

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or affiliate of a national

government. As such, the Government retains a nonexclusive, royalty-free right to

publish or reproduce this article, or to allow others to do so, for Government purposes

only. April 13 - 17 2015, Salamanca, Spain. Copyright is held by the

owner/author(s). Publication rights licensed to ACM. ACM 978-1-4503-3196-

8/15/04$15.00 http://dx.doi.org/10.1145/2695664.2695911

C and OpenCL Generation from MATLAB
João Bispo

Faculty of Engineering (FEUP)
University of Porto

Porto, Portugal

jbispo@fe.up.pt

Luís Reis

Faculty of Engineering (FEUP)
University of Porto

Porto, Portugal

ei09030@fe.up.pt

João M. P. Cardoso

INESC-TEC/FEUP
University of Porto

Porto, Portugal

jmpc@fe.up.pt

ABSTRACT

In many engineering and science areas, models are developed and

validated using high-level programing languages and environ-

ments as is the case with MATLAB. In order to target the multi-

core heterogeneous architectures being used on embedded sys-

tems to provide high performance computing with acceptable

energy/power envelops, developers manually migrate critical code

sections to lower-level languages such as C and OpenCL, a time

consuming and error prone process. Thus, automatic source-to-

source approaches are highly desirable. We present an approach

to compile MATLAB and output equivalent C/OpenCL code to

target architectures, such as GPU based hardware accelerators.

We evaluate our approach on an existing MATLAB compiler

framework named MATISSE. The OpenCL generation relies on

the manual insertion of directives to guide the compilation and is

also capable of generating C wrapper code to interface and syn-

chronize with the OpenCL code. We evaluated the compiler with

a number of benchmarks from different domains and the results

are very encouraging.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code generation, Compilers, Optimization,
Retargetable compilers

General Terms Performance, Experimentation, Languages

Keywords MATLAB, source-to-source compiler, C program-

ming language, embedded systems, GPUs, OpenCL

1. INTRODUCTION
MATLAB [1] is a high-level programming language supported by

an interactive computing environment used in many domains in

engineering and science. The language and its associated envi-

ronment are ubiquitously used to quickly develop and evaluate

models. MATLAB is dynamically typed, and is usually interpreted

and/or JIT compiled. Ahead-of-time compilation of MATLAB is

challenging because the information about the types and shapes

(i.e., number and size of matrix dimensions) of variables might be

only known at runtime. In order to improve performance,

MATLAB has built-in support for pre-compiled and optimized

functions and there have been efforts to add support for multicore

and GPU (Graphics Processing Unit) architectures (see, e.g.,

[2][3]). In many high-performance and embedded system settings,

however, the use of a MATLAB runtime environment might be

infeasible, either because it is not available, or due to performance

and/or resource constraints. To address this potential shortcoming,

a typical solution relies on the translation of the base or original

MATLAB code/model to a programing language such as C/C++.

This implementation must then in turn be validated against the

output of the MATLAB code resulting in a lengthy and error prone

process that further complicates the overall application develop-

ment cycle and increases its cost. The existence of two source

codes - the original model-driven MATLAB code and the imple-

mentation-driven C/C++ code - also exacerbates maintenance

costs. An alternative solution is the automatic translation of

MATLAB to the target programming language, e.g., by MATLAB

to C code translators (e.g., [4]).

Despite their inherent advantages, typical automatic approaches

have the disadvantage of providing low support to control and

guide the code translation. The code generation is commonly

based on directives (GUI based in the case of the MATLAB Coder)

to specify variable types, shapes, and target do-

main/microprocessor. When dealing with the myriad of target

architectures and toolchains in embedded systems, this approach

presents a low level of flexibility. For example, the style of the

generated C code might need to be tuned to the toolchain as is the

case when targeting C code for hardware compilers. Furthermore,

the target platform may require specific code transformations

and/or specific programming languages such as CUDA [5] or

OpenCL [6] when dealing with GPGPUs and/or FPGAs [7].

Our approach focuses on a compiler, named MATISSE [8][9], to

generate C/OpenCL code directly from MATLAB. MATISSE is

being developed as a modular and flexible compiler framework,

which includes custom Intermediate Representations (IRs) for

MATLAB, C and OpenCL code. In particular, the IR representing

the output C code (C-IR) supports matrix types natively, and can

be easily extended to support additional types and language con-

structs. The result is a synergy between compiler analysis and the

information provided by the user, which allows the compiler to

generate very high-quality code from MATLAB specifications. It is

also possible to generate different versions of the C code, to better

target different embedded systems, platforms, and/or toolchains.

In this paper, we describe our approach to translate MATLAB code

to mixed C/OpenCL implementations. We evaluate this approach

with a number of representative examples and the results achieved

are very encouraging. This paper makes the following contribu-

tions:

 It proposes the use of OpenACC [10] based directives to parti-

tioning the MATLAB programs between the GPP (General Pur-

pose Processor) and the target GPU, and to instruct the OpenCL

generator;

 It presents the current phases needed to allow an efficient

OpenCL generation;

 It evaluates the approach with a number of MATLAB functions

and targeting two distinct GPU architectures.

The remainder of this paper is organized as follows. Section 2

presents the MATISSE compiler and describes the proposed di-

rectives for OpenCL generation. Section 3 presents the OpenCL

compilation phases. Section 4 shows some experiments performed

using MATISSE. Section 5 describes related work and finally,

Section 6 concludes this paper and describes future work.

2. THE MATISSE MATLAB COMPILER
MATISSE [8][9] is a MATLAB source-to-source compiler frame-

work specially targeting embedded systems. Figure 1 presents the

overall flow of the compiler. The input MATLAB files are trans-

lated to an abstract syntax tree (AST) based MATLAB IR (inter-

mediate representation). This IR is then used for optimiza-

tions/transformations and for code generation. The compiler is

being developed in a way to ease the integration of code genera-

tors. At the moment, it includes code generators for MATLAB, C,

and OpenCL.

C Language
Specification

C Language
SpecificationMATLAB Code MATLAB Parser

MATLAB IR

MWeaver

C Language
Specification

C Language
SpecificationLARA Aspects

MATLAB
Generator

MATLAB To C
Engine

C IR

C Code
Generator

MATLAB To
OpenCL Engine

C IR + OpenCL Extensions

C/OpenCL Code
Generator

MATLAB IR + Information

C Language
Specification

C Language
SpecificationMATLAB Code

C Language
Specification

C Language
SpecificationC Code

C Language
Specification

C Language
Specification

C + OpenCL
Code

Figure 1. Overview of the MATISSE compiler framework.

MATISSE generates MATLAB code for validation, testing, moni-

toring, and specialization, and C/OpenCL code to be used by

third-party design-flows targeting software/hardware systems. It is

able to generate customized C code for a particular target without

modifying a significant subset of original MATLAB code. Aspect

files (using LARA [11]) allow users to have fine-grained control

over the generation of C code, and also allow the generation of

different implementations from the same source code. A common

example includes the restructuring of source code and the use of

statically declared array variables to be compliant with the re-

quirements of most hardware compilers.

MATISSE supports the use of directives to guide the compilation

flow and allow users fine-grained control over which portions of

the MATLAB code are migrated to the OpenCL device and which

are executed sequentially on a GPP. The current directives (see

Table 1) are based on OpenACC [10] and are embedded in lines

interpreted as comments by MATLAB environments (comments

starting with %acc specify directives). This allows other MATLAB

tools to accept MATLAB code with our directives (ignoring them).

Table 1. Directives currently supported by the compiler.

Directives Description
parallel

loop
Indicates that a for loop should be compiled to OpenCL

and its iterations can be executed in parallel.
loop Indicates that an inner for loop can be executed in

parallel.
ignore Indicates a code section to be ignored by MATISSE

when generating OpenCL code.
end Indicates the end of a parallel, parallel loop or

ignore block.
barrier Indicates a memory barrier. The compiler recognizes two

different types of barriers, barrier local and

barrier global. These are equivalent to the OpenCL

barrier function when using the argument

CLK_LOCAL_MEM_FENCE, and CLK_GLOBAL_MEM_FENCE.
cop-

yin(vars)
A list of variables that should be copied for use by the

OpenCL kernel. If only a portion of an array/matrix is

used in a parallel loop region, then the range copy syntax

(e.g., A(1:100)) can be used.
copyout(va

rs)
A list of variables that should be copied from the

OpenCL device to the host device once the kernel

finishes execution.
Reduce

(var-

name:opera

tion)

