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ABSTRACT 

In many engineering and science areas, models are developed and 

validated using high-level programing languages and environ-

ments as is the case with MATLAB. In order to target the multi-

core heterogeneous architectures being used on embedded sys-

tems to provide high performance computing with acceptable 

energy/power envelops, developers manually migrate critical code 

sections to lower-level languages such as C and OpenCL, a time 

consuming and error prone process. Thus, automatic source-to-

source approaches are highly desirable. We present an approach 

to compile MATLAB and output equivalent C/OpenCL code to 

target architectures, such as GPU based hardware accelerators. 

We evaluate our approach on an existing MATLAB compiler 

framework named MATISSE. The OpenCL generation relies on 

the manual insertion of directives to guide the compilation and is 

also capable of generating C wrapper code to interface and syn-

chronize with the OpenCL code. We evaluated the compiler with 

a number of benchmarks from different domains and the results 

are very encouraging.  

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Code generation, Compilers, Optimization, 
Retargetable compilers 

General Terms Performance, Experimentation, Languages 

Keywords MATLAB, source-to-source compiler, C program-

ming language, embedded systems, GPUs, OpenCL 

1. INTRODUCTION 
MATLAB [1] is a high-level programming language supported by 

an interactive computing environment used in many domains in 

engineering and science. The language and its associated envi-

ronment are ubiquitously used to quickly develop and evaluate 

models. MATLAB is dynamically typed, and is usually interpreted 

and/or JIT compiled. Ahead-of-time compilation of MATLAB is 

challenging because the information about the types and shapes 

(i.e., number and size of matrix dimensions) of variables might be 

only known at runtime. In order to improve performance, 

MATLAB has built-in support for pre-compiled and optimized 

functions and there have been efforts to add support for multicore 

and GPU (Graphics Processing Unit) architectures (see, e.g., 

[2][3]). In many high-performance and embedded system settings, 

however, the use of a MATLAB runtime environment might be 

infeasible, either because it is not available, or due to performance 

and/or resource constraints. To address this potential shortcoming, 

a typical solution relies on the translation of the base or original 

MATLAB code/model to a programing language such as C/C++. 

This implementation must then in turn be validated against the 

output of the MATLAB code resulting in a lengthy and error prone 

process that further complicates the overall application develop-

ment cycle and increases its cost. The existence of two source 

codes - the original model-driven MATLAB code and the imple-

mentation-driven C/C++ code - also exacerbates maintenance 

costs. An alternative solution is the automatic translation of 

MATLAB to the target programming language, e.g., by MATLAB 

to C code translators (e.g., [4]). 

Despite their inherent advantages, typical automatic approaches 

have the disadvantage of providing low support to control and 

guide the code translation. The code generation is commonly 

based on directives (GUI based in the case of the MATLAB Coder) 

to specify variable types, shapes, and target do-

main/microprocessor. When dealing with the myriad of target 

architectures and toolchains in embedded systems, this approach 

presents a low level of flexibility. For example, the style of the 

generated C code might need to be tuned to the toolchain as is the 

case when targeting C code for hardware compilers. Furthermore, 

the target platform may require specific code transformations 

and/or specific programming languages such as CUDA [5] or 

OpenCL [6] when dealing with GPGPUs and/or FPGAs [7]. 

Our approach focuses on a compiler, named MATISSE [8][9], to 

generate C/OpenCL code directly from MATLAB. MATISSE is 

being developed as a modular and flexible compiler framework, 

which includes custom Intermediate Representations (IRs) for 

MATLAB, C and OpenCL code. In particular, the IR representing 

the output C code (C-IR) supports matrix types natively, and can 

be easily extended to support additional types and language con-

structs. The result is a synergy between compiler analysis and the 

information provided by the user, which allows the compiler to 

generate very high-quality code from MATLAB specifications. It is 

also possible to generate different versions of the C code, to better 

target different embedded systems, platforms, and/or toolchains. 

