Check for
Updates

“omaiNING Apa 95, Java Byrte CobE,

") AND THE DISTRIBUTED SYSTEMS ANNEX
Brad Balfour
Objective Interface Systems, Inc.
1892 Preston White Drive * Reston VA 20191
brad.balfour@ois.com * 703/295-6533 (voice) * 703/295-6501 (fax)

Abstract .

This paper describes a prototype clientlserver system which combines
twa technologies: the ability to compile Ada 95 code into Java Byte Code
(JBC) running on the Java Virtual Mackhine via Intermetrics
AppletMagic™ product and the Ada 95 Distribused Systems Annex. The
paper sets out the goals of the prototype effort and then illustrates the
concepts, design, and technigues used to create the system. Finally the
trade-off5, alternatives, benefits and conclusions from the prototype effort
are presented.

Overview

Recently, two new and interesting — but separate — technologies
have emerged in the Ada community. The first is the ability ro
compile Ada 95 code into Java Byte Code (JBC) running on the Java
Virtual Machine via Intermetrics AppletMagic product. This brings
Ada developers the many benefits of Internet based client/seever
applications. The second technology is the Ada 95 Distributed
Systems Annex (Annex E). This also allows the creation of dlient/
server software, but is even more flexible in allowing many different
configurations of distributed software. As of Spring 1997, these
technologies had not yet been combined nor even shown to be able
to work together.

The AJPO sponsored” the author’s previous company to produce a
software prototype which combined Ada 95, the Java Virrual
Machine (JVM), and the Distributed Systems Annex {DSA) in one
demonstration. In addition, the AJPO directed that the software
prototype be rcpre.\sentative of the type of applications which will be
a pare of the forthcoming Defense Information Infrastructure (DII)
and its Common Operating Environment (COE).

This paper will illustrate the concepts, techniques and benefits
which arise from the successful combination of Ada 95, Java Byte
Code and the Distributed Systems Annex.

The Prototype’s Goals

The use of Java Byte Code technology inspired the project to strive
for three goals:

® Demonstrate Client Neatrality: The client software must run
(without change) on Sun/Solaris, Macintosh/System 7.5.5, PC/
Windows NT 4.0, and PC/Windows 95 environments.

® Ensure that no physical distribution andfor installation of client
software is needed: The demonstration application must run on
any machine preconfigured with a web browser. There will be no

* The work described in this paper was sponsored by the Ada Joint Program
Office under the CIM/SETA contract and performed by the author while an
employee of CACI, Inc. — FEDERAL of Fairfax, VA.

Permission to make digital/hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distcibuted for profit or commercial advantage, the copyright
notice, the tile of the publication and its date appear, and nofice is given
that copying is by permission of ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee,

©1997 ACM 0-89791-981-5/97/0011 3.50

247

need to supply users with a disk containing client software and,
therefore, no user run installation of client software.

® Provide instant update of clients: If the demonstration application
is updated from v1.0 to v1.1, then all clients must automatically
run the latest version the next time they launch their web
browser.

The use of the Distributed Systems Annex inspired the project to
strive for an additional goal:

& Ensure Scalability: The server software must be able to be
configured and run on more than one Sun system.
Repartitioning the distcibuted server system must 7ot require
any modification of the Server’s Ada 95 software. Achieving this
goal will provide the ability to distribute the server over multiple
machines to achieve corresponding performance gains withont
Ada 95 source code modifications.

Specific Tools Used in Prototype Demonstration

All new software written for the prototype was written in Ada 95.
The client software was compiled using Intermetrics AppletMagic
v1.38 compiler for Macintosh. The client software makes extensive
use of the standard Java wolkits and libraries via the Ada 95 bindings
supplied with AppletMagic. The resulting JavaByteCode (or J-code)
has been run on Java Virtual Machine (JVM) clients on a Macintosh
(using four different JVM implementations), a PC running
Windows 95 and Windows NT; and on a Sun™. The server software
was compiled with ACT’s GNAT v3.09 for Sparc/Solaris 2.5.1 and
GLADE v1.01 (the GNAT implementation of the Ada 95 Distrib-
uted Systems Annex). The server software has been run on a series of
Sparcstation 4 and Sparcstation 2 machines under Solaris 2.5.1.

Specific Software Requirements

Basic Concept

The prototype client/server pair represents a hypothetical Com-
mand, Control, Communications, Computers and Intelligence
(CA4) application which could be built on top of the DII COE using
Ada 95/JBC and the DSA. For this effort, the server would simulate
a series of sensors which were monitoring the locations of enemy
troops on the battlefield. The client would collect the data reported
by all of the sensors and display it on 2 map on the user’s screen. The
server’s three (3) sensors would simulate the reporting of simplified
information on enemy troop locations and troop types with which a
commander might be presented during a battle. This data would be
broadcast in near real-time and displayed as military icons on a
simulated texture map by the client software.

Server Capabilities

The server software simulates three independent sensors al
observing a common Battlefield. The sensors are:

Ground Sensor {e.g., an Artillery Forward Observer [FO)),
4 Air Sensor (e.g-, an Unmanned Aerial Vehicle [UAV]), and
Sarellite Sensor.

Each of these sensors is located in a different place onfover the
common Battdefield. Each sensor looks at the Baudefield and returns
observations to main sensor server (which then relays them to the
client software via a socket connection). Each sensor introduces

“ Observed differences ir dient software behavior for identical .class files appear
to be due o differences in JVM implementations. The behavior of the Ada 95
dient is no different than a Java client— both run identically on different machines
within the known differences/bugs present on those JVM implementations.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F269629.269654&domain=pdf&date_stamp=1997-11-01

e et s e+ A A i A B i 4 o, At e T bl

|
l
!
;
B
|

AR AR SO R AT AR S AR PNV LR S

map window, disconnect from the server, and retur to the login
screen. The server software remains active in the background and
awaits additional client connections.

Overall Architécture

This section describes the software and hardware architecture for
both the client and server pieces. In addition, the flow of informa-
tion among the dient(s) and distributed servers is Hlustrated for 2
typical user scenario (or use case).

The client(s) and server are connected via a TCP/IP network {e.g.,
the Internet). The client machine is running some implementation

of the Java Virtual Machine (JVM) (e.g., 2 Java enabled web

browser). Once the Sensor Server has been launched, one or more
clients may connect to i. Both the HTML server (providing the web
page and the downloadable JBC client appler) and the Sensor Server
application must be hosted on the same machine’.

Figure 3 shows the ovetall architecture for both the client and
server machines and a typical use-case interaction. Details on this
architecture are provided in the next two sections. The remainder of
this section provides an architectural description of the components
base on the most typical Use Case.

*This is due 1o 2 “limitation” of the security software which is pact of the
Java Virtual Machine. A web-based applet (client) is only allowed to open up
a network connection 1o the same host machine from which the applet was
downloaded (i.c., the him) server).

) Any or all of PC/Mac/Sun running Netscape 3.x, Infernet Explorer 3.x
Client(s)

(o)

1
|
{
1
]
|
]

Applet Viewer, or unz.lgvg_B_zlgigg_d_e_ applet interpreter.

@ lounch Ada 95
Distributed Server on 3

machines. {Server
monitors Port 1050}

© Client iniliates hiip;
conneclion o him!

server for page
containing Ada,/JBC

© HIML server serves

e et et n . - e o]

b — — = I — —_————— —_— — - page

Socket
Connection
[TCP/IP)

_ Server-————————-
Distributed Ada 95
Application using
“Annex E”

____@____ Distributed Systems
: 7": Annex Connection
(PCS}

@ Client runs
Ado(}uchy(eCode

Apple}

@ User presses “login”
button and client iniliates
socket connection o
server

® Server 'main’ allocates
new Ada task lo moniter !
client socket and pass l
it dofo :

@ Server pariifons update
sensor observations o)
batfefield in \
background i

® Main Program reads
observations and sends

——— e —— — — —— ——

© Client displays new
dala

D Steps @ - © conlinue
until either the client !
chooses “Quil’ menu

item or server is shul
down. If Client Quils,

(A e e e et e e LA e G e A e el L B M e A e e e

Figure 3: Overall Client/Server Architecture

248

i
1
|
|
|
|
i
{
§
!
1
t
: them to client via socket ;
t
|
]
I
i
i
|
: go fo step @.
i
i
1

o e e o s mm e g

Upon launch, the Sensor Server main program begins to monitor
socket port 1050 for a client connection. At the same time, the
separate server partitions for the Sensors and the Battlefield begin ro
monitor the battlefield and record troop positions.

