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ABSTRACT
The strong isolation guarantees of hardware virtualization have led
to its widespread use. A consequence of this is that individual parti-
tions contain much software that is designed to be used in a variety
of environments and by a range of applications, while in practice
only a limited subset is actually utilized. Similarly, the modular de-
sign of software has contributed greatly to the ability of application
developers to quickly write sophisticated programs. However, in
most instances only a small fraction of the functionality included
in a particular software component is needed.

To address the resulting code bloat, we describe a tool OCCAM
that combines techniques from partial evaluation and type theory
with the goal of reducing the code in deployed applications. OC-
CAM can be used without annotating or otherwise modifying a pro-
gram’s source. It leverages configuration-time information to pro-
duce a version of the application that is specialized to the context in
which it will be deployed. We present our algorithms, implementa-
tion, and experimental evaluation.

1. INTRODUCTION
Modular software libraries make it easier to write complex appli-

cations by providing reusable functionality for graphics, file oper-
ations, and networking. However, to be generally useful, libraries
often include more functionality than any one application needs.
For example, libpng [10] provides a sophisticated programming
interface that allows image transformation, but many applications
only use it for very simple tasks. In addition, complex libraries are
often wrapped in simpler ones, simplifying their use while increas-
ing runtime overhead.

The issue also spans multiple levels in the software stack, with
overhead introduced by cross-layer dependencies. For example,
the miniblog [13] application runs on top of PHP, which in turn
depends on libc. Numerous functions in libc are only used by
PHP code that is not used by miniblog. The functions would be
included in statically linked binaries, using storage space on disk
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and needing memory during execution. The extraneous code may
even be exploited in return-oriented-programming attacks [11]. In
all of these instances, users get more than they want (which we
argue is not good).

While most systems are not resource-constrained as they were
in the past, the prevalence of implementation flaws suggests that
even unused functionality in binaries and shared libraries can affect
performance, reliability, and security. To counter the consequences
of software bloat, we present an approach for specializing the code
to the actual usage and eliminating unused functionality.

We propose winnowing, a static analysis and code specialization
technique that uses partial evaluation. The process preserves the
normal semantics of the original program – that is, any valid exe-
cution of the original program on specified inputs is preserved in its
winnowed form. Invalid executions, such as those involving buffer
overflows, may be executed differently. We also describe OCCAM,
a tool that implements the techniques and present an experimental
evaluation of its effectiveness.

At a basic level, the functionality of a program corresponds to the
number of potential executions. For example, consider the socket
function from the C standard library:

i n t s o c k e t ( i n t domain , i n t type , i n t p r o t o c o l ) ;

Because the function takes three int parameters, it has a large num-
ber of potential behaviors (with one for each possible set of values
for the parameters). Most combinations are unlikely to be used
by any particular application. For example, web servers often open
AF_INET and AF_INET6 sockets but do not require AF_APPLETALK
or AF_ATMPVC sockets. The goal of winnowing is to remove un-
used behavior from the entire software stack, reducing the code that
must be analyzed, while preserving the desired functionality.

Motivation
We discuss four reasons to winnow deployed binaries.

Specialized servers. The advent of commodity virtual machines
has made highly specialized application servers the norm in many
domains. For example, production web servers often host a single
site, or even just a part of a site. Including overly general libraries
in these virtual machines only introduces code bloat – that is, the
isolation between partitions defeats the benefit of shared code.

Custom libraries. On some embedded platforms, being able to
slim the libraries might mean that developers can use larger, more
mature libraries and simply remove the pieces that they do not need.
Many applications provide compile-time configuration for remov-
ing large chunks of code. However, these units are defined by the
developer and not the consumer. This approach places a burden on
the developer for maintaining different build configurations.



The above approach also does not provide precise control over
what the application gets. For example, using a single function,
even indirectly, from a large component requires the entire compo-
nent to be present. In addition, this adds work for administrators,
who must then keep their systems up to date with potentially irrel-
evant patches. This occurs because it can be difficult to determine
whether a flawed function is used by an application or not, espe-
cially when it is written in a dynamic language.

Reduced analysis. In safety-critical systems, including large li-
braries is a liability. Smaller applications and libraries with fewer
configuration options and less general functions are easier to stat-
ically analyze. In addition, partially evaluated code is often sim-
pler [15], making static analysis more effective by making it more
context aware.

Binary diversity. Specialized libraries also make it more diffi-
cult to usefully exploit buffer overflows. Platforms such as PHP
contain the same set of functions in predictable places. Specializ-
ing each deployment instance to the application being run on it not
only removes unnecessary functions, but also moves and changes
the functions that remain. This makes it more difficult to craft at-
tacks that use parts of these functions for attacks.