In this paper, we describe our approach to translate MATLAB code 

to mixed C/OpenCL implementations. We evaluate this approach 

with a number of representative examples and the results achieved 

are very encouraging. This paper makes the following contribu-

tions: 

 It proposes the use of OpenACC [10] based directives to parti-

tioning the MATLAB programs between the GPP (General Pur-

pose Processor) and the target GPU, and to instruct the OpenCL 

generator; 



 It presents the current phases needed to allow an efficient 

OpenCL generation; 

 It evaluates the approach with a number of MATLAB functions 

and targeting two distinct GPU architectures. 

The remainder of this paper is organized as follows. Section 2 

presents the MATISSE compiler and describes the proposed di-

rectives for OpenCL generation. Section 3 presents the OpenCL 

compilation phases. Section 4 shows some experiments performed 

using MATISSE. Section 5 describes related work and finally, 

Section 6 concludes this paper and describes future work. 

2. THE MATISSE MATLAB COMPILER 
MATISSE [8][9] is a MATLAB source-to-source compiler frame-

work specially targeting embedded systems. Figure 1 presents the 

overall flow of the compiler. The input MATLAB files are trans-

lated to an abstract syntax tree (AST) based MATLAB IR (inter-

mediate representation). This IR is then used for optimiza-

tions/transformations and for code generation. The compiler is 

being developed in a way to ease the integration of code genera-

tors. At the moment, it includes code generators for MATLAB, C, 

and OpenCL. 
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Figure 1. Overview of the MATISSE compiler framework. 

MATISSE generates MATLAB code for validation, testing, moni-

toring, and specialization, and C/OpenCL code to be used by 

third-party design-flows targeting software/hardware systems. It is 

able to generate customized C code for a particular target without 

modifying a significant subset of original MATLAB code. Aspect 

files (using LARA [11]) allow users to have fine-grained control 

over the generation of C code, and also allow the generation of 

different implementations from the same source code. A common 

example includes the restructuring of source code and the use of 

statically declared array variables to be compliant with the re-

quirements of most hardware compilers. 

MATISSE supports the use of directives to guide the compilation 

flow and allow users fine-grained control over which portions of 

the MATLAB code are migrated to the OpenCL device and which 

are executed sequentially on a GPP. The current directives (see 

Table 1) are based on OpenACC [10] and are embedded in lines 

interpreted as comments by MATLAB environments (comments 

starting with %acc specify directives). This allows other MATLAB 

tools to accept MATLAB code with our directives (ignoring them).  

Table 1. Directives currently supported by the compiler. 

Directives Description 
parallel 

loop 
Indicates that a for loop should be compiled to OpenCL 

and its iterations can be executed in parallel. 
loop Indicates that an inner for loop can be executed in 

parallel. 
ignore Indicates a code section to be ignored by MATISSE 

when generating OpenCL code. 
end Indicates the end of a parallel, parallel loop or 

ignore block. 
barrier Indicates a memory barrier. The compiler recognizes two 

different types of barriers, barrier local and 

barrier global. These are equivalent to the OpenCL 

barrier function when using the argument 

CLK_LOCAL_MEM_FENCE, and CLK_GLOBAL_MEM_FENCE. 
cop-

yin(vars) 
A list of variables that should be copied for use by the 

OpenCL kernel. If only a portion of an array/matrix is 

used in a parallel loop region, then the range copy syntax 

(e.g., A(1:100)) can be used. 
copyout(va

rs) 
A list of variables that should be copied from the 

OpenCL device to the host device once the kernel 

finishes execution. 
Reduce 

(var-

name:opera

tion) 

A list of scalar variables that are computed partially by 

multiple threads. Two operations (+ for sum and * for 

product) are supported. 
lo-

cal(vars) 
A list of matrix variables that are different for each local 

group. The values of these matrices are not copied to the 

device and changes to them are discarded once the 

kernel execution ends.  
lo-

cal_id(var

s) 

For each iteration, the value of these variables will be set 

to the respective local ID. The value of these variables 

remains the same outside of the parallel loop block. 
group_id(v

ars) 
Similar to local_id, but the variables store the 

respective group IDs. 
lo-

cal_size(c

onstants) 

The local size that should be used. 

