
ar
X

iv
:1

41
2.

23
04

v2
 [

cs
.P

L
]

 1
4

D
ec

 2
01

4

Declaratively solving tricky Google Code Jam problems
with Prolog-based ECLiPSe CLP system

Sergii Dymchenko
Independent Researcher

sdymchenko@progopedia.com

Mariia Mykhailova
Independent Researcher

michaylova@gmail.com

ABSTRACT
In this paper we demonstrate several examples of solving
challenging algorithmic problems from the Google Code Jam
programming contest with the Prolog-based ECLiPSe sys-
tem using declarative techniques: constraint logic program-
ming and linear (integer) programming. These problems
were designed to be solved by inventing clever algorithms
and efficiently implementing them in a conventional imper-
ative programming language, but we present relatively sim-
ple declarative programs in ECLiPSe that are fast enough
to find answers within the time limit imposed by the con-
test rules. We claim that declarative programming with
ECLiPSe is better suited for solving certain common kinds
of programming problems offered in Google Code Jam than
imperative programming. We show this by comparing the
mental steps required to come up with both kinds of solu-
tions.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Constraint and logic languages; G.1.6 [Numerical

Analysis]: Optimization—Linear programming

Keywords
Declarative programming, logic programming, constraint pro-
gramming, linear programming, programming competitions

1. INTRODUCTION
Google Code Jam1 (GCJ) is one of the biggest program-
ming competitions in the world: almost 50,000 participants
registered in 2014, and 25,462 of them solved at least one
task.

For good results, competitors must think and code quickly
– an individual round is usually 2–4 hours long and poses
3 or more problems. A solution is considered correct if it

1https://code.google.com/codejam

produces correct answers for all given test cases within a
certain time limit (4 minutes for the “small” input and 8
minutes for the “large” one).

GCJ competitors can use any freely available programming
language or system (including the ECLiPSe2 system de-
scribed in this paper). Most other competitions restrict par-
ticipants to a limited set of popular programming languages
(typically C++, Java, C#, Python). Many contestants par-
ticipate not only in GCJ, but also in other contests, and
use the same language across all competitions. When the
GCJ problem setters design the problems and evaluate their
complexity, they keep in mind mostly this crowd of seasoned
algorithmists.

We show that some GCJ problems that should be challeng-
ing according to the problem setters’ estimate can be easy or
even trivial to solve declaratively using high-level program-
ming languages like ECLiPSe and techniques like constraint
logic programming and linear (integer) programming.

ECLiPSe CLP[7, 1] is an open-source software system which
aims to serve as a platform for integrating various logic
programming extensions, in particular constraint logic pro-
gramming (CLP). ECLiPSe has a modern and efficient im-
plementation of the Prolog programming language in its
core, offers some Prolog extensions (like declarative loops
[6]), contains several constraint programming libraries (‘ic’
for interval arithmetic, ‘fd’ for finite domains, ‘grasper’ for
graphs), and interfaces to third-party solvers (Gecode, Gurobi,
COIN-OR solvers, CPLEX) [3]

ECLiPSe implementation of TPK algorithm
We do not assume that the reader is familiar with ECLiPSe,
so to give a feeling of the syntax we present and explain a
program for a TPK algorithm.

TPK is a simple algorithm proposed by D.E.Knuth and
L.T. Pardo [4]. It is used to demonstrate some basic syntac-
tic constructs of a programming language beyond the“Hello,
World!” program. The algorithm prompts for 11 real num-
bers (a0 . . . a10) and for each ai computes bi = f(ai), where

f(t) =
√

|t|+ 5t3. After that for i = 10 . . . 0 (in that order)
the algorithm outputs a pair (i, bi) if bi ≤ 400, or (i, TOO
LARGE) otherwise.

2http://www.eclipseclp.org/

http://arxiv.org/abs/1412.2304v2
https://code.google.com/codejam
http://www.eclipseclp.org/

1 f(T, Y) :-

2 Y is sqrt(abs(T)) + 5*T^3.

3 main :-

4 read(As),

5 length(As, N), reverse(As, Rs),

6 (foreach(Ai, Rs), for(I, N - 1, 0, -1) do

7 Bi is f(Ai),

8 (Bi > 400 ->

9 printf("%w TOO LARGE\n", I)

10 ;

11 printf("%w %w\n", [I, Bi])

12)

13).

