on the above considerations, we designed features
alming at the characterization of threshold values, distri-
butions of token frequency, as well as set size and weight.
All features considered are shown in Table 2. Threshold
and dataset size values directly represent features. For data
distributions, we used general measures based on the dis-
tribution moments, namely, mean, standard deviation, and
skewness; note, for set size, we use the geometric mean as
alternative to the arithmetic mean. For token frequency
distribution, we also calculated the F» and Fp measures,
which are given by the frequency of moments definition Fy =
Doeu O (t)k, for k = 0,2. F5 represents an alternative mea-
sure for skewness, whereas Fy gives the number of distinct
tokens. Both unweighted and weighted datasets are repre-
sented by features for token frequency and set size distri-
bution; weighted sets also have features for weight distribu-
tion. In this way, we ended up with 10 and 13 features for
unweighted and weighted sets, respectively. An important
observation is that all features are inexpensive to calculate
and do not require storing all sample values.

We employ a feature selection strategy to identify the
best-performing subset of features for each model. A few
rules are applied to reduce the search space: the features
threshold and noSets are used in all models; F}, features are
always considered together and never in conjunction with to-
ken frequency skewness; and arithmetic and geometric mean
are never used together. The resulting search space is thus
quite moderate: 144 and 864 feature subsets for unweighted
and weighted sets, respectively.

In this paper, we used boosted M5 model trees to build the
predictive models proposed as depicted in Figure 1. Boost-
ing methods combine multiple models by iteratively building
a sequence of models that complement one another. At each
stage, estimation errors for the training data are calculated
and a new model is learnt to correct these errors without
altering the previous models. M5 is a model tree learner in-
troduced by [10]. Model trees store a linear regression model
at each leaf that predicts the class value of instances reach-
ing the leaf [14] —in contrast to regular regression trees,
which typically store the average value of instances reaching
the leaf. M5 stores linear models for each internal node, not
only the leaves, for use in a smoothing process to reduce
discontinuities between adjacent linear models at the leaves.
We have also tested several techniques such as multi-layer
perceptron and support vector machines [14], but both were
outperformed by boosted model trees in our study.

S. EXPERIMENTS

5.1 Experimental Setup

We started with two well-known datasets: DBLP is a
computer science bibliography (dblp.uni-trier.de) and IMDB
contains information about movies (imdb.com). We ran-
domly selected 50k-100k publications (movies) from DBLP
(IMDB) in each data generation run and formed strings by
concatenating titles with up to 10 authors (actors).

To increase the coverage of our training data, we generated
new data from the original real-world datasets. In this con-
text, datasets containing fuzzy duplicates were generated by
creating exact copies of the original string and then perform-
ing transformations such as character insertion, deletion, or
substitution. We generated datasets with the following per-
centage of duplicates: 0%, 50%, 25%, and 90%. Besides
the number of duplicates, we also derived datasets with dif-
ferent token sizes by varying the value of ¢ from 2 to 5.
The skew of the resulting frequency distribution tends to
increase with the token size. For example, the distribution
for 5-grams is likely to exhibit higher skew than the one for
2-grams. We then performed 25 runs for each combination
of number of duplicates and token size, thereby generating
a collection of 400 semi-synthetic unweighted datasets from
each source dataset; the same number of weighted datasets
were derived from this collection. Note that the generation
approach involves several random processes, namely, string
transformations, sampling of source datasets, and selection
of sample size. Thus, there are already significant differences
even among datasets generated from the same sources.

We used an implementation of the mpjoin algorithm [12],
a set similarity join algorithm following the general frame-
work discussed in Section 3. We executed mpjoin with 5
different threshold values from 0.5 to 0.9 and collected the
average runtime over repeated executions for each value. We
end up with training (and test) data containing 2k instances

for each unweighted and weighted dataset collection. We
used the implementation of the M5 model tree provided by
the WEKA software package [7]. The fixed number of boost-
ing iterations was 10 with a shrinkage rate of 1 and the min-
imum number of instances allowed at a leaf node was 4.
Prediction accuracy was measured using the mean rela-
tive error (MRE), which was the metric used in several
previous studies [5, 1, 15]. It is defined as MRE = % X

[pred(Q) —actual(Q)|
ZQET&stSet actual(Q)

stances, and pred (Q) and actual (Q) are the predicted value
and the actual value for the test instance Q, respectively.

We ran our experiments on two different hardware plat-
forms. One is an Intel Xeon E3-1270 3,4 GHz, S8MB CPU
cache, and about 8 GB of main memory; we call this plat-
form server. The other is an Intel Q8400 2.66 GHz, 4MB
CPU cache, and about 4 GB of main memory; we call this
platform client. We used Java JDK 7 (Oracle) 1.7.0. We
considered two types of experiments to evaluate our meth-
ods: cross-validation (10-fold cross-validation) based on a
single training dataset and generalization based on the two
datasets. This latter experiment type is more challenging
and aims at evaluating the ability of our models in general-
izing beyond the training data.

