skip to main content
research-article

mNoC: Large Nanophotonic Network-on-Chip Crossbars with Molecular Scale Devices

Published:03 August 2015Publication History
Skip Abstract Section

Abstract

Moore's law and the continuity of device scaling have led to an increasing number of cores/nodes on a chip, creating a need for new mechanisms to achieve high-performance and power-efficient Network-on-Chip (NoC). Nanophotonics based NoCs provide for higher bandwidth and more power efficient designs than electronic networks. Present approaches often use an external laser source, ring resonators, and waveguides. However, they still suffer from important limitations: large static power consumption, and limited network scalability.

In this article, we explore the use of emerging molecular scale devices to construct nanophotonic networks: Molecular-scale Network-on-Chip (mNoC). We leverage on-chip emitters such as quantum dot LEDs, which provide electrical to optical signal modulation, and chromophores, which provide optical signal filtering for receivers. These devices replace the ring resonators and the external laser source used in contemporary nanophotonic NoCs. They reduce energy consumption or enable scaling to larger crossbars for a reduced energy budget. We present a Single Writer Multiple Reader (SWMR) bus based crossbar mNoC. Our evaluation shows that an mNoC can achieve more than 88% reduction in energy for a 64×64 crossbar compared to similar ring resonator based designs. Additionally, an mNoC can scale to a 256×256 crossbar with an average 10% performance improvement and 54% energy reduction.