Listing 1: TPK algorithm in ECLiPSe

Lines 1–2 define a predicate to calculate value of f . Lines
3–13 define predicate main. The name of this predicate is
passed to ECLiPSe translator as a command-line parameter.

Line 4 reads a list into variable As. The input is a Prolog list
(comma-delimited and bracket-enclosed). We preprocess the
space-separated input with a simple ‘sed’ script to convert
it to the Prolog format.

Line 5 stores the length of the input list in the variable N

(the program can work with inputs of different lengths, not
necessarily 11 as original TPK program), and stores original
input numbers in reverse order in the variable Rs.

Line 6 is the head of ECLiPSe loop: we iterate simultane-
ously over every number in Rs and over I = N − 1 . . . 0. I,
Ai and Bi are local variables for every loop iteration. Line
7 simply assigns the value f(Ai) to Bi. This line demon-
strates ECLiPSe support of using arithmetic predicates as
functions – in many other Prolog implementations less clear
f(Ai, Bi) must be used. Lines 8–10 are Prolog ‘if-then-else’
construct that outputs “TOO LARGE” or Bi depending of
the value of Bi. printf is very similar to the corresponding
C function. %w is a “wildcard” control sequence that can be
used to output values of different types. The second argu-
ment of printf is a value or a list of values for substitution.

Indentation has no syntactic meaning in Prolog (or ECLiPSe),
we use it for clarity.

2. THE PROBLEMS
In this section we show how tricky algorithmic problems can
often be easily modeled and efficiently solved using declar-
ative programming techniques and ECLiPSe. We chose a
set of GCJ problems from different tournament stages to
demonstrate different useful aspects of ECLiPSe: constraint
programming library ‘ic’, linear programming library ‘eplex’,
working with integers and floating point numbers.

To compare our declarative programming solutions with pos-
sible imperative solutions we compare the “mental steps”
required to come up with the solution (counting number of
lines of code would not be useful because the main challenge
is to invent the solution, not to code it.) Our ECLiPSe pro-
grams solve both large and small inputs for each problem.

Triangle Areas3

“Triangle Areas” is a problem from the second round of GCJ
2008. The problem statement can be rephrased as follows:
given integer N , M and A, find a triangle with vertices in
integer points with coordinates 0 ≤ xi ≤ N and 0 ≤ yi ≤ M

that has an area equal to A
2
, or say that it does not exist.

“Triangle Areas” is almost perfect for solving with constraint
logic programming. Variables are discrete, constraints are
non-linear (so integer linear programming can not be used),
and we are looking for any feasible solution. The problem is
not too hard from purely algorithmic point of view, but cor-
rect implementation using conventional programming lan-
guages is very tricky. Many contestants who solved all other
problems (including higher valued problems) failed to solve
the large or both inputs for “Triangle Areas”. At the same
time, modeling this problem in ECLiPSe is almost trivial.
To come up with an effective model we need to notice that
one vertex of the triangle can be chosen arbitrarily. With
this observation, the most convenient way to calculate the
doubled triangle area is to place one vertex in (0, 0); then
2S = |x2y3 − x3y2|. (The same formula can be used in an
imperative solution.)

For this problem we present complete source code of the so-
lution. For subsequent problems we present only interesting
parts: ‘model’ plus other problem-specific predicates.

1 :- lib(ic).

2 model(N, M, A, [X2, Y2, X3, Y3]) :-

3 [X2, X3] :: 0..N,

4 [Y2, Y3] :: 0..M,

5 A #= abs(X2 * Y3 - X3 * Y2).

6 do_case(Case_num, N, M, A) :-

7 printf("Case #%w: ", [Case_num]),

8 (model(N, M, A, Points), labeling(Points) ->

9 printf("0 0 %w %w %w %w", Points)

10 ;

11 write("IMPOSSIBLE")

12),

13 nl.

14 main :-

15 read([C]),

16 (for(Case_num, 1, C) do

17 read([N, M, A]),

18 do_case(Case_num, N, M, A)).