Contributions
We discuss the ideas and methodology for winnowing single appli-
cations. Our approach is completely automatic for homogeneous
applications – that is, applications in which all of the code can be
compiled to the LLVM [7] bitcode format. We selected LLVM
since the framework includes frontends for several popular lan-
guages, including C, C++, and Java, has a well well-defined inter-
mediate representation, and supports both static and dynamic com-
pilation.

Our work provides:
– A tool for aggressively reducing the functionality of code (in

both libraries and applications). The tool is robust enough to win-
now large, industrial-strength programs that are used in practice.

– A modular way to incorporate external information into the
winnowing process. This can be used to enforce policies such as
“mail should never be called” or “system should only be called with
the string ls”, in a manner similar to aspect-oriented program-
ming [6].

– An empirical analysis of the impact that winnowing has on
binary size and execution performance. Our results suggest that
winnowing produces binaries with no performance overhead and,
depending on the application, can yield significant reduction in bi-
nary size.

– A tool that transparently augments the compilation process of
large software projects, such as PHP and SQLite, to produce LLVM
bitcode files as well as native object files.

Section 2 discusses our method for winnowing. This includes
winnowing of both individual in Section 2.1 and multiple compila-
tion units in Section 2.2. Our method for winnowing “open-ended”
applications, such as interpreters, is outlined in Section 2.3. We
discuss our implementation in Section 3. Three case studies are
described in Section 4, and evaluated in Section 5. Section 6 con-
cludes.

2. WINNOWING
We describe the process of winnowing with a simple example.

Section 2.1 discusses winnowing of individual compilation units,
which LLVM calls modules. Section 2.2 considers winnowing across
multiple modules, which is useful for large libraries and necessary
for dynamic loading.

main.bc
(llvm)main.c a.out

Winnowing

(0) compile (3) link

(1.1) optimize (1.2) specialize

(2) eliminate

partial evaluation

Figure 1: Intra-module winnowing operates on LLVM bitcode
modules by repeatedly running partial evaluation (1.1 and 1.2)
to specialize code and elimination (2) to remove unnecessary
dependencies.

2.1 Intra-Module Winnowing
The basic unit of compilation in LLVM is the module. For sim-

ple programs it is often the case that they are entirely contained in a
single module. In such cases, we can winnow an application using
the algorithm depicted in Figure 1. For illustrative purposes, we
discuss the algorithm by considering how to transform the follow-
ing simple use of the C regular expression library. (We use C for
expository purposes only. All analyses and transformations occur
on LLVM bitcode.)

i n t regcomp ( r e g e x _ t ∗preg , c o n s t char ∗ regex ,
i n t c f l a g s )

{ /∗ . . . regcomp code . . . ∗ / }
void main ( i n t argc , char∗ a rgv [ ] ) {

r e g e x _ t r e ;
regcomp(& re , a rgv [ 1 ] , REG_EXTENDED |

REG_ICASE ) ;
. . .

}

The algorithm proceeds in the following stages:

(0) Compilation: We begin by compiling the source code into
LLVM bitcode. Our tools, discussed in Section 3, build LLVM
bitcode automatically by instrumenting build scripts for Unix sys-
tems, such as those created with GNU autotools.

(1) Partial Evaluation: The core of the winnower is the partial
evaluator, which we implement in two phases that the tool inter-
leaves and iterates.

(1.1) Optimization: Partial evaluation begins by simplifying the
code. The goal is to expose compile-time constants, remove dead
code, and reduce known control flow. Applying the partial evalu-
ator to our code snippet would reduce the bitwise-OR, resulting in
the following:

void main ( i n t argc , char∗ a rgv [ ] ) {
r e g e x _ t r e ;
regcomp(& re , a rgv [ 1 ] , 3 ) ;
. . .

}

As Fujita [2] and Smowton [12] have noted, the aggressiveness
of the LLVM optimizer makes it a reasonable intra-procedural par-
tial evaluator. In this work we leverage it exclusively for this phase.
We use the LLVM -O3 optimization profile, which combines a
range of simplifications, such as global value numbering, heuristic



loop unrolling, sparse conditional constant propagation, constant
folding, and known function simplification (which simplifies calls
to libc functions such as strlen and memcpy). This optimization
pass also performs some conservative inter-procedural optimiza-
tions on local functions such as inlining small functions and elimi-
nating unused arguments.