Erro! A origem da referência não foi encontrada. shows a sim-

ple MATLAB function to compute the element-wise square of a 

given matrix (equivalent to MATLAB’s A.*A). The code is ex-

tended with directives which indicate that the for block must be 

compiled to OpenCL, the A matrix must be copied to the OpenCL 

device (readonly because the input matrix itself is not modified), 

and Y should be copied back to the host once the GPU execution 

is finished. 
function Y = elementwise_square_matrix(A) 

 Y = zeros(size(A)); 

  %acc parallel loop copyin(readonly A) copyout(Y) 
 for i = 1:numel(A) 

    Y(i) = A(i) * A(i); 

  end 
 %acc end 
end 

Figure 2. MATLAB code example with directives. 

3. COMPILATION PHASES 
The current version of the compiler consists in multiple phases. 

We describe next the most important ones regarding the genera-

tion of OpenCL code. They are applied only on code between 

%acc pragmas. 

3.1 Expression Decomposer 
The expression decomposer is a compiler phase used to decom-

pose expressions without changing the behavior of the program, 



in order to simplify the subsequent phases. It introduces new tem-

porary variables, e.g., the code in Figure 3(a) is transformed to the 

code in Figure 3(b). As a result of these changes, the following 

post-conditions are true: 

 Every array access or function call is directly assigned to a vari-

able (never used as part of another expression). This is im-

portant as it simplifies function inlining. In order to ensure that 

the above is true, while(x) loops become while(1) with 

an additional if statement that breaks the loop when the condi-

tion is false. 

 All for loops become in the form for varname=1:1:x. 

This makes trivial to compute the number of iterations of any 

loop if x is known. This is useful for the OpenCL backend, 

which must be able to compute the number of iterations of every 

parallel loop before it can execute it. 

3.2 Function Inliner 
The function inliner replaces all function calls with the function 

body. Regarding the identification of the identifiers related to 

functions, name resolution is performed by the compiler and by 

the user. After the inliner has been executed, the code contains no 

function calls so the code generator can assume that every time 

A(x) appears it is a matrix access expression. 

The inliner also needs to deal with the presence of return state-

ments in the function to be inlined. These return statements are 

translated to code able to make the execution flow of previous 

return statements without returns (auxiliary variables and if and 

break statements are introduced). Figure 4(a) shows an early 

return. Before inlining, the compiler transforms the code such as 

in Figure 4(b). Finally, since the caller and the callee functions 

may use variables with the same names, callee variables must be 

renamed when they are inserted into the caller function. 

(a) 

for w = 1:2:x 

  while w < 10 

    y = y + f2(w); % f2 is a function 

    w = w + 1; 

  end 

end 

(b) 

tmp_MaxValue1 = (x - 1) / 2 + 1; 

tmp_Iterations1 = 

floor(tmp_MaxValue1); 

for tmp_LoopIndex1 = 

1:1:tmp_Iterations1 

  while 1 

    if ~(w < 10) 

      break; 

    end       

    w = (tmp_LoopIndex1 - 1) * 2 + 1; 

    tmp_AccessCall1 = f2(w); 

    y = y + tmp_AccessCall1; 

    w = w + 1; 

  end 

end 
Figure 3. Examples of decomposition of expressions: (a) origi-

nal code; (b) decomposed code. 

(a) 

if x > 0 

  y = 1; 

  return; 

end 

     

y = 2; 

(b) 

k_return = 0; 

if x > 0 

  y = 1; k_return = 1; 

end 

if ~k_return 

  y = 2; 

end 

Figure 4. Transformation before inlining: (a) original code; (b) 

transformed code. 

3.3 Region Outlining 
At this point, the compiler is nearly ready for generating OpenCL 

code. According to the directives, parts of the original code are 

translated to OpenCL code, other parts to C code, and wrapper C 

code is also generated so that the different parts can communicate 

and synchronize. To simplify, the code generation backend is 

selected on a per-function basis. However, the compiler may need 

to split functions with both sequential and parallel regions. This is 

instructed by the directive region outliner. 