A list of scalar variables that are computed partially by

multiple threads. Two operations (+ for sum and * for

product) are supported.
lo-

cal(vars)
A list of matrix variables that are different for each local

group. The values of these matrices are not copied to the

device and changes to them are discarded once the

kernel execution ends.
lo-

cal_id(var

s)

For each iteration, the value of these variables will be set

to the respective local ID. The value of these variables

remains the same outside of the parallel loop block.
group_id(v

ars)
Similar to local_id, but the variables store the

respective group IDs.
lo-

cal_size(c

onstants)

The local size that should be used.

Erro! A origem da referência não foi encontrada. shows a sim-

ple MATLAB function to compute the element-wise square of a

given matrix (equivalent to MATLAB’s A.*A). The code is ex-

tended with directives which indicate that the for block must be

compiled to OpenCL, the A matrix must be copied to the OpenCL

device (readonly because the input matrix itself is not modified),

and Y should be copied back to the host once the GPU execution

is finished.
function Y = elementwise_square_matrix(A)

 Y = zeros(size(A));

 %acc parallel loop copyin(readonly A) copyout(Y)
 for i = 1:numel(A)

 Y(i) = A(i) * A(i);

 end
 %acc end
end

Figure 2. MATLAB code example with directives.

3. COMPILATION PHASES
The current version of the compiler consists in multiple phases.

We describe next the most important ones regarding the genera-

tion of OpenCL code. They are applied only on code between

%acc pragmas.

3.1 Expression Decomposer
The expression decomposer is a compiler phase used to decom-

pose expressions without changing the behavior of the program,

in order to simplify the subsequent phases. It introduces new tem-

porary variables, e.g., the code in Figure 3(a) is transformed to the

code in Figure 3(b). As a result of these changes, the following

post-conditions are true:

 Every array access or function call is directly assigned to a vari-

able (never used as part of another expression). This is im-

portant as it simplifies function inlining. In order to ensure that

the above is true, while(x) loops become while(1) with

an additional if statement that breaks the loop when the condi-

tion is false.

 All for loops become in the form for varname=1:1:x.

This makes trivial to compute the number of iterations of any

loop if x is known. This is useful for the OpenCL backend,

which must be able to compute the number of iterations of every

parallel loop before it can execute it.

3.2 Function Inliner
The function inliner replaces all function calls with the function

body. Regarding the identification of the identifiers related to

functions, name resolution is performed by the compiler and by

the user. After the inliner has been executed, the code contains no

function calls so the code generator can assume that every time

A(x) appears it is a matrix access expression.

The inliner also needs to deal with the presence of return state-

ments in the function to be inlined. These return statements are

translated to code able to make the execution flow of previous

return statements without returns (auxiliary variables and if and

break statements are introduced). Figure 4(a) shows an early

return. Before inlining, the compiler transforms the code such as

in Figure 4(b). Finally, since the caller and the callee functions

may use variables with the same names, callee variables must be

renamed when they are inserted into the caller function.

(a)

for w = 1:2:x

 while w < 10

 y = y + f2(w); % f2 is a function

 w = w + 1;

 end

end

(b)

tmp_MaxValue1 = (x - 1) / 2 + 1;

tmp_Iterations1 =

floor(tmp_MaxValue1);

for tmp_LoopIndex1 =

1:1:tmp_Iterations1

 while 1

 if ~(w < 10)

 break;

 end

 w = (tmp_LoopIndex1 - 1) * 2 + 1;

 tmp_AccessCall1 = f2(w);

 y = y + tmp_AccessCall1;

 w = w + 1;

 end

end
Figure 3. Examples of decomposition of expressions: (a) origi-

nal code; (b) decomposed code.