(1.2) Specialization: After the optimization phase, we apply
heuristics to more aggressively specialize across function bound-
aries. During this pass we look for function calls with compile-
time known arguments. For example, the final argument to regcomp
specifies options such as case-insensitive matching, and whether
extended regular expressions are supported. In our example, as in
most cases, the value of this option is known at compile time. To
specialize, we duplicate the function, replacing occurrences of the
formal parameter with the known constant, and remove the (now
unnecessary) argument:

i n t regcomp_ICASE_EXTENDED ( r e g e x _ t ∗preg ,
c o n s t char ∗ r e g e x )

{ /∗ . . . regcomp w i t h c f l a g s = 3 ∗ / }

Applying the optimization pass to this specialized function will re-
move dead code by simplifying branches on cflags . It may also
push constants into argument positions, revealing new opportuni-
ties for specialization.

Naively implemented, this pass has the potential to drastically
increase the size of the code. However, a variety of heuristics can
be used to control this. One such heuristic is to only specialize
functions when the unspecialized version can be removed. This
heuristic corresponds exactly to when we will be reducing the func-
tionality of the program and is an idealized case. In practice, we
have found it necessary to specialize more aggressively in order to
reveal beneficial lower-level specializations. Our current heuristic
is greedy, choosing to specialize whenever it sees a supported con-
stant, while ignoring variable argument functions. Beyond integers,
our specialization procedure supports floating point numbers, con-
stant strings, null values of any type, and the addresses of global
variables and functions.

Recursion: The primary difficulty of function specialization is
cycles in the program’s call graph. Without recursion, we can
bound the number of specializations since we know that the LLVM
optimizer will not infinitely unroll loops. In the presence of re-
cursion, however, we must detect when specialization will diverge.
Consider the following simple recursive function:

i n t foo ( i n t s t a r t , i n t end ) {
i f ( s t a r t > end ) { re turn s t a r t − end ; }
re turn foo ( s t a r t + 1 , end ) ;

}
i n t b a r ( i n t x ) {

re turn foo ( 1 , x ) ;
}

Applying specialization and optimization leaves us with the spe-
cialized version of foo:

i n t foo_1 ( i n t end ) {
i f (1 > end ) { re turn 1 − end ; }
re turn foo ( 2 , end ) ;

}

which has another opportunity to specialize – namely, foo (2,?) . If
we naively continue this process, our specialization will proceed
forever because we do not know the value of end. However, we
have found recursion to be rare in the imperative code that we are

specializing. Hence our current implementation is somewhat naive,
choosing not to specialize recursive functions. It is worth noting
that partial evaluators address this problem through the use of bind-
ing time analysis [1, 5]. In particular, techniques do exist for partial
evaluation of recursive functions [4].

(2) Elimination: After partial evaluation has stabilized, or the bi-
nary is becoming too large to effectively deal with, we eliminate
internal globals that are no longer necessary. Global variables may
become unused when optimization removes unreachable code. Global
functions will be eliminated if they were specialized and all call
sites could be statically resolved to one of the specialized instances.

We implement this phase using three of LLVM’s optimizers:
globaldce, globalopt, strip-dead-prototypes.

(3) Linking: After iterating the winnowing process to a fixed point,
we use the LLVM tools to link the winnowed code to build the bi-
nary.

This intra-module winnowing algorithm builds a semantically
equivalent version of an input module while working to eliminate
unnecessary functionality. The algorithm can be applied to any in-
dividual compilation unit, including static libraries and shared ob-
jects, since it does not modify the externally visible interface (at
the level of abstraction of LLVM) by removing exported functions
or changing their names or types. However, partial evaluation can
drastically change the internal structure of the program, invalidat-
ing monitoring behavior (such as stack inspection) that is not man-
ifest in the code.

2.2 Inter-Module Winnowing
Intra-module winnowing works well for many programs because

most applications can be built as single modules by statically link-
ing libraries prior to winnowing. However, this process breaks
down with very large programs, and when programs must interact
with shared libraries.

The difficulty of winnowing across module boundaries arises
from the separation of code and the need to maintain compatible
binary interfaces between independently winnowed modules. In
addition, we would like our specializations to be reusable. For ex-
ample, we may want to build a custom version of a standard library
that supports several applications by including only the necessary
functionality for those applications. We would then like to be able
to automatically rewrite the client applications to reuse the same
winnowed library.