The outliner detects all directive region blocks and generates a 

new function for each one. The new functions are then compiled 

by the OpenCL backend and the main function (the caller) is 

compiled by the C backend. At the moment the copyin, copyout 

and reduce parameters are used to define which variables should 

be used as function arguments and which variables should be 

returned by the outlined functions. 

3.4 OpenCL/C Code Generation 
At this point, we have the MATLAB code organized in functions, 

ones for the C backend and others for the OpenCL backend. 

When the OpenCL backend generates code for a function, it out-

puts two functions: the OpenCL code, and the wrapper, which is a 

pure C function with OpenCL API calls to run the parallelized 

code and copy the data in and out of the OpenCL device. 

The OpenCL backend compiles the code on a per-statement basis 

using a simple type inference engine that assumes each MATLAB 

variable remains of the same type for the full duration of its life-

time. Note that the information regarding types and shapes can be 

also provided by aspect files [8]. 

Table 2. Benchmarks. 

Benchmark Description Input Size 

dotprod Dot product of complex 3D matrices [8]. 2048204820 

dilate Code from a Stereo navigation 

application [8]. 
20482048 

matmul Simple O(n3) floating point matrix 

multiplication. 
10241024 

matmul_nv OpenCL Matrix Multiplication code 

sample by NVIDIA [19], manually 

converted to MATLAB with directives.  

10241024 

matmul_nv2 matmul_nv modified to allow the 

OpenCL driver to perform a few extra 

optimizations, notably loop unrolling. 

10241024 

monte_carlo 

 

Monte Carlo simulation based on 

MathWorks example [20], Modified to 

use pseudo-random number generators 

[21] and a Box-Muller transform [22]. 

100,000 

rgb2yuv  RGB to YUV conversion. 20002000 

subband Based on MPEG2 encoder [8]. 12864k 

4. EXPERIMENTAL RESULTS 
We conducted an evaluation of the compiler in terms of its capaci-

ty to generate efficient C/OpenCL code from MATLAB. 

4.1 Benchmarks and Environment 
All tests were executed on a desktop computer running Windows 

8.1 Enterprise Edition 64-bits with an AMD A-10 7850K CPU 

running at 4.10 GHz, 8 GB RAM. This computer has two GPUs 

(one integrated with the CPU and the other discrete). The inte-



grated GPU is a Radeon R7 Graphics and the discrete GPU is an 

AMD Radeon R9 280X. This computer is running the official 

AMD drivers, Catalyst version 14.4, Platform Version OpenCL 

1.2 AMD-APP. All code was compiled on Windows with gcc 

4.8.2 (64-bits MinGW distribution), and –O3. 

In the experiments included in this paper, we use the benchmarks 

briefly described in Table 2. Although the compiler supports dou-

ble precision floating-point numbers, the results presented herein 

consider single-precision, as the OpenCL double-precision exten-

sion (cl_khr_fp64) is not always available. 

4.2 Code Size Impact 
MATLAB code occasionally needs to be modified in order to be 

compiled by MATISSE. At the moment, the OpenCL generation 

requires the addition of directives and the replacement of matrix 

operations by the equivalent for loops, i.e., translating “idiomat-

ic” code to a “non-idiomatic” version. 

Figure 5 compares the size of the “non-idiomatic” MATLAB code 

to the equivalent “idiomatic” size, in terms of lines of code with 

directives and statements. The codes sizes of the matrix multipli-

cation benchmarks (matmul, matmul_nv and matmul_nv2) are 

not compared because the “idiomatic” code for them is the built-

in product operator, and there is a dependence to the matrix mul-

tiplication algorithm used. As Figure 5 shows, we add a signifi-

cant number of lines (increase from 1.4 to 3.3 for the 5 func-

tions) to adapt the codes for the OpenCL generator. For the mon-

te_carlo benchmark, the “idiomatic” code excludes the Random 

Number Generation functions (except the initial seed definition), 

since MATLAB includes its own built-in pseudo-random number 

generators. If the same code for the random number generation 

was used on both versions, then the backend version would con-

tain only 7.9% more code than the “idiomatic” version. 
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Figure 5. Relative increase in terms of lines of code of modified 

MATLAB compared to “idiomatic” MATLAB. 