The client connects to the web server heml page that contains the
Sensor Demo applet. The huml server downloads the appler to the
client machine as part of the web page. The Ada 95/JBC client run
and then initially displays the screen that was shown in Figure 1.

When the user presses the “login” button, then the client software
to initiate a TCP/IP Socket connection to pore 1050 onto the Server.
Upon detecting a new connection from a client, the server spawns
off a new Ada task dedicated to polling each Sensor Partition for its
readings and sending sensor updates to the tasks client. In parallel,
the Sensor Server main program then awaits either a new clieat
connection or control-C from the server console. The dlient software
displays a blank map in a new window and then begins to moniror
socket port 1050 for new sensor dara to read. As the server sends
new data, the client software displays updated icons in the new map
window on the client machine. An example of this map was shown
in Figure 2.

Client Architecture
Unit_Name:Parent_Type/Class

Map:Frame

Unit_List P Unit:Rectangle

/

N

GCCS_Demo:Applet

The user may select “Quit” from the “File” menu at any time in
order to close the map window and return to the login screen. The
user quits the browser session to rerminate all client/server inter-
action. The server software continues to await additional client
connections. Once the server receives a control-C, it is interrupted

and performs an orderly shurdown of all distributed parritions.

Several elements of this architecture are dictated by the use of the
Java Virtual Machine. These include the co-location of the HTML
server and the sensor server, the use of a socket connection back to
the server machine, and the use of a new window on the client to
contain the map and the menu bar (only JVM Frames may have
menus). The automaric startup and shutdown of the server software
and all associated partitions is enabled by functionality provided by
the Glade implementation of the DSA. Most other partitioning
decisions enumerated in this section and the following two sections
were design decisions by the author.

Client Design

The client software consists of nine (9) new Ada 95 packages.
These packages make use of many pieces of the standard Java
Library. The basic architecture for the client software is shown in the

dependency diagram in Figure 4.

Push_Button:Button

Socket_Monitor:Thread

Message_Queue

-

Names

Figure 4: Client Dependency Architecture

249

i
i
!
{
i’

!
H
{
{
i
i

Inheritance Relationships

Five of the new types defined in the client program inherit from
standard Java types:

The GCCS_Demo class {the “Client main program”) inherits
from Applet (which enables it to be embedded in a web page).

The Map class inherits from Frame (which provides a separate
window and menu bar).

& The Push_Butron class inherits from Button (which providesa
call-back on 2 GUI buron).

@ The Unit class inherits from Rectangle because a unit adds
Asrmed Forces information to 2 GUI concept of a rectangle class
tha has a location and a size. This design allows easy determina-
tion of when the user has clicked within a unit or when units
overlap on the screen as this functionality is provided by the Java
APIs for Rectangle.

4 The Socket_Monitor class inherits from Thread {which provides
a separate thread that runs in parallel o the main class) and
reads data from the TCP/IP socker. AppletMagic v1.38 did #0z
implement Ada tasking semantics. If it had, these could have
been used. Instead, the design falls back on Java’s thread
semantics which are provided. This is less intuitive for the
experienced Ada programmer, but it helps the program fit more
directly with the use of JavaByteCode and the Java APIs.

The other packages do not inherit from pre-existing Java struc-

tures, but represent other design abstractions. In this small example
none of the newly defined abstractions inherit from each other.

Aggregation Relationships

The GCCS_Demo class is composed of instances of the Map and
Push_Bucron classes as well as instances of several predefined Java
AT GUI classes. The Map class is composed of instances of the

Socker_Monitor, Message_Queue and Uniz_List classes.
Message_Queue and Unit_List are aggregates of the Message and
Unix classes respectively.

Table 1 contains a brief description of each of the Ada packages.

Working with the Java APls: The Learning Curve

When writing Java applets in Ada 95 using AppletMagic, the
effort of learning Java's syntax is reduced bur not eliminated,
Unfortunately, in order to follow any of the examples in many books
or articles, one must know enough of Java's syntax and semantlcs w
read and understand them. Since Java's semantics are very similar to
Ada 95%, this is not difficult, Rather, when learning Java, the biggest
hurdle is thar of mastering the vast APIs that are part of Java, In this
sample application, the design draws heavily upon the network APIs
(java.net) and the GUI APIs (java.awr). Due to the complexity of
these APIs, there was a substantial learning curve involved. Several
sets of Java books and on-line tutorials were consulted. Ta fact,
approximately seven incremental iterations of the design and
implementation were performed in order to master the complexity of
the APIs and building this type of applet for the first time. The final
applet, though, is very much a Java applet — done in Ada 95 syntax
and semantics. It makes full use of the Java APIs and, except for the
Algol/Pascal syntax, resembles most other applets.

Warking with the Java APls: Advanioges and Disadvantages

In general, the advantages of using the Java APIs far outweighed
the single biggest disadvantage: the complex learning curve, The
advantages include: a rich set of functionality to choose from;
plentiful examples in books and magazines; and a uniform GUI look
and feel on all platforms from a single, standard, set of source code,
An additional minor disadvantage was the fact thar the implementa-

GCCS_Demo Contzins the appler and housekeeping code. It starts the applet and presents the user with a login screen. It makes use of
Push_Button to invoke the right action when the user pushes the “Login” button.

take over from there.

Push_Buton A gencric package that provides a subclass of the Java Button class and an associated action routine that is called when the
bucton is pushed. In the Sensor Demo, the action is to create 2 new map frame and display it. Map and its associated thread

display these new units.

Map Brings up a separate window (a Java Frame) along with a menu bar and menu. Map contains an instance of the
Socket_Monitor class which is responsible for gerting data from the server. Map contains an additional thread that depends on
the Message_Queue class and reads each new message from the queue. Based on the message, the thread then creates new
units and 2dds them to the Unit_List. The Paint() method then makes use of the Unit_List and Unit PaintQ methods to

then added to the Message Queue,

Socker_Monitor Responsible for getting data from the server. Is a subdlass of Thread so it operates in parallel with ather theeads in the appler.
Fach new line of data read from the socket is converted to 2 message via the Message class’s constructor, The new message Is

Message Parses the raw text string from the server into its component information.

Message_Queue A FIFQ list of Messages that have been remieved from the server. Ir is “synchronized” because it is a shared data structuee
which is access by both the Socker_Moniror and Map “threads”.

Unit A single observation from a single sensor. It has a location on the map and a unit kind.

Unit_List An asray of three Singly-Linked Lists of Units, Each list corresponds t 2 different sensor and its unit observations.

Name A pair of enumerated types listing the Sensor names and the kinds of Enemy units.

Tuble 1: Description of each Client application package

250

tions are not yet implemented in a uniform and bug free way.
Although the code does not need to change in order to produce 2
portable GU]J, the resulting application is unlikely to be 100%
identical among platforms. Many JVM GUI bugs are well docu-
mented on the internet and are of a minor nature.

The Use of Java APis and Concepls in the Client Design

In order to produce a JavaByteCode based applet which would
meet the goals listed at the beginning of this paper, it was necessary
to make use of several of the features of Java. Foremost among these
is Javas platform independent GUI toolkit: AWT (Abstract
Windowing Toolkit). AppletMagic provides a full set of Ada
interfaces to these predefined routines. It is typical, as seen in Figure
4, to design ones application by inheriting from these predefined
classes, In addition, it was a critical requirement that the Client
Applet be able to simulraneously display sensor results, accept user
inpuc and receive new results from the server. This necessitated the
use of multi-threading in the Applet. Ada 95 tasks and protected
types could have been used to implement this requirement.
Unfortunately, version 1.38 of AppletMagic did not yet provide
support for these features. Java does provide a very similar

Server Architecture

multthreading capability, and it was available through the use of
standard Java APls and AppletMagic supported pragmas. Although
the final design is not the same as if Ada rasking were used, it is very
close — proof of the similarity between Adas semantics and those of
Java.