Listing 2: Complete ECLiPSe program for the “Triangle
Areas” problem

Line 1 loads interval arithmetic constraint programming li-
brary ‘ic’. Lines 2–5 define the model with input parameters
N, M, A and a list of output parameters [X2, Y2, X3, Y3].
:: and #= are from ‘ic’ library. With :: we define possi-
ble domains for X2, X3, Y2, Y3 variables, and #= from ‘ic’
constraints both left and right parts to be equal and inte-
ger. After model evaluation X2, X3, Y2, Y3 variables will
not necessarily be instantiated to concrete values, but they
will have reduced domains with possible delayed constraints
and will be instantiated later with labeling.

Lines 6–13 define the do_case predicate to process a sin-
gle input case. Line 7 outputs case number according to

3Problem link: http://goo.gl/enHWlq

http://goo.gl/enHWlq

the problem specification. Lines 8–12 are an ‘if-then-else’
construct that outputs point coordinates if it is possible to
satisfy our model predicate and labels (assigns concrete val-
ues from the domain) all coordinate variables, or “IMPOS-
SIBLE” otherwise. Line 13 simply outputs a new line char-
acter.

Lines 14–18 define the main predicate that reads number of
test cases C and for each test case reads N, M, A parameters
and executes do_case.

We can formulate following mental steps needed to invent
and implement this ECLiPSe solution:

1. Notice that one vertex can be chosen as (0, 0).
2. Recall or look up the formula for an area of a triangle.

3. Formulate the constraint programming model.

4. Code the constraint programming model. For this prob-
lem, it requires 4 lines of straightforward code.

Let us compare this with a possible imperative solution in
a convenient programming language that requires a more
in-depth analysis of the problem. First observations will be
the same. We will also note that it is impossible to find
required triangle if A > M × N , and for A = M × N tri-
angle (0, 0), (N, 0), (0,M) is a valid answer. Now, for A <

M ×N we can represent A as M(A div M) + (A mod M),
0 < A div M < N, 0 < A mod M < M . If we match
this representation with the area formula, we can see that
points (0, 0), (1,M), and (−A div M,A mod M) form a tri-
angle with area A

2
. If we shift this triangle A div M units

in positive direction along the x axis, we will get a trian-
gle (A div M, 0), (A div M + 1,M), (0, A mod M) that will
match all the requirements.

The mental steps for this solution could be:

1. Notice that one vertex can be chosen as (0, 0).
2. Recall or look up the formula for an area of a triangle.

3. Figure out that for A > M ×N there is no such trian-

gle.

4. Find the solution for border case A = M ×N .

5. Come up with a representation of A that matches the

area formula for a special triangle.

6. Shift this triangle to fit inside the boundaries.

7. Code the solution. The code is even easier, check how
A relates to M×N and output corresponding triangle.

Arguably, declarative solution in ECLiPSe needs simpler
steps and leaves less space for a possible mistake.

Dancing With the Googlers4

“Dancing With the Googlers” is a problem from the qual-
ification round of GCJ 2012. In this problem we consider
triplets of integers from 0 to 10 which never contain num-
bers that are more than 2 apart. A triplet is surprising if
it contains numbers that are exactly 2 apart. Given the list
of sums of N triplets and the number of surprising triplets
among them S, how many triplets can be high (have the
highest number at least p)?

4Problem link: http://goo.gl/JpQQYi

One of the very useful features of ECLiPSe is that similar
(sometimes identical) models can be used to solve the same
problem using different solvers (for example, constraint pro-
gramming ‘ic’ and linear programming ‘eplex’ [8]). Linear
(integer) programming is almost always much more effec-
tive than constraint programming (especially when looking
not just for any feasible, but for the optimal solution), but
constraint programming has more expressive power because
of possible usage of non-linear constraints and objectives.
Some problems can be adequately modeled as linear (in-
teger) programming problems, but it may not be obvious
how to formulate the model in terms of linear constraints
and objective – additional variables and specific linearizing
“tricks” might be required [9, 2, 5]. So a useful technique
is to solve small input of a GCJ problem using a constraint
programming model (easier to formulate, but less effective),
and then convert the constraint programming model into a
linear programming model to solve large input using linear
(integer) programming solver. Correctness of the less obvi-
ous linear programming model can be verified by comparing
its results with results of the constraint programming model
on the same (small) input.

Constraint logic programming model for this particular prob-
lem is easy to formulate in ECLiPSe (based on the fact that
logic values of arithmetic constraints – 0 or 1 – can be used
in other arithmetic constraints as integers):

1 :- lib(ic).

2 :- lib(branch_and_bound).