Conceptually, we can break inter-module winnowing into three
tasks. The first task enables the independent winnowing of mod-
ules by computing a module’s dependencies (Section 2.2.1). The
second task specializes modules (Section 2.2.2) and rewrites them
based on generated specifications (Section 2.2.3). The final task
“seals” the module, hiding symbols that are not used by other mod-
ules (Section 2.2.4) so that any unused functions can be eliminated
during link-time optimization. The winnowing process iterates the
specialization and sealing steps with intra-module specialization
(Section 2.1) to produce the complete winnowed binary.

For illustrative purposes, we consider specializing the following
simple code snippet, where bar is implemented in another module.

e x t er n void b a r ( i n t , i n t ) ;
i n t main ( i n t argc , char∗ a rgv [ ] ) {

b a r ( a rgc , 5 ) ;
b a r ( 2 , a r g c ) ;
re turn 0 ;

}



2.2.1 Computing Dependencies
The core composition mechanism is the computation and use of

(function and global variable) dependencies of modules. In intra-
module winnowing we had the code for foo and were able to spe-
cialize it immediately. However, now that the function is defined
in another module, we can only record foo as a dependency of the
client module.

To achieve meaningful specialization of functions, we will need
information about the values of the arguments. We express this
information using a singleton type system [8, 16]. Singleton type
systems support a refinement of types using equality predicates.
For example, the C type system can only express that the variable
x is an integer ( int x). With singleton types, we can refine this type
and state not only that x is an integer, but that its value is 5 ( int=5 x).
Thus, the dependencies for our simple program are the following:

bar(int=?, int=5)
bar(int=2, int=?)

For uniformity we use int=? to specify an integer with an un-
known value.

To compute the dependencies of a module, we traverse the call
graph from the module entry points and look for uses of external
symbols. Direct references and call sites are simple; we determine
the target function and record the information as we saw above.

Indirect function calls and function pointers are more difficult.
We rely on LLVM’s tools for computing call graphs which em-
ploy standard program analysis techniques such as alias analysis
and control and data flow analyses. These analyses improve OC-
CAM’s ability to resolve indirect function calls.

When we cannot statically determine the target of the call, we
must record the most general – that is, unspecialized – call to each
possible target function. This is because we may not be able to
change the binary interface without a global code rewrite. For ex-
ample, if code stores the address of bar in a function pointer, we
must conservatively record the most general dependence:

bar(int=?, int=?)

In some cases, the partial evaluation done during to intra-module
winnowing will simplify this structure, allowing us to statically re-
solve the function. While this prevents further specialization, it is
unavoidable in the general case – for example, when the program
being specialized looks up function pointers in a table.

link
order

main.bc main.deps

lib1.bc lib1.deps

lib2.bc lib2.deps

app.deps

Figure 2: We compute the dependencies of a program by
traversing call graphs from the main function. Calls to exter-
nal functions are recorded in the interface and used as the roots
for the traversal of containing libraries, following link order.

To compute the dependencies for an entire application, we start
at the module that contains the program entry point and traverse the
libraries that the code links against, as shown in Figure 2. To han-
dle the general case of cyclic module dependencies, we iterate the

process until subsequent dependency computations do not produce
additional dependencies.

2.2.2 Specialization
Specialization uses each client module’s dependencies to deter-

mine which functions to specialize, as depicted in Figure 3. We
iterate over the list of calls in the dependency file and determine
whether and how to specialize each function. Function specializa-
tion works the same way as in the intra-module case – that is, we
duplicate the function body, remove the constant parameters, and
substitute them in the body.

lib.bc

lib.red.bc

lib.spec.bc

lib.rw

cli.iface cli.bc

cli.rw.bc cli.min.bc

(3) rewrite

(1) dependents

(2) specialize

(4) winnow
(4) winnow

Client Module

Figure 3: The specialization process uses a client dependency
description (1) to generate a specialized module and a rewrite
specification (2) that describes how to rewrite the client’s calls
to the library. The rewrite specification can then be applied to
any client to make it use the new interface (3). The process con-
cludes with applying intra-module winnowing to the specialized
library (4).

The primary difference from intra-module winnowing is that we
do not have access to the function call sites in order to rewrite them
to call the specialized function. Therefore, we generate a rewrite
specification that records how clients can be rewritten to use the
more-specific interface. Considering the earlier specialization of
bar, we would generate the following rewrites:

"bar"(int=?1, int=5) -> "bar_x_5"(int=?1)
"bar"(int=2, int=?2) -> "bar_2_x"(int=?2)

The ?1 and ?2 on the left are variable bindings that can be men-
tioned on the right of the arrow to refer to the specialized func-
tion’s parameters. For example, the first rewrite says that calls to
the function bar with the second argument of 5 can be rewritten in
a meaning-preserving way with calls to the function bar_x_5, where
only the first argument is passed.