5.2 Prediction Results

After having described our experimental setup, we now
present and analyze our prediction results. In our charts,
we divide the results into those originated from short- (0-
5 seconds), mid- (5-30 seconds), and long- (> 30 seconds)
running queries. We report the MRE metric together with
standard deviation as error bars.

Our first experiment evaluates the accuracy of our ap-
proach using cross-validation (CV) on the server platform.
Figures 2(a) and 2(b) show prediction results on the DBLP
and IMDB datasets, for unweighted and weighted sets, re-
spectively. Our first observation is that prediction errors
in all settings are at most 16%. This result is comparable
to results reported in prior work for SQL queries (e.g., [1]).
Indeed, practically all estimated runtimes are close to a per-
fect prediction. Accuracy significantly increases from short-
to long-running queries. While prediction errors for short
queries are always higher than 10%, accuracy for long queries
stayed below 4%. This result is particularly important as
long queries are more susceptible to cause user dissatisfac-
tion as well as certain SLA violations, in particular, when
a long query is predicted as a short one. Further, accuracy
is better for weighted sets as compared to unweighted sets
on both datasets. We achieved better accuracy on IMDB
for unweighed sets; this trend is less noticeable for weighted
sets (in fact, our models performed slightly poorer on IMDB
for long queries).

Besides adopting feature selection to build our models, we
conducted a sensitive analysis using several algorithms pro-
vided by WEKA to identify a dominant subset of features.
While we found most results quite inconsistent along differ-
ent datasets and algorithms, token frequency skewness ap-
peared more frequently as the feature most correlated with
the measured runtimes.

We next validate our prediction techniques on a different
hardware configuration. Figures 2(c) and 2(d) present the
results on the client platform for unweighed and weighted
datasets, respectively. In general, the results are quite sim-
ilar to those for the server platform: prediction errors are

, where T is the number of in-

at most 18% for short queries on unweighted sets and at
most 7% for weighted sets. Again, most estimated runtimes
are close to the perfect prediction and our prediction mod-
els performed considerably better for weighted sets. Our
models achieved better accuracy for long-running queries as
compared to short ones on unweighted sets, whereas there is
little difference on weighted sets. Our results indicate that
we can effectively predict similarity join runtimes regardless
of the system environment.

We now present the results from generalization experi-
ments where the prediction model was learned using a dataset
and tested on other datasets with different characteristics.
Dealing with differences between training and test data is a
notoriously difficult problem independent of the underlying
machine learning technique. Hence, we beforehand did not
expect to obtain the same results as delivered by the pre-
vious experiments. Figures 2(e) and 2(f) show the results
on the server platform for unweighed and weighted datasets,
respectively. Although accuracy errors increased, such a de-
terioration is not dramatic, with relative errors always bel-
low 40% in all settings. Our models were more successful at
generalizing from IMDB to DBLP. Also, the models tend to
overestimation when trained with DBLP and underestima-
tion when trained with IMDB, because the underlying sets
of DBLP are larger as compared to IMDB.

6. RELATED WORK

Predicting the runtime of SQL queries and resource us-
age has been addressed both for a single query in isolation
[6, 1, 15] as well as in the context of multiple concurrently
running queries [5]. Statistical techniques that have been
used in these works include multivariate linear regression
[1], Kernel Canonical Correlation Analysis [6], Support Vec-
tor Machines [1]. In particular, a learning method based on
boosted regression trees was successfully applied to resource
usage prediction in [8]. Here, we used model trees, which
can deal with non-linear dependencies between feature val-
ues and measured runtime values as regression trees, while
delivering more compact models.

SQL queries can be modeled at the query template level or
the operator level [1]. In the latter approach, two separate
prediction models are built for each operator: a start-time
model, used to estimate the time spent by an operator to
produce its first tuple, and a runtime model, used to esti-
mate total runtime of the operator. To integrate our model
into an operator-level modeling approach, we would need
to define a start-time and runtime model. For the former
model, we only need to sum the start-time estimate of the
similarity join’s input operator with the estimate of its own
start-time estimate. For most set similarity join algorithms,
start operations only involve the initialization of a few data
structures such as the index and the score map. For the
runtime model, we only need to add the input estimate with
the runtime estimate of our model.

An alternative approach is to use the optimizer cost model
directly to predict runtimes [15]. To this end, the work in
[15] adjusts cost units offline using a set of carefully chosen
calibrating queries and corrects the cardinality estimates of
the query plan chosen by the optimizer through a sampling
estimator. Calibration queries are designed to isolate a cost
unit from the others. Cost units in our context could be
the threshold value and distribution information. Instead of
calibration queries, we could use dataset instances. Never-

[] DBLP [IMDB

Relative Error
Relative Error

short mid long short

40%
20% 20%| 20%-
0% 0% 0% . ﬁ . V_I_L

mid long short mid long

[J DBLP [M IMDB [C] DBLP [M IMDB

Relative Error

(a) CV, server, unweighted.

(b) CV, server, weighted.

(c) CV, client, unweighted.

[] DBLP [H IMDB

Relative Error
Relative Error

[Train: DBLP / Test: IMDB [l Train: IMDB / Test: DBLP

% - 4 40% 4 40%
2% 20 ﬁ ﬁ—i

[Train: DBLP / Test: IMDB [l Train: IMDB / Test: DBLP

Relative Error

short mid long short

mid long short mid long

(d) CV, client, weighted.

(e) Generalization, server, unweighted. (f) Generalization, server, weighted.

Figure 2: Prediction results for cross-validation and generalization experiments on different hardware platforms.

theless, it is unclear how to isolate the effects of threshold
and token frequency distribution.

There is already a large body of work on set similarity
joins [13, 4, 2, 11, 12, 16]. Aspects most relevant to our
work have already been discussed in Section 3. Here, we
only mention that any similarity join algorithm exploiting
weight (and size) bounds and prefix filtering can be used in
our performance prediction framework.

7. CONCLUSION

In this paper, we considered the challenging problem of
modeling performance of set similarity joins. To the best
of our knowledge, this problem has not been previously ex-
plored in the literature. We adopted an experiment-driven
approach to build a performance model for a state-of-the-art
similarity join algorithm. To this end, we identified simple
statistics dictating effectiveness of well-known optimization
techniques and used these statistics as input features to a
machine learning technique. We also presented a framework
that deploys our model to predict execution time of incom-
ing similarity queries. Our experimental evaluation not only
demonstrated the feasibility of predicting performance of
complex similarity algorithms, but also often showed results
comparable with previous work on traditional SQL queries.

8. ACKNOWLEDGMENTS

This research was partially supported by the Brazilian
agencies CNPq (grant 487087/2012-7) and FAPEMIG (grant
CEX APQ-00553-12).

9. REFERENCES

[1] M. Akdere, U. Cetintemel, M. Riondato, and et al.
Learning-based query performance modeling and
prediction. In ICDE, pages 390—401, 2012.

[2] R. J. Bayardo, Y. Ma, and R. Srikant. Scaling up all
pairs similarity search. In WWW, pages 131-140, 2007.

[3] S. Chaudhuri. What next?: a half-dozen data
management research goals for big data and the cloud.
In PODS, pages 1-4, 2012.

[4] S. Chaudhuri, V. Ganti, and R. Kaushik. A primitive
operator for similarity joins in data cleaning. In ICDE,
page 5, 2006.

[5] J. Duggan, U. Cetintemel, O. Papaemmanouil, and
E. Upfal. Performance prediction for concurrent
database workloads. In SIGMOD, 337-348, 2011.

[6] A. Ganapathi, H. A. Kuno, and et al. et al. Predicting
multiple metrics for queries: Better decisions enabled
by machine learning. In ICDE, 592-603, 2009.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, and
et al. The WEKA data mining software: An update.
SIGKDD Ezplorations, 11(1):10-18, 2009.

[8] J. Li, A. C. Kénig, V. R. Narasayya, and
S. Chaudhuri. Robust estimation of resource
consumption for SQL queries using statistical
techniques. PVLDB, 5(11):1555-1566, 2012.

[9] B. Mozafari, C. Curino, and S. Madden. Dbseer:
Resource and performance prediction for building a
next generation database cloud. In CIDR, 2013.

[10] J. R. Quinlan. Learning with continuous classes. In
5th Australian Joint Conference on Artificial
Intelligence, pages 343-348, 1992.

[11] L. Ribeiro and T. Hérder. Efficient set similarity joins
using min-prefixes. In ADBIS, pages 88-102, 2009.

[12] L. A. Ribeiro and T. Hérder. Generalizing prefix
filtering to improve set similarity joins. Information
Systems, 36(1):62-78, 2011.

[13] S. Sarawagi and A. Kirpal. Efficient set joins on
similarity predicates. In SIGMOD, 743-754, 2004.

[14] 1. H. Witten, E. Frank, and M. A. Hall. Data mining:
Practical machine learning tools and techniques.
Morgan Kaufmann, 3rd edition, 2011.

[15] W. Wu, Y. Chi, S. Zhu, J. Tatemura, H. Hacigiimiis,
and J. F. Naughton. Predicting query execution time:
Are optimizer cost models really unusable? In ICDE,
pages 1081-1092, 2013.

[16] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang.
Efficient similarity joins for near-duplicate detection.
ACM TODS, 36(3):15, 2011.