Creating Cliént Applets in Ada 95

Overall, some things about creating a client appler are made
simpler by the use of Ada 95. As has been mentioned, the leaming
curve is simpler because of the use of Ada. However there are also
difficulties in using Ada 95 for an applet. For example, a translation
must be made when using most common references, examples or
books. Certainly this is mitigated by the excellent examples supplied
by AppletMagic, but they don’t replace a book or article. In the same
way, it is difficult to ask questions in forums such as
comp.lang.java.programmer without first translating one’s question
and example code intq, Java syntax and/or translating a response.
This is offset by the willingness of the AppletMagic development
team — especially lead developer Tucker Taft — to directly answer
questions from users. Certainly, this design effort shows that it is
feasible and practical to create thin client applers using Ada 95.

Ada_In

/ Socket EI'I}I'IO
Sensor_Server_list

Sensor_Servers @

AlrSensor |Grounm:)\§oielhte

Handle_SIGINT

=

—ee. Remote Call
Interface Partition

————> Dependency

Figure 5: Server Dependency Architecture

i
o
’.
1.
|
!
i
2
1
|
[}
!
o
i
|
ot
1
{

k
i

Server Design

The secver sofcware consists of eleven (11) Ada 95 packages. The
basic acchitecture for the server software is shown in the dependency
diagram in Figure 5.

There ate five separate distributed components in the server software:

The “Main” Program: Package Main and the Sensor_Server_List
and Sensor_Server components are the main pieces in the Dara
Server partition. This partition initiates communication with the
other partitions but is never called on by any others.

The Air Sensor: A Remote Call Interface partition. This
partition responds to requests for the Air Sensor’s observations.
It also contains 2 separate task whose thread simulates the
sensors — it updates readings from the Bartlefield Partition ona
continuous basis.

The Ground Sensor: A Remote Call Interface partition. This
partition responds to requests for the Ground Sensor’s observa-
tions. It also contains a separate task whose thread simulates the
sensors — it updates readings from the Bardefield Partition on 2
continuous basis.

& The Satellite Sensor: A Remote Call Interface partition. This
partition responds to requests for the Satellite Sensor’s observa-
tions. It also contains a separate task whose thread simulates the
sensors — it updates readings from the Battlefield Partition on 2
continuous basis.

@ The Batlefield: A Remote Call Interface partition, This partition
contains the locations of all enemy units. It responds to requests
for the list of Tocations. Currently, unics on the batilefield are siatic.

Table 2 contains a brief description of each of the Ada packages.

Communicating Between Client and Server

In this prototype system, simplicity was the primary driver in
choosing the mechanism to connect the client and server pieces.
Although both parts are written in Ada 95, the client compiles into
JavaByteCode running on any client machine with 2 JVM or Web

Main An infinite loop server program. Opens the socket connection on port 1050 and waits at the Socker.Accept() call
for clients 1o connect. Uses the Sensor_Server_List package to keep track of tasks spawned to handle socker
connections. fts code contains an Asynchronous Transfer of Control thar handles the SIGINT {AC) interrupe if
the user presses control-C to stop the server.

Browser. The server runs on one or more Sun wotkstations.
Therefore, some network communication mechanism must be
chosen. Several alternatives exist: a socket cornection, Remote
Procedure Calls (RPCs), Common Object Request Broker Architec-
wure (CORBA), and 2 heterogeneous implementation of the DSA
(see the section on Alternative Architectures for the trade-offs). OF
all of these, only a simple sacket connection had been proven ina
similar context. While simplicity is a chief advantage of a sacket
connection, it’s low level nature brings along some disadvantages,
The socket connection is a narrow interface — it can only communi-
cate a simple character or binary based data stream. It is up to the
developer(s) of the client and server to determine the messaging
protocol (semantics) the are to be used and to convere any and all
data to be sent to the low level format supported (“matshalling the
data”). For this simple prototype system, this kind of communication
worked well. However, it does not scale well to larger systems.

Creating Sarvers Using Ada 95's Disributed Systems Annex {DSA)

Tt would certainly have been possible to create the Ada 95 server as
a single Ada 95 program containing multi-threaded tasks represent-
ing each Sensor. In fact, that design Is not very different from the
actual design shown in Figure 5. However, that design does not
exacdy madel the real-world simulacion that was desired in this
protorype. The goal was to implement a system where each Sensor
was located on a different computer and all of these computers
communicated to exchange readings abou the batcleficld. Ada 95's
DSA enabled the simplicity of a single program, single language,
multi-threaded approach to be combined with the scalability and
realism of a design that ran on multiple computets.

“The actual piototype server was created as a single Ada 95 program
and then made to run as a distributed system by adding only the
appropriate categorization pragmas defined in the Ada 95 RM.If
compilation and linking proceed normally, then the result is a single
Ada 95 program. However, by making use of the post compilatlon
GLADE cool “gnatdist”(ACT’s implementation of the DSA which
works with GNAT), the program can be made to run on multiple

via the socket connection.

Sensor_Servers A package containing 2 rask type. One new task is allocated for each client socket connection. The task repeatedly
gathers the most recent observadion from the AirSensor, GroundSensor, and Satellite and passes them to the client

Sensor_Server_List A Singly Linked List of Sensor_Servers. Used to allow the Main to signal all Sensor_Server tasks to shutdown
when the server program is interrupted/terminated.

orderly shurdown,

Handle_SIGINT A protected procedurefinterrupt handler. Traps the SIGINT signal (coatrol-C) and allows Main to conduct an

Sarellite internal list of observed enemies.

AirSensor, A Remote Call Incerface package. Each provid
GroundSensor, observacions. Each also contains a task that works in the background to observe the Battlefield and update the

es an identical interface to return to the caller the most recent set of

Baclefield A Remote Call Interface package. The Battlefield contains the true list of enemy unit positions, Each sensor
receives this true data and adds its own sensor error adjustments to make a sensor observation,

Socker, Ada_lIn, Errno Bindings to the Unix Socket, Socket Address, and Error Number facilicies.

Tuble 2: Description of each Server application package

252

computers via the DSA. No further source code changes are needed.
In the design shown in Figure 5, there is one active partition (the
main partition) and four Remote Interface Parritions (one for each
sensor and one for the battlefield). This allows the resulting program
to tun on anywhere from one (1) to five (5) different computers
without recompilation or relinking. The distribution of partitions to
computing nodes is strictly a post compliation process.

Workarounds: Crealing Better Designs Accidentally

Due to 2 bug in GNAT v3.09, the protorype application would
receive an incorrect SIGPIPE Unix signal whenever a client socket
connection closed. ACT provided a wotkaound for this problem in
the form of a protected object which associated a protected
procedure as the interrupt handler for the SIGPIPE signal.