(a)

if x > 0

 y = 1;

 return;

end

y = 2;

(b)

k_return = 0;

if x > 0

 y = 1; k_return = 1;

end

if ~k_return

 y = 2;

end

Figure 4. Transformation before inlining: (a) original code; (b)

transformed code.

3.3 Region Outlining
At this point, the compiler is nearly ready for generating OpenCL

code. According to the directives, parts of the original code are

translated to OpenCL code, other parts to C code, and wrapper C

code is also generated so that the different parts can communicate

and synchronize. To simplify, the code generation backend is

selected on a per-function basis. However, the compiler may need

to split functions with both sequential and parallel regions. This is

instructed by the directive region outliner.

The outliner detects all directive region blocks and generates a

new function for each one. The new functions are then compiled

by the OpenCL backend and the main function (the caller) is

compiled by the C backend. At the moment the copyin, copyout

and reduce parameters are used to define which variables should

be used as function arguments and which variables should be

returned by the outlined functions.

3.4 OpenCL/C Code Generation
At this point, we have the MATLAB code organized in functions,

ones for the C backend and others for the OpenCL backend.

When the OpenCL backend generates code for a function, it out-

puts two functions: the OpenCL code, and the wrapper, which is a

pure C function with OpenCL API calls to run the parallelized

code and copy the data in and out of the OpenCL device.

The OpenCL backend compiles the code on a per-statement basis

using a simple type inference engine that assumes each MATLAB

variable remains of the same type for the full duration of its life-

time. Note that the information regarding types and shapes can be

also provided by aspect files [8].

Table 2. Benchmarks.

Benchmark Description Input Size

dotprod Dot product of complex 3D matrices [8]. 2048204820

dilate Code from a Stereo navigation

application [8].
20482048

matmul Simple O(n3) floating point matrix

multiplication.
10241024

matmul_nv OpenCL Matrix Multiplication code

sample by NVIDIA [19], manually

converted to MATLAB with directives.

10241024

matmul_nv2 matmul_nv modified to allow the

OpenCL driver to perform a few extra

optimizations, notably loop unrolling.

10241024

monte_carlo

Monte Carlo simulation based on

MathWorks example [20], Modified to

use pseudo-random number generators

[21] and a Box-Muller transform [22].

100,000

rgb2yuv RGB to YUV conversion. 20002000

subband Based on MPEG2 encoder [8]. 12864k

4. EXPERIMENTAL RESULTS
We conducted an evaluation of the compiler in terms of its capaci-

ty to generate efficient C/OpenCL code from MATLAB.

4.1 Benchmarks and Environment
All tests were executed on a desktop computer running Windows

8.1 Enterprise Edition 64-bits with an AMD A-10 7850K CPU

running at 4.10 GHz, 8 GB RAM. This computer has two GPUs

(one integrated with the CPU and the other discrete). The inte-

grated GPU is a Radeon R7 Graphics and the discrete GPU is an

AMD Radeon R9 280X. This computer is running the official

AMD drivers, Catalyst version 14.4, Platform Version OpenCL

1.2 AMD-APP. All code was compiled on Windows with gcc

4.8.2 (64-bits MinGW distribution), and –O3.

In the experiments included in this paper, we use the benchmarks

briefly described in Table 2. Although the compiler supports dou-

ble precision floating-point numbers, the results presented herein

consider single-precision, as the OpenCL double-precision exten-

sion (cl_khr_fp64) is not always available.

4.2 Code Size Impact
MATLAB code occasionally needs to be modified in order to be

compiled by MATISSE. At the moment, the OpenCL generation

requires the addition of directives and the replacement of matrix

operations by the equivalent for loops, i.e., translating “idiomat-

ic” code to a “non-idiomatic” version.

Figure 5 compares the size of the “non-idiomatic” MATLAB code

to the equivalent “idiomatic” size, in terms of lines of code with

directives and statements. The codes sizes of the matrix multipli-

cation benchmarks (matmul, matmul_nv and matmul_nv2) are

not compared because the “idiomatic” code for them is the built-

in product operator, and there is a dependence to the matrix mul-

tiplication algorithm used. As Figure 5 shows, we add a signifi-

cant number of lines (increase from 1.4 to 3.3 for the 5 func-

tions) to adapt the codes for the OpenCL generator. For the mon-

te_carlo benchmark, the “idiomatic” code excludes the Random

Number Generation functions (except the initial seed definition),

since MATLAB includes its own built-in pseudo-random number

generators. If the same code for the random number generation

was used on both versions, then the backend version would con-

tain only 7.9% more code than the “idiomatic” version.

