
HAL Id: hal-01145339
https://hal.science/hal-01145339

Submitted on 23 Apr 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A multi-scale modeling approach for software
architecture deployment

Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel

To cite this version:
Amal Gassara, Ismael Bouassida Rodriguez, Mohamed Jmaiel. A multi-scale modeling approach for
software architecture deployment. The 30th ACM/SIGAPP Symposium On Applied Computing (SAC
2015), Apr 2015, Salamanca, Spain. 7p. �hal-01145339�

https://hal.science/hal-01145339
https://hal.archives-ouvertes.fr

A multi-scale modeling approach for software architecture
deployment

Amal Gassara
ReDCAD Research laboratory,

University of Sfax, Tunisia
amal.gassara@redcad.org

Ismael Bouassida
Rodriguez

CNRS, LAAS, 7 avenue du
colonel Roche, F-31400

Toulouse, France
Univ de Toulouse, LAAS,

F-31400 Toulouse, France
bouassida@redcad.org

Mohamed Jmaiel
ReDCAD Research laboratory,

University of Sfax, Tunisia
Research Center for

Computer Science, Multimedia
and Digital Data Processing of

Sfax, B.P. 275, Sakiet Ezzit,
3021 Sfax, Tunisia

mohamed.jmaiel@enis.rnu.tn

ABSTRACT
For large component-based applications, identifying a valid
deployment architecture has emerged as a major challenge.
Actually, this deployment architecture (i.e, allocation of
software components to its hardware hosts) should satisfy
various constraints related to the software components and
the target environment such as the hierarchical descrip-
tion of components, their connections and the resource con-
straints. The numerous constraints make hard to construct
manually the correct deployment architecture. In this work,
we propose a formal method based on a formal language
called BRS (Bigraphical Reactive System) in order to guar-
antee the correctness of the deployment architecture. Fur-
thermore, in order to support its automatic construction,
our proposed method follows a multi-scale modeling. In fact,
the designer starts by modeling the first scale architecture
which is refined automatically by successively adding smaller
scale components until obtaining the deployment architec-
ture at the last scale. This refinement is ensured by applying
a set of rules. In this paper, we address communicating sys-
tems as a study domain.

Keywords
Deployment architecture, Correctness, Multi-scale model-
ing, Bigraphs, BRS

1. INTRODUCTION
With the continuous change of computer systems, software
development is more and more complex and brings new chal-
lenges. Software deployment is considered one of challenging
tasks. It represents a sequence of related activities for plac-
ing a developed application into its target environment and
making the application ready for use. For large distributed
systems, finding a correct deployment architecture can be

a challenging issue. Actually, a correct deployment archi-
tecture should satisfies various constraints related to both
software components and target environment such as the hi-
erarchical description of components, their connections and
the resource constraints. These constraints make hard and
might be impossible to find manually the correct architec-
ture. Instead, several correct deployment architectures can
be found. So, it is necessary to choose the efficient one to be
deployed. The difficulty of this task motivate us to look for
a solution to automate the construction of the correct and
the efficient deployment architecture.

So, in this paper, we focus on the construction of correct
deployment architectures (i.e., that respect structural con-
straints like the hierarchy of components and their connec-
tions). Then, in our ongoing work, the efficient architec-
ture is selected according to resource constraints. In the
literature, there are several research activities dealing with
software deployment. But most of them are based on infor-
mal model and lack a solid mathematic foundation to ensure
the correctness of deployment architecture. They have fo-
cused on satisfying only the resource constraints. Whereas,
in our work, we use BRS (Bigraphical Reactive System) as
a formal foundation. Moreover, our approach is based on a
multi-scale modeling that helps to automate the construc-
tion of correct deployment architectures. Actually, in order
to generate deployment architectures, we need to specify
the software architecture model that describes the software
components and their composition and the execution envi-
ronment model that describes the target environment ar-
chitecture on which application will be deployed. In fact,
each model is represented as a set of scales, and each scale
denotes a set of architectures represented as bigraphs. Fol-
lowing our approach, the designer starts by modeling the
first scale architecture which is refined to give one or many
architectures for the next scale. Then, these architectures
are refined in turn to give the following scale architectures
and so on until reaching the last scale. The transition be-
tween scales is ensured by applying specific rules defined
as bigraphical reaction rules. After constructing the archi-
tectures of both software architecture model and execution
environment model, we apply the relation between the two
models in order to obtain deployment architectures.