This code succinctly illustrated how to trap and react to 2 Unix
signal. As a result, a similar protected type was designed to handle
SIGINT, the signal generated when the user interrupts the running
program with a control-c (Ac) keystroke (see Listing I). This
protected type is then used by the server main program in conjunc-
tion with an Asynchronous Transfer of Control:

hegin
-~ startup/initialization code
select
Handle_SIGINT.SIGINT_Handler.Interrupted;
-- got “c, now shutdown

then abort
loop

-~ normal server processing

end loop;

end sslect;

end;

The main program starts up and then enters an infinite loop
within the ATC, While in that loop it handles client connections
and serves sensor data. Upon receiving a AC generated SIGINT
signal, the select part of the ATC is activared and causes the abort of
the normal sensor [oop. This code then shues down all partitions and
terminates the server. The result is a simple, clean mechanism to
have a server which runs in the background until interrupred.

packags Handle_SIGINT is
pragma Elaborate_BRody;
protacted SIGINT Handler is
entxry Interrupted; -- wait for SIGINT (~C)
procedure Signal; -~ handle SIGINT & set flag
pragma Interrupt_Handler (Signal);
private
Interrupt_Received : Boolean := False;
end SIGINT_ Handler;
end Handle_SIGINT;

with Ada.Interrupts.Names;
package body Handle_SIGINT is
protected bedy SIGINT Handler is
entxy Interrupted when Interrupt Received is
bagin
null; -~ release caller
end Interrupted;
procedure Signal is
begin
Interrupt_Received := True;
end Signal;
end SIGINT Handler;
begin
Ada. Interrupts.Attach_Handler
(STGINT Handler, Signal ‘Access, Ada.Intermupts.Iames.SIGINT) ;
ond Handle_ SIGINT;

Listing 1: Handling SIGINT

253

Alternative Architectures

Sockets — A Narrow Interface

The design presented in this prototype application uses standard
sockets 1o communicate between the client and server. These are
supported in a very similar fashion by the Solaris operating system
used on the Server and by the Java.Net package supplied with the
JVM.

As previously mentioned, this provides only a narrow pipeline
berween the client and server. The API consists of little more than
two operations — one to read bytes of data and one to write bytes of
data. All information in the application must be converted from Ada
datatypes to characters/bytes. All actions to be communicared from
the client to the server must be changed from procedure call oriented
actions into message oriented events and back again. This places
much of the responsibility for the infrastructure of 2 distribured
client/server application onto the programmer. ‘Two higher level
alternatives exist, however neither of these was employed in this
prototype application due to a lack of time, resoutces, and the fact
that neither alternative had yet been tried.

CORBA — A Wider Option

An approach which reflects the high level software design more
directly is that of CORBA. Via the use of IDL (Interface Definition
Language), an object-oriented AP between the dient and server can
be defined. This API consists of the operations, data arguments and
exceptions that represent each interface (or class). The IDL interface
is then mapped into the implementation language for the cliencand
server (e-g., Ada 95). Both the client and server developers work as if
they are writing code that makes usé of local packages. Undermneath,
these packages define stubs and skeletons that marshal the data,
communicate it across the network (similar ro RPCs) and unmarshal
the data on the server side. This hides all of the communications
detail under the simple APL

‘This interface is wider than that of sockets because it allows the
expression of a2 complex API as the direct communication path
between client and server. As far as the programmer is concerned, the
server is just another package in the local client program — even
though the server actually runs on a remote machine across the
nerwotk. This raises the level of abstraction between client and server
to 2 much higher level and provides many berefits over direct socket

programming,

For this prototype application, the only current drawback to the
use of CORBA would be the fact that the client is running on 2
JVM with code written in Ada 95. CORBA ORB:s exist for both
Ada 95 code applications and for the Java JVM. However, the code
targered to the JVM, which would be created from the IDL, would
likely be Java source code. Therefore, extra steps would be needed to
() compile the generated code, and (b) make use of Intermettics
auxiliary tool to create an Ada interface to the generated Java code.

RMI fo DSA — Another Wide Opfion

Justas the prototype was nearing completion, Texas A8M University
(TAMU) announced ADEPT/JxA, an upgrade to ADEPT that would
connect the Java Remote Method Invocation (RMI) and Adad’s
Distributed Systems Annex. RMI is Java 1.1s technology for creating
Java to Java distributed applications. Using this technology, one could
hypothetically have created the Applet Client using Ada 95 code which
made use of RML. This code would then be connecred to the server
code using the DSA via TAMU's JxAgent. So far as the auchor knows,
no one has yet attempted this connection.

T

R PV S

i e ot

H
i

‘

)

]

}

i
‘

:

1

i

‘

i

Tool Usage and Results

Both AppletMagic and Glade worked well in this protorype
application. Although a small number of bugs were present in both
tools, these bugs were easily worked around. Both Intermetrics and
ACT were highly responsive to questions and bug reports and their
assistance enabled the prototype effort to go smoothly. Based on the
experiences in this small prototype effort, the author would
recommend the use of either or both tools on a full scale devetop-
ment efforr.

Results/Conclusions

The Sensor Client/Server prototype has successfully demonstrated
that Ada 95 can be used to create distributed Client/Server applica-
tions in the same way as other technologies, based on both the Java
Virtual Machine and Distcibuted Applications (e.g., Remote
Procedure Calls). It has also demonstrated that it is possible to
combine the Ada 95 DSA (Annex E) type of distributed software
with Java-based Client/Server distributed software.

The construction on this prototype system proved that Ada 95
could be used to successfully create both a client and a server which
combine the best features of both the Java Virrual Machine and the
Distribured Systems Annex. It was also demonstrated that icis
possible to use these technologies to produce 2 realistic client/server
system which simulates a simplified C41 sensor display application.

The protorype has successfully shown several of the advantages of
the Java Vircual Machine for any large client/server environment:

Appendix A — Client Software Source Code listings

-

TP IR T, B SR LTS - . . : . ..
A G RN T v I Lo (R R PR P

@ Client Neutrality. The client software runs (without change) on
Sun/Solaris, Macintosh/System 7.5.5, PC/Windows NT 4.0, and
PC/Windows 95 envitonments,

& No physical distribution andfor installation of client software neces-
sary: In order to run the prototype, the user needs only to have n
machine configured with a web browser.

The goal of illustrating the automatic download of a new version
of the software was not mer during the time of the prototype,
There was not enough rime in the project to medify the sofrware
after the deployment of version 1,.0. However, the goal was par-
tially demonstrated since new client versions were constantly de-
ployed as incremental prototype versions were buile, Therefore,
the author has confidence that a subsequent system would easily
demonstrate this goal.

The prototype has also successfully shown a strong advantage of
the Ada 95 Distributed Systems Annex approach:

Scalability: The server software is able to be configured and runton
anywhere from 1 1o 5 Sun systems withous changes to the Ada sonrce
code and without recompilation of the software. (Repartitioning the
sofrware only required a simple edit of the .cfg file and rerunning
“gnatdist”.)

With regards to the Ada community, the existence of this
prototype serves as a proof-of-concept that Ada 95 software can be
used in contexts where developers might naturally think of the use of
Java. For an experienced Ada 95 developer who is nos familiar with
Java, the lower learning curve might well prove te be an advantage,
Additionally, the demonstration of the ability to combine a JBC
applet with a DSA setver drives the state of Ada based client/server
development forward another notch.

AJPO GCCS Demo

Copyright {c) 1997 CACI, Inc.

Copyright (¢} 1995 Intermetrics, Inc.

{at your option) any later versicn

]
1
% o% % % % ok % % o+ A ¥ * ¥ %k F B % % ¥ %

GNU General Public License for more details.

Ada structure derived From TextScroller Applet by Bill Pritchett whose
Ada structure was derived from LifeRect.ada by Tucker Taft and also from
BigCalc by Vince Del Vecchio of Intermetrics, Inc.