3 model(S, P, Points, Triplets, GtP) :-

4 length(Points, N),

5 length(Triplets, N),

6 (foreach(Triplet, Triplets),

7 foreach(Point, Points),

8 fromto(0, SPrev, SCurr, S),

9 fromto(0, GtPPrev, GtPCurr, GtP),

10 param(P) do

11 Triplet = [Min, Med, Max],

12 Triplet :: 0..10,

13 Min #=< Med, Med #=< Max,

14 Max - Min #=< 2,

15 Max + Med + Min #= Point,

16 SCurr #= SPrev + (Max - Min #= 2),

17 GtPCurr #= GtPPrev + (Max >= P)).

18 find(Triplets, GtP) :-

19 flatten(Triplets, Vars),

20 Cost #= -GtP,

21 bb_min(labeling(Vars), Cost,

22 bb_options{strategy: dichotomic}).

Listing 3: Constraint programming solution for “Dancing
With the Googlers”

Lines 1 and 2 load ‘ic’ constraint programming library and
a library for branch-and-bound search [3]. Lines 3–17 de-
fine constraint programming model with input parameters
S (number of surprising triplets), p, and Points (list of
triplet sums), and output parameters Triplets (list of possi-
ble triplets values) and GtP (number of high triplets). Lines
4 and 5 make Triplets a list of the same length as Points.

Lines 6–17 form an ECLiPSe loop. Lines 6–10 are loop
header; foreach lines loop over triplets and points simul-
taneously, and fromto lines collect number of possible sur-

http://goo.gl/JpQQYi

prising triplets (constrained to equal S after loop end) and
number of possible high triplets (returned as GtP). Lines
11–17 are loop body: they provide the representation of a
triplet as minimum, medium and maximum elements to sim-
plify calculation of constraint expressions for surprising and
high triplets.

Lines 18–22 define the predicate find that finds concrete val-
ues of Triplets and GtP using bb_min from the branch_and_bound
library. In line 19 Triplets list is flattened to Var, because
labeling works only with flat lists or arrays. bb_min min-
imizes the objective, so in line 20 we define the objective
(Cost) as negative of (GtP) that we want to maximize.

An integer linear programming model is very similar, but
finds solution much faster and solves large input.

1 :- lib(eplex).

2 model(S, P, Points, Triplets, GtP) :-

3 integers(GtP),

4 length(Points, N),

5 length(Triplets, N),

6 (foreach(Triplet, Triplets),

7 foreach(Point, Points),

8 fromto(0, SPrev, SCurr, S),

9 fromto(0, GtPPrev, GtPCurr, GtP),

10 param(P) do

11 Triplet = [Min, Med, Max],

12 Triplet $:: 0..10, integers(Triplet),

13 Min $=< Med, Med $=< Max,

14 Max + Med + Min $= Point,

15 Surprise $:: 0..1, integers(Surprise),

16 Max - Min $=< 1 + Surprise,

17 SCurr $= SPrev + Surprise,

18 G $:: 0..1, integers(G),

19 Max $>= G * P,

20 GtPCurr $= GtPPrev + G).

21 find(GtP) :-

22 eplex_solver_setup(max(GtP)),

23 eplex_solve(_),

24 eplex_var_get(GtP, typed_solution, GtP),

25 eplex_cleanup.

Listing 4: Integer programming solution for “Dancing
With the Googlers”

This integer linear programming model uses eplex library
and requires two additional sets of integer variables 0..1 com-
pared to the constraint programming model. Surprise and
G are indicator variables local to loop iteration for “is triplet
surprising” and “is triplet high”, and their use allows to lin-
earize the constraints. Unlike the ic library, eplex doesn’t
deduce that variables must be integer from integer domain
bounds, so variables have to be declared as integers explic-
itly. This solution doesn’t require branch-and-bound search,
because integer linear programming solver already produces
the optimal solution.

Mental steps for the ECLiPSe solution could be:

1. Formulate triplet representation and constraints for an

individual triplet.

2. Code constraint programming model. At this point we
can solve the small input and make sure that our im-
plementation is correct.

3. Apply linearization tricks to convert non-linear con-

straints to integer linear.