3.0

2.3

1.4

3.3

2.3

0 1 2 3

dotprod

dilate

monte_carlo

rgb2yuv

subband

Figure 5. Relative increase in terms of lines of code of modified

MATLAB compared to “idiomatic” MATLAB.

Most of the code modifications are due to limitations of the

OpenCL generator (e.g., matrix operations need to be converted to

for loops). These results highlight the need to extend the compil-

er with an additional OpenCL phase, which can insert pre-defined

code templates for some of the MATLAB “idiomatic” operations.

Note that the C backend supports most of the benchmarks in their

original form.

4.3 Performance Comparisons
We have evaluated the performance of the C and OpenCL

backends for the benchmarks in Table 2. For matmul, we pre-

pared a special version, based on an OpenCL matrix multiplica-

tion example provided by Nvidia [19], which uses a significantly

different algorithm. This version represents what we can do if we

write custom code without being driven by MATLAB “idiomatic”

goals, and optimizing for OpenCL by using implementation de-

tails such as barriers and local memory.

Table 3Erro! A origem da referência não foi encontrada. shows

a comparison between the matrix multiplication versions, when

considering total execution time including all overheads. We

compared the speedup of code obtained from hand-optimized

MATLAB code (matmul_nv and matmul_nv2) against a naïve

version of the same algorithm, also obtained from MATLAB

(matmul), and a manually written OpenCL version (OpenCL).

Table 3. matmul_nv speedups, compared with matmul and

manual OpenCL.

Device
matmul_nv matmul_nv2

matmul OpenCL matmul OpenCL

CPU 1.98 0.39 3.94 0.78

Integr. GPU 0.90 0.06 3.66 0.25

Discrete GPU 0.35 0.14 0.66 0.26

Our original conversion of the Nvidia matrix multiplication ex-

ample to MATLAB (matmul_nv) resulted significantly worse

(2.5 on the CPU to 16.5 on the integrated GPU) than the origi-

nal code. We examined the code generated by the OpenCL driver

and concluded that this was due to some optimizations (notably

loop unrolling) not being performed for the OpenCL generated

code. We then developed a modified version (matmul_nv2) that

more closely matches the Nvidia version and performs better than

matmul_nv on all targets we tested. Considering matmul_nv2

and comparing with a naïve implementation (matmul), the per-

formance of the OpenCL code based on the optimized MATLAB

code increases significantly when the code is executed on the

CPU (3.9) and on the integrated GPU (3.7). However, it has a

1.5 slowdown when executed on the discrete GPU. This slow-

down is not observed in the original Nvidia version, suggesting

there is still margin for improvement. The first matmul_nv was

actually slower than the naïve version on the discrete GPU, as the

lack of loop unrolling meant that the reduced memory accesses

came at the cost of a very significant increase in the number of

executed vector instructions. Although the memory accesses are

faster on the discrete GPU than on the integrated GPU, the reduc-

tion in memory access time was unable to compensate for the

increased number of computations. The manual OpenCL code is

faster than the OpenCL code generated from MATLAB mat-

mul_nv2, and the performance gap for the matrix multiplication

for this example goes from 1.3 (CPU) to 4 (Discrete GPU)

slower, depending on the target device.

Although the MATISSE OpenCL backend allows the programmer

to manually specify explicitly the local size for each loop, we let

the OpenCL driver to automatically decide the local size to use for

the benchmarks mentioned in this section, except for matmul_nv

and matmul_nv2.

We have measured two variants of the OpenCL code. Each test

was executed 30 times and the results were averaged. The

speedups reported in Figure 6(a) include the overhead of data

transfer and other driver calls such as setting kernel arguments

and obtaining the OpenCL kernel instance. The execution time

was measured using the QueryPerformanceCounter Windows

API function. The speedups reported in Figure 6(b) are relative to

the time spent only on kernel execution, using the built-in

OpenCL profiling capabilities.

We were able to significantly speedup four of the six MATLAB

benchmarks we tested. Although the kernel execution times

showed speedups in all except subband, the overhead from data

transfers significantly worsens most results, causing severe slow-

downs in two cases (dotprod and subband). The highest

speedups were achieved by matmul and monte_carlo, 1,010

and 976, respectively, using the discrete GPU. For these two

benchmarks, the performance achieved by the discrete GPU is

higher than with the integrated GPU. This is explained by the

small amount of data transferred compared to the computations

that need to be performed for these two examples. Additionally,

by tuning the local_size directive in the monte_carlo

benchmark, we were able to achieve a performance improvement

of 17% relative to the automatic local size. For the remaining

benchmarks, the impact of setting the local_size parameter was

negligible.

Currently, the MATISSE OpenCL backend does not take ad-

vantage of concurrent execution between OpenCL devices and

GPPs. When an OpenCL program is executed, the generated code

waits for it to be finished before proceeding with the remaining

computations, even if the results of the GPU computations are not

needed yet. Exploring concurrency at this level may significantly

reduce the overhead of data transfers on performance.

0.3

0.2
0.3

6.0

19.1 18.2

3.1

149

1010

1.8

3.8 3.6

14.9

739
976

0.4

0.2
0.3

2.0

8.1
13.7

0.1

1.0

10.0

100.0

1000.0

10000.0

CPU Integr. GPU Discrete GPU

Sp
e

e
d

u
p

 r
e

la
ti

ve
 t

o
 C

1.3

5.1

63.3

7.7

155

343

3.1

162

2065

2.9

88.5

307

14.9

845 1176

2.5

0.4

1.8
3.9

40.0

176

0.1

1.0

10.0

100.0

1000.0

10000.0

CPU Integr. GPU Discrete GPU

Sp
e

e
d

u
p

 r
e

la
ti

ve
 t

o
 C

dotprod dilate matmul rgb2yuv monte_carlo subband Geo. Mean
Figure 6. Speedup of OpenCL over C: (a) including overheads;

(b) kernel time only.

Another limitation is related to when two or more GPU computa-

tions need to be performed in sequence. Currently, the generated

code waits for the first computation to be finished, then loads the

results to the CPU, transfer them again to the GPU, and only then

runs the second computation. A future version of the tool would

focus on eliminating unnecessary data transfers.

Regardless the lack of more advanced analysis and optimizations,

our current results are very promising and show significant per-

formance boosts from exploiting GPU parallelism, in some cases

with negligible changes to the original MATLAB source code.

Finally, we have tested the same OpenCL code on an Odroid-

XU+E board, which has an Exynos 5410 processor with ARM’s

big.LITTLE configuration and a PowerVR SGX544MP3 GPU.

We run the OpenCL code for the same six benchmarks on the

GPU, except for the modified matrix multiplications, which used

a block size (i.e., 16) incompatible with Odroid (only supports

block size 1). The results showed a small speedup of 1.01 (mon-

te_carlo) and several slowdowns, up to 13 (subband), and

with a geometric slowdown mean of 2.6. We attribute these re-

sults to the significantly different resources available on the

PowerVR GPU (e.g., much smaller shared memory). They high-

light the need to deal more efficiently with the different character-

istics of embedded platforms, and motivate us to invest in a multi-

target specialization of the OpenCL code generator.

5. RELATED WORK
The translation of MATLAB code to programming languages more

amenable to be efficiently compiled to the target architectures has

been the focus of many research efforts. De Rose and Padua de-

veloped the FALCON environment [12] that translates MATLAB

to FORTRAN90 code. They leverage an aggressive use of static

and type inference for base types (doubles and complex) as well

as shape (or rank) of the matrices. Other researchers have ex-

plored the reuse of storage for array variables across a MATLAB

code thus reducing the memory footprint of the corresponding C

reference code [13]. Joisha and Banerjee [14] focused on type and

shape inference techniques. Researchers have also relied on a mix

of type inference approaches and user’s provided information.