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the

§sT

with java.applet.Applet;
with Interfaces.java;
with java.lang.String;
with java.awt.Component;
with java awt.Container;

23 T CIEY Tmarmee
with JDVB awt.Image:

with Map;
package GCCS_Demo is

type GCCS_Dem

Fumn BON/S Pam

~
LYPe uLuo_~RRG,

b

_0bj is new
Ptr is a

use java.applet.Applet;
use Interfaces.java;
use java.lang.String;
use java,awt.Component;
use java.awt.Container;

wna Fown Ak Tmamas
use java,awt.Iimage;

use Map;

procedure main{Argv : String Array);
oint

-- called as entry p

procedure init(This : access GCCS_Demo_Obj):
-- called before start for one time initialization

private

type GCCS_Pemo_Obj is new Applet,Obj with record

Login_Button : Component_Ptr ; --button to connect to verify user
Name_Field ¢ Component_Ptr ; --user name

Password_Field : Component_Ptr ; --user password

Img + Image.ptr ; ==the map

The_Map_Frame : Map_Ptr ; ° ««the window to display the map
host 1 String_Ptr := +"192,190.177.181";

end recoxrd;
end GCCS_Demo;

-~ the default address to Sammy

== Body of GCCS_Demo

with java.io.PrintStream;
with java.lang.System;
with java.lang.Integer;
with java.awt.Button;
with java,awt.Label;
with java.awt,TextField:
with java.awt.GridLayout;

use java.io.PrintStream;
use java.lang,System;
uge java.lang.Integer;
use java.awt,.Button;
use java.awt.Label;

use java.awt.TextField:
use java.awt.GridLayout;

with java.awt.LayoutManager; use java.awt.LayoutManager;
with java.net.URL; use java.net.URL; ~- for codebase
with Push_Button; -~ generic push button

with Ada.Characters.Latin_l;

package body GCCS_Demo is

-= instantiate the generic button & get up its call back

type PressedButtonInfo is record
Parent : GCCS_Demo_ptr; ~-- what applet is button inside of?

end record;

procedure ConnectButtonPress(info : PressedButtonInfo);
package ConnectButton is new push_button

use ConnectButton;

(PressedButtonInfo, ConnectButtonPress);

procedure ConnectButtonPress(info: PressedButtonInfo) is
-~ make a frame or just show already made frame

begin

println(stdout, +*Button was pressedl*);
println(stdout, +'Bringing up map window");

Info.Parent,The_Map_Frame := new_Map(+"Battlefield Map",

Info.Parent.Host);

-- a side effect of creating a new map frame is to also
-- launch two threads in that frame: (1) to read the socket

Info,Pazrent,Img,

-= and {2) to read messages from the queue and modify the unit list
setResizable(Info.Parent.The_Map_Frame, False);
resize(Info.Parent.The_Map_Prame, 880, 656);

-- ghould really wait for the image to be ready before the show, but...

owiinfo.Parent.The_Map.) Prame);
println(stdout, +"Map window up.");
end ConnectButtonkress;

-~ Initialize the applet.
procedure init(This : access GCCS_Demo_0bj) is
HC_Parameter : String_Ptr;
LB_Info : BressedButtonInfo := (Parent => GCCS_Demoptr(this));
: TextField_Ptr := new _TextField(8);

H
s MaveDiald Dhw o= nan MavkDial1A/0) .

ca8aQ © UTEXLFieaG_PLY := new_ieXlsielGis;;
H
H

Component_Ptr;
: Integer renames Java.AWT.Label.Right;
begin
+ setLayout{this, new_GridLayout{rows=>3, cols=»2
hgap=>10,vgap=>3) .LayoutManager'access) ;
-~ add username and password fields to applet
A_Label := Add(container_untr{this), Component_Ptr(new_Label (+"Name®, RIGHT)}):
This,.Name_Field := Add(container_ptr(this), Component_Ptr(N_Field));
Show(This.Name_Field);
A_Label := Add{centainer_ptr(this),
Component_Ptr (new_Label (+"Password”, RIGHT)));
SetEchoCharacter (P_Field, '*');
This.Password_Field := Add(container_ptr(this), Component_Ptr{p_Field));
Show(This.Password_Field);
-~ add null label for spacing in grid
A_Llabel := Add(container_ptr(this}, Component_Ptr(new_Label(+"", RIGHT)});
~~ add bhutton to applet
This,Login_Button := ConnectButton.New_push_button
(container_ptr(this), LB_Info, +"Login"};
Show(This.Login_Button);
resize(This, preferredSize(container_ptr(this)));
== deal with the (hidden) Frame's Imaage
This.Img := getImage(This, getCodeBase(This), +"map_gifs/map6.gif");
~=maphé is 880x656
-=-grid from sever is 110x82 each cell is 8x8 (8:1 ratio)
~-- read parameter from HTML file
HC_Parameter := getParameter(This, +"HC");
if HC_Parameter /= null and then not equalsIgnoreCase(HC_Parameter, +"True®) then
-~ figure out which machine we came from and pass that along to the map
lThis.Host 1= getHost (getCodeBase (This)):
else
null; -- use the default value set in private part
end if;
end init;

=~ Main Program

procedure main(Argv : String_Array) is
This : aliased GCCS_Demo_0Obd;
begin
GCCS_Demo. init (This'access);
GCCS_Demo. start (This'access);
end main;
end GCCS_Demo;

pragma Suppress(Elaboration_Check):
with java,lang.String; use java.lang.String;
with Interfaces.java; use Interfaces.java;
with java.awt.Event; use java.awt,Event;
with java.lang; use java.lang;
with java.awt.Container; use java.awt.Container;
with java.awt,Component; use java.awt.Component;
with java.awt.Button; use java.awt.Button;
generic

type callbackInfo is private;

with proceduze handlepress(info : callbackInfo);

o

1
I\ Vet

ar o rmn eem i e Tmmwe e m s - PN

package push_button is
type push_button_Obj is new Button_Obj with record
¢b : callbackInfo;
end recoxd;
type push_button_Ptr is access all push_button_Obj'class;
function New_push_button (Parent : Container Ptr;
info + callbackInfo;
B_Name : String_ Ptr;
Obj : push_button Ptr := null)
return cohponent_ptr;
-~ function "+" (S:String) return String_Ptr renames Interfaces.Java.*+*;
function action {(Obj : access push _button_Obj;
Event : Event_Ptx;
what_Obj : Object _Ptr)
return Boolean;
end push_button;

with java.lang.System; use java.lang.System;
with java.io.PrintStream; use java.io.PrintStream;
package body push_button is
-- creates a new push button and returns it to the parent object
function New_push_button (Parent : Container_Ptr;
info : callbackInfo;
B_Name : String_ Ptr;
Obj : push_button_Ptr := null)
return component_ptr is
new_button : push_button_Ptr := new push button_obj;
begin
setLabel (Button_ptr (new_button), B _Name);
new_button.chb := info;
return add (parent, Component_Ptr(new, button));
end New_push_button;
-~ Handles a button push event for this object and sends it somewhere
function action{Obi: access push_button_Obj;
Event : Event_Ptr;
What_Obj : Object_Ptr)
return Boolean is

9¢T

begin
handlepress (0bj.cb) ;
return true; == put code here to call Orbix client?
end action;
end push_button;

-- * AJPD GCCS Demo
~~ * Wap Window Frame

with java.lang.String; use java.lang.String;
with Interfaces.java; use Interfaces.java;
with java.awt.Frame; use java.awb.Frame;

with java.awt.Component; use java.awt.Component;
with java.awt.Container; use java.awt.Container;

with java.awt.Event; use java.awt.Event; ~- needed for handleEvent
with java.net.UBL; use java.net.URL;

with java.awt.Graphics; use java.awt.Graphics; =~ needed for overriding paint
with java.awt.Irage; use java.awt.Image; ~~ needed for storing Map
with java.awt.MenuBar; use java.awt.MenuBar;

with java.lang.Runnable; use java.lany.Runmable; =~ needed to provide second
thread

with java.lang.Thread: use java.lasg.Thread; -~ nereded to provide second
thread

with I7I; use U{Y;

with Unit: use Unit;

ARG
.