Most of the code modifications are due to limitations of the 

OpenCL generator (e.g., matrix operations need to be converted to 

for loops). These results highlight the need to extend the compil-

er with an additional OpenCL phase, which can insert pre-defined 

code templates for some of the MATLAB “idiomatic” operations. 

Note that the C backend supports most of the benchmarks in their 

original form. 

4.3 Performance Comparisons 
We have evaluated the performance of the C and OpenCL 

backends for the benchmarks in Table 2. For matmul, we pre-

pared a special version, based on an OpenCL matrix multiplica-

tion example provided by Nvidia [19], which uses a significantly 

different algorithm. This version represents what we can do if we 

write custom code without being driven by MATLAB “idiomatic” 

goals, and optimizing for OpenCL by using implementation de-

tails such as barriers and local memory. 

Table 3Erro! A origem da referência não foi encontrada. shows 

a comparison between the matrix multiplication versions, when 

considering total execution time including all overheads. We 

compared the speedup of code obtained from hand-optimized 

MATLAB code (matmul_nv and matmul_nv2) against a naïve 

version of the same algorithm, also obtained from MATLAB 

(matmul), and a manually written OpenCL version (OpenCL). 

Table 3. matmul_nv speedups, compared with matmul and 

manual OpenCL. 

Device 
matmul_nv matmul_nv2 

matmul OpenCL matmul OpenCL 

CPU 1.98 0.39 3.94 0.78 

Integr. GPU 0.90 0.06 3.66 0.25 

Discrete GPU 0.35 0.14 0.66 0.26 

Our original conversion of the Nvidia matrix multiplication ex-

ample to MATLAB (matmul_nv) resulted significantly worse 

(2.5 on the CPU to 16.5 on the integrated GPU) than the origi-

nal code. We examined the code generated by the OpenCL driver 

and concluded that this was due to some optimizations (notably 

loop unrolling) not being performed for the OpenCL generated 

code. We then developed a modified version (matmul_nv2) that 

more closely matches the Nvidia version and performs better than 

matmul_nv on all targets we tested. Considering matmul_nv2 

and comparing with a naïve implementation (matmul), the per-

formance of the OpenCL code based on the optimized MATLAB 

code increases significantly when the code is executed on the 

CPU (3.9) and on the integrated GPU (3.7). However, it has a 

1.5 slowdown when executed on the discrete GPU. This slow-

down is not observed in the original Nvidia version, suggesting 

there is still margin for improvement. The first matmul_nv was 

actually slower than the naïve version on the discrete GPU, as the 

lack of loop unrolling meant that the reduced memory accesses 

came at the cost of a very significant increase in the number of 

executed vector instructions. Although the memory accesses are 

faster on the discrete GPU than on the integrated GPU, the reduc-

tion in memory access time was unable to compensate for the 

increased number of computations. The manual OpenCL code is 

faster than the OpenCL code generated from MATLAB mat-

mul_nv2, and the performance gap for the matrix multiplication 

for this example goes from 1.3 (CPU) to 4 (Discrete GPU) 

slower, depending on the target device.  

Although the MATISSE OpenCL backend allows the programmer 

to manually specify explicitly the local size for each loop, we let 

the OpenCL driver to automatically decide the local size to use for 

the benchmarks mentioned in this section, except for matmul_nv 

and matmul_nv2. 

We have measured two variants of the OpenCL code. Each test 

was executed 30 times and the results were averaged. The 

speedups reported in Figure 6(a) include the overhead of data 

transfer and other driver calls such as setting kernel arguments 

and obtaining the OpenCL kernel instance. The execution time 

was measured using the QueryPerformanceCounter Windows 

API function. The speedups reported in Figure 6(b) are relative to 

the time spent only on kernel execution, using the built-in 

OpenCL profiling capabilities. 