The rest of this paper is organized as follows. In section 2,
research activities dealing with software deployment are pre-
sented and in section 3, we present an overview of bigraphs.
In section 4, we explain our bigraphical based approach for
the deployment modeling. In section 5, we consider com-
municating systems as a study field. Then, we introduce
in section 6 a case study called “Smart Home” to apply our
approach and its simulation with the BPL Tool in section 7.
Finally, section 8 concludes this paper and gives some direc-
tions for future work.

2. RELATED WORK
Various research studies have proposed methods to ad-
dress the issues of software deployment. These methods
include the use of OMG Deployment and Configuration
(D&C) specification [13]. we have identified some frame-
works which have been developed on top on this specifica-
tion like DAnCE [3], Dacar [4] and Deployment Factory [6].
DAnCE is a QoS-enabled Component Deployment and Con-
figuration Engine targeted for DRE systems. This frame-
work deals only with CORBA Component Model. Whereas
Deployment Factory is an unified environment for deploy-
ing component based applications. It proposes a generic
component model which is an extension to the OMG D&C
specification. These frameworks do not provide mechanisms
for redeployment and dynamic reconfiguration. However,
Dacar is a model-based framework for deploying autonomic
software distributed systems. It is based on a control loop
and Event-Condition-Action (ECA) rules. The main limi-
tation of these research activities is the manual deployment
planning. The designer should assign the software compo-
nents to the hardware ones which is a hard task especially
with large scale systems.

Other research activities have proposed architecture-based
approaches using ADL (Architecture Description Lan-
guage) [7, 9] and graphs [5, 15, 14]. Hoareau et al [7] present
a support for deploying and executing an application built
with hierarchical components. It presents an ADL exten-
sion for specifying a context-aware deployment. This de-
ployment is performed in a propagative way and is driven
by constraints put on the resources of the target hosts. The
framework presented in the work of Malek et al [9] aims at
finding the most appropriate deployment architecture for a
distributed software system with respect to multiple QoS di-
mensions. The framework supports formal modeling of the
problem that provides a set of algorithms for finding the op-
timal deployment. Heydarnoori et al [5] propose a graph
based deployment planning approach for maximizing the
reliability of component-based applications. They demon-
strate that this deployment problem corresponds to the mul-
tiway cut problem in graph theory. Also, the work of Zhang
et al [15] defines a component graph to represent component-
based distributed applications and a tree network topology
to describe the runtime environment. It defines the resource
cost objective function and formulates component deploy-
ment optimization problem as mathematical programming
problem.

Other research studies like [1, 10] have proposed a dedi-
cated language (Domain Specific Language) for deployment.
Dearle and Kirby [1] propose a framework for autonomic
management deployment and configuration of component-

based distributed applications. An initial deployment goal
is specified using Deladas (DEclarative LAnguage for De-
scribing Autonomic Systems). A constraint solver is used
to find a configuration that satisfies the goal, and the con-
figuration is deployed automatically. If, during execution,
the goal is no longer being met, a full restart of the de-
ployment process is performed. Matougui et al [10] propose
the j-ASD middleware that addresses the autonomic deploy-
ment of ubiquitous systems. This middleware provides a
DSL specifying deployment constraints. This specification
is compiled into a constraint satisfaction problem, which is
resolved automatically by a constraint solver. The gener-
ated deployment plan is dynamically executed by a mobile
agent system.

We can note that the research activities [7, 9, 5, 15, 1, 10]
deal only with resource constraints during the construction
of the deployment architecture. They do not take into ac-
count the respect of structural constraints to validate he de-
ployment architecture. Whereas, in our work, we deal with
both structural and resource constraints.