References

  1. P. O. Anikeeva, C. F. Madigan, J. E. Halpert, M. G. Bawendi, and V. Bulović. 2008. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots. Phys. Rev. B 78, 8, 085434.Google ScholarGoogle ScholarCross RefCross Ref
  2. R. Arians, A. Gust, T. Kummell, C. Kruse, S. Zaitsev, G. Bacher, and D. Hommel. 2008. Electrically driven single quantum dot emitter operating at room temperature. Appl. Phys. Lett. 93, 17, 173506--173506.Google ScholarGoogle ScholarCross RefCross Ref
  3. N. Barrow-Williams, C. Fensch, and S. Moore. 2009. A communication characterisation of Splash-2 and Parsec. In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC'09). IEEE, 86--97. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. A. Biberman, K. Preston, G. Hendry, N. Sherwood-Droz, J. Chan, J. S. Levy, M. Lipson, and K. Bergman. 2011. Photonic network-on-chip architectures using multilayer deposited silicon materials for high-performance chip multiprocessors. ACM J. Emerg. Technol. Comput. Syst. 7, 2, 7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  5. N. Binkert, B. Beckmann, G. Black, et al. 2011a. The gem5 simulator. ACM SIGARCH Computer Architecture News 39, 2, 1--7. Google ScholarGoogle ScholarDigital LibraryDigital Library
  6. N. Binkert, A. Davis, N. P. Jouppi, M. McLaren, N. Muralimanohar, R. Schreiber, and J. H. Ahn. 2011b. The role of optics in future high radix switch design. In Proceedings of the 38th Annual International Symposium on Computer Architecture. ACM, 437--448. Google ScholarGoogle ScholarDigital LibraryDigital Library
  7. G. Canton, R. Ricco, F. Marinello, S. Carmignato, and F. Enrichi. 2011. Modified Stöber synthesis of highly luminescent dye-doped silica nanoparticles. J. Nanopart. Res. 13, 9, 4349--4356.Google ScholarGoogle ScholarCross RefCross Ref
  8. J. Chan, G. Hendry, K. Bergman, and L. P. Carloni. 2011. Physical-layer modeling and system-level design of chip-scale photonic interconnection networks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 30, 10, 1507--1520. Google ScholarGoogle ScholarDigital LibraryDigital Library
  9. G. Chen, H. Chen, M. Haurylau, N. A. Nelson, D. H. Albonesi, P. M. Fauchet, and E. G. Friedman. 2007. Predictions of CMOS compatible on-chip optical interconnect. Integration VLSI J. 40, 4, 434--446. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. S. Chen, L. Zhang, Y. Fei, and T. Cao. 2012. Bistability and self-pulsation phenomena in silicon microring resonators based on nonlinear optical effects. Opt. Express 20, 7, 7454--7468.Google ScholarGoogle ScholarCross RefCross Ref
  11. M. J. Cianchetti, J. C. Kerekes, and D. H. Albonesi. 2009. Phastlane: a rapid transit optical routing network. In Proceedings of the 36th Annual International Symposium on Computer Architecture. 441--450. Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. C. Dwyer and A. R. Lebeck. 2007. Introduction to DNA Self-Assembled Computer Design. Artech House, Inc., Norwood, MA. Google ScholarGoogle ScholarDigital LibraryDigital Library
  13. D. Feng, S. Liao, P. Dong, et al. 2009. High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett. 95, 261105.Google ScholarGoogle ScholarCross RefCross Ref
  14. A. Gopal, K. Hoshino, S. Kim, and X. Zhang. 2009. Multi-color colloidal quantum dot based light emitting diodes micropatterned on silicon hole transporting layers. Nanotechnology 20, 23, 235201.Google ScholarGoogle ScholarCross RefCross Ref
  15. F. Hargart, C. A. Kessler, T. Schwarzback, E. Koroknay, S. Weidenfeld, M. Jetter, and P. Michler. 2013. Electrically driven quantum dot single-photon source at 2 GHz excitation repetition rate with ultra-low emission time jitter. Appl. Phys. Lett. 102, 1, 011126--011126.Google ScholarGoogle ScholarCross RefCross Ref
  16. A. Joshi, C. Batten, Y. J. Kwon, S. Beamer, I. Shamim, K. Asanovic, and V. Stojanovic. 2009. Silicon-photonic clos networks for global on-chip communication. In Proceedings of the 2009 3rd ACM/IEEE International Symposium on Networks-on-Chip. IEEE, 124--133. Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. J. Kim, W. J. Dally, B. Towles, and A. K. Gupta. 2005. Microarchitecture of a high-radix router. ACM SIGARCH Computer Architecture News 33. 420--431. Google ScholarGoogle ScholarDigital LibraryDigital Library
  18. K. H. Kim, D. L. Nguyen, H. Lim, P. T. Nga, Y. H. Cho, and others. 2011. Shell layer dependence of photoblinking in CdSe/ZnSe/ZnS quantum dots. Appl. Phys. Lett. 98, 012109.Google ScholarGoogle ScholarCross RefCross Ref
  19. L. A. Kim, P. O. Anikeeva, S. A. Coe-Sullivan, J. S. Steckel, M. G. Bawendi, and V. Bulovic. 2008. Contact printing of quantum dot light-emitting devices. Nano Lett. 8, 12, 4513--4517.Google ScholarGoogle ScholarCross RefCross Ref
  20. N. Kirman, M. Kirman, R. K. Dokania, J. F. Martinez, A. B. Apsel, M. A. Watkins, and D. H. Albonesi. 2006. Leveraging optical technology in future bus-based chip multiprocessors. In Proceedings of the 39th Annual IEEE/ACM International Symposium on Microarchitecture. IEEE, 492--503. Google ScholarGoogle ScholarDigital LibraryDigital Library