We were able to significantly speedup four of the six MATLAB 

benchmarks we tested. Although the kernel execution times 

showed speedups in all except subband, the overhead from data 

transfers significantly worsens most results, causing severe slow-

downs in two cases (dotprod and subband). The highest 



speedups were achieved by matmul and monte_carlo, 1,010 

and 976, respectively, using the discrete GPU. For these two 

benchmarks, the performance achieved by the discrete GPU is 

higher than with the integrated GPU. This is explained by the 

small amount of data transferred compared to the computations 

that need to be performed for these two examples. Additionally, 

by tuning the local_size directive in the monte_carlo 

benchmark, we were able to achieve a performance improvement 

of 17% relative to the automatic local size. For the remaining 

benchmarks, the impact of setting the local_size parameter was 

negligible. 

Currently, the MATISSE OpenCL backend does not take ad-

vantage of concurrent execution between OpenCL devices and 

GPPs. When an OpenCL program is executed, the generated code 

waits for it to be finished before proceeding with the remaining 

computations, even if the results of the GPU computations are not 

needed yet. Exploring concurrency at this level may significantly 

reduce the overhead of data transfers on performance. 
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Figure 6. Speedup of OpenCL over C: (a) including overheads; 

(b) kernel time only. 

Another limitation is related to when two or more GPU computa-

tions need to be performed in sequence. Currently, the generated 

code waits for the first computation to be finished, then loads the 

results to the CPU, transfer them again to the GPU, and only then 

runs the second computation. A future version of the tool would 

focus on eliminating unnecessary data transfers. 

Regardless the lack of more advanced analysis and optimizations, 

our current results are very promising and show significant per-

formance boosts from exploiting GPU parallelism, in some cases 

with negligible changes to the original MATLAB source code. 

Finally, we have tested the same OpenCL code on an Odroid-

XU+E board, which has an Exynos 5410 processor with ARM’s 

big.LITTLE configuration and a PowerVR SGX544MP3 GPU. 

We run the OpenCL code for the same six benchmarks on the 

GPU, except for the modified matrix multiplications, which used 

a block size (i.e., 16) incompatible with Odroid (only supports 

block size 1). The results showed a small speedup of 1.01 (mon-

te_carlo) and several slowdowns, up to 13 (subband), and 

with a geometric slowdown mean of 2.6. We attribute these re-

sults to the significantly different resources available on the 

PowerVR GPU (e.g., much smaller shared memory). They high-

light the need to deal more efficiently with the different character-

istics of embedded platforms, and motivate us to invest in a multi-

target specialization of the OpenCL code generator. 

5. RELATED WORK 
The translation of MATLAB code to programming languages more 

amenable to be efficiently compiled to the target architectures has 

been the focus of many research efforts. De Rose and Padua de-

veloped the FALCON environment [12] that translates MATLAB 

to FORTRAN90 code. They leverage an aggressive use of static 

and type inference for base types (doubles and complex) as well 

as shape (or rank) of the matrices. Other researchers have ex-

plored the reuse of storage for array variables across a MATLAB 

code thus reducing the memory footprint of the corresponding C 

reference code [13]. Joisha and Banerjee [14] focused on type and 

shape inference techniques. Researchers have also relied on a mix 

of type inference approaches and user’s provided information. 

The focus of our approach is mostly on embedded implementa-

tions of the MATLAB programs. In this context, an efficient trans-

lation to an implementation language (mainly C) is needed. One 

of the possibilities is to consider a subset of MATLAB allowing 

feasible and efficient static compilation. Examples using such a 

subset are the Embedded Coder [4]. 

The popularity of the MATLAB language is also reflected in the 

similar languages that have been proposed. Examples of those 

languages are Scilab [15] and Octave [16]. A Scilab to C transla-

tor [17], named Sci2C, has been developed. Sci2C focuses entire-

ly on embedded systems, and is completely dependent on annota-

tions embedded in the Scilab code to specify data sizes and preci-

sions. MATISSE distinguishes from Sci2C as it is able to generate 

C code without polluting the original code. Furthermore, Sci2C 

requires that the size of arrays is fixed and statically known while 

MATISSE also produces C code when those sizes are unknown. 

The use of user-specified rules and strategies for code transfor-

mations has been used to optimize Octave programs [18] with 

loop vectorization and partial evaluation of types and values. The 

use of GPUs in the context of MATLAB has been mainly ap-

proached by the use of APIs (see, e.g., [23]). The most relevant 

work to our C/OpenCL approach are the compilers that translate 

MATLAB to CUDA. MEGHA [24] is a compiler which processes 

MATLAB/Octave scripts and generates CUDA and C++ code. 

MEGHA uses heuristics to decide which portions of the code 

should be executed on the CPU and which should be offloaded to 

the GPU. The authors report a geometric mean speedup of 12.2× 

over MATLAB for a number of benchmarks. Chun-Yu Shei et al. 

[25] presents another MATLAB/Octave to CUDA compiler. It 

generates both C++ and CUDA code. However, unlike MEGHA, 

portions of the resulting code remain in MATLAB. The reported 

speedups range from 1.5 to 17. 

6. CONCLUSIONS 
This paper presented our approach to translate MATLAB code to 

C/OpenCL code. We described the general flow, the transfor-

mations/optimizations performed by the compiler. Our current 

approach to generate OpenCL code uses OpenACC-based direc-

tives to guide the partitioning process between the GPP and the 

GPU and to instruct the generation of OpenCL code. The experi-

ments with six benchmarks reveal promising performance results. 

(a) 

(b) 



The execution of the C/OpenCL generated implementations in a 

GPU achieved a geometric mean speedup of 14 and 176 over 

the generated C code implementations, for total execution times 

and kernel-only times, respectively. We also compared code for 

matrix multiplication generated from optimized MATLAB with a 

manual version written originally in OpenCL, and the perfor-

mance gap was between 1.3 and 4, depending on the target 

device, in favor of the manual version. Finally, preliminary results 

using an embedded device show a slowdown geometric mean of 

2.6 and reveal the need for multi-target specialization of 

OpenCL code. Ongoing work is focused on enhancements of the 

C and OpenCL generators. Future work will address OpenCL 

generation aware of the target GPU architecture. Finally, as FPGA 

manufacturers are now supporting OpenCL, we will evaluate the 

performance of the OpenCL generated by MATISSE and the spe-

cific optimizations and code styles needed to improve FPGA re-

sults. 

7. ACKNOWLEDGMENTS 
This work was partially supported by Project NORTE-07-0124-

FEDER-000062, funded by the North Portugal Regional Opera-

tional Programme (ON.2), under the National Strategic Reference 

Framework (NSRF), through the European Regional Develop-

ment Fund (ERDF), and by National funds through FCT. 

8. REFERENCES 
[1] MATLAB – the Language of Technical Computing, 

http://www.mathworks.com/products/matlab 

[2] N.T. Bliss, J. Kepner, H. Kim, A. Reuther, “pMATLAB: 

Parallel MATLAB Library for Signal Processing Applica-

tions,” in IEEE Int’l Conf. on Acoustics, Speech and Signal 

Processing (ICASSP’07), Vol. 4, April 2007, pp. 15-20. 

[3] S. Samsi, V. Gadepally, A. Krishnamurthy, “MATLAB for 

Signal Processing on Multiprocessors and Multicores,” in 

IEEE Signal Processing Magazine, Vol. 27, Issue 2, March 

2010, pp. 40-49. 

[4] Embedded Coder: Generate C and C++ code optimized for 

embedded systems, © 2014 The MathWorks, Inc. 

[5] A. Prasad, J. Anantpur, and R. Govindarajan, “Automatic 

compilation of MATLAB programs for synergistic execution 

on heterogeneous processors,” in SIGPLAN Not., 

46(6):152–163, June 2011. 

[6] The OpenCL Specification, Version: 1.0, Doc. Rev. 48, 

Khronos OpenCL Working Group, Editor: Aaftab Munshi, 

Last Rev. Date: 10/6/09. 

[7] T.S. Czajkowski, et al., “From opencl to high-performance 

hardware on FPGAs,” 22nd Int’l Conf. on Field Progr. Logic 

and App. (FPL’12), Oslo, Norway, Aug 2012, pp. 531-534. 

[8] J. Bispo, et al., “The MATISSE MATLAB Compiler - A 

MATrix(MATLAB)-aware compiler InfraStructure for em-

bedded computing SystEms,” in IEEE Int’l Conf. on Indust. 

Inf. (INDIN’13), Bochum Germany, July 2013, pp. 602-608. 

[9] J. Bispo, L. Reis, and J.M.P. Cardoso, “Multi-Target C Code 

Generation from MATLAB,” in ACM/SIGPAN Int’l Work-

shop on Libraries, Languages and Compilers for Array Pro-

gramming (ARRAY’2014), Edinburgh UK, June 2014.  

[10] The OpenACCTM Application Program Interface, August 

2013. Version: 2.0a, © 2011-2013 OpenACC-Standard.org. 

[11] J.M.P. Cardoso, P.C. Diniz, J.G.F. Coutinho, and Z. Petrov, 

ed. Compilation and Synthesis for Embedded Reconfigurable 

Systems: An AspectOriented Approach. Springer, 2013.  

[12] L. De Rose, and D. Padua, “Techniques for the Translation 

of MATLAB programs into Fortran 90,” in ACM Trans. 

Program. Lang. Syst., 21, 2 (Mar. 1999), pp. 286–23. 

[13] P. Joisha, and P. Banerjee, “Static array storage optimization 

in MATLAB”, in Proc. ACM Conf. on Prog. Lang. Design 

and Impl. (PLDI’03), June 2003, San Diego CA, USA, pp. 

258-268.  

[14] P. Joisha, and P. Banerjee, “An algebraic array shape infer-

ence system for MATLAB,” in ACM TOPLAS, 2006; 28(5), 

pp. 848–907.  

[15] Scilab, http://www.scilab.org/ 

[16] The Octave Home Page. 

http://www.gnu.org/software/octave/ 

[17] Scilab 2 C - Translate Scilab code into C code, 

http://forge.scilab.org/index.php/p/scilab2c/ 

[18] K. Olmos, and E. Visser, “Turning dynamic typing into static 

typing by program specialization in a compiler front-end for 

Octave,” in Proc. 3rd IEEE Int’l Workshop on Source Code 

Analysis and Manipulation (SCAM’03), 26-27 Sept. 2003, 

pp. 141-150. 

[19] NVIDIA. NVIDIA OpenCL SDK Code Samples, 2014. 

[20] MathWorks. Using GPU ARRAYFUN for monte-carlo simu-

lations – MATLAB & Simulink example. 2014. 

[21] E.W. Weisstein. “Linear Congruence Method,” From Math-

World – A Wolfram Web Resource, 2014. 

[22] E.W. Weisstein. “Box-Muller Transformation,” from Math-

World – A Wolfram Web Resource. 2014. 

[23] MathWorks. MATLAB GPU computing support for NVID-

IA CUDA-enabled GPUs. 2013. 

[24] A. Prasad, and R. Govindarajan, “Compiler optimizations to 

execute MATLAB programs on memory constrained GPUs,” 

In 1st Asia-Pacific Prog. Lang. and Compilers Workshop 

(APPLC’2012), Beijing, China, 14 Jun. 2012. 

[25] Chun-Yu Shei, A. Yoga, M. Ramesh, and A. Chauhan, 

“MATLAB parallelization through scalarization,” In 15th 

Work. on Inter. between Compl. and Comp. Arch. (INTER-

ACT’11), San Antonio Texas, USA, Feb. 2011. (pp. 44-53).  

 

http://www.mathworks.com/products/matlab