3. PRELIMINARIES

3.1 Bigraphs
Bigraphs [12] formalise distributed systems by emphasizing
both locality and connectivity. A bigraph consists princi-
pally of hyperedges and nodes which can be nested and have
ports. Each hyperedge can connect many ports on different
nodes. Each node in the bigraph is assigned a control. Con-
trols indicate the node type and the node ports’ number
through the arity. We can use the notation “X-node”, which
means a node that has been assigned the control X.

3.2 Bigraphical Reactive System
A BRS (Bigraphical Reactive System) is a set of bigraphs
and a set of reaction rules that may be applied to rewrite
these bigraphs. Each reaction rule consists of two bigraphs:
a Redex R and a Reactum R’. The application of the rule
consists of identifying the image of R in a bigraph and re-
placing it by the corresponding R’.The graphical represen-
tation used above is handy for modeling, but unwieldy for
reasoning. Fortunately, bigraphs have an associated term
language [2].

4. THE PROPOSED APPROACH
In order to construct a deployment architecture, we need
to describe the software architecture, the execution environ-
ment and the relation between them. Based on this issue, we
propose an approach for deployment modeling of distributed
systems which defines:

• Software architecture model: This model de-
scribes software components, their properties and their
architecture (i.e, hierarchy of components and connec-
tions between them).

• Execution environment model: This model de-
scribes the runtime environment including physical
nodes, hosts, devices, etc as well as their resource con-
straints and their architecture.

• Relation between the software architecture
model and the execution environment model:
To obtain a deployment architecture, we should define
the relation between the two models to map software
components on physical ones.

The key objective of our work is to automate the construc-
tion of a correct deployment architecture that respects the
defined models. For this, we have proposed a formal method
which is based on a formal language to guarantee the cor-
rectness of the deployment architecture. This formal lan-
guage should be able to describe both software and physical
components. It should emphasize both hierarchy and con-
nectivity of components. It should also provides information
on both static and dynamic aspect of the system since we
intend to deal with autonomic systems in future work. We
have noticed that BRS is the most appropriate language
that supports these requirements. Furthermore, our formal
method provides three steps to be followed:

- Step 1: Description In this step, the designer de-
scribes the necessary information like software and hardware
components, their properties and their resource constraints.
Each component is represented with Bigraph as a node type
annotated with attributes to indicate properties or available
resources. The designer describes also the structural con-
straints through conditions on the hierarchy and the con-
nectivity of nodes.

- Step 2: Generation In this step, the generation of the
deployment architecture is performed automatically follow-
ing a multiscale modeling approach. In fact, for each model
(i.e., environment execution model and software architec-
ture model), a large scale is defined by the designer. Then,
it is refined by successively adding smaller scale details until
reaching the last scale. Hence, we obtain the set of possible
deployment architectures by linking the two models.

The refinement process is performed by applying specific
rules. Since we aim to facilitate the modeling task for the
designer, we have proposed the concept of meta-rule to de-
scribe the transition between scales. Thus, the designer
identifies the corresponding meta-rule which will be instanti-
ated automatically according to the specification in order to
have the necessary rules for scale transitions. With BRS, a
meta-rule is a meta-reaction rule that contains nodes having
a variable control (i.e., a variable can represent any control).

- Step 3: Selection In our ongoing work, a deployment
architecture is selected from those generated in the previous
step according to resource constraints. Hence, we obtain a
deployment architecture that respects both structural and
resource constraints.

5. MULTI-SCALE MODELING FOR COM-
MUNICATING SYSTEMS

In our work, we have addressed communicating systems.
Since we aim to facilitate the modeling task to the designer,
we have defined, for these systems, the scales of each model
and we have defined the necessary meta-rules to be applied
for the transitions between these scales and for the relation
between the execution environment model and the software

architecture model.

5.1 The execution environment model
This model is represented by the following scales and tran-
sitions (we use the notation “scale i” where i is the scale
number):

- Scale i: such i ∈ [0, n] where n corresponds to the depth
of nesting in a bigraph. For i = 0, we obtain the first scale.

- Transition from scale i to scale i + 1: The transition
to the scale i + 1 is obtained by applying a meta-reaction
rule allowing to nest a node.The corresponding algebraic
expression of this rule is:
Nest a node: X.d0 → X.(Y |d0)
This rule enables to nest a node. So, the transition between
two scales leads to increment by 1 the depth of nesting.
Therefore, this meta-rule can be applied several times in
order to add many nodes residing in the same node.