4. Code integer linear programming model.

For an imperative solution we have to notice that the lowest
sum of numbers in a high unsurprising triplet is 3p−2 (for a
triplet p, p−1, p−1), and in a high surprising triplet is 3p−4
(for a triplet p, p − 2, p − 2), but only if p >= 2 (otherwise
the triplet won’t be surprising). After this, we count the
triplets which are high even when unsurprising Nhigh, and
the triplets which can be high if they are surprising Nsurp.
The answer is Nhigh +min(Nsurp, S).

Mental steps for this imperative solution could be:

1. Notice that unsurprising triplet is high if its sum is

≥ 3p − 2, and surprising triplet is high if its sum is

≥ 3p− 4 and p ≥ 2.
2. Implement iteration over triplets and calculation of Nhigh

and Nsurp.

Compared to our declarative solution, the imperative solu-
tion needs fewer steps, but the first step requires some math
insight into the problem. Besides, our declarative approach
provides an alternative solution for the small input which
can be used to validate the solution for the large input.

Star Wars5

“Star Wars”was one of the harder problems from round 2 of
GCJ 2008, yet it can be almost trivially modeled and solved
as a linear programming problem.

The essence of the problem statement is: you are given a
set of N 4-tuples of integers xi, yi, zi, pi. Find the minimal
possible Y for which exists a triplet x, y, z such that for each
original tuple |xi − x|+ |yi − y|+ |zi − z| ≤ piY .

Direct translation of the problem statement to a model re-
sults in non-linear constraints, but these can be easily con-
verted to linear constraints using the fact that |X| ≤ Max

is equivalent to a pair of linear constraints X ≤ Max and
−X ≤ Max [5].

1 :- lib(eplex).

2 model(Xs, Ys, Zs, Ps, X, Y, Z, P) :-

3 P $>= 0,

4 (foreach(Xi, Xs), foreach(Yi, Ys),

5 foreach(Zi, Zs), foreach(Pi, Ps),

6 param(X, Y, Z, P) do

7 +(Xi - X) +(Yi - Y) +(Zi - Z) $=< Pi * P,

8 +(Xi - X) +(Yi - Y) -(Zi - Z) $=< Pi * P,

9 +(Xi - X) -(Yi - Y) +(Zi - Z) $=< Pi * P,

10 +(Xi - X) -(Yi - Y) -(Zi - Z) $=< Pi * P,

11 -(Xi - X) +(Yi - Y) +(Zi - Z) $=< Pi * P,

12 -(Xi - X) +(Yi - Y) -(Zi - Z) $=< Pi * P,

13 -(Xi - X) -(Yi - Y) +(Zi - Z) $=< Pi * P,

14 -(Xi - X) -(Yi - Y) -(Zi - Z) $=< Pi * P).

15 find(P) :-

16 eplex_solver_setup(min(P)),

17 eplex_solve(_),

18 eplex_var_get(P, typed_solution, P),

5Problem link: http://goo.gl/DtpEQl

http://goo.gl/DtpEQl

19 eplex_cleanup.

Listing 5: Linear programming solution for “Star Wars”

Line 1 loads linear programming library ‘eplex’. Lines 2–15
define a linear programming model with input arguments
Xs, Ys, Zs, Ps (lists of xi, yi, zi, pi), and output param-
eter P. Other parameters of the model predicate (X, Y, Z)
can be useful for debugging. Line 3 constrains the value of P
to be non-negative using $>= from ‘eplex’. Lines 4–6 define
a header of ECLiPSe loop: execute the loop body for each
xi, yi, zi, pi, and do not treat variables X, Y, Z, P as lo-
cal for the loop iterations. Lines 7–14 specify the linearized
problem constraints.

Lines 15–19 define the auxiliary predicate find that sets up
the goal for eplex solver (minimize P), runs the solver, gets
the typed value of P , and cleans up the solver environment
for the following test cases.

Possible steps to come up with this solution:

1. Express the problem constraints in linear form.

2. Formulate linear programming model.

3. Code linear programming model. Trivial after the for-
mulation.

The first step towards a traditional algorithmic solution is
to notice that we can use binary search to find the smallest
possible solution Ys: all Y > Ys will satisfy the constraints,
and all Y < Ys will not. Thus we make a transition from
searching for the smallest Y to checking whether a certain
Y satisfies the constraints.

The constraints can be converted to linear form in the same
way as in declarative solution. However, instead of solving a
full linear programming problem, we do some more analysis
to check whether solution exists in O(1) time (see the official
contest editorial6).