L

use Unit.Dist;
use Socket Monitor;

with Unit Dist;
with Socket_Monitor;
package Map is
type Map_Obj is new Frame_Obj with private;
-- eventually add runable component for "implements runnable®
type Map.Ptr is access all Map_Obi;

function handleEvent (This : access Map_Obj; evt : Event_Ptr) return Boolean;
-- handle window close event

procedure paint(This : access Map Obj; G : Graphics_ptr);
~~ use to draw map in frame and animate icons

procedure update(This : access Map_Obj; G : Graphics_ptr);
-~ override to avoid total redraw, use clipping regions.

procedure run(This : access Map _Obj);

pragma Convention{Jdava, zrun}; =~ 50 matches Runable.Run
~- called when thread is started
~- Implements Runnable

String_Ptr;
Image_Ptr;
String_ Ptr;

function new_Map(title !
The_Map :
Host_Addr !
Obj ; Map Ptr := null)
return Map_Ptr;
pragma Convention(Java_Constructor, new_Map);
private
type Map_Obj is new Frame Obj with record
Qur_Map ; Image_Ptx;
Menu_Bar : MenuBar_Ptr;
NYI_bialog : NYX_Ptr;
Positions : Unit_List_Ptr;
sM : Socket_Monitor. Ptr;
== thread related data
Runnable : aliased Runnable_0bj; =-- means "implements Runnable’
The_Thread : Thread Ptr := null;
~- points to the thread we kicked off, If it is null, then make a new thread.
end record;
end Map;

uge java.lo.printStream; ~« needed for println
use java,lang.System; == needed for stdout
yse java,awt,Menu;

use java,awt.Menultem;

use Names;

with java.io.PrintStream;
with java.lang.System;
with java.awt.Menu;
with java.awt.MenuItem;
with Names;
with Message; use Message;
with Message_Queue; use Message_Queue;
pragma Elaborate_All (Hessage_ Queue);
package body Map is
procedure Create_Menus(The Menu_Bar : MenuBar Ptr) is
File_Menu : Menu_Ptr := new_Menu(+°File");
begin
File_Menu := Add(The_Menu_ Bar, File_Menu);
Add(File_Menu, +*Observe Semsors®);
add{File_Menu, +*Quit®);
end Create_Menus;
function new Map(title ¢ String Ptr;
The_Map : Image Ptr;
Host_Addr : String_Ptr;
obj s Map Pty := nulll)
retufn Map_Prr is
-~ coustructor operation
Dew.Map : Map Pty o= Map Pty [new Frave(title, Frame Prr(0hij})):
tegin
Lew_Map.Our _Map := The Map;
ew ¥ap. . Memy Par := new MeauZar;

FERS
et Wea i

e o

E§4

1

%y

SPEA

~al

PR

Yy

i
Vet

Tl e

T

TR

TN e

e

LST

SetMenuBar (New_Map, ew_Map.Menu_Bar);
Create_Menus (New_Map.Menu._Bax);
Rew_Map.l¥I_Dialog := new NYI(parent => Frame Ptr(New_Map),
title => +"Not Yet Implemented’, modal => True);
println{stdout, +"after nyi constructor in New_Map®};
println(stdout, +"before unit_list constructer in New_Map")}:
Rew _Map.Positions := new_Unit_List;
println{stdout, +"after unit_list constructor in New_Map®);
New_Map.SM := new_Socket Monitor(+*Map Socket Monitor®, Host_addr);
setPriority(New Map.SM, java.lang.thread.Min_Priority); -« to avoid deadlock
Socket_Monitor.Start (New _Map.SM);
println(stdout, +"after Socket Monitor start New_Map");
New_Map.The_Thread := new_Thread(New_Map.Runnable'Access, +"Map Frame thread");
setPriority(New_Map.The_Thread, java.lang.thread.Min_Priority+2);
== to avoid deadlock
start (New_Map.The_Thread);
println(stdout, +"after Map Frame Thread start in New_Map"):
return New_Map;
end new.Map;

function handleBvent (This : access Map Obj; evh : Event_Ptr) return Boolean is
~- handle window close event
Super : Frame _Obj renames Frame_Obj(This.all); -- non dispatching view of "parent®
begin
if evt.id = java.awt.Bvent.Window_Destroy then
done(This,SM);
Stop (This.The_Thread);
hide(This);
disposge (This);
return true;
elsif (evt.target.all in Menultem_Obj‘'Class} then
-- gelected some menu item
@eclare
Item : Menultem.Ptr := Menultem_Ptr(evt,Target);
Label : String_Ptr := GetLabel (Item);
begin
if Label.all = Ada_To_Java_String("Quit*).all then -- kill the frame
~=- game logic as Event.Window_Destroy
socket_monitoxr.done(This.SM)
--gtop our thread by setting This.The_Thread to null
=«the loop in run finishes so Run exits and the thread dies
stop(This.The_Thread);
hide(This);
dispose(This); =~~ close down the frame and return to the login screen
return true;
elsif Label.all = Ada_To_Java_String("Obsexrve Sensors").all then
-- toggle this & call socket_monitor.suspend{) or .resume()
-- 2?7 or should we suspend our thread that reads from the queue?
show(this.NYI_Dialog);
return True;
else -~ some other menu? this is an error
print (stdout, +"ERROR: Other menu selected. Label: ");
println(stdout, Label);
return java.awt.Frame.handleEvent {Super'access, evt);

end if;
end;
elsif evt.id = java.awt.Event.Mouse_Up then
declare
Handled : Boolean;
begin

Handled := Unit_List.MouseUp(This.Positions, evt, evt.x, aevt.y):
-~ delegate click
if Handled then repaint(This); end if; ~- click did something so update screen
return Handled;
end;
else -~ not window destroy and not menu item. Pass on to super & container
return java.awt.Frame,handleEvent (Super‘access, evt);

end if;
end handleEvent;
procedure paint(This : access Map _Obj; G : Graphics _ptr) is
Result : Boolean ; -- stores drawImage result. True if all bits avail. else false
begin
-~ temporary. replace with double buffering
Result := drawImage(G, This.Our_Map, 0, 0, This.ImageObserver'access);
print(stdout, +"Redrawing Map Image. All bits avilable: *);
println{stdout, Result);
Unit_List.Paint(This.Positions, G);
end paint;

procedure update(This : access Map Obj; G : Graphics_ptr) is
«=11 in the future avoid total redraw.
«-1} in the future use clipping regions.

begin
paint(This, G); --don't clear background first

end ypdate;

procedure run(This : access Map_Obj) is
-~ called when thread ig started
=~ Implements Runnable
A_Msg : Message_Ptr;
begin
~= new.Frame() set the thread to /= null
== Suspend() will set thread to null when we should pause
== then we'll just reallocate in Resume() which will call Run again
while This.The.Thread /= null loop
-~ get next message from the queue (may block)
~-= add message to the Unit_List.
== this will cause it to be displayed next time the frame i3 repainted
=~ yield() so that other threads get the CBU

yield; -~ so that other threads get the CPU
A_Msg := Remove; =-- synchronized call may block

-~11 if message kind is start, then clear out unit_list for that sensor
-=]! since a new set of positions is arriving

if A _Msg.Kind = Message.Start then
Clear(This_List => This.Positions, For_This_Sensor => A_Msy.Sensor);
elsif A_Msg.Kind = Message.Observation then
Add(To_List => This,Positions,
For_Sensoy => A_Msg,.Sensor,
Item => new Unit (A_Msg.Enemy, x=> A_Msg.X, y=> A_Msg.Y)):
else == A_Msg.Kind = Message.Stop
repaint(This); <«- processed a new set of observations so make sure they
=~ show up on the screen (minimal refresh)
end 1if;

yield; ~- so that other threads get the CPU
end loop;

end run;

procedure stop(This : access Map_Obj) is
begin

This.The_Thread := null; -~ will cause xun to exit its loop & stop
end stop:

A\
=-add in suspend() and resume{) to Map)
--applet calls suspend() and resume() when it gets called
~~gugpend sets the_thread = null
--resume allocates it again

end Map;

* AJPO GCCS Demo
* Socket Monitor -~ reads messages from socket and adds them to queue