- Scale i + 1: such i ∈]0, n]. With i=n, we obtain the scale
n that represents all physical entities and their composition
(i.e, hierarchy). So, we reach this scale when there is no
physical entities to add.

- Transition from scale n to scale n + 1: The transition
to the scale n+1 is characterized by defining the link graph.
So, we add hyperedges that represent the communication
between different devices of the application. This operation
is defined by a closure /x ◦ G (i.e., outer names x under a
bigraph G is replaced by an edge). Hence, we link nodes
belonging the same communication group (i.e., having the
same outer name).

- Scale n + 1: This is the last scale of the execution envi-
ronment model. It represents all the physical entities and
their communication.

5.2 Relation between execution environment
and software architecture models

We propose that the relation between the software archi-
tecture model and the execution environment model is a
transition from scale n + 1 of the execution environment
model to scale 0 of the software architecture model. The lat-
ter includes sender and receiver components. In fact, each
communication group is ensured by a set of senders and re-
ceivers. We consider that communication is done in pull
mode (i.e., response to a request). So, an entity belonging a
communication group should contains a pair of sender and
receiver.

To ensure this transition, we define the following meta-rule:
Add a sender and a receiver: Yx → Yx.(Sr.x|Rc.x)
We nest in each node having an outername x, a sender (Sr-
node) and a receiver (Rc-node), then we nest in both of them
an x-node that mark their communication group.

5.3 The software architecture model
For communicating systems, the software architecture model
includes the entities that take part in the communication
like senders, receivers and communication middleware com-
ponents. Hence, we have identified for this model the neces-

sary components, three scales and transitions between them
by defining corresponding meta-rules.

- Scale 0: represents sender and receiver components.

- Scale 1: provides the middleware components that ensure
the communication between the application components.
Here, we use the Event-Based Communications (EBC) [11].
EBC is a communication model which provides three types
of EBC entities: event producers (EP), event consumers
(EC) and channel managers (CM). The EP and EC can
be connected to CM, but they can not be directly intercon-
nected. The EP can send data to the CM to which they are
connected. The CM returns a copy of the received data to
all the EC connected to it.
This scale is obtained by nesting an EP-node in each sender,
an EC-node in each receiver and a CM-node for each com-
munication group in a node that belongs to this group.

- Transition from scale 0 to scale 1: This transition is
performed by applying a set of meta-reaction rules defined
by the algebraic expressions given below:
Add an EP: Sr.x → Sr.EP.x
Add an EC: Rc.x → Rc.EC.x
Add a CM: /x X1x||...||Xnx → /x X1x||...||(Xnx|CM.x)
For the third rule (Add a CM), n is the number of nodes
belong a communication group. It will be instantiated for
each communication group.

- Scale 2: This is the last scale of the software architecture
model. It consists at enriching the link graph by adding new
edges that link EBC components.

- Transition from scale 1 to scale 2: Reaching the scale 2
is obtained by applying a set of meta-reaction rules given
below:
Link EP to CM: EP.x||CM.x → /y EPy||CMy.x
Link EC to CM: EC.x||CM.x → /y ECy||CMy.x

6. CASE STUDY: SMART HOME
In order to apply our approach, we consider a case study
named “Smart Home” denoted in the Figure 1. Each room
in a smart home can be equipped with heterogeneous devices
(sensors like thermometer, presence sensor, light sensor, etc
and actuators like air conditioner, lamp, etc). These devices
are connected to a home gateway that manages their com-
munication to ensure an intelligent home control like lighting
control and temperature control. Sensors record information
such as rooms lighting, human presence, temperature, etc.
The home gateway receives these information and analyses
them in order to configure the devices.

6.1 The execution environment model
For the smart home, the execution environment model rep-
resents home, rooms, home gateway and devices. It includes
the following scales.