The focus of our approach is mostly on embedded implementa-

tions of the MATLAB programs. In this context, an efficient trans-

lation to an implementation language (mainly C) is needed. One

of the possibilities is to consider a subset of MATLAB allowing

feasible and efficient static compilation. Examples using such a

subset are the Embedded Coder [4].

The popularity of the MATLAB language is also reflected in the

similar languages that have been proposed. Examples of those

languages are Scilab [15] and Octave [16]. A Scilab to C transla-

tor [17], named Sci2C, has been developed. Sci2C focuses entire-

ly on embedded systems, and is completely dependent on annota-

tions embedded in the Scilab code to specify data sizes and preci-

sions. MATISSE distinguishes from Sci2C as it is able to generate

C code without polluting the original code. Furthermore, Sci2C

requires that the size of arrays is fixed and statically known while

MATISSE also produces C code when those sizes are unknown.

The use of user-specified rules and strategies for code transfor-

mations has been used to optimize Octave programs [18] with

loop vectorization and partial evaluation of types and values. The

use of GPUs in the context of MATLAB has been mainly ap-

proached by the use of APIs (see, e.g., [23]). The most relevant

work to our C/OpenCL approach are the compilers that translate

MATLAB to CUDA. MEGHA [24] is a compiler which processes

MATLAB/Octave scripts and generates CUDA and C++ code.

MEGHA uses heuristics to decide which portions of the code

should be executed on the CPU and which should be offloaded to

the GPU. The authors report a geometric mean speedup of 12.2×

over MATLAB for a number of benchmarks. Chun-Yu Shei et al.

[25] presents another MATLAB/Octave to CUDA compiler. It

generates both C++ and CUDA code. However, unlike MEGHA,

portions of the resulting code remain in MATLAB. The reported

speedups range from 1.5 to 17.

6. CONCLUSIONS
This paper presented our approach to translate MATLAB code to

C/OpenCL code. We described the general flow, the transfor-

mations/optimizations performed by the compiler. Our current

approach to generate OpenCL code uses OpenACC-based direc-

tives to guide the partitioning process between the GPP and the

GPU and to instruct the generation of OpenCL code. The experi-

ments with six benchmarks reveal promising performance results.

(a)

(b)

The execution of the C/OpenCL generated implementations in a

GPU achieved a geometric mean speedup of 14 and 176 over

the generated C code implementations, for total execution times

and kernel-only times, respectively. We also compared code for

matrix multiplication generated from optimized MATLAB with a

manual version written originally in OpenCL, and the perfor-

mance gap was between 1.3 and 4, depending on the target

device, in favor of the manual version. Finally, preliminary results

using an embedded device show a slowdown geometric mean of

2.6 and reveal the need for multi-target specialization of

OpenCL code. Ongoing work is focused on enhancements of the

C and OpenCL generators. Future work will address OpenCL

generation aware of the target GPU architecture. Finally, as FPGA

manufacturers are now supporting OpenCL, we will evaluate the

performance of the OpenCL generated by MATISSE and the spe-

cific optimizations and code styles needed to improve FPGA re-

sults.

7. ACKNOWLEDGMENTS
This work was partially supported by Project NORTE-07-0124-

FEDER-000062, funded by the North Portugal Regional Opera-

tional Programme (ON.2), under the National Strategic Reference

Framework (NSRF), through the European Regional Develop-

ment Fund (ERDF), and by National funds through FCT.

8. REFERENCES
[1] MATLAB – the Language of Technical Computing,

http://www.mathworks.com/products/matlab

[2] N.T. Bliss, J. Kepner, H. Kim, A. Reuther, “pMATLAB:

Parallel MATLAB Library for Signal Processing Applica-

tions,” in IEEE Int’l Conf. on Acoustics, Speech and Signal

Processing (ICASSP’07), Vol. 4, April 2007, pp. 15-20.

[3] S. Samsi, V. Gadepally, A. Krishnamurthy, “MATLAB for

Signal Processing on Multiprocessors and Multicores,” in

IEEE Signal Processing Magazine, Vol. 27, Issue 2, March

2010, pp. 40-49.