  21. T. Kümmell, R. Arians, A. Gust, C. Kruse, S. Zaitsev, D. Hommel, and G. Bacher. 2009. Electrically driven room temperature operation of a single quantum dot emitter. Proc. SPIE, 7211, 72110G.Google ScholarGoogle Scholar
  22. J. R. Lakowicz. 2006. Principles of Fluorescence Spectroscopy. Vol. 1. Springer.Google ScholarGoogle Scholar
  23. H. Langhais. 1995. Cyclic carboxylic imide structures as structure elements of high stability novel developments in perylene dye chemistry. Heterocycles-Sendai Institute of Heterocyclic Chemistry 40, 1, 477.Google ScholarGoogle Scholar
  24. H. Langhals. 2005. Control of the interactions in multichromophores: Novel concepts. Perylene bis-imides as components for larger functional units. Helv. Chim. Acta 88, 6, 1309--1343.Google ScholarGoogle ScholarCross RefCross Ref
  25. H. Langhals, J. Karolin, and L. B. A. Johansson. 1998. Spectroscopic properties of new and convenient standards for measuring fluorescence quantum yields. J. Chem. Soc., Faraday Transactions 94, 19, 2919--2922.Google ScholarGoogle ScholarCross RefCross Ref
  26. S. Le Beux, I. O'Connor, G. Nicolescu, G. Bois, and P. Paulin. 2013. Reduction methods for adapting optical network on chip topologies to 3D architectures. Microprocessors and Microsystems 37, 1, 87--98. Google ScholarGoogle ScholarDigital LibraryDigital Library
  27. S. Le Beux, J. Trajkovic, I. O'Connor, G. Nicolescu, G. Bois, and P. Paulin. 2010. Multi-optical network-on-chip for large scale MPSoC. IEEE Embedded Sys. Lett. 2, 3, 77--80. Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. Z. Li, D. Fay, A. Mickelson, L. Shang, M. Vachharajani, D. Filipovic, W. Park, and Y. Sun. 2009. Spectrum: A hybrid nanophotonic electric on-chip network. In Proceedings of the 46th ACM/IEEE Design Automation Conference (DAC'09). IEEE, 575--580. Google ScholarGoogle ScholarDigital LibraryDigital Library
  29. Z. Li, M. Mohamed, X. Chen, H. Zhou, A. Mickelson, L. Shang, and M. Vachharajani. 2011. Iris: A hybrid nanophotonic network design for high-performance and low-power on-chip communication. ACM J. Emerg. Technol. Comput. Syst. 7, 2, 8. Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. S. Liao, N. N. Feng, D. Feng, et al. 2011. 36 GHz submicron silicon waveguide germanium photodetector. Opt. Express 19, 11, 10967--10972.Google ScholarGoogle ScholarCross RefCross Ref
  31. O. Liboiron-Ladouceur, I. Cerutti, P. G. Raponi, N. Andriolli, and P. Castoldi. 2011. Energy-efficient design of a scalable optical multiplane interconnection architecture. IEEE J. Sel. Top. Quantum Electron. 17, 2, 377--383.Google ScholarGoogle ScholarCross RefCross Ref
  32. O. Liboiron-Ladouceur, A. Shacham, B. A. Small, B. G. Lee, H. Wang, C. P. Lai, A. Biberman, and K. Bergman. 2008. The data vortex optical packet switched interconnection network. J. Lightwave Technol. 26, 13, 1777--1789.Google ScholarGoogle ScholarCross RefCross Ref
  33. B. S. Mashford, M. Stevenson, Z. Popovic, et al. 2013. High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nature Photonics.Google ScholarGoogle Scholar
  34. J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal. 2010. Graphite: A distributed parallel simulator for multicores. In Proceedings of the IEEE 16th International Symposium onHigh Performance Computer Architecture. IEEE, 1--12.Google ScholarGoogle Scholar
  35. C. Nitta, M. Farrens, and V. Akella. 2011. Addressing system-level trimming issues in on-chip nanophotonic networks. In Proceedings of the IEEE 17th International Symposium on High Performance Computer Architecture. IEEE, 122--131. Google ScholarGoogle ScholarDigital LibraryDigital Library
  36. H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner. 2005. Bright and stable core-shell fluorescent silica nanoparticles. Nano Lett. 5, 1, 113--117.Google ScholarGoogle ScholarCross RefCross Ref
  37. Y. Pan, J. Kim, and G. Memik. 2010. Flexishare: Channel sharing for an energy-efficient nanophotonic crossbar. In Proceedings of the IEEE 16th International Symposium on High Performance Computer Architecture. IEEE, 1--12.Google ScholarGoogle Scholar
  38. Y. Pan, P. Kumar, J. Kim, G. Memik, Y. Zhang, and A. Choudhary. 2009. Firefly: Illuminating future network-on-chip with nanophotonics. In Proceedings of the International Symposium on Computer Architecture. Google ScholarGoogle ScholarDigital LibraryDigital Library
  39. J. Pang, C. Dwyer, and A. R. Lebeck. 2013. Exploiting emerging technologies for nanoscale photonic networks-on-chip. In Proceedings of the 6th International Workshop on Network on Chip Architectures. ACM, 53--58. Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. H. Park, Y. Kuo, A. W. Fang, R. Jones, O. Cohen, M. J. Paniccia, and J. E. Bowers. 2007a. A hybrid AlGaInAssilicon evanescent preamplifier and photodetector. Opt. Express 15, 21, 230--232.Google ScholarGoogle ScholarCross RefCross Ref