- Scale 0: The designer identifies the node controls (H rep-
resenting a home,R representing a room, a HG representing
a home gateway and D representing a device: sensor or ac-
tuator). Then, he models this scale using a bigraph. For the
smart Home, this bigraph contains one H-node that repre-
sents a Home (cf. Figure 2).

Figure 1: Smart Home

- Transition from scale 0 to scale 1 (adding Rooms
and Home Gateway): The transition to the scale 1 is ob-
tained by instantiating the meta-rule for nesting a node. So,
the rule is: H.d0 → H.(R|d0).
This rule enables to add a Room (R-node) in a Home. We
apply this rule as many times as the number of rooms in the
home. This number is given by the designer. Here, we have
3 rooms.
The meta-rule for nesting a node is instantiated again to
add a Home Gateway. The rule is: H.d0 → H.(HG|d0)
- Scale 1: This scale presents a home, three rooms and a
home gateway. Its bigraph is depicted in Figure 2.
- Transition from scale 1 to scale 2 (adding Devices):
The transition to the scale2 is obtained by instantiating the
meta-rule for nesting a node. So, the rule is:
R.d0 → R.(D|d0).
This rule enables to add a device (D-node) in a room. We
apply this rule as many times as the number of devices in
the room. This number is given by the designer. Here, we
have 5 devices.
- Scale 2: In this scale, we obtain the bigraph specifying
the home, the home gateway and the 3 rooms. One of these
rooms contains 5 devices. This bigraph is depicted in Fig-
ure 2.
- Transition from scale 2 to scale 3 (connecting en-
tities within groups): The transition to scale 3 is ob-
tained by applying the closure operation on the bigraph of
the scale 2: /gt gl ◦ scale2
This closure operation enables to link lighting communica-
tion group (i.e., link the Home Gateway with the three de-
vices having an outer name gl: presence sensor, light sensor
and lamp). It enables also to link temperature communica-
tion group (i.e., link the Home Gateway with the two other
devices having an outer name gt: thermometer and air con-
ditioner).
- Scale 3: The scale bigraph is defined in the last part of
Figure 2.

6.2 Relation between execution environment
and software architecture models

The transition from scale n of the execution environment
model to scale 0 the software architecture model is obtained
by instantiating the meta-rule for adding a sender and a
receiver for devices within the temperature communication
group and devices within lighting communication group. For
sake of shortness, we present the instantiated rules for tem-
perature communication group:
Dgt.d0 → Dgt.(Sr.gT |Rc.gT |d0)
This rule enables to add a sender (Sr-node) and a receiver

Figure 2: Scales of the execution environment model for
Smart Home

(Rc-node) in a device (D-node). The gT-node nested in a
sender or a receiver denotes the temperature communication
group. We instantiate the meta-rule again to add senders
and receivers in the home gateway.
So the rule is: HGgt.d0 → HGgt.(Sr.gT |Rc.gT |d0)

6.3 The software architecture model
This model represents senders, receivers and EBC compo-
nents.

- Scale 0: This scale represents the execution environment
model including sender and receiver components.
- Transition from scale 0 to scale 1 (adding EBC
components): The transition to the scale 1 is obtained by
instantiating the three meta-rules of adding EP, adding EC
and adding CM. So, the instantiated rules for the tempera-
ture communication group are:
Sr.gT → Sr.EP.gT
Rc.gT → Rc.Ec.gT
/gt Dgt||Dgt||HGgt → /gt Dgt||(Dgt|CM.gT)||HGgt

- Scale 1: At this scale, we have the execution environ-
ment model (home, home gateway, rooms and devices) with
senders, receivers and EBC components. The bigraph at
this scale is like the bigraph at the scale 2 depicted in Fig-
ure 3 but without the green hyperedges. In this scale, we
can obtain many Bigraphs due to the choice of the channel
manager placement (i.e., the CM-node is deployed on one
node belongs to the communication group).
- Transition from scale 1 to scale 2 (connecting EBC
components): The transition to the scale 2 is obtained by
instantiating the two meta-rules of linking an EP to a CM
and linking an EC to a CM:
EP.gT ||CM.gT → /z EPz||CMz.gT
EC.gT ||CM.gT → /u ECu||CMu.gT

Figure 3: The Bigraph at the scale 2

- Scale 2: The bigraph obtained at this scale is denoted
in Figure 3. It depicts deployment infrastructure, senders,
receivers and connected EBC components. So, it defines one
of the set of deployment architectures.