E
RN

e i . i o

867

[e

use java.lang.String;
use Interfaces.java;
use java.lang.Thread;

with java.lang.String;
with Interfaces.java;
with java.lang.Thread;
with java.net.Socket; use java.net.Socket;
with java.io.InputStream; use java.io.InputStrean;
with java.io.DataInputStream; use java,lo.DataInputStream;
with java.net.URL; use java.net,URL;
with Message; use Message;
with Mé&ssage_Queue; use Message_Queue;
pragma Elaborate_All (Message_Queue);
package Socket_Monitor is
type Socket_Monitor_Obj is new Thread_Obj with private;
type Socket Monitor, Ptr is access all Socket_Monitor _Obj;:

function new_Socket_Monitor(title : String Ptr;
Host_Addr ¢ String_Ptr;
Obj : Sotket_Monitor_Ptr := null)

return Sockaet_Monitor Ptr;
pragma Convention(Java_Constructor, new_Socket Monitor);
procedure run{Obj : access Socket_Monitor_Obj):
procedure done(This : access Socket.Monitor Obj);

private
type Socket_Monitor,.Obj is new Thread_Obj with record
Sock : Socket_btr;
in_stream : DataInputStream Ptx;
Base_Host_Addy : String_Ptr;
end record; [

end Socket_Monitor;

use java.lang.System; -- for stdout

with java.lang.System;
use java.io.PrintStream;

with java.io.PrintStream;
with java.net.URL; use java.net,URL;
with java.net.Inetaddress; use java,.net,Inethdddress;
with Ada.Characters,latin_l; use Ada.Characters.Latin.l;
with Ada.Text_10; use Ada.Text_IO;
with Ada.Integer. Text I0; use Ada.Integer Text ID;
package body Socket Monitor is
function Open_Socket(This : access Socket Monitor_Obj) return DataInputStream_Ptr;

function new_ Socket_Monitor(title + String, Ptr;
Host _Addyx : String_ Ptr;
[9)-3] : Socket_Monitor Ptr := null)

return Socket_Monitor Ptr is
New_SM : Socket Monitor Pty :=
Socket _Monitor_Ptr{new Thread(title, Thread Ptr(Obj)));
begin
New_SM.Base_Host_Addr := Host_Addr;
return New_SM;
end new_Socket Monitor;

function Open_Socket (This : access Socket_Monitor_Obj) return DataInputStream Ptr is
host_inet : InetAddress_ptr;
port : integer := 1050;
begin
printin(stdout, +"before new socket call®);
host_inet := gethyMName(This.Base Host_Addr); -- translate string inet #
This.Sock := new_Socket{host_inet, port); ~- make socket
priantln(stdout, +*after new socket call.®);
print(Stdout, +'Now Connected to: *);
printin(stdout, getHostName(getInetAddress(This.Sock))):

println(stdeut, +"about to return input stveam®);
== initiate tke input strean
return new _DatalnputStrean(getInputStrean(This.Sock)):
ead Open_Scocket;
procedure done(This : access Sochket Monitor Obj) is
regin
=igtin{stdont, +*"Closing lopatStreanm®);

BT el i i < s = e A s oA A i, Al e A Rkl e M s b oA AR e i 7 LT S e i oA A = o

close(This,.in_stream);
close(This.Sock] ;
stop(This);
end done;
procedure xun{Obj : access Socket_Monitor_Obj) is
~= never terminates hy itself. the done() method is called to shut it down.
str_ptr : String Ptr := new String Obj:
A_Msg : Message_Ptr;
use type String_ Ptr;
hegin
Ob3.in_stream := Open_Socket (Obj); =-open socket and set input stream to socket
While_More_Data: lood
Str_ptr := readline(Obj.in_stream);
Yield; -~ let other threads proceed
exit when sty ptr = null;
print(stdout, +(*Socket Message: "))}; println(stdout, str_ptr);
print{stdout, +"This socket message is "); print({stdout, length(str_ptr));
println(stdout, " charactexs long");
A_Msg 1= new_Message(str_ptr);
Yield; ~-- let other threads proceed
Message_Queue.Add{Item => A _Msg);
Yield; =-- let other threads proceed
end loop While More_Data;
done (Obj);
exception
when java.io,IOException =»
println{stdout, +"Got a Java.io.IOException inside of Socket Monitor.Run");
done (0bj) ;
end run;
end Socket _Monitor;

* AJPO GCCS Demo

* Message Queue -- & Queue (FIFO style) of Messades

== * fThe queue will block on Remove calls until new messages are added
* Calls to Add never block

with java.lang: use java.lang; -~ for InterruptedException and type Object
with Message; use Méssage;
package Message _Queue is --only one message_queue. This is an ASM
pragma Elaborate_Body;
-~ This class is intended to run in a Multi-Threaded environment
procedure Add{Item : access Message Obj);
function Remove return Message_PLr;
«» will block if queue is empty
procedure Clear;
private
-~ these must be declared in the spec's private part to be
-~ primitive operations on the tagged type
type Node:
type Node Ptr is access Node;
type Node is record Msg : Message_Ptr; Next : Nede_Ptr; Prev : Node_Ptr: end record;
type Message_Queue_Obj is new Object with recoxd
Head : Node_ftr;
Last : Node_FPtr;
end record;
type Message Queue_Ptr is access all Message_Queue Obj‘class;
procedure QAdd(To : access Message.Queue_Obj; Item : access Message. Obj)s
function QRemove(From : access Message_Queue_Obj) return Message_Ptr:
~- will block if queue is erpty
procedure OClear(This : access Messaye_Queue Obj);
-- This ¢lass is intended to yun in a Multi-Threaded environment
pragma Convention{Ada Synchrenized, ¢2dd);
=~ prageza Convention({Ada_Synchronized, (Rexove);
pragma Conveation(hda_Synthronized, Qtlear);
end Message _guene;

- * RIPD GCCS CDexo

=
b
A S

e
T
)

;

e
Fie

ok T
e I
k¢ ;.u-‘:f»

T
"

i

RPN ¢

At A

-
: NIRRT

SLvra, e

65T

-- * Message -- Sensor observations from the server

with java.lang; use java.lang;
with java.lang.String; use java.lang.String;
with Names; use Names;
package Message is
type Kinds_Of Messages is (Start, Stop, Observation);
type Message Obj is tagged limited record
Kind + Kinds_Of Me=gages; =— Which kind of message did the sensor send
Sensor ¢ Names.Sensors; = Which sensor recorded this enemy
— these three are only valid if Kind = Observation
- ghould be variant record, hut these aren't yet supported

X : Integer; = X coord of enemy
¥ : Integer; = ¥ ceoord of enemy
Enemy : Names.Enemy_Kinds; ~— Which type of enemy was seen

-workaround for broken exceptions:
valid : Boolean := True; - set to true if a valid message was built
~ if false, all fields are invalid
end record;
type Massage.Ptr is access all Message_Obj:
function new_Message(Str : String_Ptr) return Message_Ptr;
Incomplete_String : exception; — raised if New Message is given an incomplete string
end Message;

= * AJPO GCCS Demo
- * Names :Sensors and Targes — common types across Client & Server

with java,lang.String; use java.lang.Stxing;
package Names is
Illegal_Value : exception ;
type Sensors is (Air, Gnd, Sat) ;
function To_String (S : Sensors) yeturn String_Ptr;
function To_Sensor {Str : String_Ptr) return Sensors;
type Enemy_Kinds is (Tank, Infantry, Artillery);
function To_String (EK : Enemy.Kinds) geturn String_Ptr;
function To_Enemy (Str : String Ptr) return Enemy_Kinds;
end Names;

~ called from map’s handleEvent()

private

end Unit_tist;

[I A |

* AJPD GCCS Demo

* Abstract Unit Icon (to be overlayed on Map frame)

* all units are 32x18 icons set in the top left of a 32x32 cell
* currently the grid is 8x8 pixels to server grid

* so all unit icons take up 4x4 cells and can overlap

with java.awt.Event;
with java.awt.Image;
with java.lang.String; use java.lang.String;
with Interfaces.java; use Interfaces,.javar
with java.awt.Graphics; use java.awt.Graphies; - needed for overriding paint
with java.awt.Rectangle; use java.awt.Rectangle;
with java.awt.Color; use java.awt.Color;
with NYI; use NYI;
with Names; use Names;
package Unit is
type Unit_Obj is new Rectangle_Obj with record
Selected : Boolean := False;
Rind ; Names.Enemy_Kinds;
end record;
type Unit Ptr ig access all Unit_obj;
function new_Unit(Kind : Names,.Enemy_Kinds; x : integer;
y : integer; Obj : Unit_Ptr := null) return Unit_Ptr;
pragma Convention(Java_Coenstructor, new_Unit);

use java.awt.Event;
use java.awt.Image:

- needed for handleEvent
~ needed for storing Map

procedure paint(This : access Unit_Obj; This_Color : Color_Ptr; G : Graphics_ptr);

- use te draw Unit in frame
function mouseUp(Obj : access Unit_Obj; evt : Event_Ptr;
X : Integer; Y i Integer) return Boolean;
- convenlence function called when mouse is released ingide a unit
~ called from map‘s handleEvent()
procedure highlight(This : access Unit_0bj);
- toggles the selection state
- causes paint to draw an outset rectangle in black 1 pixel
- called when mouseUp happens

-~ * AJPO GCCS Demo end Unit;
~ % Unit List - an SLL (LIF0 style) of Units
with java.lang; use java.lany;
with java.awt.Graphics; use java.awt.Graphics;
with java,awt.Event; use java,awt.Event;
with Unit; use Unit;
with Names; use Names;
package Unit_List is '
type Unit_List_Obj is tagged limited private;
type Unit_List_Ptr is access all Unit_List_Obj;
function new Unit List return Unit_List_Ptr;
type Iterator is private;
procedure Initialize{This_Iterator : in out Iterator;
To_This_List + access Unit_List_Obj;
For_This_Sensor : Names.Sensors}) ;
function Current{In'This_Iterator : in Iterator) return Unit_Ptr;
procedure Next(In_This_Iterator : in out Iterator);
function Is_Done{This_Iterator : in Iterator) return Boolean;
procedure Add(To List : access Unit_List_Obj;
For_Sensor : Names,Sensors;
Item + ageess Unit_Obj};
procedure Clear(This_List : access Unit_List_Obj; For_This_Sensor : Names.Sensors);
procedure paint{This : access Unit_List_Obj; G : Graphics_ptr);
~ use to draw Unit_List in frame
function mouseUp(Obj : access Unit_List_Obj; evt : Event_Ptr;
X : Integer; : Integer) return Boolean;
- convenience function called when mouse is released inside a unit_list
. g

092

Appendix B ~ Server Software Source Code Listings

with Battlefield;--Stores current battlefield data

with AirSensor;-~remote observation sengoy

with Satellite;--remote observation sensor

with GroundSensor;-~remote observation sensor

with Ada.Text _I0;use Ada.Text_10;

with Socket;=-Socket constants and functions

with Ada_In;--Internet Socket constants and functions

with Interfaces.C;

with Interfaces.C.Strings;

with Exrrno;--provides socket error mesgages

with Ada.Unchecked_Conversion;

with Ada,Characters.latin,l; ~-to obtain the NL/LF character 16#10%

with Sensor_Servers;

with Sensor_Server _List;

with Block SIGPIPE;

with Handle SIGINT; -- to allow graceful shutdown on *C

pracedure Main is use type Interfaces.C.Int; use type Battlefield.Target;
package C renames Interfaces.C;
~«Cotiverts Internet style address to 'generic’ socket address
function To_Sockaddr is new Ada.Unchecked.Conversion

{ada_In.Sockaddr_In, Socket.Sockaddr);

«=Socket will be bound to the local poxt
Local _Port : C.Ungigned_Short := 1050;
The_Socket 1 C.Int;-~Socket created locally
Client Socket : C.Int;-~Socket connection from client
-~Variables for Internet to ‘generic' address conversion

Temp,. Address : Ada_In.Sockaddr_In;
The_Address : Socket.Sockaddr_ptx;
MaxClients : C.Int :=10;-~Maximum number of Clients that will

-~be actepted for socket connection in one execution of program
One : Socket.const_char_ptr := new C,Signed_Char'(l);
SSL : Sensor_Server List.Sensor_Server_ List_.Obj;
begin
Put_Line("Main is Runningi!l®);
Put_Line("Creating Socket!!i");
The_Socket :s Socket.Socket (Socket.AF _Inet, Socket.Seck _Stream, 0);
Put_Line("Socket Number: * & C.Int‘'Image(The_Socket));
if Socket.setsockopt(s =» The_Sacket,
level => Socket.SOL_SOCKET,
optname => Socket.SO_REUSEADDR,

optval => One,
optlen =>4
} = -1 then

Put_Line("setsockopt Failed!!) with Error No: "k
C.unsigned'image(C.Unsigned!((Errno.Get_Errno))));
Errno.perror (C.Strings.New_String{"setsockopt®));
raise Program Error;
end if;
~-Create Adress to bind to Socket
Temp_Address.Sin_Family := C.Short(Socket.Af_Inet);
Temp_Address,$in_addr.S_Addr := C.Unsigned_Long(ada_In.Inaddr any};
Temp_Address.Sin_Port := Ada_In.htons(lLocal _Port);
The_Address := new Socket.Sockaddr' (To_Sockaddr (Temp_Address));
Put_Line(*Binding to Address*);
if Socket.Bind(The_Socket, The_Address, 16} /= -1 then
Put_Line(“Bind Successful!l”);
else
Put_Line(*Bind Failedlll®*);
Eryno.perror{C.Strings.llew_String (*Bind*));
raise Program _Errox;
end if;
—begin listening for socket comnections
if Socket.Listea(Tte Sccket, MaxClients) /=-1 tken
Put_Line{*Server Listeningyl!i~);
else
Put_Lice("Listen Failedity®);

. e mre e e mr e e s T

Errno.perror (C.Strings.New_String("Listen"));
end if;
-~Initialize Battlefield
Battlefield.Init;
~=Start Sensors
Airsensor, Init;
GroundSensor,Init;
Satellite.Init;

select
Handle SIGINT.SIGINT Handler.Interrupted;
New_Line;
Put_Line("Received a ~C. Beginning Shutdown of Servers*);
hda,Text_I0.Flush;
-~ if received *¢, then shutdown all servers & tasks gracefully
Put_Line("Shutting Down Air Sensor®);
Ada,Text_I0.Flush;
Airsensor,Finish;
Put_line("Shutting Down Ground Sensor®);
Ada.Text_X0.Flush;
Groundsensor.Finish;
put_Line("Shutting Down Satellite Sensor*);
Ada.Text_I0.Flugh;
satellite,.Pinish;
Put_Line(*All Sensors Shut Down. Now Killing Server Tasks");
Ada.Text_I0.Flush;
Sensor,_Server_List,.Close All(SSL};
Put_Line("Program Terminating Normally®);
Ada.Text_I0.Flush;

then abort
~~put into loop and spawn new task and add to list
loop
Ada.Text_10.Flush;
Client_Socket := Socket.Ada_Accept(The_Socket, null, 0};
Ada.Text_I0.Flush;
if Client_Socket /= =1 then
Ada.Text.I0.Flush;
Put_Line (*Connection Accepted{i*};
Put_Line("Spawning new task for socket * & €.Int'Image(Client_Socket));
Sensor_Server_List.Add
(To_List => SSL, Item => new Sensor_Servers.Sensor_Server(Client_Socket));
else
Ada,Text_IO0.Flush;
Put_Line("Connection Error on Acceptli®);
Errmo.perror (C.Strings.New_String{*Accept®));
end if;
end loop;
end seleet; ~--exit if “c trapped

exception
when Others =>

put_Line(*Shutting Down Air Sensor®):
Ada.Text_X0.Flush;
Airsensor.Finish;
Put_Line{*Shutting Down Ground Sensor®);
Ada.Text _T0.Flush;
Groundsensor.Finish;
Put_Line("Shutting bown Satellite Sensor’®);
Ada.Text_I0.Flush;
satellite.Finish;
Put_Line("All Sensors Skut Doun, Now Killing Server Tasks®):
2da.Text_Y0.Flush;
Sensor_Server List.Close_A11({SSL}:
FPut. Line{"Pregras Terninating Normally*);
2da. Text I0.Flush;

exd Maing

—T
ke BT
. wapn . U

=

3

TR
et