Possible mental steps for this solution:

1. Make transition from optimization problem to binary

search combined with constraints feasibility check.

2. Express the problem constraints in linear form.

3. Perform constraints analysis to simplify feasibility check.

4. Implement feasibility check.

5. Implement binary search.

Linear programming solution in ECLiPSe needs fewer steps,
and the steps themselves are less complex.

Mine Layer7

This problem from the GCJ World Finals 2008 turned out to
be very tricky for the contestants, with the smallest success
rate from the all problems of the round: only 42% of the
finalists who submitted answers for the large input got it
right.

The problem describes a rectangular grid with odd number
of rows, in which each square contains either one mine or no
mines. Based on it we build a grid of integers: each integer

6http://goo.gl/ndjZhg
7Problem link: http://goo.gl/6ZyZGc

is the total number of mines in corresponding square and
eight adjacent squares. The task is: given the grid of mine
counts, find the maximum possible number of mines in the
middle row of the original grid.

An efficient integer programming model for “Mine Layer”
is relatively straightforward to come up with and code in
ECLiPSe:

1 :- lib(eplex).

2 model(Clues, Mines, MiddleSum) :-

3 dim(Clues, [R, C]),

4 dim(Mines, [R, C]),

5 (foreachelem(Mine, Mines) do

6 Mine $:: 0..1,

7 integers(Mine)),

8 (multifor([I, J], 1, [R, C]),

9 param(R, C, Clues, Mines) do

10 (multifor([Di, Dj], -1, 1),

11 fromto(0, Prev, Curr, S),

12 param(I, J, R, C, Mines) do

13 (I + Di > 0, I + Di =< R,

14 J + Dj > 0, J + Dj =< C ->

15 Curr = Prev + Mines[I + Di, J + Dj]

16 ;

17 Curr = Prev

18)

19),

20 Clues[I, J] $= S

21),

22 (for(J, 1, C),

23 fromto(0, Prev, Curr, MiddleSumExpr),

24 param(Mines, R) do

25 Curr = Prev + Mines[R // 2 + 1, J]

26),

27 integers(MiddleSum),

28 MiddleSum $= MiddleSumExpr.

29 find(MiddleSum) :-

30 eplex_solver_setup(max(MiddleSum)),

31 eplex_solve(_),

32 eplex_var_get(MiddleSum,

33 typed_solution, MiddleSum),

34 eplex_cleanup.

Listing 6: Integer programming solution for “Mine Layer”

Line 1 loads ‘eplex’ library. Lines 2–29 define integer pro-
gramming model with input parameter Clues (2-D grid) and
output parameters Mines (2-D array of possible mine posi-
tions, 1 if mine is present and 0 otherwise) and MiddleSum

(count of mines in the middle row). Line 3 gets number of
rows (R) and columns (C) from the Clues array, and line 4
defines the same dimensions for the Mines array. Lines 5–7
define domain for each element of the Mines as 0 or 1.

Lines 8–20 contain two nested multifor loops (which are
syntactic sugar for several for loops). For each grid square
(multifor([I, J], 1, [R, C])) the loops construct expres-
sions for number of mines in the square itself and in the
neighboring squares, and then constrain this expression to
agree with the value in the Clues array. Checks in lines
13 and 14 prevent accessing values outside of the grid for
border squares.

Lines 21–27 construct expression for sum of values in the

http://goo.gl/ndjZhg
http://goo.gl/6ZyZGc

Table 1: Running times for small (4 minutes time limit) and
large (8 minutes time limit) inputs8

Problem Library Small Large
Triangle Areas ic 0.2s 1.4s
Dancing With the Googlers ic 0.2s timeout
Dancing With the Googlers eplex 0.3s 1.7s
Star Wars eplex 0.2s 0.4s
Mine Layer eplex 0.2s 2.9s

middle row of the Mines array (count of mines in the middle
row), and constrain value of MiddleSum to be equal to value
of this expression and to be integer. It is not necessary to
explicitly enforce MiddleSum to be integer because it is a sum
of integer elements of Mines; but integer specification allows
to output the answer directly as integer, without decimal
point.

Lines 28–32 define the find predicate that sets up the goal
for eplex solver (maximize MiddleSum), runs the solver, gets
the typed value of MiddleSum, and cleans up the solver en-
vironment for the following test cases.

Possible steps to come up with this solution:

1. Notice that all constraints and objective are linear.

2. Formulate integer programming model.

3. Code integer programming model. The code is short,
but uses a lot of ECLiPSe syntax constructs.

The key observation for an algorithmic solution is that we
don’t need to reconstruct the exact grid of mines to get
the answer, it’s enough to be able to count mines in certain
sections of the grid. To find the number of mines in a certain
section of the grid, we can split this section into 3×3 blocks
of squares and add up numbers in the central squares of each
block. If the section width or height is not divisible by 3,
blocks along the sides of the original grid can have width
or height of 2, so that the number in the “central” square
of the block still contains the total number of mines in the
block. The solution itself is easy to implement and only
requires careful handling of different sizes of the grid. For a
full solution see the official editorial9.

Mental steps:

1. Notice that instead of reconstructing the grid of mines

we can count mines in certain sections of the grid.

2. Figure out how to count mines in any 3× 3 block.

3. Figure out how to count mines in 2× 3, 3× 2 or 2× 2
block along the border of the grid.

4. Figure out how to split the whole grid or its parts in

countable blocks various sizes of grid.

5. Implement the counting.

Our declarative solution has fewer steps, and they are much
easier to perform, as they don’t require much insight into
the problem.

8Results were obtained on a 64-bit Linux machine with Intel
Core i7-4900MQ CPU @ 2.80GHz and 16GB RAM using
ECLiPSe 6.1 #191. For linear (integer) programming free
COIN-OR solvers bundled with ECLiPSe were used.
9goo.gl/K2dfPi

3. CONCLUSIONS
Many GCJ problems that are hard to solve in time-restricted
and stressful competition environment can be relatively eas-
ily modeled and solved in ECLiPSe. We gave several ex-
amples of such problems, and our declarative solutions for
them require simpler and often fewer mental steps than pos-
sible imperative solutions in a language like C++ or Java.
Running times of our ECLiPSe programs are several orders
of magnitude smaller than the time limit imposed by GCJ
rules (table 1).

Other modern declarative high-level tools can also be suc-
cessfully used to solve competitive programming problems:
answer set programming tools, satisfiability modulo theories
solvers, etc. This can be a topic of further research.

4. REFERENCES
[1] K. R. Apt and M. Wallace. Constraint Logic

Programming Using ECLiPSe. Cambridge University
Press, New York, NY, USA, 2007.

[2] J. Bisschop. AIMMS – optimization modeling.
http://www.aimms.com/downloads/manuals/optimization-modeling/

2012.

[3] P. Brisset, H. El Scakkout, T. Frühwirth, C. Gervet,
W. Harvey, M. Meier, S. Novello, T. Le Provost,
J. Schimpf, K. Shen, et al. ECLiPSe constraint library
manual. release 6.1.
http://www.eclipseclp.org/doc/libman.pdf, 2014.

[4] D. E. Knuth and L. T. Pardo. The Early Development

of Programming Languages. Stanford University,
Computer Science Department, 1976.

[5] lp solve 5.5.2.0 reference guide. Chapter “Absolute
values”.
http://lpsolve.sourceforge.net/5.5/absolute.htm ,
2013.

[6] J. Schimpf. Logical loops. In P. Stuckey, editor, Logic
Programming, volume 2401 of Lecture Notes in

Computer Science, pages 224–238. Springer Berlin
Heidelberg, 2002.

[7] J. Schimpf and K. Shen. ECLiPSe – from LP to CLP.
Theory Pract. Log. Program., 12(1-2):127–156, Jan.
2012.

[8] K. Shen and J. Schimpf. Eplex: Harnessing
mathematical programming solvers for constraint logic
programming. In P. van Beek, editor, Principles and

Practice of Constraint Programming – CP 2005,
volume 3709 of Lecture Notes in Computer Science,
pages 622–636. Springer Berlin Heidelberg, 2005.

[9] H. Williams. Model Building in Mathematical

Programming. Wiley, 5th edition, 2013.

goo.gl/K2dfPi
http://www.aimms.com/downloads/manuals/optimization-modeling/
http://www.eclipseclp.org/doc/libman.pdf
http://lpsolve.sourceforge.net/5.5/absolute.htm

	1 Introduction
	2 The Problems
	3 Conclusions
	4 References