7. VALIDATION WITH BPL
In order to verify the feasibility of the case study, we model
our BRS model using the BPL Tool (Bigraphical Program-
ming Languages) [8]. BPL is a tool for experimenting with
bigraphical models. It provides manipulation and simulation
of BRS. It relies on an SML (Standard ML) compiler with
an interactive mode to provide a command line interface.
The language used in the BPL Tool is called BPLL (BPL
Language), and it consists of a number of SML constructs
which allows to write BPLL directly in SML programs.

For the implementation of our case study, we create a SML
file to define the BRS for the execution environment model.
Listing 1 presents a portion of this file. In this listing we
define the signature of the system denoted in lines 2-5. It is
the set of nodes controls. Then, we define the rules denoted
in lines 7-13 (i.e., rule for adding a room, adding a home
gateway and adding a device). We define also the tactics
for prescribing the sequence in which reaction rules should
be applied (lines 15-18 of listing 1). Finally, we define the
initial system denoted in line 21 of listing 1. It represents
the Home.

Listing 1: Execution environment model implementation

1 (* Nodes controls *)
2 val H = active0 ("H")
3 val R = active0 ("R")
4 val D = active ("D" -:1)
5 val HG = active ("HG" -:2)
6 (* Rules for execution environment model *)
7 val add_room =" add_room ":::
8 H o idp(1) --[0|->0]--|> H o (idp(1) ‘|‘ R o <->)
9 val add_HG =" add_HG "::: H o (idp(1)) --[0|->0]--|>

10 (-/gt*-/gl) o H o (idp(1) ‘|‘ HG[gt,gl] o <->)
11 val add_device_gt =" add_device_gt ":::
12 H o (idp(1) ‘|‘ R o idp(1)) --[0|->0,1|->1]--|>
13 -/gt o H o (idp(1) ‘|‘ R o (idp(1) ‘|‘ D[gt] o gT))
14 [...]
15 (* Tactics *)
16 val rules = mkrules[add_room ,add_HG ,...]
17 val tactics_01 = 3 TIMES_DO react_rule " add_room"
18 ++ react_rule " add_HG"
19 [...]
20 (* Initial system : scale 0 *)
21 val scale0 = H o <->

After running the simulation, we obtain the expression of
each scale in BPLL. Furthermore, to implement the soft-
ware architecture model, we complete the SML file with
the nodes controls (i.e., Sr representing a Sender, Rc rep-
resenting a Receiver, EC representing an Event Consumer,
EP representing an Event Producer and CM representing
a Channel Manager), the rules and their tactics (i.e., rules
for adding senders and receivers, rules for adding EBC com-
ponents and rules for connecting EBC components within
communication groups). After running the simulation of
the software architecture model implementation, we obtain
the expression of its scales in BPLL.

8. CONCLUSION AND FUTURE WORK
In this paper, we have focused on one of the challenging
tasks of software deployment which consists in the construc-
tion of a correct deployment architecture. To tackle this is-
sue, we have proposed a formal method based on bigraphical
reactive systems. This formal language allows to guarantee
a correct by construction architectures. This method pro-
vides three steps. At the first step, the designer describes the
necessary information for the execution environment model,
the software architecture model and the relation between
them. Then, the second step consists in generating auto-
matically all the correct deployment architectures following
a multiscale modeling approach. In fact, for each model, a
large scale is defined by the designer. Then, it is refined by
successively adding smaller scale details. This refinement
process is performed by applying specific rules. Finally, the
third step is the selection of the efficient deployment archi-
tecture according to resource constraints. In our work, we
have addressed communicating systems. For these systems,
we have identified some information in order to ease the task
for the designer in the description step. In fact, we have
defined the component types for the software architecture
model, the scales of each model and the transition between
them and also the relation between the software architec-
ture model and the execution environment model. Finally,
in order to illustrate our approach, we have presented a case
study called Smart Home and its implementation using BPL
Tool. In future work, we aim to focus on the third step of
our approach (i.e, selecting the efficient deployment architec-
ture according to resource constraints). Then we intend to
deal with autonomic systems by planning redeployment ac-
tions. Moreover, we are working at implementing a tool for
Bigraph transformations since we have noticed some weak-
nesses of BPL Tool and we have noticed also that it does
not meet our needs.