[4] Embedded Coder: Generate C and C++ code optimized for

embedded systems, © 2014 The MathWorks, Inc.

[5] A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic

compilation of MATLAB programs for synergistic execution

on heterogeneous processors,” in SIGPLAN Not.,

46(6):152–163, June 2011.

[6] The OpenCL Specification, Version: 1.0, Doc. Rev. 48,

Khronos OpenCL Working Group, Editor: Aaftab Munshi,

Last Rev. Date: 10/6/09.

[7] T.S. Czajkowski, et al., “From opencl to high-performance

hardware on FPGAs,” 22nd Int’l Conf. on Field Progr. Logic

and App. (FPL’12), Oslo, Norway, Aug 2012, pp. 531-534.

[8] J. Bispo, et al., “The MATISSE MATLAB Compiler - A

MATrix(MATLAB)-aware compiler InfraStructure for em-

bedded computing SystEms,” in IEEE Int’l Conf. on Indust.

Inf. (INDIN’13), Bochum Germany, July 2013, pp. 602-608.

[9] J. Bispo, L. Reis, and J.M.P. Cardoso, “Multi-Target C Code

Generation from MATLAB,” in ACM/SIGPAN Int’l Work-

shop on Libraries, Languages and Compilers for Array Pro-

gramming (ARRAY’2014), Edinburgh UK, June 2014.

[10] The OpenACCTM Application Program Interface, August

2013. Version: 2.0a, © 2011-2013 OpenACC-Standard.org.

[11] J.M.P. Cardoso, P.C. Diniz, J.G.F. Coutinho, and Z. Petrov,

ed. Compilation and Synthesis for Embedded Reconfigurable

Systems: An AspectOriented Approach. Springer, 2013.

[12] L. De Rose, and D. Padua, “Techniques for the Translation

of MATLAB programs into Fortran 90,” in ACM Trans.

Program. Lang. Syst., 21, 2 (Mar. 1999), pp. 286–23.

[13] P. Joisha, and P. Banerjee, “Static array storage optimization

in MATLAB”, in Proc. ACM Conf. on Prog. Lang. Design

and Impl. (PLDI’03), June 2003, San Diego CA, USA, pp.

258-268.

[14] P. Joisha, and P. Banerjee, “An algebraic array shape infer-

ence system for MATLAB,” in ACM TOPLAS, 2006; 28(5),

pp. 848–907.

[15] Scilab, http://www.scilab.org/

[16] The Octave Home Page.

http://www.gnu.org/software/octave/

[17] Scilab 2 C - Translate Scilab code into C code,

http://forge.scilab.org/index.php/p/scilab2c/

[18] K. Olmos, and E. Visser, “Turning dynamic typing into static

typing by program specialization in a compiler front-end for

Octave,” in Proc. 3rd IEEE Int’l Workshop on Source Code

Analysis and Manipulation (SCAM’03), 26-27 Sept. 2003,

pp. 141-150.

[19] NVIDIA. NVIDIA OpenCL SDK Code Samples, 2014.

[20] MathWorks. Using GPU ARRAYFUN for monte-carlo simu-

lations – MATLAB & Simulink example. 2014.

[21] E.W. Weisstein. “Linear Congruence Method,” From Math-

World – A Wolfram Web Resource, 2014.

[22] E.W. Weisstein. “Box-Muller Transformation,” from Math-

World – A Wolfram Web Resource. 2014.

[23] MathWorks. MATLAB GPU computing support for NVID-

IA CUDA-enabled GPUs. 2013.

[24] A. Prasad, and R. Govindarajan, “Compiler optimizations to

execute MATLAB programs on memory constrained GPUs,”

In 1st Asia-Pacific Prog. Lang. and Compilers Workshop

(APPLC’2012), Beijing, China, 14 Jun. 2012.

[25] Chun-Yu Shei, A. Yoga, M. Ramesh, and A. Chauhan,

“MATLAB parallelization through scalarization,” In 15th

Work. on Inter. between Compl. and Comp. Arch. (INTER-

ACT’11), San Antonio Texas, USA, Feb. 2011. (pp. 44-53).

http://www.mathworks.com/products/matlab