2.2.3 Rewriting
After specialization, we use the rewrite specifications to update

the client module. We iterate the call sites of all externally defined
functions and look up the most precise rewrite that matches the call
site. If a matching rewrite exists, we update the call site to use
the specified function and rewrite the arguments accordingly. For
example, applying the above rewrites in our simple example would
result in the following code.

i n t main ( i n t argc , char∗ a rgv [ ] ) {
bar_x_5 ( a r g c ) ;
ba r_2_x ( a r g c ) ;
re turn 0 ;

}



Note that the specialization step does not remove any of the un-
specialized functions since call sites that do not match any rule will
continue to invoke the unspecialized functions.

Rewriting is essentially the same as modifying the caller in intra-
module specialization, except that it may be necessary to add new
function prototypes to the module, and rewrites are read from the
rewrite specification. Since we did not modify the generic function
implementations, we can safely ignore indirect calls and storing
external symbols in variables.

2.2.4 Sealing

All Modules

B.ifaceA.iface C.iface

lib.bc iface

lib.seal.bc

seal

compute dependence

Figure 4: Sealing hides exported functions that are not ref-
erenced from outside the module. This enables more LLVM
optimizations and analysis since the calling context of internal
functions is more limited.

With our rewriting done, we can perform the inter-module equiv-
alent of intra-module elimination. During this step, we make sym-
bols not directly referenced by the outside world internal, effec-
tively covering holes that others can use to interact with our mod-
ules. This allows intra-module winnowing to remove unreachable
code and more aggressively optimize functions since it can stati-
cally analyze all potential call sites.

Sealing a module is easy using our interfaces, as illustrated in
Figure 4. We simply iterate through all external symbols and make
any that are not referenced by the interface internal. It is important
to note that having accurate interfaces is essential to the correctness
of this step since we will fail to link if we try to reference an internal
symbol in another module.

2.3 Dynamic Checks
Winnowing is most effective when we can statically determine

the interface for components. However, in some instances, such
as when calls are made through function pointers, it is difficult to
determine how functions are called. For example, during dynamic
dispatch in object-oriented languages or when looking up functions
tables in interpreters for dynamic languages.

For expository purposes, we consider a simple example:

e x t er n i n t (∗ foo ) ( i n t ) ;
e x t er n i n t (∗ b a r ) ( i n t ) ;
void go ( bool f o o b a r ) {

i n t (∗ f ) ( i n t ) = f o o b a r ? foo : b a r ;
f ( 2 ) ; f ( 3 ) ;

}

We know that foo and bar will be called only with arguments 2 and
3, but we cannot easily rewrite the code since we will need to use
a different function in the calls to f. Here, we must maintain the
same binary-level interface to foo and bar while not exposing all
the functionality of these functions.

To achieve this, we statically rewrite the code to perform dy-
namic dispatch based on parameter values, similar to multi-methods.
We maintain the same binary interface by constructing a wrapper
function that will check the input arguments and dispatch to the ap-
propriate specialized version or signal an error if the interface was
violated. There are two potential places to perform this check, at
call sites or at function definitions, and there are different benefits
for each of them.

2.3.1 Rewriting the Client
The first choice is to rewrite the client code. In this setting, the

library exports only the specialized functions (foo_2 and foo_3) but
the client requires the non-specialized foo. To modify the client, we
must implement the generic function by testing its arguments and
dispatching to the appropriate customized function. For example,
we implement foo in the client module as:

e x t er n i n t foo_2 ( ) ;
e x t er n i n t foo_3 ( ) ;
i n l i n e i n t foo ( i n t x ) {

i f ( x == 2) re turn foo_2 ( ) ; / / f o o ( 2 )
i f ( x == 3) re turn foo_3 ( ) ; / / f o o ( 3 )
e x i t ( 1 ) ;

}

Applying partial evaluation to the client will result in this call being
inlined and the conditions being removed in cases where x is stat-
ically known. Code that makes calls which don’t conform to the
interface will fall-through and signal an error ( exit (1)).

2.3.2 Rewriting the Library
The alternative is to rewrite at the target function in the library.

This is useful for enforcing interfaces on libraries that we could not
statically validate. It can also be applied within individual mod-
ules to address the difficulties of dealing with indirect calls. To ac-
complish this, OCCAM duplicates the old foo implementation and
rewrites it.