9. ACKNOWLEDGMENTS
This research is supported by the Itea2’s A2Nets (Auto-
nomic Services in M2M Networks) project1.

10. REFERENCES
[1] A. M. A. Dearle, G. Kirby. A framework for

constraint-based deployment and autonomic
management of distributed applications. In
International Conference on Autonomic Computing,
pages 300–301, may 2004.

[2] L. Birkedal, S. Debois, E. Elsborg, T. Hildebrandt,
and H. Niss. Bigraphical models of context-aware

1https://a2nets.erve.vtt.fi/

systems. In L. Aceto and A. Ingólfsdóttir, editors,
Proceedings of the 9th International Conference on
Foundations of Software Science and Computation
Structure (FoSSaCS’06), volume 3921 of Lecture Notes
in Computer Science, pages 187–201. Springer-Verlag,
Mar. 2006.

[3] G. Deng, J. Balasubramanian, W. Otte, D. C.
Schmidt, and A. S. Gokhale. Dance: A qos-enabled
component deployment and configuration engine. In
Component Deployment, pages 67–82, November 2005.

[4] J. Dubus and P. Merle. Towards Model-Driven
Validation of Autonomic Software Systems in Open
Distributed Environments. In Workshop M-ADAPT,
in conjunction with ECOOP 2007, July 2007.

[5] A. Heydarnoori and F. Mavaddat. Reliable
deployment of component-based applications into
distributed environments. In Proceedings of the Third
International Conference on Information Technology:
New Generations, ITNG ’06, pages 52–57. IEEE
Computer Society, April 2006.

[6] P. Hnetynka. A model-driven environment for
component deployment. In Proceedings of the Third
ACIS Int’l Conference on Software Engineering
Research, Management and Applications, SERA ’05,
pages 6–13. IEEE Computer Society, Aug. 2005.

[7] D. Hoareau and Y. Mahéo. Constraint-based
deployment of distributed components in a dynamic
network. In Proceedings of the 19th international
conference on Architecture of Computing Systems,
pages 450–464, March 2006.

[8] E. Hojsgaard and A. J. Glenstrup. The bpl tool: A
tool for experimenting with bigraphical reactive
systems. Technical Report TR-2011-145, IT University
of Copenhagen, Oct. 2011.

[9] S. Malek, N. Medvidovic, and M. Mikic-Rakic. An
extensible framework for improving a distributed
software system’s deployment architecture. Software
Engineering, IEEE Transactions on, 38(1):73–100,
Jan. 2012.

[10] M. E. Matougui and S. Leriche. A middleware
architecture for autonomic software deployment. In
ICSNC ’12 : The Seventh International Conference on
Systems and Networks Communications, pages 13–20.
XPS, November 2012. 12619 12619.

[11] R. Meier and V. Cahill. Taxonomy of distributed
event-based programming systems. In The Computer
Journal, pages 585–588, July 2002.

[12] R. Milner. Bigraphical reactive systems: basic theory.
Technical Report UCAM-CL-TR-523, University of
Cambridge, Computer Laboratory, Sept. 2001.

[13] I. Object Management Group. Deployment and
configuration of component-based distributed
applications specification, version 4.0, Apr. 2006.

[14] I. B. Rodriguez, N. V. Wambeke, K. Drira, C. chassot,
and M. Jmaiel. Multi-layer coordinated adaptation
based on graph refinement for cooperative activities.
Communications of SIWN, 4(1):163–167, 2008.

[15] Q. Zhang, D. Qiu, Q. Tian, L. Sun, and X. Xu.
Deployment planning of component-based distributed
applications using mathematical programming. In
Computational Intelligence and Software Engineering
(CiSE 2010), pages 1 –4, Dec. 2010.