  41. I. K. Park, M. K. Kwon, J. O. Kim, S. B. Seo, J. Y. Kim, J. H. Lim, S. J. Park, and Y. S. Kim. 2007b. Green light-emitting diodes with self-assembled In-rich InGaN quantum dots. Appl. Phys. Lett. 91, 133105.Google ScholarGoogle ScholarCross RefCross Ref
  42. G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morthier, and R. Baets. 2006. Nonlinear effects in ultrasmall silicon-on-insulator ring resonators. Proc. SPIE 6183.Google ScholarGoogle Scholar
  43. L. Ramini, P. Grani, H.T. Fankem, A. Ghiribaldi, S. Bartolini, and D. Bertozzi. 2014. Assessing the energy break-even point between an optical NoC architecture and an aggressive electronic baseline. In Proceedings of the Conference on Design, Automation & Test in Europe. European Design and Automation Association. 308. Google ScholarGoogle ScholarDigital LibraryDigital Library
  44. K. Rurack and M. Spieles. 2011. Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600--1000nm. Anal. Chem. 83, 4, 1232--1242.Google ScholarGoogle ScholarCross RefCross Ref
  45. S. Sahni, X. Luo, J. Liu, Y. Xie, and E. Yablonovitch. 2008. Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator. Opt. Lett. 33, 1138--1140.Google ScholarGoogle ScholarCross RefCross Ref
  46. S. Sahni, E. Yablonovitch, J. Liu, and Y. Xie. 2007. Germanium-on-SOI photo-detector based on an FET structure. In Proceedings of the Conference on Lasers and Electro-Optics. Optical Society of America.Google ScholarGoogle Scholar
  47. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur. 2003. Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426, 6968, 816--819.Google ScholarGoogle Scholar
  48. B. Valeur. 2001. Molecular Fluorescence: Principles and Applications. Wiley.Google ScholarGoogle Scholar
  49. D. Vantrease, R. Schreiber, M. Monchiero, M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis, N. Binkert, R. G. Beausoleil, and J. H. Ahn. 2008. Corona: System implications of emerging nanophotonic technology. In Proceedings of the 35th Annual International Symposium on Computer Architecture. IEEE, 153--164. Google ScholarGoogle ScholarDigital LibraryDigital Library
  50. J. Wang, W. Y. Loh, K. T. Chua, H. Zang, Y. Z. Xiong, T. H. Loh, M. B. Yu, S. J. Lee, G. Q. Lo, and D. L. Kwong. 2008. Evanescent-coupled Ge pin photodetectors on Si-waveguide with SEG-Ge and comparative study of lateral and vertical pin configurations. IEEE Electron Device Lett. 29, 5, 445--448.Google ScholarGoogle ScholarCross RefCross Ref
  51. S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. 1995. The SPLASH-2 programs: characterization and methodological considerations. In Proceedings of the 22nd Annual International Symposium on Computer Architecture. ACM, 24--36. Google ScholarGoogle ScholarDigital LibraryDigital Library
  52. V. Wood and V. Bulović. 2010. Colloidal quantum dot light-emitting devices. Nano Rev. 1.Google ScholarGoogle Scholar
  53. Y. Xu, J. Yang, and R. Melhem. 2012. Tolerating process variations in nanophotonic on-chip networks. In Proceedings of the 39th International Symposium on Computer Architecture. IEEE, 142--152. Google ScholarGoogle ScholarDigital LibraryDigital Library
  54. Y. Ye, J. Xu, X. Wu, W. Zhang, W. Liu, and M. Nikdast. 2012. A torus-based hierarchical optical-electronic network-on-chip for multiprocessor system-on-chip. ACM J. Emerg. Technol. Comput. Syst. 8, 1, 5. Google ScholarGoogle ScholarDigital LibraryDigital Library
  55. P. P. Yupapin, C. Teeka, and P. Chitsakul. 2006. Mathematical simulation of nonlinear effects in micro ring resonator. In Proceedings of the IEEE Conference on Emerging Technologies-Nanoelectronics. IEEE, 316--321.Google ScholarGoogle Scholar

Index Terms

  1. mNoC: Large Nanophotonic Network-on-Chip Crossbars with Molecular Scale Devices

    Recommendations

    Comments

    Login options

    Check if you have access through your login credentials or your institution to get full access on this article.

    Sign in

    Full Access

    • Published in

      cover image ACM Journal on Emerging Technologies in Computing Systems
      ACM Journal on Emerging Technologies in Computing Systems  Volume 12, Issue 1
      July 2015
      210 pages
      ISSN:1550-4832
      EISSN:1550-4840
      DOI:10.1145/2810396
      Issue’s Table of Contents

      Copyright © 2015 ACM

      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      • Published: 3 August 2015
      • Accepted: 1 October 2014
      • Revised: 1 July 2014
      • Received: 1 March 2014
      Published in jetc Volume 12, Issue 1

      Permissions

      Request permissions about this article.

      Request Permissions

      Check for updates

      Qualifiers

      • research-article
      • Research
      • Refereed

    PDF Format

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader