
COMBINING ADA 95, JAVA BYTE CODE,
AND THE DISTRIBUTED SYSTEMS ANNEX

Brad Baifbur
Objective Interface Systems, Inc

1892 Preston White Drive l Reston VA20191
bnd.baifout@ois.com l 703/295-6533 (voice) l 7031295-6501 (far)

Abstruct .
This paper desc?ibes a protoec clientiserver system which combines

two technofo~‘es: the abifity to compikAa2 95 codr into Java Byte Code _
- UBC) ranning on the Java I/irrualMacbine via Inaetria

AppletMaagicN product and the A& 95 Distributed Systems Annex. The
paper stts out thegoals ofthepr0rotypc #art and then illustrates the
concepts, &sign, and tehiqaes used to create the system. Fina& the
trade-o@, alternatives, btntjts and conchikmjom the protorype e&k
arepresented

Overview
Recent& two new and interesting- but separate - technologies

have emerged in the Ada community. The first is the abiiity to
compile Ada 95 code into Java Byte Code UBC) running on the Java
Virtual Machine via Intermetrics AppletMagic product. This brings
Ada developers the many benefits of Internet based ciientfsetver
applications. The second technology is the Ada 95 Distributed
Systems Annex (Annex E). This aiso aIlows.the creation of client/
server s&ware. but is even more flexible in allowing many d&em
configurations of distributed software. As of Spring 1997, these
technologies had not yet been combined nor even shown to be abIe
to work together.

The AJPO sponsored the author’s previous company to produce a
sofnvare prototype which combined Ada 95, the Java Vutuai
Machine @rM), and the Distributed Sysrems Annex {DSA) in one
demonstration. In addition, the AJPO directed that the software
prototype be representative of the type of applications which wiii be
a part of the forthhming Defense Information Infrastructure (DE)
and its Common Operating Environment (COE).

This paper will illustrate the concepts, techniques and benefits
which arise from the successhtl combination of Ada 95, Java Byte
Code and the Distributed Systems Annex.

The Prototype’s Goals
The use of Java Byte Code technology inspired the project to strive

for three goals:

4 Demonstrate Ct?entNeu&-a& The dient sofnvare must run
(without change) on SunlSolaris, Macintosh/System 7.5.5, PC/
Windows NT 4.0, and PCfWindows 95 environments.

l Ennrrc that no pLyicaldistribution armYor ins&ztion of client
sofiare iz needed: The demonstration application must run on
any machine preconfiguted with a web browser. There wiii be no

’ The work described in this Paper was sponsored by the Ada Joint Program
ORice under the CIhffSETA contract and performed bv the author while an
employee of CACI, Inc. - FEDERAL of &fax, VA. .

Permission to make digit&hard copies ofall or Part ofthis work for
petsonal or classroom use is granted without fee provided that copies are
no! made or distributed for proftt or commereiaf advantage, the copyright
notie the tile of the publiutiion and its date appear, aad noiiee is given
that copyiag is by pedssion of ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
spccillc pnmission anflor a fee.
01997 ACM 0-89791-981~S/97/00113.50

need to supply users with a disk coma&i client software and,
therefore, no user run instaiiarion of client sofcwae-

+ Provillc imtant up&e of c&nm If the demonstration application
is updated from ~1.0 to ~1.1, rhen aii clients must automaticaily
run the latest version the next time rhey iaunch their web
browser.

The use of the Distributed Systems Annex inspired the project to
strive fur an additional goal:

+ Ennrre SraLzbi& The server software must be able to be
configured and run on more than one Sun system.
Bepartitioning the distributed server system must not require
any modification of the Server’s Ada 95 software. Achieving this
goal wiii provide the ability to distribute the server over muhiple
machines to achieve corresponding performance gains witboz2t
Ada 95 source code modifications.

Specific Tools Used in Prototype Demonstration
All new software written for the prototype was written in Ada 95.

The diem so&are was compiled using Intermetrics Apple&P&
~I.38 compiler fbr Macinrosh. The ciient software makes extensive
use of the standard Java toolkits and libraries via the Ada 95 bindings
supplied with Apple&+ The resulting JavaByteCode (or J-code)
has been run on Java Virtual Machine (JVM) clients on a Macintosh
(u&g four different JVM implementations), a PC running
Windows 95 and Windows NT, and on a Sun”. The server software
was compiled with ACT’s GNAT v3.09 for Sparc/Soiaris 2.5.1 and
GLADE ~I.01 (the GNAT implementation of the Ada 95 Diirib-
uted Systems Annex). The server software has been run on a series of
Sparcstation 4 and Sparcstation 2 machines under Solaris 2.5.1.

Specific Software Requirements

Basic Concept

The pmtotype client/server pair represents a hypotheticai Com-
mand, Control, Communications, Computers and Intelligence
(C4I) application which could be built on top of the DII COE using
Ada 95/JBC and the DSA. For this effbrr, the server would simulate
a series of sensors which were monitoring the locations of enemy
troops on the batde&ld. The diem would collect the data reported
by aii of the sensors and display it on a map on the user’s screen. The
server’s three (3) sensors would simulate the reporting of simplified
information on enemy troop locations and troop types with which a
commander might be presented during a battie. This data would be
broadcast in near real-time and displayed as military icons on a
simulated textum map by the ciient software.

Server Capabilities

The server sofiware simuiares three independent sensors ail
observing a common Battlefield. The sensors are:

+ Ground Sensor (e.g., an Artillery Forward Observer [FO]),
+ Air Sensor (e.g-, an Unmanned Aerial VehicIe [UAVI), and
+ Satellite Sensor.

Each of these sensors is located in a different piace on/over the
common Batdefieid Each sensor looks at the Bat&&id and returns
observations to main sensor server (which then relays them to the
client software via a socket connection). Each sensor inrmduces

-- obsuved diilimlccs in cknrso~b for identical .class files appGu
m be due m di&caos in JVM implementations. The behavior of the Ada 95
diem is no d&tent than a JaM client- both run idea&ally on &?&at machines
within the lmowa diKxaces/hu~ present on tho.reJvM implanentatiom.

247

http://crossmark.crossref.org/dialog/?doi=10.1145%2F269629.269654&domain=pdf&date_stamp=1997-11-01

I

f

.I

I

I

i
i

I
I

I

.i

I

I

1
1
1

I

1

!

1
I

1

:
. . ., ,
:.

,,
‘) ,” :;: *

‘. ,;. . .

: :.. 5;; ”

;:
.I.,<, 1

“..
; ;.:‘-<1

,%.. :.::: --’ .:
,, ,.., , &J ,:

: :; ?,. ~ ,&dg ‘J
_I *’ 7 ;‘>q I *::

: y.; $.+q.<
,,. chp.g’,J’
,*,-,-,r..*PsL. .I-

‘;-‘,?*A :.:v; ,
‘.;;; :-, <

~ $1 ,;. ;;: ~~~.-,

‘y, t:?$ y:

‘; ,j-l .:.<2; . 1
.,-:7;

J :;,-,:‘-‘;g
,*

‘.. ,’
1 I

-. I
:3 ;
~9

;
~

s

!

: t
.*

. 1
4

,,

‘,
,’ ‘K

, ,/

I

,: -i . i 4 ” :. :. J *, “i _. ,‘; ,;; 7 ,‘, ‘,l % L : 1;. ,:t I - ‘, “j c4 ..I _’

map window, disconnect from the server, and return to the login
screen. The server so&are remains active in the background and
awaits additional client connections.

Overall Architkture
Thii section describes the software and hardware architecture fbr

both the client and server pieces. In addition, the flow of informa-
tion among the die&s] and distributed servers is illustrated for a
rypicd user scenario (or use case).

The client(s) and server are connected via a TCPlIP network (e.g.,
the Infernet). The client machine is running some implemenrarion
of the Java Virtual Machine (JVM) (e.g., a Java enabled web

browser). Once the Sensor Server has been launched, one or more
clients may connect to it. Both the HTMLserver (providing the web
page and the downloadable JBC client appler) and the Sensor Server
application must be hosted on the same machine’.

Figure 3 shows the overall architecrure for both the client and
setver machines and a typical use-case inreraction. Details on this
architecture are pmvided in the next two sections. The remainder of
this section provides an architectural description of the components
base on the most typical Use Case.

‘This is due to a ‘limitation” of the security software whtch 1s prrrr of the
javavirmal Machine. Aweb-based applet (client) is only allowed to open up
a network connection to the same host machine from which the appfct 'IVY
downloaded fi.e., the html server),

Any or all of PC/Mac/Sun running Netscape 3.x, Internet Explorer 3.x Client(s) 7p A
l-------

get Viewer, or anyJ=vEB$Fode applet interpztg. __- -a---- 1

i I

f
I @ Launch Ado 95
I Distributed Server on 3

I

f
I i machines. [Server
-Y I monitors Port 1050)

i
1 Q Client initioles hllp:

connection to html

t
1
I

server for pa
8

e
containing A a/JBC

t
L ,,--------

I Q HTML server serves
_-m----m-- P09e

@ Client funs
k$ $vuByleCode

r . .

I Server

I

Dlstributed Ada 95
Application using

I ‘*Annex E”

1 server
i @ Sefvet “main” allocates
1 new Ada task to monitor
I dient socket and pass

i
f

I
5parc-4 - 5parc-2 -

“Woody” “Cliffy”

i it da?a
I @ Server partitions update

1
sensor observations of
bdtlefield in

J background
) 0 Main Program reads

observations and sends

t
them fo client viu socket

t O C3;t di$ays new
I
i @I Sfe SO- @ conlinue

P

i

unli either Ihe clienl
chooses “Quit” menu
item or server IS shut

I
down. IF Client Quits,

1

go to step 0.

1
I ___________-__--_--------------- J

Figure 3: Overall Client/Server Architecture

248

Upon launch, the Sensor Server main program begins to monitor
socket port 1050 for a client connection. At the same time, the
sepatate server partitions fbr the Sensors and the Battlefield begin to
monitor the battlefield and record troop positions.

The client connects to the web server html page that contains the
Sensor Demo applet. The html server downloads the applet to the
client machine as part of the web page. The Ada 95/JBC client run
and then initially displays the screen that was shown in Figure 1.

When the user presses the “login” button, then the client soibvate
to initiate a TCPlIP Socket connection to port 1050 onto the Server.
Upon detecting a new connection from a client, the setvet spawns
off a new Ada task dedicated to polling each Sensor Partition for its
readings and sending sensor updates to the tasks client. In parallel,
the Sensor Server main program then awaits either a new client
connection or conttol-C from the server console. The client software
displays a blank map in a new window and then begins to monitor
socket port 1050 for new sensor data to read As the setvet sends
new data, the client soiiware displays updated icons in the new map
window on the client machine. An example of thii map was shown
in Figure 2.

The user may select “Quit” from the “File” menu at any time in
order to dose the map window and return to the login screen. The
user quits the browser session to terminate all dient/se~er inter-
action. Tbe server software continues to await additional client
connections. Once the server receives a control-C, it is interrupted
and performs an orderly shutdown of ah disttibuted partitions.

Several elements of &ii architecture are dictated by the use of dre
Java Virtual Machine. These inchtde the co-location of the HTML
server and the sensor server, the use of a socket connection back to
the server machine, and the use of a new window on the client to
contain the map and the menu bar (onlyJVM Frames may have
menus). Tbe automatic startup and shutdown of the server software
and all associated partitions is enabled by fimctionality provided by
the Glade implementation of the D!X Most other partitioning
decisions enumerated in this section and the fbgowing two sections
were design decisions by the author.

.
Client Design

Tbe client software consists of nine (9) new Ada 9.5 packages.
These packages make use of many pieces of the standard Java
Library The basic architecture for the client so&vate is shown in the
dependency diagram in Figure 4.

Client Architecture
UnitJlame:Parent-Type/Class

Map:Frame d

Figure 4: Client Dependency Architecture

,,-:
1. ::. 1

. .; i

. . y;: .;1; :*,:;;*.j :

,, :a’,&; : ,:i;’

..p’

&

. : , ,:+jp

. . .-5-r. 7% :

y,; ,,-L:;p

. . .‘. ,-;-‘#,<;‘-.
:.- !,b .: :, $

-4 ‘:‘,.y;.; :

1 1 , c ,;

., ‘.I ::a,.‘..

: .’ ‘.;; ‘-5

,.;: >

‘,L”
. :

,&’ ,:

,. j:.

, r

‘.

‘.

i

I

I

i

1

1

I. ,

!

j

I

1
f

I
0
1
i
i

Inheritance Relationships

Five of the new types defined in the client program inherit from
standard Java types:

l The GCCS-Demo class (the “Client main program”) inherits
from Appiet (which enabfes it to be embedded in a web page).

+ The Map class inherits from Frame (which provides a separate
window and menu bar).

+ The Push-Button class inherits from 3utton {which provides a
call-back on a GUI butzon).

+ The Unit class inherits from Rectangle because a unit adds
Armed Forces information to a GUI concept of a rectan&e class
&at has a location and a size. This design allows easy determina-
tion of when the user has clicked within a unit or when units
overlap on the screen as this functionality is provided by theJava
Am fbr L-cztang~e.

+ The Socket-Monitor class inherits I%om Thread (which provides
a separate thread that tuns in parallel to ike main class) and
reads data from theTCP/IP socket. AppletMagic ~1.38 did not
implement Ada tasting semantics. If it had, these could have
been used. Instead, the design falls back on Java’s thread
semantics which ate provided.This is less intuitive for the
experienced Ada programmer, but it helps rhe program fir more
directly with the use of JavaByteCode and the Java APIs.

The other packages do not inherit f&m pre-exisdng Java struc-
tures, but represent other design abstractions. In this small example
none of rhe newly defined abstractions inherit from each other.

Aggregation Relationships

The GCCS_Demo class is composed of instances of the Map and
Push-Button classes as well as instances of seyeral predeEnedJava
AWT GUI classes. The Map class is composed of instances of the

Socket-Monitor, Message_Queue and Unit-List classes.
Message-Queue and Unit-List are aggregates of the Message and
Unit classes respectively.

Table 1 contains a brief description of each of the Ada packages,

Working wilh the Java APl5: The learning Curve

When writing Java applets in Ada 95 using AppletMagic, the
effort of leamingJav&s syntax is reduced but not eliminated.
Unfortunately, in order to follow any of the examples in many books
or a&less, one must know enough of Java’s syntax and scmnntlcs to
read and understand them. Since Java’s semantics are very similar to
Ada 95’s, this is not dif&&. Rather, when learning Java, the biggest
hurdle is that of mastering the vasr Al% rhar are parr of javn, In this
sample application, the design draws heavily upon the network Al%
(java.net) and the GUI Al?ls (java.awt). Due to the complexity of
these APIs, there was a substantial learning curve involved. Several
sets of Java books and on-line tutorials were consulted, In Qct,
approximately seven inuemental iterations of the design and
implementation were performed in order to master the complexly of
the Al% and buiiding this tyPe ofapplet for the fitsc time. The final
applet, though, is very much a Java apptet - done in Ada 95 synt;uc
and semantics. It makes rll use of theJava ApIs and, except for the
AlgoVPascal syntax, resembles most other applets.

Working with the Java APls: Advantages and Disodvonlages

In general, the advantages of using the Java Al% far outweighed
the single biggest disadvantage: the complex learning curve, The
advantages include: a rich set of fimctionaliry to choose from:
plentiful examples in books and magazines; and a uniform GUI look
and feet on all platforms from a single, standard, set of source code.
An additional minor disadvantage was the fact that the implementa-

GfXS-Demo Contains the app!et and housekeeping code. It scuts the applet and presents the user with a login screen. It makes use of
push-3utton to invoke the right action when the user pushes the Yogin” button.

-... ____-- __ _---

Push_flutron A generic package that provides a subciass ofthejava Button class and an associated action routine that b called when the
button is Pushed. In the Sensor Demo, the aaion is to create a new map frame and display it. Map and its associated thread
take over from &here.

--.^_I--_. --. .__._.- ---..

Map Brings up a separate window (a Java Frame) along with a menu bar and menu. Map contains an instance of the
Socket Monitor class which is responsibie for getting data from the server. Map contains an additional thread that depends on
the M&qe-Queue class and reads each new message from the queue. Based on the message, the thread then creates new
units and adds them to the Unit-List. The Paint0 method then makes use of the Unit-List and Unit Paint0 methods to
display these new units.

l_l_- ^.__ -_

Socket-Monitor Responsible for getting data from the servel; Is a subclass &Thread so it operates in parallel with other thrc& in the applcr.
Each new line of data red from the socket is converted to a message da the Mw cl&s consttuctot. The new messaRc j,
then added TV the Message-Queue. ._--- _- __ ^---- ----- ----. -- ---..-A

Message Parses the raw text string from the server into its component information.
-- - .-------

Message-Queue A FIFO Iii of Messages that have been rerrieved &om the server. Ir is “spnchronizcd” because it. is a shared data st~ct~tc
which is access by both the Socket-Monitor and Map “threads”.

-- ._ --- --- ---- ..--.-----
Unit A single observation from a singlesensor. Ir has a location on the map and a unit kind, .__ _.-- -

Unit-T&t An array ofthtee Singly-Linked Li of Units. Each list cotresponds to a ditrerent sensor and its unit observations,
---____-_ _ _ ___

Name A pair of enumerated types listing the Sensor names and the kinds of Enemy units.

Tabb I: Destription of cacb Ciicnt application package

250

- -*

- -__--- $2

dons are not yet implemented in a uniform and bug free way.
Although the code does not need to change in order to produce a
portable GUI, the resulting application is unlikely to be 100%
identic&among platforms. Many JVM GUI bugs are well docu-
mented on the internet and are of a minor nature.

The Use of Java APls and Concepts in the Client Design

In order to produce a JavaByteCode based applet which would
meet the goals listed at the beginning of this paper, it was necessary
to make use of several of the feamres of Java. Foremost among these
isJava’s platf&m independent GUI too&it: AWT (Abstract
Windowing Toolkit). AppIerMagic provides a fd ser of Ada
inter&es to these predegned routines. It is typical, as seen in Figure
4, to design ones application by inheriting from these predefined
chuses. In addition, it was a critical requirement that dre Client
Applet be able to simultaneously display sensor results, accept user
input and receive new results from the server. This necessitated the
use of multi-threading in the Applet. Ada 95 tasks and protected
types couId have been used to implement this requirement.
Unfortunately, version 1.38 ofAppletMagic did not yet provide
support for these features. Java does provide a very similar

muhidxeading capability, and it was available through the use of
standard Java APIS and Apple&h& supported pragmas. Although
the fud design is not the same as ifAda tasking were used, it is vety
close-proof of the similarity between Ad& semantics and those of
Jam

Creating Client Applets in Ada 95

Overali, some things about creating a client applet are made
simpler by the use ofAda 95. As has been mentioned, the learning
curve is simpler because of rhe use ofAda However there are also
difficulties in using Ada 95 for an applet. For example, a translation
must be made when using most common references, examples or
books. Certainly this is mitigated by the excelknt examples supplied
by AppletMagic, but they do& replace a book or article. In the same
way, it is difhcult to ask questions in forums such as
comp.iang~java.programmer without first translating one’s question
and example code into.Java syntax an&or translating a response.
Thii is offset by the w&ingness of the AppletMagic development
team- especially Iead developer Tucker T& - to directly answer
questions from users. Certainly this design effort shows that it is
feasible and pmctical to create thin client applets using Ada 95.

Server Architecture

__-.---.--.--.--_--__--------- __----__-__- *
Figure 5: Server Dependency Architecture Figure 5: Server Dependency Architecture

. .

,

.

’ .,

!

I’

t

;

i

i
i

, !
t
i
i
i
1
1
i
!

,’ i

1
I
1
!

i

1

I

-,,- _:
,,: r ,

:. .,.,i’ : ,’
,.,.. ’ ‘;

,. .;
_., ; , ,,. . .A * I :. yj . 1. , r;. : ,c:- .‘;L, -, : -., , ;i.,

,Y .J 5 (, H<j
.’

I >i,lr:,7,,, .a, : ;
“i?,. &kc :.I”, ‘1.‘5; 1: ‘,,“: , :,,,
) .;: y~.g& I
: ;;.;:;;‘:~;~y ~ ;. I:,

.+?,+$rrg , ,
?;. J .~~%~~~;,~ ; _ :
I ::, ’ 4x. ,.: :
.., ,“‘,.$., :
.1 : ..L.f.. * ‘i.t :m * ;:,-, ,.,, \)i
,‘ ‘.- :,,‘.y;$. .

.,4 ,?‘...
1 ‘y ,

)I ,:

Server Design
The server sofnvare consists of eleven (11) Ada 95 packages. The

basic architecture for the server software is shown in the dependency
diagram in Figure 5.

There are five separate distributed components in the server sobe:

+ The “Main” Pmgram: Package Main and the Sensor-Server-List
and Sensor Server components are the main pieces in the Data
Server pa&on. This partition initiates communication with the
other partitions but is never called on by any others.

+ The Air Sensor: A Remote Call Incecfdce partition. This
partition responds to requests for the Air Sensois observations.
It also contains a separate caskwhose thread simulates the
sensors - it updates readings from the Banlefietd Partition on a
continuous basis.

+ The Ground Sensor: A Remote Call interface partition. This
partition responds to requests for the Ground Sensor’s observa-
tions. Ir also contains a separate task whose thread simulates the
sensors - it updates readings from rhe Bat&field Partition on a
continuous basis.

+ The Satellite Sensor: A Remote al Inter&e partirion. This
partition responds to requests for the Sat&ire Sensor’s observa-
tions. Ic also con&s a separate rask whose thread simulates the
sensors - ic updates readings from the Battlefield Par&ion on a
coneinuous basis.

+ The Battlefield: A Remote call Interf%ce partition. This partition
contains the locations of all enemy uniu. Ir responds to requests
fix the list of tocations. currently, units on the batdeEeld ares&c.

Table 2 contains a brief description of each of the Ada packages.

CommunicaAng Between Chent and Server

In this prototype system, simplicity was the primary driver in
choosing the mechanism to connect the diem and server pieces.
Aithough borh parts are w&en in Ada 95, the client compiles into
JavaByceCode running on any client machine with aJVM or Web

Browser. The server runs on one or more Sun workstations.
Therefore, Some network communication mechanism must be
chosen. Several altemarives exist: a socket connecrion, Remote
Procedure Calls @PCs), Common Object Request Broker Archltec-
ture (CORBA), and a heterogeneous implementation of the DSA
(see rhe section on Alternative Architectures for the trade-offs). Of
all of these, only a simple socket connection had been proven in a
simiIar context. While simplicity is a chief advantage of a sacker
conneaion, is’s low leve! nature brings along some disadvantages.
The socket connection is a mrrmw incerEace - it can only communi-
cate a simple characrer or binary based data stream. It is up to the
developer(s) of the client and server to determine the messaging
protocol (semantics) the are to be used and to convert any and all
data to he sent to the low level format supported (“marshaIling the
data”). For this simple prototype system, this kind of communication
worked well. However, it does not scale well to larger systems.

Creating Servers Using Ada 95’s Distibuled Systems Annox (DSA)

It would cerrainly have been possible to create the Ada 95 server as
a single Ada 95 program containing multi-threaded tasks represent-
ing each Sensor. In I%, that design is not very different from the
acmal design shown in Figu*eX However, that design does not
exacdy model the real-world simulation that was desired in this
prototype. The goal was to implement a system where each Sensor
was located on a different compurer and all of these computers
communicated to exchange readings about the battlefield. Ada 955
DSA enabIed the simplicity of a single program, single language,
multi-threaded approach to be combined with the scalability and
realism of a design that ran on multiple computers.

The actual piotorype server was created as a single Ada 95 program
and then made to run as a distributed system by adding only the
appropriate categorization pragmas defined in the Ada 95 RM. If
compiIarion and linking proceed normally, then the resule is a single
Ada 95 program. However, by making use of the post compilation
GLADE cool “gnatdist”@CT’s implementation of the DSAwhlch
works with GNAT), the program can be made to run on mu!tip!e

Main An infinite loop server program. Opens the socket connection on port 1050 and waits at the Socker.Accept() call
for &ems to connect. Uses the Sensor-Sewer-List package to keep track of tasks spawned to handle socket
connections. Its code contains an Asynchronous Transfer of Conrrol that handles the SIGINT (AC) interrupt if
the user presses control-C to srop the server. ----

Sensor-Servers A PaJcage containing a rask type. One new rask is allocated for each client socket connection. The r&k reprltcdly
gathers the most recent observation from the AirSensor, GroundSensor, and Sarellite and passes them to the client
via the socket connection. .----

Sensor-Server_List A Singly Linked List of Sensor-Servers. Used co allow the Main to signal all Sensor-Server tasks to shutdown
when the server program is interrupced/terminac. -_- II____

Handle-SIGINT A protected procedure/interrupt handler. Traps rhe SIGINT signal (control-C) and allows Main to conduct an
ordedy shutdown,

__- ._-..___ __ ---- -II _--
&Sensor, A Remore Call Interface package. Each provides an identical interface to return to the caller the most recent set of

GroundSensor, observations. Each also contains a rask that works in she background to observe the Battlefield and update rhe
Satellite internal list of observed enemies. _-_ _._--

Battlefield A Remote Call Inre&ce package. The BattlefXd contains the true list of enemy urtie pa&ions, Each sensor
receives rhis rrue data and adds its own sen.~or etrDr adjustments to make a sensor observation. PI__-- -____-

Socket, Ada-In, Errno Bindings to the Unix Socket, Socket Address, and Error Number facilities.

Table 2 Dem+ion of each Server uppiicatian pachge

252

computers via the DSA. No l&her source code changes are needed
In the design shown in Figure 5, there is one active partition (the
main partition) and four Remote Inter&x Partitions (one for each
sensor and one for the batde&ld). This allows the resuhing pmgrarn
to run onanywherefromone (l)tofive(5)differentcompurers
wjtbout recompihion or &zkiq. The distribution of partitions to
computing nodes is strictly a post compliaeion process.

Workarounds: Creating Better Designs Accidentally

Due to a bug in GNAT ~3.09, the prototype application would
receive an incorrect SIGPIW Unix signal whenever a client socket
connection closed. ACT provided a workaound for this problem in
the form of a protected object which associated a protected
procedure as the interrupt handler Car the SIGPIPE signal.

This code succinctly illustrated how (0 rrap and react to a Unix
signal. As a result, a similar protected qpe was designed to handle
SIGINT, the signal generaced when the user interrupts the running
program with a control-c (*c) keystroke (rtr &ting I). Thii
protected type is then used by the server main program in conjunc-
tion with an AsynchronousTransfer of Control:

bagin
-- startup/initialization code

aslsct
Handle,SIGINT.SIGINTJiandler.Interrupted;
-- got *c, now shutdown

thanabort
loop

-- normal serverprocessing
end loop;
ana selsct;

ana;
The main program starts up and then enters an infinite loop

within the ATC. While in that loop ic handles client connections
and serves sensor data. Upon receiving a AC generated SIGINT
signal, the select part of the ATC is activated and causes the abort of
the normal sensor loop. This code then shuts down all partitions and
terminates the server. The result k a simple. clean mechanism to
have a server which runs in the background until interrnpred.

package Handle-SIGINT is
pragma Elaborate-Body;
protected SIGINTJlandler is

entry Interrupted; -- wait for SIGINT PC)
procedure Signal; -- handle SIGI. & set fla!
pragma Interrupt-Handler (Signal);

private
Interrupt-Received : Boolean := False;

end SIGINTJiandler;
end Handle-SIGINT;

with Ada.Interrupts.Names;
package body Handle-SIGINT is

protected body SIGINT-Handler is
entry Interrupted when Interrupt-Received is
begin

null; -- release caller
and Interrupted:
proca&zre Signal is
begin

Interrupt-Received := True;
end Signal;

end SIGINTJfandler;
begin

Ada.Interrupts.Attach-Handler
(SIGNl!~er.Signal'~, Ath.IntemJpts.Nars8-~~;

end Handle-SIGINT;
Lliring I: HunaYing SIGINT

253

Alternative Architectures

Sockets -A Narrow Interface

The design presented in this prototype application uses standard
sockets to communicate between the client and server. These are
supported in a very similar fashion by the Solaris operating system
used on the Server and by the Java.Net package supplied with the
JVM.

As previously mentioned, this provides only a narrow pipeline
between the client and server. The API consists of little more than
twoope~~tions-onetoreadbyta of dataandonetowritebytesof
data. All information in the application must be converted from Ada
datatypes to character+tes. All actions to be communicated From
the diem to the server must be changed from procedure call oriented
actions into message oriented events and back again. This places
much of the responsibili~ for the infixstructure of a distributed
client/server application onto the programmer. Two higher level
alternatives exist, however neither of these was employed in this
prototype application due to a lack of rime, resources~ and the f&t
that neither alternative had yet been uied.

CORBA - A Wider Option

An approach which xflexts the high level software design more
directly is that of CORBA. Via the use of IDL (Inter&e Definition
Language), an object-oriented API between the client and server can
be defined. This API consists of the operations, data arguments and
exceptions that represent each ino&ue (or class). The IDL inter&e
is rhen mapped into the implementation language fbr the diem and
servet (e.g., Ada 95). Both the diem and server developers work as if
they are writing code that makes usi: of local packages. Underneath,
these packages d&e stubs and skeletons chat marshal the data,
communicate it across the network (similar co RPCs) and unmarshal
the data on the server side. This hides all of the communications
detail under the simple API.

This inter&e is wider than that of sockea because it allows the
expression of a complex API as the direct communication path
between client and server. As far as the programmer is concerned, the
server is just another package in the local client pmgram - even
though the server actually mns on a remote machine across the
network. This raises the level of abstraction between client and server
to a much higher level and provides many benefits over direct socket
programming.

For this prototype application, the only current drawback to the
nse of CORBA would be the fact that the diem is running on a
JVM with code written in Ada 95. CORBA ORBS exist for both
AdaP5codeappkabonsandforrheJavaJVM.However,rhecode
targered co the JVM, which would be created from the IDL., would
likely he Java source code. There&e. extra steps would be needed to
(a) compile the generated code, and (b) make use of Intermecrics
auxilii tool to create an Ada innz.&xe to the generated Java code,

RMI to DSA - Another Wide Option

Jusr as the protoqpe was nearing compledon, T-A&M University
CTAMU) anno~ced ADEPT/JxA, an upgrade to ADEPT that would
connect the Java Remote Method Invocation (RMI) andAda’s
DisnibutedSystemsAnnex. RMIis Java l.l'srechnologyforcreating
Java to Java distributed applications. Using this technology, one could
hypothetically have created the Applet Client using Ada 95 axle which
made use of RMI. This code would then be connected to the server
axle u&g the DSA via Tws JxAgenL So I% as the author knows,
no one has yet attempted this connection.

,

8

r,

1

t

-r.

Tool Usage and Results
Both AppletMagic and Glade worked well in this prototype

application. Although a small number of bugs were present in both
too!s, these bugs were easily worked around. Both Intermetrics and
ACT were highly responsive to questions and bug reports and their
assistance enabled the prototype effort to go smoothly. Based on the
experiences in this small protowe effort, the author would
recommend the use of either or both tools on a ~IU scale devetop-
ment &on

Results/Conclusions
The Sensor CliendServer prototype has succcssfi~Uy demonstrated

that Ada 95 can be used to create distributed ClienrlSetver app!ica-
tions in the same way as other technofogies, based on both theJava
Virtual Machine and Distributed Applications (e.g., Remote
Procedure Calls). It has also demonstrated that it is possibie to
combine the Ada 95 DSA (Annex E) type of disrributed so&are
with lava-based Client/Server distributed software.

The construction on this protorype system proved that Ada 95
could be used to succes&dly create both a client and a server which
combine the best features of both the Java Virtual Machine and the
Distributed Systems Annex It was also demonstrated that it is
possible to use these technologies to produce a realistic dienrlserver
system which sir&aces asimplified C4I sensor display application.

The prototype has successfully shown several of the advantages of
the Java Virtual Machine for any large dientlsetver environment:

+ Client NatiafiFy. The client software runs (without change} on
SuntSoiaris, Macintosh/System 7.5.5, PC/Wmdows NT 4.0, and
PC/Windows 95 environments.

+ ND physical distribution an&r insfafkztion of client $ofhwe nerer-
Jaty: In order to run the prototype, the user needs only to have a
machine configured with a web browser.

+ The goal of ilhntrating the automatic download of a new version
of the software was nut mer during the time of the prototype,
There was not enough time in rhe project to modify the software
afrer the deployment of version 1.0. However, the goal was par-
tially demonstrated since new client versions were constantly de-
ployed as incremental prototype versions were built. Therefore,
the author has confidence that a subsequent system would easily
demonstrate this goal.

The prototype has also successfully shown a strong advantage of
the Ada 95 Distributed Systems Annex approach:

l S~ahbifi~The server sofnvare is able to be configured and run on
anywhere from 1 to 5 Sun systems withour chnngcr C tbeflfh IcWrEC
co& and w&&t recompihim of the rofiwnre. (Repartirioning the
software only required a simple edit ofthe .cfg file and rerunning
“gnatdist”.)

with regards to the Ada community, the existence of this
prototype serves as a proof-of-concept that Ada 95 sofnv;rre can be
used in contexts where developers might naturally think of the use of
Java. For an experienced Ada 95 developer who is not familiar with
Java, the lower learning curve might well prove to be an advantage,
Additionally, the demonstration of the ability to combine a JBC
applet with a DSA setver drives the state of Ada based &en t/sewer
development forward another notch.

Appendix A - Client Software Source Code listings

-- * AJFO GCCS Demo
-- *
-- * Copyright (c) 1997 CACI, Inc.
-- *

)/

. .

.i
‘
I
i
I
j

-- l Ada structure derived from TextScroller Applet by Bill Pritchett whose
-- * Ada structure was derived from LifeRect.ada by Tucker Taft and also from
-- * BigCalc by Vince Del Vecchio of Intenaetrics, Inc.
-- l Copyright (c) 1995 Intermetrics, Inc.
-- *
-- *
-- * This program is free software; you can redistribute it and/or modify
-- * it under the terms oE the GNU General Public License as published by
-- * the Free Software Foundation; either version 2 of the License, or
-- * (at your option) any later version
-- *
-- l This program is distributed in the hope that it will be useful,
-- * but WITHOUT ANY WARRANTY; without even the implied warranty of
-- * MRCI-IAXTABILSTY or FITNESS FOR A PARTICULAR PURPOSE. See the
-- * GNU General Public License for more details.
-- *

I 254
.4’,. .

-z r , ,,
.*

with java.applet.Applet; use java.applet.Applet;
with Interfaces. Java; use Interfacas.java;
with java.lang.String; use java.lang.String;
with java.awt.Component; use java.awt.Component;
with java.awt.Contaher; use java.awt.Container;
with java.awt.Image: use java.awt.Image;
with Map; use Map;
package GCCS-Demo is

type GCCS-Demo-Obj is new Applet-Obj with private:
type GCCSJemo,Per is access all GCCSgemo-Obj;

procedure main(Argv : String-Array);
-- called a8 entry point to applet

procedure init(This : access GCCS-Demo,Obj);
_” called before start for one time initialization

private
type GCCS-Demo,Obj is new Applet,Obj with record

Login-Button : Component,Ptr ; --button to connect to verify user
Name-Field : Component-Ptr ; --user name
Password-Field : Component,Ptr : --user password
Im3 : Image&r : --the map
The-Map-Frame : MapJtr i --the window Co display the map
host : String-Ptr := +‘192.190.177.181”;

-- the default address to Sammy
end record:

end GCCS-Demoi

““““““““““““““L*““““““““““““““““”””””””””””””””““““““““““””””-

-- Body of GCCS-Demo
““““““““““““““““““““““““““““““““”””””””””””””””““-“““““““””””.

g with java.io.PrintStreami use java.io.PrintStream;
~1 with java.lang.System; use java.lang.System;

.“““““““““““““““““”

.““““-““I”““““““““”

with java.lang.Integer; use java.lang.Integer:
with java.awt.Button; use java.awt.Button:
with java,awt.Label; use java.awt.Label:’
with java.awt.ToxtField: use java.awt.TextField:
with java.awt.GridLayout; use java.awt.GridLayout;
with java.awt.LayoutManager; use java.awt.LayoutManager;
with java.net.URL; use java.net.UBL; -- for codebase
with PusbButton; -- generic push button
with Ada.Characters.Latin_1;
package body GCCS,Demo is
-- instantiate the generic button k set up its call back

type PreescdButtonInfo is record
Parent : GCCS,Demogtr; -- what applet is button inside of?

end record;

procedure ConnectButtonPress(info : PressedButtonInfo);
package ConnectButton is new push-button

(PressedButtonInfo, ConnectButtonPress);
use ConnectButton;

procedure ConnectButtonPrcss(info: PressedButtonInfo) is
“” make a frame or just show already made frame

begin
printlnlstdout, +-Button was pressedI’);
println(stdout, +“Bringing up map window”);

Info.Parent.TheJJap-Frame := newJfap(+‘Battlefield Map’, Info.Parent.Img,
Info.Parent.Hoat);

-- a side effect of creating a new map frame is to also
-- launch two threads in that frame: (1) to read the socket
-- and 12) to read messages from the gueue and modify the unit list

setResizable(Info.Parent.TheJfap-Frame, False);
resize(Info.Parent.The_Map-Frame, 880, 656);

-- should really wait for the image to be ready before the show, but...

shov(Iafo.Parent.The_Nap_PIame):
println(stdout, *‘Yap window up.‘);

end ConnectButtonPress;
-““““““““““-““““““““-““““-“-““-“----~”-””””””””-“““-““~““”-”””””“““““--“““--““-”
-- Initialize the applet.
‘--“““““““““-“““--‘,“--“-‘-‘--““-”-”---”-----”--“--“----“-”-”-------“--“-“--

procedure init(This : access GCCS-Demo-Obj) is
XC-Parameter : String-Ptr;
LB-Info : PressedButtonInfo := (Parent ---> GCCSgemogtr(this));
N-Field : TextField-Ptr := new,TextField(B);
P-Field : TextField_Ptr := new,TextFieldO);
Uabel : Comgonent,Ptr;
RIGHT : Integer renames Sava.AWf.Label.Right;

begin
* setLayout(this, new,GridLayout(rows=>3, cols=22,

hgap=>lO,vgap=>3).LayoutEanager’access);
-- add username and password fields to applet

A-Label := Add(containerstr(thisl, Component-Ptr(new&abel(t”Name’, RIGHT)));
This .Name*Field := Add(container_ptr(this), Component,Ptr(N-Field));
Show(This.NameJield);
A-Label := Add(containergtr(thisl ,

Component,Ptr(newJabel(+“Password*, RIGHT)J);
SetEchoCharacter(P-Field, ‘*‘I;
This.Password_Field := Add(containergtr(this1, Component~Ptr(PSieldl1;

Show(This.PasswordJield):
-- add null label for spacing in grid

A-Label := Add(containergtr(this), Component,Ptr(new,Label(t”“, RIGHTII);
-- add button to applet

This.Login-Button := ConnectButton.Newguskbutton
(containergtr(this), LB-Info, +‘Login’);

Show(This.Login-Button);
resize(This, preferredSize(container-ptr(this)));

-- deal with the (hidden) Frame’s Imaage
This.Img := getImage(This, getCodeBase(This1. *“map,gifs/map6,gif”);

--mapI+ is 880x656
--grid from sever is 110x82 each cell is 8x8 (8:l ratio)
-- read parameter from HTML file

HC,Parameter := getParameter(This, +‘HC’):
if HC-Parameter /= null and then not egualsIgnoreCase(HCJarameter, +“True’) then

-- figure out which machine we came from and pass that along to the map
This.Host := getHoet(getCodeBase(This)):

else
null; -- use the default value set in private part

end if:
end init;

““““““““““““““““““““““-“““““““““”””””””””””””””““““““““““”””””””“““““““““““““““”
-- Main Program
““““““““““““““““““““_________rl_________”””””””““““*“““““”””””””““““---“““--“““-

pr;oz&ure main(argv : String-Array) is
: aliased GCCS-Demo-Obj;

begin
GCCSJemo.init(This’access):
GCCS-Demo,start(This’access);

end main;
end GCCSSemo;

pragma Suppress(ElaborationJheck1;
with java.lang.String; use java.lang.String;
with Interfaces.java; use Interfaces. Java;
with java.awt,Event; use java.awt.Svent;
with java.lang; use java.lang;
with java.awt.Conta&er: use java.awt.Container;
with java.awt.Component; use java.awt.Component;
with java.awt.Button; use java.awt.Button;
generic

type callbaokrnfo is private;
with procedure handlepress(info : callbackInfo1;

. . ZI

package pustiutton is
type push-button_Obj is new Button,Obj with record

cb : callbackInfo;
end record;
type push-buttonJW is access all push-buttan,Obj’class;
function New_pus~utton (Parent : Container-Ptr;

info : callbackInfo;
B-Name : String,Ptr;

‘W : pushbutton,Ptr := null)
return component-ptr;

mc function ‘+“(S:String) return String-Ptr renames InterEaces.Java.‘+‘;
function action (Obj : access push_button,Obj;

Event : EventJtr;
what_Obj : Object-Ptr)
return Boolean;

end push-button;

with java.lang.System; use java.lang.System;
with java.io.PrintStream; use java.io.PrintStream;
package body push&tton is

** creates a new push button and returns it to the parent object
function New_push_button (Patent : Container-Ptr;

info : callbaokInfo;
E-Name : String,Ptr:
Obj : push-button-Ptr := null)
return component&r is

newJxrtton : push_butto&Ptr := new push-button-obj;
begin

setLabel(Buttongtr(new-button), XNamel;
new,button.cb := info;
return add (parent, Component-Ptr(new,button)):

end Newsusb+button;
-- Handles a button push event for this object and sends it samewhere

function action(Obj: access pu&button,Obj;
Event : Event-Per;
What,Obj : ObjectJtr)
return Boolean is

begin
hancllegress(Obj,cb);
return true; -- put code here to call Orbix client?

end actioni
end push-button;

I_ l An0 WCS Demo

-- l Map Window Frame
______._____________-------*.---
with java.lang.Stringi use java.lang.Sttihg;
with Interfaces.java; use Interfaces.java;
with jeva.awt.Frame: use java.awt.Sk3.m;
with java.awt.Component; use java.awt.Component;
with java.awt.Container; use java.awt.Container;
with java.awt.Event; use java.awt.Event; - needed for bandlehrent
with java.net.URL; use java.net.URL;
with java.awt.Graphics: use java.awt.Graphics; -- needed for overriding paint
with java.awt.~ge; use java.awt.Image; -- needed for storing Map
with java.awt.KwxaBar: use java.~wt.l&nuRar;
with java.lan.g.Ruus&l@; use java.lang.Runnable; - needed to provide second
thread
with java.leng.TW?sd: use java.l~g.Tbread: - needed to provide second
thread
with E-a; use VtT:
with unit: use unit:

with Unit-List;
with Socket-Monitor:
package Map is

use Unit-List;
use SacketJonitor:

type Map,Obj is new Frame,Obj with private;
-- eventually add runable component for ‘implements ruMable’

type Map,Ptr is access all Map,Obj;

function handleEvent(This : access Map,Obj; evt : Event-Ptr) return Boolean;
-- handle window close event

procedure paint(This : access Map-Obj; G : Graphicsgtr):
-- use to draw map in frame and animate icons

procedure update(This : access Map-Obj; 0 : Graphicsgtr):
-- override to avoid total redraw. use clipping regions.

procedure run(Tbis : access Map,Obj);
pragma Convontian(Java, run); -- so matches Runeble.Run

-- called when thread is started
-- Implements Runnable

function newJap(title : String-Ptr;
The-Map : &age-Ptr;
HostJ\ddr : String,Ptr;
W : Map,Ptr := null)

return Map,Ptr;
pragma Convention(Java,Constructor, new-Map):

private
type Map-Obj is new Frame-Obj with record

Our-Map : ImageJtrz
Menu-Bar : MenuBar-Ptr;
MI-Dialog : NYIStr;
Positions : Unit,List,Ptr;
SM : Socket,Monitor,Ptr;
-- thread related data
Runnable : aliased Runnable,Obj; -- means ‘implements Runnable’
The-Thread : Thread-Ptr :s null:

-- points to the thread we kicked off. If it is null, then make a new thread.
end record;

end Map;

with java.io.PrintStream; use java.io.PrintStream; -I needed for println
witk java.lang.System; use java.lang.System; -- needed for stdout
with java.awt.Nenu; use java.awt.Menu;
with java.awt.MenuItem: use java.awt.Manuftam;
with Names; use Names;
with Message; use Message;
with Message-Queue; use Message-Queue;
pragma ElaborateJll(Message,Queue);
package body Map is

procedure Create,Menus(TheJ!ehuJ3ar : MenuBarJtrl is
File-Menu : Menu-Ptr := new,Menu(+‘Pile’);

begin
FileJfenu :‘: AddVfhe-Menu-Bar, Pile,Menul;
Add(File_Menu, +*Obselve SensOrS’);
AddiFileJfenu, +*Quit’) i

end CreateJ!enu.s:
function newJiapititle : String-Rx;

The-Map : Image,Ptr;
Host-A&k : String-Ptr:
Obj : Map,Ptr := null)

ret&n Nag-Ptr is
- constructor operation

lkWJ!2p : &,F-Ftr -I Rap+Ptrfne#-F~eltitle, Frane3xiCbj) 11:
keg*1

ceVJ&lp.Chu~tzap := The-Hap;
IkwJ-kp.Eenn~ar := LeGuJL&LnBar:

SetMenuear(ceu~ap, Dew&ip.Menu-Barl :
Createy;enus (Ueti-Map.Menu,Barl :
l(esr,Hap.EYI~Uialog := ne;rJrfIrparent => Prame*Ptr(c2uJfapl.

title q > +-Not Yet Implemented’, modal q a True);
println(stdout, +-after nyi constructor in New&p*) :
println(stdout, +-before unit-list COnSkUCtOr in NewJag’);
New-Wap.Positions := new-Unit-List;
println(stdout, +‘after unit-list constructor in New-Map’);
New-Map,SM :t new>ocket_Monitoe(+‘Map Socket Monitor’, Host_Addr);
setPriority(New>ap.SM, java.lang.thread.Min-Priority); -- to avoid deadlock
Socket-Monitor.Start(NewSIap.SMl;
println(stdout, +*after Socket Monitor start New-Map’);
New-Map.The-Thread := new,Thread(New-Map.Runnable’Access, *‘Map Frame thread’);
setPriority(New-Map.The-Thread, java.lang.thread.MihPriorityt21;

-- to avoid deadlock
start(Newaap.The,Thread):
println(stdout, t’after Map Frame Thread start in New&pml;
return New_Map;

end new-kg:

function handleEvent(Thi.5 I access Map,Obj; evt : Event-Ptr) return Boolean is
-- handle window close event
super : Frame,Obj r-s Frame-Obj (This.all) ; -- non dispatching view of ‘parent’

begin
if evt,id = java.awt.Event.Window_pestroy then

done (This. SM) ;
Stop (This *The-Thread) ;
hide(This);
dispose (This) :
return true:

elsif (evt.target.all in MenuItem-Obj’Class) then
-- selected some menu item

declare
Item : WenuItekPtr := MenuItelrCPtr(evt.Targetl;
Label : String-Ptr := GetLabel(Item);

begin
-if Label.all q Ada-To-Java&ring(“Quit”).all then -- kill the frame

-- same logic as Event.Window-Destroy
socket-monitor.done(This.SM)t
--stop our thread by setting This-The-Thread to null
--the loop in run finishes so Run exits and the thread dies
scop(This.The-Thread);
hide (This) i
dispose(This) i -- close down the frame and return to the login screen
return true;

elsif Label.all = Ada-ToJava3tringl’Observe Sensors’).all then
-- toggle this & call socketmonitor.suspend() or resume0
-- ?? or should we suspend our thread that reads from the queue?
show(this.NYI-Dialog);
return True;

else -- some other menu? this is an error
print (stdout, +“ERROR: Other menu selected. Label: “);
println(stdout, Label) :
return java.awt.Frame.handleEvent(Super’accees, evt);

end if;
end;

elsif evt.id = java.awt.Event.Mouse-Up then
declare

Handled : Boolean;
begin

Handled := Unit-List.MouseUp(This.Positions, evt, evtx, evt.y);
-- delegate click

if Handled then repaint (This) i end if: -- click did something so update screen
return Handled;

end;

Clear(This&ist 8~ Thie.Positions, For,This,Sensor -5 AJlsg.Sensor);
elsif A-Msg.Kind = Message.Observation then

Add(To-List e> This,Positions,
For-Sensor =a AJsg.Sensor,
Item q > new,tmit(A&g.Enemy, x=> A&g.X, y=> AJ6g.Y));

else -- A-Wsg.Kind = Messege.Stop
repaint (This) : -- processed a new set of observations so make sure they

-- show up on the screen (minimal refresh)
end if;
yield; -- so that other threads get the CPU

end loop;

end run;

procedure stop(This : access Mop,Obj) is
begin

This-The-Thread := null; -- will cause run to exit its loop & stop
end stopr

--add in suspend0 and resume0 to Map
--applet calls suspend0 and resume0 when it gets called
--suspend sets the-thread = null
--resume allocates it again

end Map;

else -- not window destroy and not menu item. Pass on to super 6 container -- l A☺PO CCCS Demo
return java.awt.Frame.handleEvent(Super’access, evt); -- l Socket Monitor -- reads messages from socket and adds them to queue

end if;
end handleRvent;
procedure paint(Tbis : access Hap-Obj; G : Graphicsgtr) is

Result : Boolean : -- stores drawImage result. True if all bits avail. else false
begin

-- temporary. replace with double buffering
Result := drawImage(0. This.Our-Map, 0, 0, This.ImageObserver’access);
print(stdout, +-Redrawing Map Image. All bits avilable: ‘1;
println(stdout, Result):
Unit~ist.Paint(This.Positions, G) ;

end paint:

procedure update(This : access Map,Obj; G : Graphicsgtr) is
--II in the future avoid total redraw.
--II in the future use clipping regions.

begin
paintWhist 01 i --don’t clear background first

end updatet

procedure run(This : access Map,Obj) is
-m called when thread is started
-- Implements Runnable
uss : Messagegtr;

begin
-- new-Frame0 set the thread to I= null
-- suspend0 will set thread to null when we should pause
-- then we’ll just reallocate in Resume0 which will call Run again

while This.The,Thread /= null loop
-- get next message from the queue (may block)
-- add message to the Unit-List.
-- this will-cause it to bi displayed next time the frame is repainted
-- yield0 so that other threads get the CPU

yield; -- so that other threads get the CPU
A&g := Remove; -- synchronized call may block

--II if message kind is start, then clear out unit-list for that sensor
--I! since a new set of positions is arriving

I. ‘I’,$.,
‘?$

if A&eg.Kind = Message.Start then

v
P

\
1

I

* .
: ., . . :' _' _, (': .' I : ,, ;, :

-. : ;. 'G * .,; ;.s I ,' : ,. ,* :
!

I.... ,,' .-A:, : .- 1. ,_ 5. ., .
c,,*,r- .A, _' .* ,.,,y.y, . -: ':

. . .
- :. ..,. .,,. .%::

': i:.-.':.<v$.."-. .- j .l..,l. .
7. . 2. ,v -yfi (,,-7*+b$g.<*, *,

.'
,, .y +- TI. . ..> j,y ~&.$y 7&gy?. G. ;.

; ;
,. ,L' ..-,&.

,: I :' . ,“ + A-'.,
. .;" : .: ., .

.,
,: .*.. \ " I '. .:. , .:' ,;

._ _
I ,'.. I *< .

:., : ', 'I . . ;I ',.
.I- . .

: -:, g$J&$&

~~.,$.1-%. .'i- ;'_ :L.., ', : _----- --... --.,.. * .--L_- __I-- _....___- - __.-_ I _____. ALb_I .___ ____-_ - _-_- -A_' __._.-- L -.i-.... _._. - .-___ - _-.--.--.-.--L 1‘-.-2.
ui. " .k.. :': r,.+ a,;: i&y

I.

_______-__--_______“_l______l___________”--------------------------------------”

with java.lang.String; use java.leng.Stringi
with Interfaces.java; use Interfaces. Java:
with java.lang.Thread; use java.leng.Thread;
with java.net.Socket; use java.net.Socket;
with jeva.io.fnputStream; use java.io.InputStream;
with java.io.DataInputStream; use java,ia.DataInputStream;
with java.net.URL; use java.net.URL;
with Message; use Message;
with M&sage-Queue; use Message-Queue;
pragma Elaborate-All(Message-Queue);
package Socket2onitor is

type Socket-Monitor-Obj is new Thread-Obj with private;
type Socket-Monitor&r is access all Socket-Monitor,Obj;
function new-Socket-Monitor(title : StringJtr;

Hbst_Addr : String-Ptr;
Obj : SocketJ3onitor-Ptr := null)

return Socket-Monitor,Ptr;
pragma Convention(Java,Constructor, new-Socket-Monitor);
procedure run(Obj : access Socket-Monitor,Obj);
procedure done (This : access Socket-Monitor,Obj);

privat.e
type Socket-Moni.tor,Obj is new Thread_Obj with record

Sock : Socket&r;
in-stream : DataInputStre~Ptr;
Base,HostJ\ddr : String-Ptr;

end record:
end Socket-Monitor:

with java.lang.Bystem; use java.lang.System; -- for stdout
with java.io.PrintStream7 use java.io.Printstreem;
with java.net.URL; use java.net.URL;
with java.net.IneeAddress; use java.net.InetAddress;
with Ada,Characters.Latin,1; use Ada.Characters.LatirLl;
with Ada-Text-IO: use Ada.Text,IO;
with Ada.Integer,Text,IO; use Ada.Integer-Text-IO;
package body Socket-Manitor is

function open-Socket(This : access Socket-Monitor-Obj) return DataInputStreem-Ptr;
function new-socket-Monitorttitle : String,Ptr:

Host,Addr : String,Ptr;
OkI : Socket_Monitor-Ptr :r. null)

return Socket-Monitor-Ptr is
New,SN i Socket,Monitor-Ptr :=

Socket-Monitor,Ptrlnew,Thread(title, Thre&Ptr(Obj)));
begin

New-SM.Base-HostJddr := Host-Addr;
return New,.%:

end new-Socket-Monitor;

function open-SocketWhis : eccess Socket&onitor-ObjJ return DateInputStreanCPtr is
host&et : InetAddressgtr;
uort : integer := 1050:

begin -
printlnlstdout, +-before near socket call’);
host&at :C getby~~~e(This.Base,Hsst_pddr); -- translate string inet i
ThisSack := new-Socketihost,inet, portl: -- make socket
printlnfstdout, +-after nevr socket call.‘);
arinttstdout. +*Now Connected to: ‘7 : Ed- .~~
println(stdout, geur~s~aee(get~e~ddress(This.Sock)))f

priath(stdaut, +'abmr to return iaput stream'):
-- initiate tke input stream

return n~J1,Datatap~tStreas(get~pu~fe3n(Thir:.Scck) I:
eaa ogea~socket;
pretedure done(!Ihis : occeas SocketJbnitor~Obj) is
EWh

p:j.ttcl72(ctd0ut, +~Uosibg IantStcem-);

close(This.in&ream) ;
close (This .Sockl :
stop&his) ;

end done:
procedure runt0bj : access Socket,Monitor-Obj) is

-- never terminates by itself. the done0 method is called to shut it down.
strgtr : String-Ptr :F new String-Obj:
&Msg : Message-Ptr;
use type String-Ptr;

begin
Obj.&stream := Open-,Socket(Obj); --open socket and set input stream to socket
While-More Data: loon - -

Str_ptr :c readlin~(Obj.in,streaml;
Yield; -- let other threads proceed
exit when str-ptr I null;
print(stdout, *(‘Socket Message: ‘7) ; println(stdout, stratr) ;
printlstdout, *‘This socket message is ‘); print istdout, lengthlstr-ptr) 1;
printlnfstdout, n characters long’);
qMsg :- new-MessageWXgtr):
Yield; -- let other threads proceed
Message,Queue.Add(Item => A&g);
Yield; -- let other threads proceed

end loop While-.More-Data;
donelobj) ;

exception
when java.io.IOException 52

println(stdout, +‘GoC a Java.io.IOException inside of Socket-Eonitor.Run’);
done(Obj 1;

end run;
end Socket-Monitor;

*- l AJPO GCCS Demb
-- * Message Queue -- a Queue (FIFO style) of Messages
s- * The gueue will block on Remove calls until new messages are added
VW + Calls to Add never block
__l---_--__---__^r--_l_l________________-”-----------“*-----------“-----“--~----
with java.lang: use java.lang; -- for InterruptedException and type Object
with Message; use Message;
package Message-Queue is --only one message-queue. This is an ASM

pragma Elaborate-Body;
-- This class is intended to run in a Multi-Threaded environment

procedure Add(Item : access Message-Obj);
function Remove return Message-Per;

-- will block if oueue is emntv
procedure Clear; -

private
-- these must be declared in the spec’s private part to be
-- primitive operations on the tagged type
type Node:
type Node,Ptr is access Node;
type Node is record Msg : Message-Ptr; Next : Node-Ptr: Prev : Node,Ptr: end record;
type Message,Queue,Obj is new Object with record

Head : Node-Ptr;
Last : Node-Ptr;

end record:
type Hessage,Queue-Ptr is access all P!essage,Pueue-Obj’class;
procedure QAdd(To : access liessage-Queue,Obj; Item : access Message,Obj):
function QRemove(Fron : access Yessaae-Queue-Obj) return Hessage-Ptr;

-- will-block if queue is ezpty -
prccedure QClearWhis : access Eessage_pueae,0bj);
- This class is intended to -m in a Multi-Threaded environment
pragma Conventia~(Ada,Synch-roniz~, QAdd);

- pragza Convention (Ada3yncbronized. QRemovs) i
pregza Convention IAda~Sya~onized. QUeerI i

end kbssagegrzeue;

--- -----
- l AEuGc c sD~

-- l Bessage -- Sensor observations from the sewer
_-------------------________I___________--
with java.lang; use java.lang;
with java.lang.String; use java.lang.String;
with Esmes: use Names;
package Kessage is

type Kinds-Of-Messages is (Start, Stop, Observation):
type Message-Obj is tagged limited record

Kind : Kinds,Ofsessages; -Which kind of message did the sensor send
Sensor : Names.Sensors; - Which sensor recorded this enemy

- these three are only valid if Kind q Observation
- should be variant record, but these aren’t yet supported

X : Integer; - X coord of enemy
Y : Integer: - Y coord of enemy
Enemy : Names.EnemyJinds; - Which type of enemy was seen
-workaround for broken exceptions:
Valid : Boolean := True: - set to true if a valid message was built

- if false, all fields are invalid
end record;
type Message,Ptr is access all Message,Obj:
function newJessage(Str : String-Ptr) return Message-Ptr;
Incomplete-String : exception; - raised if Ne&Kessage is given en incomplete string

end Message;

- l UP0 GCCS Demo

- * Names :Sensors and Targes - common types across Client & Server

with java,lang.String; use java.lang.String;
package Name6 is

Illegal-Value : exception ;

I2
type Sensors is (Air, Gnd, Sat1 1
function To-String 6 : Sensors) return String-Ptr:

W function To-Sensor (Str : String,Ptr) return Sensors:
type Enemy-Kinds is (Tank, Infantry, Artillery);
function To-String (EK : Enemy-Kinds) return String-Ptr;
function To-Enemy (Str : String-Ptr) return Enemy-Kinds:

end Names;

- l AJPO GCCS Demo
- * Unit List - an SLL (LIFO style) of Units

with java.lang; use java.langi
with java.a$.Graphics; use jave.awt.Graphics;
with java.awt.Event; use jova.awt.Event;
with Unit: use Unit;
with Namesi use Names;
package Unit-List is

type Unit-List-Obj is tagged limited private:
type Unit,List-Ptr is access all Unit-List,Obj;
function new-Unit-List return Unit-List,Ptr;
type Iterator is private:
procedure Initialize(This-Itcrator : in out Iterator;

To-This-List : access Unit,List,Obj;
For-This-Sensor : Names.sensorsl :

function Current(InlThisJterator : in Iterator) return Unit,Ptr;
procedure Next(In,This,Iterator : in out Iterator);
function IsWDone(This,Iterator : in Iterator) return Boolean:
procedure Add(ToJlist : access Unit-List,Obj;

For-Sensor : Names. Sensors;
Item : access Unit-Obj);

procedure Clear(Thi&List : access Unit-List Obj: For-This-Sensor : Names.Sensors);
procedure paintlThis : access Unit-List-Obj; G : Graphicsgtr);

- use to draw Unit-List in frame
function mouseUp(Obj : access Unit_List,Obj; evt : Event,Ptr;

X : Integer: Y : Integer) return Boolean:
- convenience function called when mouse is released inside a unit-list

- called from map’s handleEvent(1
private

end Unit-List:

- l AJPO GCCS Demo
- * Abstract Unit Icon (to be overlayed on Map frame)
- * all units are 32x18 icons set in the top left of a 32x32 cell
- l currently the grid is 8x8 pixels to server grid
- l so all unit icons take up 4x4 cells and can overlap

with java.awt.ntent; use java.awt.Bvent; - needed for handleEvent
with java.awt.Image; use java.awt.Image: - needed for storing Map
with java.lang.String; use java.lang.String:
with Interfaces.java; use Interfaces.java:
with java.awt.Graphics; use java.awt.Graphics; - needed for overriding paint
with java.awt.Bectangle; use java.awt.Rectangle;
with java.awt.Color; use java.awt.Color;
with NYI: use NYI;
with Names; use Names;
package Unit is

type Unit,Obj is new Rectangle,Obj with record
Selected : Boolean := False;
Kind : Names .Enemy,Kinds;

end record;
type Udt,Ptr is access all Unit-obj;
function new-UnitIKind : Names.EnemyJ(inds; x : integer;

y : integer; Obj : Unit,Ptr := null) return Unit-Ptr;
pragma Convention(Java-Constructor, new-Unit);
procedure paint(This : access Unit-Obj; This-Color : Color,Ptr; G : Graphicsgtr);

- use to draw Unit in frame
function mouseUp(Obj : access Unit-Obj; evt : Event-Ptr;

X : Integer; Y : Integer) return Boolean:
- convenience function called when mouse is released inside a unit
- called from map’s handleEvent

procedure highlight(This : access Unit-Objl;
- toggles the selection state
- causes paint to draw an outset rectangle in black 1 pixel
- called when mouseUp happens

end Unit;

\
z

. I -

l ~~ ---7
.:

_ _ _ - . . _ I .

Appendix B -Server So&are Source Coda Listings
with Battlefield;--States current battlefield data
with Air.Sehsor;--remote observation Sensor
with Satellite;--remote observation sensor
with GroundSensor;--remote observation sensor
with Ada.TextJO;use Ada.Text,IO;
with Socket;--Socket constants and functions
with Ada-In;--Internet Socket constants and functions
with 1nterfaces.C;
with Interfaces.C.Strings;
with Errno;--provides socket error messages
with Ada.Unchecked_Conversion;
with Ada.Characters.Latin,l; --to obtain the NL/LF character 16#10#
with Sensor-servers;
with sensor_server,List;
with BlockJIGPIPE;
with BandleSIGINT; -- to allow graceEu1 shutdown on *C
procedure Main is use type Interfaces,C.Int; use type Battlefield.Target;
package c renames 1nterfaces.C;
--converts Internet style address to 'generic' socket address
function ToSockaddr is new Ada.UncheckscLConversicn

k¶

(Ada-In.SockaddrJn, Socket.Sockaddr);
--Socket will be bound to the local port
Local-Port : C.UnskgnegShort := 1050:
The-socket : C.Int;--Socket created locally
Client-Socket : C.Int;--Socket connection from client
--Variables for Internet to 'generic' address conversion
TempJddrass : AdaJn.Sockaddr,In;
The-Address : Socket.sockaddrstr;
MaxClients : C.&t :=lO;--Maximum number of Clients that will
--be accepted for socket connection in one execution of program
One : Socket.const-char_ptr := new C.SignedJhar' (1);
SSL : Sensor-Server,List.Sensor-Server,List,Obj; g

begin
Put-Line(*Main is RunningIll');
Put-Linei'Creating Sooket!!!");
The-Socket :a Sooket.Socket(Socket.AF,Inet, Socket.SockJtream, 0);
Put-LineI*Sooket Number: ' & C.Int'Image(TheSocket));
if Socket.setsockopt(s => The-Socket,

level => sccket.SOL_SOCKST,
optname z> Socket.SO,REUSEWJR~
optva1 s> One,
cptlen EZ 4
) = -1 then

Putgine('setsockopt Failed!11 with Error No: '&
C.unsigned'image(C.Unsigned~(Errno.G@t~ErrnO))));

Errno.perror(C.Strings.New_String('setsockopt'));
raise Program-Error;

end if;
--Create Adzess to bind to Socket
Temp,Address.Sin-Family :I c.short(Socket.AfJnetl;
Temp-Address.Sinpddr.S-Addr :e C.UnsignedJong(Ada,In.Inaddr,Any);
Teap-Address.Sin-Port := AdaJn.htonsKccal~Pott);
The-Address := new Socket.Sockaddr'(Togockadd.r(Temp-Address));
Put,Line(~Biading to Address'):
if Socket.EindWhe,Socket, The-Address, 161 I= -1 then
FutJine(:'Bind Successful!!');

else
put Line(*Bind Failed!!!');
~o.p~or(C.St~gs.I~esr_Stzing~'Bind'l):
raise ProgramJr.xot;

end if:
-begin list&g fez socket comections
if Sockec.Lbten(Tke,Smkat, EaxClie3t.s) I=-1 tte3
FdtJinel*Sezve- Listening!!'):

else
Put~e('r.istez Failad?1?');

Errno.perror(C.Strings.New-String('ListenW));
end if;
--Initialize Battlefield
Battlefield.Inic:
--Start Sensors
Airsensor.fnit;
GroundSensor.Init;
Satellite.Init;

select
Handle~SIGINT.SIGINT,Handler.Interrupted;
New-Line:
Put-Line('Received a ^C. Beginning Shutdown of
Ada.TextJO.Flush;
-e if received "c, then shutdown all servers

Put,Line('Shutting Down Air Sensor');
Ada.Text.-IO.Flush:
Airsensor,Finish;
Put,Line("Shutting Down Ground sensor');
Ada.TextJO.Flush;
Groundsebsor.Finish;
Put-Line('Shutting Down Satellite Sensor");
Ada.TextJO.Flush;

Servers” 1 ;

& tasks gracefully

Satellite.Finish:
Put,Line(*All sensors Shut Down. Now Killing Server Tasks");
Ada.TextJO.Flush;
Sensor,ServerJAst.Close,All(SSL);
Put,Line('Program Terminating Normally');
Ada.Text-ZO.Flush;

then abort
--put into loop and spawn new task and add to list

loop
Ada.Text,XO.Flush;
Client-Socket := Socket.Ada-Aocept(TheSocket, Nell, 0):
Ada.TextJO.Flush;
if Client-Socket /z -1 then
Ada.Text,IO.Flush;
Put,Line(*Connection Acoeptedll'l;
Put-Line('Spawning new task for socket * P C.Int'Image(Client,Socket));
Sensor-Server-List.Add

(To-List s> SSL, Item n> new Sensor,Servers.Sensor,Server(Client,Socket));
else
Ada.TextJO.Flush;
PUtJine('Connection Error on Acceptll'):
Errno.perror~C.Strihgs.New~String~'Accept'l);

end if:
end loop:

end select: --exit if *c trapped

exception
when Other6 =>
Put,Line('Shutting Down Air Sensor’):
Ada.TextJO.Flush;
Airsensor.Finish;
PutJiae(*Shutting Dmn Ground Sensor');
Ada.Text_IO.Flush:
Grounds&sor.Fi&h;
Fut&ne('Shutting bo%n Satellite Sensor');
Ada.Te%t,IO.FluSh;
Satellite.Finish:
Put,Line(-All 5enswrs Shut Dwn. NW Killing Server Tasks'):
P&.TextJO.Flush;
Sensor-Suer-~st.CIose_Ru(S~);
EatJ,he(Tro+a Te.tn&tiug Imallyml;
P&.Ti?xtJ0.Fl~~b;

til%dll;

“ ’
:’

*

. .

t:
i:

