Dynamic Feature-Adaptive Subdivision

H. Schiifer! J. Raab! B. Keinert!
IUniversity of Erlangen-Nuremberg

M. Meyer?
2Pixar Animation Studios

M. Stamminger! M. NieBner3
3Stanford University

Figure 1: Rendering of the Frog model (left), using feature-adaptive subdivision [Niefiner et al. 2012a] takes 0.68ms (middle); our method
only takes 0.36ms by performing locally adaptive subdivision (right); colors denote different subdivision levels.

Abstract

Feature-adaptive subdivision (FAS) is one of the state-of-the art
real-time rendering methods for subdivision surfaces on modern
GPUs. It enables efficient and accurate rendering of subdivision
surfaces in many interactive applications, such as video games or
authoring tools. In this paper, we present dynamic feature-adaptive
subdivision (DFAS), which improves upon FAS by enabling an
independent subdivision depth for every irregularity. Our subdi-
vision kernels fill a dynamic patch buffer on-the-fly with the ap-
propriate number of patches corresponding to the chosen level-
of-detail scheme. By reducing the number of generated and pro-
cessed patches, DFAS significantly improves upon the performance
of static FAS.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object
representations

Keywords: subdivision surfaces, rendering

1 Introduction

Subdivision surfaces [Catmull and Clark 1978; Doo and Sabin
1978; Loop 1987] have been the standard for representing three-
dimensional content in the movie industry for many years. While
subdivision surfaces provide significant advantages in surface qual-
ity, modeling, and animation, their evaluation is computationally
expensive. This typically restricts their use to offline rendering
methods such as those used in feature films, e.g., [Pixar Anima-
tion Studios 2005]. However, the rapid rise of massively parallel
graphics hardware in recent years has opened up new possibilities
for accurate rendering of subdivision surfaces in interactive scenar-
ios. Feature-adaptive subdivision (FAS) [Niefner et al. 2012a] is

a method for efficiently rendering subdivision surfaces with high
quality features such as creases and irregular vertices (i.e., valence
4) without approximation. This makes it ideal for content cre-
ation tools (e.g., Maya) and even video games (e.g., Call of Duty
Ghosts). As a result, feature-adaptive subdivision has emerged as
a state-of-the-art real-time rendering method for subdivision sur-
faces on modern GPUs, and is the basis for Pixar’s industry stan-
dard OpenSubdiv' platform.

Feature-adaptive subdivision adaptively subdivides around irregu-
larities only where needed to produce regular patches, and lever-
ages hardware tessellation to process these regular patches. The
key to maintaining high performance is to generate as few patches
as possible while still accurately representing the surface. Although
the adaptivity greatly reduces the number of patches needed, the
amount of patches generated around irregularities is still a perfor-
mance bottleneck. The most significant problem is that feature-
adaptive subdivision restricts each model to a single adaptive sub-
division level around all irregular vertices. That is, every irregular
patch of a model is adaptively subdivided to the same subdivision
depth. This can cause tremendous overhead when distant regions
are forced to subdivide to the same depth as nearby regions — re-
sulting in an unnecessarily large amount of patches as well as over-
tessellation.

Contributions In this paper, we present dynamic feature-
adaptive subdivision (DFAS), enabling an independent subdivision
level for each irregular vertex, thus greatly reducing the number
of patches required. Our method uses GPU compute kernels to
dynamically identify and subdivide the patches around an irregu-
lar vertex if necessary. In addition, unified patch buffers naturally
allow us to minimize overhead by processing patches on all sub-
division levels together, thereby reducing the amount of separate
render calls. Overall, our easy-to-implement method significantly
improves upon the performance of the feature-adaptive subdivision
rendering method, as shown in timings of our test scenes.

In the remainder of this paper, we refer to the original method
[NieBner et al. 2012a] by feature-adaptive subdivision (FAS), and to
our new method by dynamic feature-adaptive subdivision (DFAS).

http://graphics.pixar.com/opensubdiv/

http://graphics.pixar.com/opensubdiv/

2 Previous Work

Subdivision Surfaces Subdivision surfaces were originally in-
troduced by Catmull and Clark [1978] as a generalization of bi-
cubic B-Splines. The core idea is that repeated refinement of a
control mesh with arbitrary connectivity according to a set of sub-
division rules will result in a smooth surface. Subsequently, many
subdivision schemes have appeared, with each scheme providing
different surface properties regarding continuity and primitive setup
[Loop 1987; Doo and Sabin 1978]. While we present our method
on the basis of Catmull-Clark subdivision surfaces, our ideas extend
easily to other schemes.

Global Refinement using GPGPU With the rapid development
of massively parallel graphics hardware in the last decade, the eval-
uation and rendering of curved surfaces has become feasible for
real-time applications. While early approaches use the graphics
pipeline to evaluate parametric surfaces [Vlachos et al. 2001; Shiue
et al. 2005; Bunnell 2005], the introduction of general purpose pro-
gramming [Nvidia 2007] (GPGPU) opened up new possibilities. As
the parallel architecture of GPUs directly maps to the subdivision
rules, attention turned to the problem of crack-free view-dependent
adaptive surface rendering [Eisenacher et al. 2009; Schwarz and
Stamminger 2009; Patney et al. 2009; Fisher et al. 2009]. These
methods use a two-pass approach per frame: 1) a GPGPU kernel
writes out refined vertex data to global GPU memory 2) the graph-
ics pipeline loads the data back into local streaming multiprocessor
memory where it is processed for rasterization. As the GPGPU
refinement is densely refining the control mesh, this results in sig-
nificant memory I/O between geometry generation and primitive
processing, severely limiting the performance of modern GPUs.

Patch Evaluation using Hardware Tessellation Hardware tes-
sellation [Moreton 2001; Andrews and Baker 2006; Microsoft
Corporation 2009] eliminates the two-pass problem of traditional
GPGPU methods by evaluating and rasterizing the surface geome-
try directly on-chip, thus minimizing global memory I/O. That is,
meshes are interpreted as a set of parametric patches, with each
patch defined by a fixed number of control points [Schifer et al.
2014]. The key requirement is to have a closed-form solution in
order to evaluate each patch at an arbitrary wv domain location.
While bi-cubic Bézier and B-Spline patches fit into this paradigm,
the direct evaluation of subdivision surfaces around extraordinary
patches is unfortunately quite challenging. Direct evaluation meth-
ods exist [Stam 1998; Bolz and Schroder 2002], but are relatively
costly in practice.

Patching Subdivision Surfaces For efficient patch evaluation,
many methods approximate subdivision surfaces [Loop and Schae-
fer 2008; Myles et al. 2008b; Ni et al. 2008; Myles et al. 2008a;
Ni et al. 2009; Loop et al. 2009]. While these approaches are ide-
ally suited to real-time processing using hardware tessellation, the
generated surfaces differ from the original surface definition. In
many applications, such as authoring tools for feature films, this is
not acceptable. In addition, the surface properties of these approx-
imations are problematic for some scenarios, e.g., in the context of
displacement mapping [Nieiner and Loop 2013].

Feature-adaptive subdivision [NiefBner et al. 2012a] avoids approx-
imation and efficiently handles features such as semi-sharp creases
[DeRose et al. 1998; NieBner et al. 2012b]. It achieves the same
performance as approximate schemes while producing accurate re-
sults. The key idea is to apply subdivision only in regions where
direct evaluation is costly or infeasible, and process all regular
patches using the hardware tessellator. Unfortunately, the number

Stage Buffers

. base mesh vertices
animate base mesh

animate

1 2 n
control points

apply subdivision rules face points
per level to face, edge

and vertex points edge points

subdivision

vertex points

control points

index buffers

o 14 | irreg [
(70 | 71 |§ T4 | irreg [
: P : ;o il
[14 | irreg I
. dynamic . static
Figure 2: Overview of the original feature-adaptive subdivision

algorithm, processing stages are shown on the left and data struc-
tures on the right.

per level

regular
transition types
irreg. quads

—» output

<— input

of adaptive subdivision levels is static for each mesh, which signif-
icantly limits the quality of level-of-detail. Note that FAS relies on
the execution of GPGPU kernels; however, in contrast to global re-
finement methods, the amount of transfered memory to the graphics
pipeline is minimal due to the adaptive nature of the method.

3 Feature-Adaptive Subdivision

As our algorithm builds and extends upon the feature-adaptive sub-
division method [NieBner et al. 2012a], we provide an overview of
the original method. We refer to [NieBner 2013] for additional im-
plementation details. Feature-adaptive subdivision consists of the
following steps (see Fig. 2):

Preprocess This step analyzes the connectivity and features of
the mesh, and determines where to adaptively subdivide in order
to produce patches ready for tessellation. This analysis gives the
patches which need to be tessellated as well as the computation of
the control points defining these patches. Patch data is stored in
index buffers describing the type of the patch as well as the indices
of all control points needed to define the patch. Subdivision tables
store all of the data necessary to compute one subdivided point via a
subdivision rule (indices of all points used by the subdivision rule,
valence, sharpnesses, etc.). These tables are separated into three
types according to the rule they describe: face, edge, or vertex.

In order to deal with the T-junctions produced by adaptive subdi-
vision, FAS produces transition patches which connect patches at
differing levels of subdivision. These transition patches are sim-
ply regular patches whose parametric domain is triangulated so that
the tessellation stage can produce watertight meshes in areas of dif-
fering subdivision levels. Due to symmetries, this results in five
different template transition patches (see Fig. 3).

Adaptive Subdivision This stage iteratively runs subdivision
kernels at runtime — for each level — to adaptively subdivide a mesh
in order to generate the patch control points. At each level, the con-
trol points and the subdivision tables are used to compute the con-
trol points of the next finer level, following the subdivision rules
encoded in the table entries. This step fills in a pre-allocated con-
trol point buffer that was created in the preprocess for a maximum
subdivision level. The subdivision level can be adjusted at runtime;
however, there is a single subdivision level for each mesh.

transition patch types

Figure 3: Transition patch types of feature-adaptive subdivision.
These patches are used to bridge transitions between different
subdivision levels where T-junctions would cause cracks other-
wise. Transition patches are colored yellow, regular patches of
the coarser subdivision level gray, and those of the next finer level
green.

Patch Tessellation This stage uses the patch control points com-
puted in the previous stage along with the index buffers created in
the preprocess to produce the tessellated patches. For each level
of subdivision, each patch type (regular, transition types, and ir-
regular) describes all of its patches (control point buffer, control
point indices, tessellation factor) to the GPU tessellation unit. The
patches are then densely subdivided by the tessellator, and gener-
ated triangles are directly sent to the rasterization units.

One of the key benefits using GPU hardware tessellation is the abil-
ity to assign a dynamic tess factor to each patch. Feature-adaptive
subdivision supports the assignment of tess factors ¢ on the base
patch level to control the local tessellation rate. For adaptively sub-
divided patches, a tess factor £ is automatically computed according
to the patch level d: = max(1, t/2%). As irregular patches can-
not be further tessellated, their tess factor must be exactly 1. To this
end, the adaptive subdivision depth of a mesh is set according to
the maximum base patch tess factor: depth = max;[logt;]. Un-
fortunately, a fixed subdivision level among all irregular patches of
a mesh introduces significant over-tessellation in regions where the
base patch tess factors are small. In our method, we remove this
restriction, allowing a dynamic and independent subdivision depth
for each irregular patch.

4 Dynamic FAS: Algorithm Overview

Our algorithm follows the table-driven approach of [NieBner et al.
2012a], which statically pre-computes subdivision tables up to a
predefined maximum subdivision level (see Sect. 5). In contrast
to static table-driven subdivision, the novelty of our algorithm is
to dynamically adapt the subdivision depth around each irregular
vertex independently, thus reducing the amount of computation and
the number of processed patches at runtime. An overview of our
method is shown in Fig. 6.

In every frame, the first step of our approach is a metric kernel run-
ning on the GPU, which computes the tessellation density for each
base patch (regular and irregular), following a user-defined level-
of-detail scheme (see Sect. 6.1). For regular patches of the base
mesh, this directly defines the tess factor ¢ used by the hardware
tessellator for rendering. In the case of an irregular patch, the sub-
division depth d around a vertex v is set accordingly: d,, = [logt].

point types

O base
O face
O edge
O vertex

Figure 4: Simplified characteristic map for an irregular vertex with
avalence of three. White points show the isolated base mesh for this
characteristic map. Colored points refer to face points (red), edge
points (green), and vertex points (blue), according to the Catmull
Clark subdivision rules.

Since a patch may share multiple irregular vertices, it is possible
that the subdivision levels for two vertices of a patch disagree. To
avoid this situation, we isolate irregular vertices by a single static
feature-adaptive subdivision step if necessary.

The next step is the actual dynamic adaptive subdivision using a
set of GPU compute kernels (see Sect. 6.2). While we have pre-
computed subdivision tables for all potential levels, we only need
to access those corresponding to the levels d,, with v € rregular.
The output buffer has space allocated for control points until the
maximum subdivision depth; however, data is only generated for a
subset of control points depending on the local dynamic subdivision
depth defined by the metric kernel. In addition, we fill a dynamic
patch buffer, which describes locations of the generated sub-patches
in a precomputed index buffer.

Finally, we send all regular patches — from the base mesh and those
generated by the subdivision kernels — to the hardware tessellator
for rendering. T-junctions between different subdivision levels are
stitched using the concept of transition patches as introduced by
[NieBner et al. 2012a]. In contrast to FAS, we render all patches
of the same type (including different levels) in a single render pass,
thus minimizing the number of draw calls.

5 Data Structure Generation

As in the original FAS algorithm, we pre-compute data structures
describing the adaptive subdivision of an input mesh up to a max-
imum subdivision level. However, to support dynamic adaptation
at each irregularity, we must augment our data structures. In the
following, we describe these augmentations: Sect. 5.1 describes
extended subdivision tables which are required to execute the sub-
division; patch tables, identifying patch indices, are introduced in
Sect. 5.2.

5.1 Extended Subdivision Tables

Similar to FAS, we encode the Catmull-Clark [1978] subdivision
rules for face, edge, and vertex points in pre-computed subdivision
tables. To this end, we store the linear combination for each control

§ 0

= 1

g 2

a ..

3 15

isolated base mesh
characteristic map

20 120 0 4 5 0 4 15
21 121 4 4 2 6 0 5
22 122 8 4 6 13 3 0

£ 2 123 (|5 12| 8 4|7 13 6 1

g 24 124 [|€ 6|2 4|12 9 1 6

w25 125 20| = 4 9 14 8 1
26 126 24 4 2 10 14 9
27 127 28 4 2 5 15 11
28 128 32 4 12 5 2 9
30 130 0 20 5 21
31 131 12 21 5 28
32 132 0 21 6 22

2 33 133 12 24 6 21

f=

'g_ 34 <:] 134 12 28 9 24

w35 135 9 25 1 24
36 136 6 24 1 23
37 137 5 27 2 28
38 138 2 26 9 28

u 40 140 . O0|lw 3 6 21 5 28 9 24

< @ g

o) 2 [}

g 5 |

(a) (b) (0 (d)

Figure 5: Extended subdivision tables for the configuration shown
in Fig. 4: (a) IDs of the vertices, (b) offsets to the vertex buffer
for writing the updated positions, (c) topology information, and (d)
indices of vertices needed as input for the subdivision.

point type with respect to the corresponding parent patch control
points. As our subdivision is locally dynamic, we structure the sub-
division tables according to the characteristic maps of extraordinary
vertices, see Fig. 4 for an example characteristic map. Thus, the 1-
ring table entries of all levels of a non-valence four vertex are clus-
tered together. Note that tables are pre-computed up the maximum
possible subdivision depth; however, only the entries corresponding
to the local subdivision depth are used (see Sect. 6.1).

In contrast to the original FAS method, only a subset of the points
in the global control point buffer is updated at runtime by the subdi-
vision kernels. Hence, there is no implicit mapping from the kernel
threadID to the output location (see Sect. 6.2). To this end, each
subdivision table row stores the target address to the global control
point buffer; i.e., the ID of the control point the row generates (see
Fig. 5(b)).

5.2 Patch Tables

Once we have computed the subdivision depth for each extraor-
dinary vertex (see Sect. 6.1), we also need to identify associated
patches. To this end, we pre-compute patch tables which map a
given vertex v with a subdivision depth d,, to a set of patches. For
each level of an extraordinary vertex, the patch table refers to four
patches (see Fig. 8 and Sect. 6.1). For instance, if d, = 0, we need
to render one regular, one irregular, and two transition patches. We
also pre-compute a static global index buffer for all possible patch
types and final patches for all levels. A final patch is a regular patch
on the finest subdivision level which would have been a transition

Stage Buffers

‘ VertexData (neighborhood, patch table)

level 0 1 2 n
control points |
T

| rd s - inflex buffer offsgts |
r—b.:.:l facelpoints | |
T Hedeeboints | |
[T | verte’lpoints I |

base mesh vertices

animate

compute subd depth
add to subdivision lists
add to render lists

metric

apply subdivision rules
per level to face, edge
and vertex points

subdivision

(L[[Teontrolpoints’ [T [T]

regular
transition types
irreg. quads

render

index buffer — all types and levels

. static

Figure 6: Overview of our dynamic feature-adaptive subdivision:
the metric kernel is run per vertex; it determines the local subdivi-
sion depth and marks control points needed for subdivision in the
point lists. For rendering the patches of each level, offsets to a static
pre-computed index buffer are appended to a render list. Then, the
sparse set of required control vertices is updated in the subdivision
kernels. Finally, the patches are rendered using the updated control
points and index buffer offsets from the metric kernel.

—» output

<« input [dynamic

patch otherwise; see Fig. 7 for the memory layout. The patch table
entries are all base offsets to this index buffer. For patch render-
ing (see Sect. 6.3), these indices specify the corresponding control
points in the global vertex buffer.

6 Dynamic Subdivision

Our algorithm allows each irregular vertex to choose an indepen-
dent subdivision level at runtime. First, we estimate the subdivision
depth for irregular patches. Then, the subdivision rules are applied
to dynamically refine these patches, and generate the corresponding
control points. Finally, we need to render all regular patches of the
base mesh as well as the newly generated patches. An overview of
our pipeline is depicted in Figure 6. In the following, we describe
the technical details of three main stages of our algorithm.

6.1 Metric Stage

For every frame, we need to perform adaptive subdivision on
patches with extraordinary vertices before these patches can be pro-
cessed by the hardware tessellator. The amount of adaptive subdi-
vision around a specific irregular vertex is dependent on the local
patch tessellation density. To this end, we determine a tessellation
density t for each patch at the beginning of every frame. We have
chosen to project the control points of the base mesh into screen
space and measure edge lengths in pixels — though our algorithm
is independent of the specific level-of-detail metric. For all regular
base patches, we can simply assign these pixel measures as edge
tess factors t.. The inner tess factors of patches are computed ac-
cording to the maximum length of adjacent edges. In the case of
irregular patches, we need to perform adaptive subdivision before
patches can be processed by the hardware tessellator. We deter-
mine the local subdivision depth d, around a vertex v based on the
surrounding edges e;: d, = argmax, [logt(e;)].

BEEN patches
OO0 pos. final patches

/7
A

patch 0 patch 1

Ivl 1

EERCEEECERECO D00 EEEOEE -

Figure 7: Memory layout of the patch table buffer with three sub-
division levels. We store all subdivision tables and render patches
around an extraordinary vertex sorted by level and order within
each patch. This includes a final patch at each level for rendering
when no further subdivision is necessary.

Both patch tessellation densities and local subdivision depths are
computed by a GPU compute program, which we call the metric
kernel. The inputs to this kernel are the control points — i.e., the
(animated) base mesh vertices — and the extended subdivision tables
encoding the subdivision rules around extraordinary vertices. As
a result, we obtain patch tess factors, a subdivision control point
list, and a patch list for rendering. These lists are synchronized
using an atomic counter, which we found to be faster than a prefix
sum compaction. Pseudocode of the metric kernel for extraordinary
vertices is shown in Listing 1.

Note that our tess factor computation is not necessarily optimal in
terms of the pixel size of generated triangles. However, our method
is completely orthogonal to the used level-of-detail scheme, as we
abstract the tessellation density computation away from mesh irreg-
ularities. From an API and user perspective, this enables the use of
arbitrary tessellation metrics, such as those proposed by [Yeo et al.
2012] or [NieBner and Loop 2013], which can be efficiently com-
puted on a per base patch level.

Subdivision Lists In addition to identifying the tessellation den-
sities, the metric kernel identifies control points that need to be up-
dated by adaptive subdivision. To this end, the metric kernel ap-
pends selected subdivision table entries to linked lists, which we
call subdivision lists. Each entry corresponds to the characteris-
tic map of a vertex tagged for subdivision. The lists are structured
by the subdivision point type; i.e., face-, edge-, vertex points (see
Fig. 5). We obtain a linked list of subdivision table entries for every
point type per subdivision level. The list entries are simple copies
of the subdivision tables, but dynamically appended according to
the d,,’s. For every list, we maintain an atomic counter to manage
its size. The counters are also used to launch the subdivision kernels
with the correct number of threads (see Sect. 6.2).

Patch Render Lists The metric kernel also generates the patch
render lists, where each entry corresponds to a patch to be ren-
dered. Overall, we have three different render lists: one for regular,
one for transition, and one for irregular patches. Every list entry
corresponds to a specific base or sub-patch storing its level [, the
level-corrected patch tess factor ¢, and an offset referring to the con-
trol point index buffer. The control point index buffer is static and
keeps indices for patch rendering; i.e., every possible patch knows
its indices and thus the control point locations (see Sect. 6.3). As
shown in Fig. 8, for every level [€ [0;d, — 1], one regular patch
and two transition patches are generated, respectively. At the fi-
nal level | = d,, one patch-filling quad and three regular patches
are generated. Transition and regular patches are processed by the
tessellator whereas patch-filling quads are rendered by standard tri-

(a) (b) ()

Figure 8: Patches around an extraordinary vertex (red dot) are
sorted into render lists by the metric kernel: regular patches
(grey), transition patches (green), and patch-filling quads (red).
(a) one regular and two transition patches are emitted for levels
l € [0;dy — 1] and the irregular patch is further subdivided (top
right), (b) on the final level | = d,, three regular patches and one
patch-filling quad is generated. (c) the patch layout at an example
subdivision depth d,, = 3.

angle rasterization; cf. [Niefner et al. 2012a].

// one thread per vertex

metric_kernel (uint Tid /*thread ID=x/) {
//neighborhood around the vertex
VertexData& v = getVertexData (Tid) ;

//determine tessellation density and subd depth
computeSubdDepth (v); //t_e_i and d_v

if (v.valence == 4) { //regular patch
//add to renderlist; no subd required
append_regular_points (v) ;
} else {
for (uint patch=0; patch < v.valence; patch++) {
for (uint level=0; level < v.d_v; level++) {
// add points to subdivision lists
append_face_points (v, patch, level) ;
append_edge_points (v, patch, level) ;
append_vert_points (v, patch, level) ;

// add patches to renderlists

if (level < v.d_v-1) { //all but the last
// 2 transition patches
append_transit_patches (v, patch, level) ;
// 1 regular patch
append_regular_patches (v, patch, level) ;
else { //final dynamic level

// 3 regular patches on last level
append_regular_patches (v, patch, level) ;
// 1 final patch-filling quad
append_irregular_patch (v, patch, level) ;

Listing 1: Pseudocode of the metric kernel.

6.2 Subdivision Stage

Once the metric kernel has identified all patches that need to be
subdivided — i.e., generated the subdivision lists — we compute the
corresponding control points. Following the Catmull-Clark [1978]
subdivision rules, we run three different GPU compute kernels pro-
cessing face, edge, and vertex points (see Fig. 4). While we ap-
ply table-driven subdivision as proposed by Niefner et al. [2012a],
we only subdivide according to the local subdivision depth. We it-
eratively process the subdivision levels, running the three kernels
at each level, where each thread generates a single output control
point. Overall, we run (3 - #levels) kernels, with each kernel pro-
cessing one of the subdivision lists. The control point buffer is
shared by all kernels and has space allocated for all potential levels;
however, we only update a subset of the points up to a dynamically-

computed subdivision depth. In order to keep host-device interac-
tion at a minimum, we use indirect dispatches to run the kernels.

At every subdivision level, we launch threads based on the sizes of
the subdivision lists generated by the metric kernel (see Sect. 6.1).
List entries, which contain a copy of the corresponding subdivision
table rows, are then indexed by the kernel threadIDs. Each thread
then computes its associated control point by obtaining the linear
combination of the parent control points and applying the respective
subdivision rule. The result is written back to the global control
point buffer at the location corresponding to the output index stored
in the subdivision table.

Since the subdivision tables are structured by the characteristic map
of irregular vertices, it is required that there is at most one irregular-
ity within the 1-ring of a vertex; i.e., there must be no overlap in the
tables. Therefore, we perform a static feature-adaptive subdivision
step to isolate the irregular vertices if required by the connectiv-
ity of the mesh. This also removes the issue of irregular patches
potentially containing multiple irregular vertices which disagree in
their subdivision depth d,,. If this subdivision on the first level is
required, we employ a special subdivision table and follow the orig-
inal static table-driven subdivision scheme [NieBner et al. 2012a].
Note that for meshes which already have isolated extraordinaries
and for all levels above one, subdivision is always locally dynamic.

6.3 Patch Rendering

The metric stage defines the locally adaptive subdivision depth
around extraordinary vertices and the subdivision kernels compute
the corresponding control point data. The final step is the render-
ing of regular and adaptively subdivided patches. We process the
dynamically generated patch render lists (see Sect. 6.1) and issue
indirect draw calls for each list. As patches of all levels of the same
type — regular, transition, or irregular — are contained in a single
list, we only need a few draw calls. The tessellation factor ¢ for
any edge is determined on a per frame basis with the same screen
space metric that we use in metric kernel (see Sect. 6.1). This dif-
fers from the original feature-adaptive subdivision [NieBner et al.
2012b], where draw calls are issued for each level independently.
In particular, for scenes with many small models, fewer draw calls
increase performance, as the GPU occupancy is higher.

In addition, draw calls are not directly dispatched with a vertex and
index buffer. Instead, in a shader program, we access the patch
render lists using the pipeline-generated primitivelD values. The
patch render lists store base offsets to a static index buffer which
contains corresponding indices into the global control point buffer.
Compared to traditional indexed draw calls, this introduces another
indirection; however, we found this to be much more efficient than
the dynamic generation of an index buffer.

Regular Patches Regular patches are the simplest case; the ren-
der list of regular patches comprises regular patches of the base
mesh as well as regular patches of higher levels (see Fig. 4). They
can be directly processed by the hardware tessellator, as they are bi-
cubic B-Splines defined by 16 control points each. The render lists
store the base offset to the static index buffer and patch-corrected
tess factors for further tessellation. The static index buffer is pre-
computed once at model loading time and stores 16 indices for each
regular patch. As mentioned above, the indices reference the actual
control points which are stored in the global control point buffer.
Once control points are obtained and the tess factors are set (hull
shader), regular patches are directly evaluated using the B-Spline
basis functions (domain shader). Note that the computation of the
subdivision depth d,, guarantees that the tess factor of patches at the
finest level is always equal to 1.

Transition Patches Transition patches are analytically defined
as regular patches; i.e., they are bi-cubic B-Splines with 16 control
points each. However, the parameter domain of transition patches is
split into several sub-patches in order to bridge the T-junctions be-
tween adjacent subdivision levels for crack-free rendering. On the
first subdivision level, there are five possible domain splits of tran-
sition patches depending on the mesh connectivity. In the case of
isolated extraordinary vertices as well as after the first subdivision
level, there is only a single domain split; for details see [NiefSner
et al. 2012a]. We require a render pass for every domain split; how-
ever, we process all subdivision levels together. Aside from the
domain split, the patch evaluation and rendering with the hardware
tessellator is the same as with regular patches.

Patch-filling Quads Even at the finest level, any patches adjacent
to an irregular vertex are still irregular. The key idea of feature-
adaptive subdivision is reduce the size of these surface pieces such
that no further tessellation is required; i.e., a tess factor of 1.0.
While the direct evaluation of irregular patches at arbitrary pa-
rameter locations is challenging, it is relatively straightforward to
compute the limit positions of the control points themselves. This
allows us to render irregular patches on the finest level simply as
quads. We apply the limit stencil masks of Halstead et al. [1993] to
the vertices in a shader program employing the neighborhood infor-
mation of the subdivision tables. We refer to the original feature-
adaptive subdivision method since the rendering of patch-filling
quads is unchanged, despite that the finest levels are now locally
different within a mesh.

7 Results

We have implemented our dynamic feature-adaptive subdivision
method in DirectX running on an Nvidia GTX 980 under Windows
8. The metric and subdivision kernels are realized in Direct Com-
pute and rendered using the Direct3D 11 graphics pipeline with
hardware tessellation. All measurements are provided in millisec-
onds rendering at a 720p resolution.

Example Scenes We run our dynamic subdivision method on the
models visualized in Fig. 9 and the terrain surface shown in Fig. 10.
The models and terrain are characterized by different numbers of
base mesh patches, the ratio between regular and irregular patch
configurations and the distribution of irregular vertices. The terrain
scene consists of 17136 input patches of which 2248 are adjacent
to irregular vertices. The data for the other test models is shown in

Figure 9: Visualization of a set of test models used in the per-
formance comparison between static and dynamic feature adaptive
subdivision shown in Table 1.

Model Killeroo Frog Bigguy Car
base patches 3762 1292 1450 1992
irregular patches 1330 764 592 948
irregular vertices 425 292 196 538
method FAS DFAS FAS DFAS FAS DFAS FAS DFAS
draw 0.764 0.416 0.508 0261 0443 0290 0.671 0.332
subdivision 0.189 0.154 0.160 0.105 0.142 0.099 0.181 0.102
total 0953 0570 0.668 0.366 0585 0389 0.852 0.434

Table 1: Performance comparison between static (FAS) and dynamic (DFAS) feature-adaptive subdivision in terms of subdivision and
total processing time including rendering on the set of test models shown in Fig. 9. The subdivision time of our dynamic feature-adaptive

subdivision algorithm includes the time for executing the metric kernel.

Table 1. We also refer to the accompanying video.

Performance Measurements In Fig. 11, we compare our dy-
namic algorithm to the static method in terms of subdivision and
total rendering performance on the terrain scene shown in Fig. 10.
The graph shows a performance plot corresponding to a camera
flight through the valleys of the terrain (see the accompanying
video). We configured the subdivision and tessellation metric such
that the generated triangles each roughly cover an area of 4x4 pix-
els. In contrast to original FAS, we are able to produce a uni-
form tessellation density over the entire mesh, whereas FAS over-
tessellates around irregularities since it cannot adapt the subdivi-
sion depth locally. Finally, we provide a quantitative evaluation for

Figure 10: Rendering of a terrain scene consisting of 17k input
patches showing the base mesh connectivity visualization of the
subdivision surface.

5

-

PROCESSING TIME IN MILLISECONDS
o r
(]

o
%

o
IS

o
)

gt A\, . N

0
#FRAME

==static total ==dynamic total static subdivision ==dynamic subdivision

Figure 11: Performance comparison between static and dynamic
feature-adaptive subdivision measuring the processing time during
a camera flight through the terrain scene shown in Fig 10.

our test models in Table 1. Note that the subdivision timings of
our dynamic algorithm includes the execution of the metric kernel.
Despite the additional kernel for managing local adaptivity, we are
able to significantly improve both subdivision and rendering perfor-
mance.

8 Conclusion

In this paper, we have presented a dynamic feature-adaptive sub-
division surface rendering algorithm, which significantly improves
performance over state of the art. With our algorithm, we are able
to dynamically decide the subdivision depth for each irregular ver-
tex individually. Thus, we are able to realize efficient level-of-detail
rendering without causing over-tessellation.

Overall, we provide an abstraction over patch regularities; i.e., a
tess factor can be assigned to any patch of the base mesh irrespec-
tive of whether it is irregular or not. We believe that this will help
future hardware generations to support native subdivision surface
rendering since the underlying technique can be abstracted away
from the user by an API. Our method will be available in Pixar’s
OpenSubdiv framework, aiming to bring this goal one step closer.

Acknowledgements

We would like to thank Bay Raitt for the BigGuy, Sportscar and
Monsterfrog models. The Killeroo model is courtesy of Headus
(metamorphosis) Pty Ltd. We also thank the anonymous review-
ers for their comments and suggestions for improving this paper.
This research was supported by the German Research Foundation
(DFG), grant GRK-1773 Heterogeneous Image Systems, and the
Max Planck Center for Visual Computing & Communication.

References

ANDREWS, J., AND BAKER, N. 2006. Xbox 360 System Archi-
tecture. IEEE Micro 26, 2, 25-37.

BoOLZ, J., AND SCHRODER, P. 2002. Rapid Evaluation of Catmull-
Clark Subdivision Surfaces. In Proceeding of the International
Conference on 3D Web Technology, 11-17.

BUNNELL, M. 2005. Adaptive Tessellation of Subdivision Sur-
faces with Displacement Mapping. In GPU Gems 2. 109-122.

CATMULL, E., AND CLARK, J. 1978. Recursively Generated B-
Spline Surfaces on Arbitrary Topological Meshes. Computer-
aided design 10, 6, 350-355.

DEROSE, T., KASS, M., AND TRUONG, T. 1998. Subdivision
Surfaces in Character Animation. In Proceedings of SSIGGRAPH
98, Annual Conference Series, ACM, 85-94.

Doo, D., AND SABIN, M. 1978. Behaviour of recursive division
surfaces near extraordinary points. Computer-Aided Design 10,
6, 356-360.

EISENACHER, C., MEYER, Q., AND LooP, C. 2009. Real-Time
View-Dependent Rendering of Parametric Surfaces. In Proceed-
ings of 13D’°09, 137-143.

FISHER, M., FATAHALIAN, K., BouLOs, S., AKELEY, K.,
MARK, W. R., AND HANRAHAN, P. 2009. DiagSplit: Parallel,
Crack-Free, Adaptive Tessellation for Micropolygon Rendering.
In ACM Transactions on Graphics (TOG), vol. 28, ACM, 150.

HALSTEAD, M., KASS, M., AND DEROSE, T. 1993. Efficient,
Fair Interpolation using Catmull-Clark Surfaces. In Proceedings
of SIGGRAPH 93, Annual Conference Series, ACM, 35-44.

Loop, C., AND SCHAEFER, S. 2008. Approximating Catmull-
Clark Subdivision sSurfaces with Bicubic Patches. ACM Trans-
actions on Graphics (TOG) 27, 1, 8.

Loop, C., SCHAEFER, S., NI, T., AND CASTANO, I. 2009.
Approximating Subdivision Surfaces with Gregory Patches for
Hardware Tessellation. In ACM Transactions on Graphics
(TOG), vol. 28, ACM, 151.

Loop, C. 1987. Smooth Subdivision Surfaces Based on Triangles.

MICROSOFT CORPORATION, 2009. Direct3D 11 Features.
http://msdn.microsoft.com/en-us/library/ff476342(VS.85)
.aspx.

MORETON, H. 2001. Watertight Tessellation using Forward
Differencing. In HWWS ’01: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware,
ACM, New York, NY, USA, 25-32.

MYLES, A., NI, T., AND PETERS, J. 2008. Fast Parallel Con-
struction of Smooth Surfaces from Meshes with Tri/Quad/Pent
Facets. Computer Graphics Forum 27,5, 1365-1372.

MYLES, A., YEO, Y. I., AND PETERS, J. 2008. GPU Conver-
sion of Quad Meshes to Smooth Surfaces. In SPM ’08: ACM
Symposium on Solid and Physical Modeling, 321-326.

NI, T., YEO, Y. 1., MYLES, A., GOEL, V., AND PETERS, J. 2008.
GPU Smoothing of Quad Meshes. In SMI ’08: IEEE Interna-
tional Conference on Shape Modeling and Applications, 3-9.

N1, T., CASTANO, I., PETERS, J., MITCHELL, J., SCHNEIDER,
P., AND VERMA, V. 2009. Efficient substitutes for subdivision
surfaces. In ACM SIGGRAPH 2009 Courses, ACM, 13.

NIESSNER, M., AND LOOP, C. 2013. Analytic Displacement Map-
ping using Hardware Tessellation. ACM Transactions on Graph-
ics (TOG) 32, 3, 26.

NIESSNER, M., Loop, C., MEYER, M., AND DEROSE, T. 2012.
Feature-adaptive GPU rendering of Catmull-Clark subdivision
surfaces. ACM Transactions on Graphics (TOG) 31, 1, 6.

NIESSNER, M., Loop, C. T., AND GREINER, G. 2012. Efficient
Evaluation of Semi-Smooth Creases in Catmull-Clark Subdivi-
sion Surfaces. In Eurographics (Short Papers), EG, 41-44.

NIESSNER, M. 2013. Rendering Subdivision Surfaces us-
ing Hardware Tessellation. Dissertation, Computer Graph-
ics Group, Department of Computer Science, University of
Erlangen-Nuremberg, Germany. Verlag Dr. Hut, Munich, Ger-
many.

NvVIDIA, C. 2007. Compute unified device architecture program-
ming guide.

PATNEY, A., EBEIDA, M. S., AND OWENS, J. D. 2009. Paral-
lel View-Dependent Tessellation of Catmull-Clark Subdivision
Surfaces. In HPG ’09: Proceedings of the Conference on High
Performance Graphics 2009, ACM, New York, NY, USA, 99—
108.

PIXAR ANIMATION STUDIOS, 2005. The RenderMan Interface
version 3.2.1. (https://renderman.pixar.com/products/rispec/-
index.htm).

SCHAFER, H., NIESSNER, M., KEINERT, B., STAMMINGER, M.,
AND Loop, C. 2014. State of the Art Report on Real-time
Rendering with Hardware Tessellation. In Eurographics 2014
(State of the Art Reports), Wiley, 93-117.

SCHWARZ, M., AND STAMMINGER, M. 2009. Fast GPU-based
Adaptive Tessellation with CUDA. Computer Graphics Forum
28,2,365-374.

SHIUE, L.-J., JONES, 1., AND PETERS, J. 2005. A realtime gpu
subdivision kernel. ACM Transactions on Graphics (TOG) 24,
3, 1010-1015.

STAM, J. 1998. Exact Evaluation of Catmull-Clark Subdivision
Surfaces at Arbitrary Parameter Values. In Proceedings SIG-
GRAPH 98, Annual Conference Series, ACM, 395-404.

VLACHOS, A., PETERS, J., BoyD, C., AND MITCHELL, J. L.
2001. Curved PN triangles. In Proceedings of 13D’01, ACM,
159-166.

YEO, Y. I, BIN, L., AND PETERS, J. 2012. Efficient pixel-
accurate rendering of curved surfaces. In Proceedings of the
ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games, ACM, 165-174.

http://msdn.microsoft.com/en-us/library/ff476342(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ff476342(VS.85).aspx