We replace the exported function foo with a function that checks
the argument (to enforce the policy that foo should be called only
with 2 or 3) and delegates appropriately or terminates the program.
Since oldfoo is internal to the library (as indicated by the C static
modifier), intra-module winnowing will specialize it and remove
the general version from the final executable. After rewriting, the
function is as follows:

i n t foo ( i n t x ) {
i f ( x == 2) re turn o l d f o o ( 2 ) ;
i f ( x == 3) re turn o l d f o o ( 3 ) ;
e x i t ( 1 ) ;

}
s t a t i c i n t o l d f o o ( i n t x ) { /∗ f o o code ∗ / }

3. IMPLEMENTATION
We have implemented all the techniques that we have described.

They have been applied to several examples to understand the use-
fulness of winnowing for real applications. Our code is imple-
mented as a collection of LLVM compiler passes. We run it using
the LLVM opt program through a set of Python wrappers. This
means that each phase of the winnowing process produces a new
program (or interface file). While less efficient than a pure C im-
plementation that does not reify intermediate results, this approach
gives us flexibility to experiment with additional transformations
and specialization heuristics. The distribution of our code provides
a tutorial of how our tools can be used to winnow an application.



To create bitcode versions of programs, we developed a collec-
tion of scripts to wrap extant build tools. This was necessary since
the build procedures of large applications typically use a variety of
tools, such as autoconf, libtool, cmake, and make. While
these support a variety of platforms and configurations, they do not
support LLVM bitcode as a target architecture.

To integrate with existing build scripts that check dependencies,
our tool translates each command – for example, invocation of gcc
or ld, into two commands. The first compiles a modified version
to obtain LLVM bitcode, and the second is the standard version that
generates the ELF version. Generating ELF objects confirms that
the normal build succeeds and ensures that all appropriate depen-
dencies are present. While suboptimal, especially in terms of build
speed, our scripts are reasonably robust and are able to compile
large programs and libraries, such as PHP, SQLite, and uClibc.

4. CASE STUDIES
Before diving into our examples, we recall our goals. First, we

want to reduce the functionality of code. This does not necessarily
mean reducing the size of code; rather, it means reducing the num-
ber of possible executions of the program. Duplicating a function
will increase the code size, but it will not increase the complexity.
Similarly, specializing a function with a particular argument value
reduces its possible behaviors by limiting the values that can be
passed to it. To measure this, we can look at the call graph of an
application before and after winnowing.

Secondary goals are the reduction of code size and configura-
tion complexity. Large libraries support flags to enable features at
coarse granularity – for example, MySQL support in PHP. Win-
nowing provides library users an automated way to carve out more
precisely the functions that they want. To measure this, we can
compare winnowing to existing techniques, such as static linking
with libraries (that uses only the necessary objects from an archive).

Our case studies cover two web servers, nweb [3] and thttpd [9],
and the PHP interpreter used by web applications.

getpid__errno_location

sprintf

atoi
htons

accept

main

chdir

printf

exit(0x4)

fork

signal(0x11,?)

signal(0x1,?)

close

setpgrp

open

strlen

write

socket(0x2,0x1,0x0)

log(0x2A,?,?,0x0)

htonl(0x0)

bind(?,?,0x10) listen(?,0x40)

read

log(0x2B,?,?,?)

strncmp

exit(0x1)

exit(0x3)

Callgraph after winnowing.

Figure 5: The callgraph of nweb shows how inter-module win-
nowing duplicates functions and removes parameters. Gray
nodes denote specializations. Multi-edges indicate duplicated
calls from inlining.
nweb is a static content web server that is implemented in about

200 lines of C. While its size and architecture do not make it a
great candidate for winnowing (as it is a minimal application with
few configuration options) they do make it easy to show exactly
what winnowing does. nweb depends only on libc and is simple
enough that uClibc satisfies its requirements.

Since nweb is configured from the command line, we begin win-
nowing by specializing the main function with respect to the argu-
ments that we wish to supply. For this purpose, we use the com-

mand line ‘nweb 8080 /root’ to tell nweb to listen on port
8080 and serve files from /root.

Figure 5 shows the effect of winnowing on nweb’s call graph.
Bold gray boxes in the figure denote specialized functions. Note
that of the 27 functions before winnowing, only 17 remain after.
The remaining 10 are specialized or inlined into 11 different func-
tions, each specialization removing at least 1 parameter. These spe-
cializations include:

– The log function has been duplicated three times, once for each
type of status that can be logged, and the generic function has been
removed. Partial evaluation of the specialized instances removes
all of the interesting control flow from the specialized instances,
making them straight-line code with direct function calls to sprintf ,
open, and write .

– The libc functions for setting up sockets (bind, listen and
socket) each get specialized to handling TCP requests. The most in-
teresting of these is socket, which is specialized for Internet (AF_NET),
stream-oriented sockets (SOCK_STREAM).

– The libc function for handling software interrupts ( signal )
is specialized twice to handle SIGCHLD and SIGHUP. These spe-
cializations allow other tools to easily determine that the program
only uses signals in a very limited way.

thttpd is the second web server we consider. It has a con-
siderably larger number of features. thttpd is approximately
8500 lines of C code and supports CGI, using chroot on startup,
in-memory caching, and htpasswd authentication. In addition to
the core libc functionality, thttpd links against libcrypt in
order to protect its .htpasswd file. thttpd can be configured
both at runtime through command line arguments and at compile
time with a header file that controls code generation using a set
of 49 macros. These macros include many of the options that we
would wish to expose to our winnower. For example, the path to
.htpasswd is stored in the AUTH_FILE macro.

Winnowing thttpd results in 125 function specializations, which
fall roughly into three categories.

– Specialization of timer creation ( tmr_create). All of these calls
can be specialized completely, including on the function pointer to
run when the timer expires. This protects against data attacks in
which an adversary corrupts a data value that is later invoked as a
function.

– Specialization of buffer allocation ( httpd_realloc_str ). One call
extends the size of the buffer to store headers:

h t t p d _ r e a l l o c _ s t r (& header , &maxheader ,
s i z e o f ( h e a d s t r ) + s t r l e n ( r ea lm ) + 3 ) ;

This call is specialized on the first two arguments since both are the
addresses of global variables.

– Specialization of error codes makes up the third and largest
group (with about 100 instances). Because our specialization frame-
work does not yet support variable argument functions, we are not
able to specialize the calls to snprintf in these error functions. How-
ever, the propagation of constants is performed. So it is feasible to
achieve the extra specialization necessary to inject these constants.

PHP [14] is a popular programming language for web sites.
It comes with an extensive standard library ranging from simple
string and date manipulation to POSIX system calls like chroot.
The “batteries-included” approach is useful for getting new appli-
cations up and running. At the same time, this presents a vast attack
surface – especially for applications that use eval . To address this,
we can winnow the PHP runtime functionality that is not required
by the hosted application.



To demonstrate this, we build a PHP interpreter customized to
serve miniblog [13], a small blogging framework written in PHP.
As before, we use our toolchain to automatically build LLVM bi-
naries for the PHP interpreter. After compiling PHP to an LLVM
binary, we need to determine the interface that miniblog requires.
Two complications arise in this task.

First, PHP programs are fed as text to the PHP interpreter. This
means that we cannot use our LLVM passes to determine the in-
terfaces necessary to run an application. Static evaluation of PHP
is beyond the scope of this work. So we use regular expressions
to capture textual patterns that correspond to PHP’s function call
syntax and compare the target function names with those supplied
by PHP. Afterwards, we manually checked the results. This pro-
cess could be replaced by a more semantic static analysis and/or
by recording traces as the program runs. Even with these tools, we
believe that manual auditing of this list is still useful for experts to
see what is being depended upon by the underlying system.

From our static analysis we determined that miniblog relies on
52 functions in the PHP standard library, including string and file
operations and MySQL functions. For comparison, we compiled
the minimal interpreter that can be configured with PHP’s compila-
tion option (that includes the PHP standard library and the MySQL
extension). This contains 1029 functions, including potentially dan-
gerous functions such as system and mail. Some of the eliminated
functions contained vulnerabilities (CVE-2011-1148 and CVE-2010-
2191) in past PHP versions. These would not have been present in
PHP deployments that had been winnowed.

The second problem is with the architecture of the PHP inter-
preter. The PHP interpreter stores library function implementa-
tions in a table that is dispatched to dynamically. Therefore, all
calls through functions in this table will be overly conservative,
most likely stating that any function could be the target. Even if
we could pull the PHP code into the interpreter during partial eval-
uation using techniques like those developed by Smowton [12], the
LLVM optimizer is unlikely to achieve the partial evaluation nec-
essary to resolve calls through this table. In lieu of this, we note
the structure of the table and modify the functions using the tech-
niques described in Section 2.3. In the standard PHP interpreter,
each library routine Xxx is implemented in the function zif_Xxx.
Therefore, we can easily write hooks that will rewrite unused func-
tions to errors.

For winnowing miniblog, we generate 997 rewrites of the form:

zif_system(?) => fail
zif_mail(?) => fail

For audit and debugging purposes, we have the implementation of
fail log the call of the function that produced the violation.

5. EVALUATION
Performance. We compare the rate of requests that each of

the servers can sustain when built with and without winnowing,
in order to understand the runtime impact. Performance is mea-
sured in requests per second when serving a single, small static
page. To control for network bandwidth, we performed our tests on
localhost:8080. We use the Apache benchmarking tool ab to
generate the requests. We ran 40 trials, each one making 5000 re-
quests to the server. Tests were run on an otherwise lightly loaded
Intel Core 2 quad-core desktop running at 2.4 GHz with 4 GB of
RAM and Linux 2.6.38 with the TuxOnIce patchset.

To achieve a fair comparison, the baseline is optimized with
LLVM’s -O3 before linking. Both versions were statically linked
against uClibc-0.9.32, built with OCCAM and optimized using the
standard configuration options from the uClibc build (using -O2).

(a) nweb performance before and after winnowing.

(b) thttpd performance before and after winnowing.

Figure 6: Performance comparison between basic web servers
and their winnowed versions. At the 95% confidence level,
winnowing of nweb does not impact its performance; however,
winnowing of thttpd does improve performance.

Figure 6 gives the performance results for nweb (a) and thttpd
(b). In the case of nweb, the difference is not statistically signifi-
cant due to the large variation in the samples. The winnowed ver-
sion of thttpd is statistically faster than the non-winnowed bi-
nary at the 95% confidence level. This performance improvement
is most likely due to two factors. First, winnowing uses -O3 as its
partial evaluator while the standard compilation process uses -O2.
Second, the duplication of functions exposes constants and creates
more opportunities for compile-time optimization.

Size. The aggressive specialization policy we use for winnow-
ing causes a 45% increase in the size of the thttpd module, as
seen in Figure 7. This is a known problem with partial evalua-
tion techniques. Much of this is due to duplication of the error-
reporting functions that are actually parametric with respect to the
arguments that they specialize. This issue can be addressed through
a more conservative heuristic. It would only keep a specialization
if it makes a significant difference or uncovers others that do.

Figure 7: “minimal” is the size of the original. “optimized” is
after it has gone through LLVM’s -O3. “debloat” is the win-
nowed version.



Unlike the thttpd module, both libcrypt and libc have a
negligible increase in binary size from winnowing. This is because
most functions are leaf routines (such as string manipulation) or
they immediately call into the operating system. Thus, within these
individual modules there are fewer opportunities for inlining or spe-
cialization of functions. The additional size is due to specializable
calls into the library minus the additional functions and constants
that are pulled in by the static linker but not used by the thttpd
module. These are not significant in highly optimized, low-level
libraries that are statically linked since each object in the archive
usually defines only a minimal number of functions.

Figure 8: "full" is the size of the shared libraries used by
thttpd, while "minimal" is their winnowed size.

Many common libraries, such as libc, are compiled to shared
objects (or the system equivalent) rather than being statically linked.
Normal shared objects contain the entire library, as shown with
dark bars in Figure 7. Any application that dynamically links with
such a library pulls in a considerable amount of extraneous func-
tionality. By applying winnowing before building the shared ob-
ject, we can reduce this considerably.
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Figure 9: Size of PHP LLVM module with various winnowing
configurations.

Figure 9 shows the results of applying the Section 4 technique
for PHP. min denotes the minimal PHP module that can be built
using PHP compilation configuration options. It is 5.5 MB in size,
of which 4.0 MB (marked with the dashed line) is the interpreter
(without any exported PHP functions). The remaining 1.5 MB is
the standard library. +mysql represents the binary with MySQL
support added. It requires an additional 4% storage (without in-
cluding the MySQL library). +mysql-sys is the binary that re-
sults from adding a policy that prevents calls to a blacklist of 11
dangerous PHP functions. miniblog denotes a version of the in-
terpreter that results after winnowing with respect to miniblog’s in-
terface. After intra-module winnowing, the LLVM bitcode shrinks

from 5.8 MB to 4.2 MB in size, a 27% reduction; this is only 5.5%
larger than the core interpreter.

The reduction of the PHP interpreter binary size from winnowing
is similar to the minimization of shared objects that we saw for
libc in the thttpd case (as illustrated in Figure 8).

6. CONCLUSION
We developed the OCCAM tool to specialize applications to their

deployment context. We explained how our tools can be used to
precisely remove functionality from an application in a completely
automated way. We also argued that a small amount of manual
effort can be used to address difficulties that arise from incomplete
information, such as not knowing the program that an interpreter is
running, or imprecise alias analysis.
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