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Abstract

Adaptive streaming addresses the increasing and heterogerdemand of multimedia content over the Internet by ioffer
several encoded versions for each video sequence. Eadbnvéus representation) is characterized by a resolutiahabit rate,
and it is aimed at a specific set of users, like TV or mobile ghohents. While most existing works on adaptive streaming
deal with effective playout-buffer control strategies twe tlient side, in this paper we take a providers’ perspedivd propose
solutions to improve user satisfaction by optimizing the afeavailable representations. We formulate an integezalirprogram
that maximizes users’ average satisfaction, taking intmoact network dynamics, type of video content, and user jatipn
characteristics. The solution of the optimization is a seemcoding parameters corresponding to the represensatien that
maximizes user satisfaction. We evaluate this solutionitmylating multiple adaptive streaming sessions chareetdrby realistic
network statistics, showing that the proposed solutiorp@tdiorms commonly used vendor recommendations, in termssef
satisfaction but also in terms of fairness and outage piitityalihe simulation results show that video content imf@tion as
well as network constraints and users’ statistics play a@ialuole in selecting proper encoding parameters to pevairness
among users and to reduce network resource usage. We fimafipge a few theoretical guidelines that can be used, ifstieal
settings, to choose the encoding parameters based on thehasacteristics, the network capacity and the type ofwidentent.

Index Terms

Dynamic adaptive streaming over HTTP, content distribuytideo streaming, integer linear program.

|I. INTRODUCTION

Due to the ever increasing popularity of modern mobile deviaisers can request and play multimedia content anywhere
and at any time. This results in an increase of the varietyaohef the following: requested contents, devices usedsplal
them and access network capacity [1]. Adaptive streamihgtieas aim at addressing this growing heterogeneity beraif
several versions of the video sequences. Each version @dedcat a different bitrate and resolution so that each user ¢
select the most suitable version depending on the videntatigpabilities and network bandwidth. Fig. 1 illustratesiestance
of an adaptive streaming system. The ingest server receide® data from cameras and prepares several differenbvide
representationseach one characterized by a different resolution andtbitiéhe ingest server sends the streams corresponding
to each representation to the origin server of a contenvetglinetwork (CDN), which delivers the video representadito
the edge-servers, which, in turn, directly serve the reguafsthe clients.

Several models have been recently proposed to standah#izedtptive streaming communication framework, like dyicam
adaptive streaming over HTTP (DASH) [2]. [3]./[4] and WebR]&}. The multiple implementations of such systems differ in
two ways:(¢) the client adaptation strategy, afid) the selection of the different video representations. §dlia first problem
has been at the center of the attention of the research coitynwhile the second one has rarely been considered. The onl
existing guidelines for selecting the parameters of thewitepresentations arecommendationfom system manufacturers,
including Apple [6] and Microsoft[[7]. Some content providéhave also defined their own representations sets, for gram
Netflix [8]. However, to the best of our knowledge, neithee tecommendations from system manufacturers nor the choice
made by content providers have been supported by any dixesitidy.

This paper is a first step towards filling this gap. We focus ptinsizing theset of representationthat should be generated
by the ingest server and show that the existing recommeretedave critical weaknesses. Optimizing the encodingpeaiers
for representations sets is an open problem, dealing withiptauconstraints, including the cost of delivering vidstseams
using a CDN, the characteristics of end-users, and the tipa&eo to be delivered. For example, smaller sets (i.e.h et
representations for each video) might satisfy only a foactf the users, while larger ones could satisfy more usertsata
larger cost in terms of increased storage costs for on-démm@eo, or larger encoding delays in the case of live stragmi
It is therefore important to study how the representatictsshould be designed, in order to strike the appropriatenal
between user satisfaction and the cost of the system. Thieigoal of our work.
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Figure 1: Video content delivery chain.

In particular, we consider a scenario in which video chasifelg., sports, documentary, cartoon) are encoded atatiffe
encoding rates and various spatial resolutions, leadinget@ral representations available at the server. Repadisars are
then delivered to clients through a CDN characterized by arall capacity constraint. Clients requests (video conéand
display resolution) are supposed to be known. Depending@mbandwidth available to each user, specific represensatidl
be provided to fulfill clients’ video requests. The qualityperienced by users, modeled in our problem as a satisfaleie|
function, depends on both the compression artifacts (drivethe video source rate) and spatial scaling artifactpgdding
on the potential adaptation of the video resolution to trepldy resolution).

We formulate an optimization problem to select the best dimgpparameters of the representations set and study thiéimgs
performance in different adaptive streaming scenariosfultber show the need of making the selection of the reptatens
set based on the video content, network, and clients’ ctenatics. The proposed optimization is not necessarilpmhéo be
used to make real-time adjustments in DASH systems. It Iseraa theoretical framework to derive benchmarks or optimal
encoding solutions for non-live systems, along with guitks for practical design of representations sets in videzagiing
applications. The provided optimization highlights thé-sptimality of the current recommendation sets and p@ttgoretical
guidelines that can help a system designer to understanchvare the crucial system parameters that should be taken int
account when optimizing the representations set. Our matributions are as follows:

i. We formulate a novel integer linear program (ILP) to fince thest representations set, defined as the one that
maximizes the expected user satisfaction under networksgstgm constraints. The satisfaction of each client is a
function of the encoding rate, the resolution, the charaties of the requested video, and of the bandwidth that can
be used to deliver the video. By using a generic solver, iossjble to solve the ILP on representative cases, gaining
insights about the optimal representations sets.

ii. We use the ILP to study the recommendations from systemufia&turers and content providers. We compute the
solution of the ILP for different user populations and sty it performs in realistic streaming applications w.r.t.
the existing recommendations. Simulation results show theommended sets lead to good performance in terms
of quality experienced by those users that can be servedebgytstem, but they also lead to a large probability for
users not to be properly served. Overall, recommended sqtsre too many representations, do not easily adapt to
system dynamics, and lead to unfair sharing of the networranusers.

iii. In order to provide insights on how a system provider wdoselect the encoding rates sets, we study the optimal
representations sets in different scenarios. We consklesral realistic cases, by varying key parameters like the
number of users requesting each resolution, network cdiomecapacity of each client connection and overall CDN
capacity), and type of video (sport, documentary, movigtoom). By analyzing the solution of the ILP in each
scenario, we notice recurrent patterns and derive few gegeidelines which can be useful for content providers
in the selection of the best encoding parameters.

The remainder of this paper is organized as follows. Relaterks on adaptive streaming are described in Seéfion Il. The
formulation of the optimization problem as an ILP is prowdda Sectior{1l. In Sectiof TV, we detail the simulation $etfs.
In Section[V, results are provided to study the system perémice of optimal representations sets w.r.t the recomntende
one. In Sectio VI, we analyze the behavior of the optimalesebss different configuration to derive the guidelinesaly,
conclusions and future works are discussed in Segfioh VII.

Il. RELATED WORKS

During the last decade, adaptive streaming has been are aesearch area, with most efforts aimed at developing serve
controlled streaming solutions. Recently, a client-driapproach, based on HTTP-adaptive streaming [3], [4], lzsed
popularity and attention. In this new paradigm, the cliethtside which segments to get and when to request them, and the



server mainly responds to the clients’ requests. Differaplementation of this new architecture have been proposedrious
commercial DASH players [9].

Most of the research effort in adaptive streaming has besntee to improve the client controller, i.e., to optimizesth
representations selection for each user [10]] [11]] [12]e Tontroller behavior is generally driven by an estimatethef
network dynamics [13] and the state of the client bufferl [T#je general objective is to maximize the Quality of Expecie
(QoE) for the users while avoiding unnecessary quality diattons. For example, the selection of the representatonbe
optimized in such a way that large variations of rates in saswwe segments are avoided, since large rate variatiopdead
to an unpleasant viewing experiencel[15]./[16]./[17]. Otbelutions for the controller have also been investigatedrder to
minimize the re-buffering phases [12], [15]. On a more gahperspective, it has been shown that the current HTTPta@ap
streaming systems have limitations when a large numberi@fitsl share the same network[18]. Hence, some recent cbsear
works modify the client controllers in order to simultansiyureach fairness and efficiency when many clients shareahes
bottleneck link [19], [20]. Rather than focusing on the otieontroller design, the work in [21] investigates a DASkeating
system over a mobile network where a proxy rewrites clienTRTequests in such a way that the overall QoE experienced
by multiple clients is optimized. The work in_[21] addressies main limitations of multiple-clients DASH systems; hewer
it does not address the problem of optimizing the repretientaon the server and rather seems complementary to ol wor

Despite the many, recently published, papers about DASel ptioblem of selecting proper representations to be stored
on the server has been mostly overlooked. The set of avail&presentations is usually supposed to be known (and fixed)
These representations are often selected based on vendontnt provider recommendations, as in the case of Apjfjle [6
Microsoft [7], and Netflix [8]. To the best of our knowledgeitier the recommendations from system manufacturers mor th
choices made by content providers have been supported bgcaamtific study in the literature. Rather they seem to bedbas
on admittedly fairly good heuristics.

The importance of the optimized representations sets iptagastreaming has recently been highlightedlin [11], wher
authors show that the representations sets may affect thevioes of some adaptation methods. For example, a gain ean b
achieved when the representations set available at thersisrgelected based on the video content information ratteer
simply the rate information. However, the authors do notppsz an optimization of the set nor guidelines on the selecti
of the representations set. Encoding rate optimizationbess investigated very recently in [22], for on-demand oglan a
storage-limited scenario. Rates are optimized in such athatythe best possible QoE is provided to a pool of users and a
total storage capacity constraint is met. All the scengpi@sented in_ [22] consider a homogeneous user populatibthéis
a key assumption exploited in the solution of the optimmatproblem. In[[28], the optimization of the set of repreagiohs
in the case where heterogeneous users are characterizedtatjcdink capacity and a single acceptable resolutionbesn
studied. In this paper, instead, we explicitly model didfiet types of users, in terms of access link capacity and dsvised.
We also take into account the dynamic aspect of the channeklsas different types of video as this has a non-negligible
impact on the perceived QoE.

I1l. PROBLEM FORMULATION

We now present the problem formulation. The goal is to salexbest representations set, taking into account videtengn
available network capacity and users’ characteristicsc@vesider the user population (in terms of requested vidatec and
resolution) and the CDN total capacity as known values. Weehthe time-varying available capacity between the CDN and
each client using one cumulative density function (CDF)dach client. Statistics are extrapolated from the pubbelgilable
dataset presented inh [24], where network measurementsidesre collected by a DASH module from more than a thousand
Internet clients.

In the following, we first introduce the notation used in tlrelem formulation. Then we present the ILP used to compute
the optimal representations sets.

A. Definitions

Let V be the set of videos. Each videos V can be encoded using different representations, each @maatlrized by the
encoding rate- € R and the spatial resolutione S, beingR andS respectively the sets of bit rates and spatial resolutions
that are admissible for the representations. The triple-(s) corresponds to the representation of a vide® V encoded at
rater € R and resolutiors € S. Note thatr is a pure integer number that represents the rate indéX ithe nominal value
(in kbps) of the encoding rate is denoted byb,. Each resolutiors admits encoding rates within the ran@&™", »m®] for
video v.

Let U/ be the set of users that the CDN network should serve, whete eseru € U requests a video, € V and plays the
video representation at a given spatial resolutigre S corresponding to the user display resolution (i.e., theigjp@solution
at which the video will be displayed on the user’s device).fdltow the assumption that a usercan play segments encoded
at resolutions different from its display size by perforgispatial down-sampling/up-sampling before rendering. d&Bote
by T... the percentage of time that userhas a link capacity larger than. for a certain encoded rate These parameters



Name Description

fuvrs € RT Satisfaction level for the representation of videowatched at display, and encoded at rate and resolutions

Tur € [0,1] Percentage of time during which the throughput of usés larger than the valué,. of the encoding rate
Tmin € [ 1] Minimum percentage of time during which a user is served

b. € RT Value in kbps of the encoding rate

bm'” erRt Value in kbps of the minimum encoding rate that the videaat resolutions can admit.

brnax €RT Value in kbps of the maximum encoding rate that the videat resolutions can admit.

vy €V Video channel requested by user

sy €S Display size (spatial resolution) for user

ceRrt Average CDN budget defined as average capacity per usebpn

KeRrt Total number of representations used, i.e., tripkesr{ s) available at the server

P € [0,1] Fraction of users that must be served

Table I: Notation adopted in the ILP formulation.

are computed from the cumulative distribution function ted imeasured throughput of the usgrusing the dataset described
in [24]

A useru with a display resolution,, watching videa encoded at resolutianexperiences a satisfaction levkl,(r) € [0, 1],
which is an increasing function of the encoding ratésenerally, for a given pair( ), the satisfaction level is higher if the
video resolutiors is the same as the display resolutignthan if s # s,,. This is due to artifacts introduced by the up-sampling
and down-sampling of the spatial resolution during the deap process on the user side. For the sake of clarity, throuly
the paper we denote the satisfaction levelfhy, s rather thanf,,s(r).

We define the optimal encoding parameters set as the one thaiimes the expected user satisfaction, subject to devera
constraints imposed by both the delivery system and thdcgeprovider. The constraints that we formulate for thishem
derive directly from real challenges identified by serviceyiders. We highlight three such constraints:

i. The overall CDN capacity available to deliver all the video streams. In general, @idervice providers reserve an
overall budget (in $) for video delivery and use it to buy aind=ly service from a CDN provider. In today’s CDN, the
price depends on the sum of all the rates of all the video stseariginating at the content providér [25]. Thus, the
video service provider is interested in maintaining thaltdelivery bandwidth below a given value, here represented
by C - |U|, whereC denotes the average CDN budget in terms of hired capgeityuserin kbps and|U/| denotes
the number of users of the CDN.

ii. The total number of representations, denoted bykK, is the total number of triplets( r, s) provided to the ingest
servers. A higher number of representations means more legitypand higher system costs for the video service
provider. Higher complexity comes from more data to handig, store and deliver while system cost directly derives
from the number of machines that have to be provisioned todscaw video and from storage costs. To have an
idea of possible storage and maintenance costs, a webgtguBtin.tv has to maintain about000 video channels
simultaneously[[26].

iii. The minimal fraction of time during which some users should be served. Ideally, the service provider would like
to serve all the users. But in certain cases, especially whenumber of representatiohs is small, users might not
be served if the channel capacity is too small for the avklabpresentations. In this case, the representations set
which optimizes the average satisfaction might not leacitméss among users. To address this problem, we impose
that at least a fractio®® of users must be served for at least a fraction of tiﬁ;ﬁ,ﬂ

Table[l summarizes the notation used in this paper.

B. ILP Model

We now describe the ILP formulation for computing the optireat of representations. The decision variables in our
framework model are the following:
o Tuurs € [0,1]: percentage of time during which useris served by a representation of vide@t resolutions and rater
1, if useru is served by a representation of vide@ncoded at resolution
o Quyrs = and at rater
0, otherwise
1, if any user in the system is served by a representation obvide
o Buors = encoded at resolution and at rater
0, otherwise
_ [ 1, if auseru is served by any video representation
* T 0, otherwise
With these variables, the optimization problem can be fdated as shown if{1).

1As there exist different definitions of fairness, this coaistt can be modified accordingly.



TS 95 9 ) oy AR w

uceU veEVreR seS

St Tuwrs < Quors, uelUd,veV,reR,se S (1b)
auvrsgﬁvr57 UEM,UEV,T'ER,SES (10)
ﬁvrs < Z Ayors), veEV,reR,s e S (1d)

ucl

Y>> Turs < Tur, ueU,r€R (le)

veEV SESr'eR

' >r
1, ifvo=uw,
Zznmsg & s€{sy—1,84,8,+1} uelU,vey (1f)
reR ses 0, otherwise
(BT = by)  Tuwrs <0, weU,veEV,reER,s€S (1g)
(br — b3 - Tuwrs < 0, uweUveV,reR,s€S (1h)

ZZZZbT'TUdUTSSO'V/”’ (1|)

uceU vEV reR seS

YD Bus <K, (L))

VEVTreER s€ES

> = P-ul, (1K)

ueU

Z Z Z Tuvrs = Tmin - Yus ueuU (1|)

vEVTreER s€ES

Tuurse[071]7 ueUveVreR,seS (1m)
Quurs € {0, 1}, wueU,veEV,rER,5ES (1n)
Burs € {0,1}, veV,reR,seS (10)

The objective function[(1a) maximizes the sum of the usdsfsations averaged over time. The constraihis (1b}, (hd) a
(@Id) set up a consistent relation between the decision blesa, o and 8. The constraint[{1e) guarantees that a user
plays a given representation only for the percentage of timeéng which the maximal user throughput is larger than the
encoding rate- of the representation. The constrainil (1f) establishesahaseru can play only those representations of the
requested video,, with spatial resolutions compatible with the user displiag s,,, that is only representations with resolutions
{su — 1, 84, sy + 1} are allowed. Namely, the possible down-sampling/up-samgpiperations at the rendering are constrained
to the resolutions that are immediately adjacent to the namiser display size,.. The constraintg (1g) and {1h) force to zero
someq variables in order to ensure that each us@mly watches representations of vide@t resolutions encoded at the bit
rates in the range between the minimal and maximal adméssités for the videe and the resolution. The constraint (1i)
guarantees that the sum of the average bit rates downloadedl bsers is lower than the overall CDN buddgt |{|. The
constraint[(J)) fixes the maximal number of representatimasle available at the server. Finally, the constralnts &hi) [(1I)
force the system to serve at least a certain percenfagéusers during a certain percentage of tiffigy.

A simplified version of this model could be easily derived fbose scenarios where the information of client bandwidths
is a priori available. For instance, if the content providbtains the access bandwidth of the end-users at one tirtentrer
estimates this bandwidth by using a representative statidike an average value, a median value aitla percentile. In these
cases, the content provider uses a unique vaju® model the link capacity of each usey motivating the introduction of
the following changes in the ILP formulation &f] (1): (i) theroulative distribution function of each useris assumed to be
a unit step function centered at the valyg (ii) the variablesr,,,.s are forced to be binary, and (iiiJmi, is fixed to 1. We
must note that the resulting formulation becomes equivatethe ILP introduced in [23].

IV. NUMERICAL ANALYSIS SETTINGS

We now describe the simulation framework that has been usetuty the ILP introduced in Section 1B for computing
the optimal representations sets. We have used the gewérar $8BM ILOG CPLEX [27] to solve different instances of the
ILP and to compare the optimized representations to the @mEsnmended by manufacturers and content providers. We hav
considered differentonfigurationsn our study of the system performance. These scenarioscanaeant to be an exhaustive
list covering all possible cases. Rather they illustrater tloe optimal set of representations changes in severastieatases.



Video Type Video Name

Documentary  Aspen, Snow Mountain

Sport Rush Field Cuts,Touchdown Pass,
Cartoon Big Buck Bunny, Sintel Trailer
Movie Old Town Cross

Table II: Test videos and corresponding types.

Resolution Name  Width x Height

224p 400x224
360p 640x360
720p 1280x720
1080p 1920x1080

Table Ill: Spatial resolutions used.

A. User Satisfaction Evaluation

We characterize each video at a given spatial resolutionn@satisfaction functiorthat depends on the display resolution
and expresses the QoE as a function of the encoding raterabevarks have investigated how to model this behavior but
a uniformly accepted model is still missing [28]. In our cag® model the satisfaction function as a Video Quality Metri
(VQM) score [29], which is a full-reference metric that hagher correlation with human perception than other MSEedas
metrics, as shown in_[30]. For spatial down/up-samplinghia ¥ideo player, we adopt the Avisynth Lanczos filier| [31]jchh
has been already adopted in existing video players/to@f [33].

We have evaluated the VQM score for four different types ef s2quences available at [34]. Each of these test sequences
corresponds to a representative video type as given in TBbl&e tested sequences have been encoded at differeatanate
at the resolutions described in Tabld Ill. Since the VQM sa@nges frond to 1 for the best and the worst QoE, respectively,
we associate the user satisfaction level with fihe- VQM) score. The empirical measures obtained from evaluating the
aforementioned sequences are depicted as continuousrifés. [ for the sport video. For the sake of brevity, here wpidt
only the sport video curves. From these figures we can batidgnstand the video classification. Video categorizatoaiined
at providing a rough but yet accurate notion of motion levielhe@ video content. For example, most sport sequences have a
higher-motion level than most documentary sequences. ddnisbe observed from the satisfaction curves, which ar@atee
for documentary sequences than for sport ones. We proveléuthset of satisfaction curves and fitting models in thei@al
Appendix.

From these measures, we derived a satisfaction functionttingfia function of the following form:

nuvs
fuvrs 1 (mu’us + bT + Ouvs) M (2)
It represents the satisfaction levgl,.s of useru receiving videov encoded at rate and resolutions and displayed at size
sy. Table[IX, in the Online Appendix, gives the parameters,s, n..s, ando.,s used in the curve fitting process for each
video v and resolutions to be displayed at size,. We recall that the parametér is the nominal value irkbps of the rate
r. Note that the expression in Edl (2) has an explicit dependenly on the encoding rate, while other parameters (video
content information, encoding resolution, spatial doyprgampling) are implicitly taken into account into the mpl@rameters
Muyvs, Nuvs, aNd 04,s. The satisfaction curves evaluated from Hq. (2) are idextifiy circles in Figl 2.

Note also that other satisfactions functions could be ctmmed. However, as mentioned above, to this day there are no
commonly accepted QoE metri¢s [35], [28], and the metricsatered in Eq.[(2) takes into account all factors that arkcati
in our problem formulation.

B. User Population Characteristics
A useru € U is characterized by three parameters, which we assign kasvéol

The requested video stream v,,. Users are randomly assigned to one of the four video typesngn Tablell. Each video
type has the same probability 6ut of 4) of being selected.

Statistical information about the streaming rate capacity T,,,.. Recall thatT,,,. is defined as the percentage of time a user
u has a streaming capacity greater than the encodingbraté/e model the streaming rate capacity with help of the datase
in [24] that contains multiple measurements of thirty-settong DASH sessions from thousands of geographicallyidiged
IP addresses. Each thirty-second measurement is assbeitikea user (IP address). Note that we have used users that ha
many thirty-second measurements in the dataset. From theureaments in the dataset, we infer tfmvnload rateof each IP
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Figure 2: Curve fitting for all the considered display resiolus for sport video.
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Figure 3: Example of three sessions from the dataset [243. fidure on the left represents the amount of data received for
each chunk. In the middle figure, the time to download eachkths!illustrated. The right figure shows the download rate of

users, calculated by the amount of data received (leftddiviby the download time (middle).

address for every chunk of the session. Elg. 3 illustrateptbcess we have used to compute the rate for each user. @Gftthe
we show the number of bytes in every two-second-long chunkhé middle, we show the time it takes for each IP address to
entirely download the chunk. These two values are from thiasgd On the right, we compute the download rate for each IP
address and for each chunk. Note that we do not consider 8gidifie chunks of each session, so that the rump-up phase of
each session is ignored. After we have computed the dowmbdadf each user, we select a representative populatioses$ u
from the 23,008 distinct IP addresses from the dataset. We first filter thelevpopulation and keep only the IP addresses of
those clients whos@&5th percentile of the download rate is lower or equaBtd/bps, which is the maximum encoding rate

in our encoded set. Out of these selected users we then ctimo#e addresses having the largest number of sessionseAt th
end, each user in our simulation framework is associateld arie of the selected IP addresses. The streamingtatef this

user is computed from all the measurements in the datasé¢éacorresponding IP address.

The display size (spatial resolution) s,,. We categorize users into classes based on the display.siae follows. We assume
that each user is characterized by the distribution of treglae streaming rate, as described above, based on theetlat
in [24]. Based on their rate, users request a display sizditaahe average available link capacity. For example, veociate
users to a display size of 224p if thé% of the user link realizations can be found bel@vi75 kbps. More formally, users
with the 75th percentile of download rate lower thdnb75 kbps (respectively2,400 kbps, 4,500 kbps, and 6,750 kbps) are



224p 360p 720p 1080p

bmin pmax bmin pmax bmin pmax bmin pmax
Movie 51 1961 67 2973 832 9378 1888 24803
Sport 183 1766 429 3190 1106 11517 1976 19471
Documentary 116 1488 231 2861 523 10607 1022 10945
Cartoon 52 1418 64 2006 451 5321 835 13133

Table IV: Minimum and maximum encoding rates Ahps.

associated to a display size of 224p (respectively 360pp @@ 1080p). For the sake of clarity, we use the name of few
devices to indicate each class of users: smartphone fordtis @associated with the 224p resolution, tablet for 368gop

for 720p and high definition television (HDTV) for 1080p. Mathat the device-based label we assign to users is not & stric
categorization, it is rather a shorthand to identify eaabugrof users as each group is homogeneous in terms of requeste
resolution and link capacity statistics. This classifizatleads to a scenario with) (respectively67, 161, and182) users in

the smartphone category (respectively tablet, laptop,HDdV).

C. Default ILP Settings

We detail now the default settings used in the ILP instanteied in the numerical analysis. These settings remaihamged
unless otherwise mentioned. First, the video catalognd spatial resolution se&f correspond to the video sequences and
resolutions indicated in Tablel Il and Taljle] I1l. The satisian coefficientsf,,,.; are fixed for each tripley r, s) according to
the satisfaction curves extrapolated from Ed. (2) with taeameters defined in TadlellX.

The set of encoding rate®® is computed based on the user satisfaction curves. In plntidor each videa at resolution
s displayed at a display size such that s,, we identify as minimum and maximum encoding rates thoséesirty a user
satisfaction 0f0.6 and 1, respectively. The rang®.6 — 1] is then discretized with a uniform step. In our case, a ste@(¥5
is considered, for a total of7 discrete values of the satisfaction function. For each eséhsatisfaction values, using these
values in Eq.[(R) with parameters in Talple] IX, we identify ttwresponding rate. The minimum and maximum encoding
ratesb™" and b for each videow and resolutions derived with this procedure are shown in Tablé IV.

In our tests, we use the user populatiénescribed in Sectidn TV3B, whose cardinalityld| = 500 users. Larger populations
could also be considered. Note however that the optimakssmrtations sets derived in this work are highly sensitvéhe
heterogeneity of users’ profiles, in terms of bandwidth aglested videos, and not necessarily to the populationneditgl.
The average CDN budget capacity per uggy i6 set to1,000 Mbps unless otherwise specified. This large valuegbimplies
that the system is not constrained by the overall CDN budgpacity. The maximum number of representatioR3 (s 132,
the fraction of users that must be servdd) {s 0.90 and the minimum fraction of time during which users shouldsbeved
(Ttin) is 0.20.

Finally, we would like to the mention that, for instancesatssl according to the above settings, CPLEX was able to solve
the ILP model in a few minutes on an Intel(R) Xeon(R) CPU E5&®.67GHz with 24 GB of RAM.

D. Video Player Controller

Given a representations set (either the solution of the ILBn@ based on a specific recommendation), we need to evaluate
the performance for realistic “sessions”, where a realigiiieo player mimics the behavior of real video player impdating
adaptive streaming technologies. To this end, we implernventdifferent rate-adaptive controllers:

ILP controller. Among the representations available at the server, eachasks for the one with the highest level function
among the ones with the encoding rate lower than or equaleaiier capacity. If no representation is available, the isser
not served (user imutagg and the user satisfaction is set to zero. This controllenios the behavior that is considered in
the ILP formulation.

No-outage controller. As above, each client asks for the representation with thledsit satisfaction level but with an encoding
rate lower than or equal to the user link. However, if no reprd¢ation is available, the client asks for the represemtat
that minimizes the excess between the requested encodgmd the available bandwidth. This is justified by the faet,t

in adaptive streaming scenarios, players are usually pgdipvith buffers that can temporally absorb small delays tdue
bandwidth fluctuations. We then assign to the user the aatish achieved by the requested representation, but wekaksp
track of the difference between the available bandwidth taedencoding rate selected by the client. Note that in thisrse
controller, each user is expected to be served, so that rageus experienced.

V. HOW GOOD ARE THE RECOMMENDED SET®

Today’s system engineers generally select encoding paessnior the representations following recommendationeryi
by systems manufactures or content providers. These aigalypversatile enough to apply to any possible scenarionmt



Representation 1 2 3 4 5 6 7 8 9 10
Aople Rate kbps) 150 200 400 600 1,200 1,800 2,500 4,500 4,500 6,500
pp Resoluion ~ 224p 224p 224p  360p  360p  720p  720p  720p  1080p plO80
Microsoft  Rate kbps) 350 400 900 1,250 1,400 2,100 3,000 3,450 5,000 6,000
Resolution 224p  224p  224p 360p 720p 720p 720p 720p 1080p pl080
Table V: Representations recommended by Apple and Mictosof
Representation 1 2 3 4 5 6 7 8 9 10 1

Rate Ebps) 150 250 350 500 650 750 1,000 1,400 1,500 1,600 1,750
Resolution 224p 224p 224p 224p 224p 224p 224p 224p 224p 224p 24p 2

Representation 12 13 14 15 16 17 18 19 20 21 22

Rate Ebps) 250 350 500 650 750 1,000 1,400 1,500 1,600 1,750 1,000
Resolution 360p 360p 360p 360p 360p 360p 360p 360p 360p 360p 20p 7

Representation 23 24 25 26 27 28 29 30 31 32 33

Rate bps) 1,400 1,500 1,600 1,750 2,350 3,600 1,500 1,600 1,750 2,350 3,600
Resolution 720p 720p 720p 720p 720p 720p 1080p 1080p 1080p 80p10 1080p

Table VI: Representations recommended by Netflix.

fully optimized with respect to content or context informoat In this section we provide results of a numerical arialyisat
addresses the following questidmow good are the recommended sets?

We focus on three recommended representations sets: A@pI¢3E] for HTTP Live Streaming (HLS), Microsofl [37]
for Smooth Streaming (see Talld V), and Netflix |[38], [8] (SExble[V]). Overall Microsoft and Apple recommenid
representations per video type, for a totalofrepresentations to be available at the server while Ne#icommends$3 per
video type,132 representations in total. Recommendations are compardtimé optimized representations sets, namely the
solution of the ILP formulation in Eq[{1). Optimal sets axaleated for different values of both the number of repres@mns
(parameter) and the CDN budget (paramet@) in the ILP formulation. Recall thaf' is the CDN budgeper user Both the
optimized and recommended sets are tested in the scenaddlo in Sectiof IV for the ILP and the no-outage contrslle

A. ILP Controller

The main performance metric that we consider in the ILP fdation is the average QOE per user, i.e., the average siditsia
In Fig.[4, we show the average QoE for various numbers of sgmtations and various values for the CDN budget. Our iesult
show that the recommended sets perform reasonably wellrmst@f QOE, confirming what has been presented_in [23].
Typically, Apple and Netflix recommended sets are almostaxigs the optimal one if the number of representations is not
constrained. However the optimized sets can perform eguadll with a smaller number of representations. Namely, l&pp
performance can be obtained witti = 32 representations and Netflix ones wiih = 80. It is also worth noting that there
exist representations sets that can also perform at leaselhsis Apple (respectively Microsoft) recommended setd wivo
(respectively four) times less overall bandwidth consuamp{CDN budget).

Cartoon Type

Representation 1 2 3 4 5 6 7 8

Rate (bps) 52 82 283 451 1,625 3,002 5,320 834
Resoluton 224p 360p 360p 720p 720p  720p  720p  1080p

Documentary Type

Representation 1 2 3 4 5 6 7 8 9

Rate (bps) 115 187 230 415 865 522 1,665 2,838 4,454
Resolution  224p  224p 360p  360p 360p 720p 720p 720p 720p

Movie Type
Representation 1 2 3 4 5 6 7 8 9 10 11

Rate Ebps) 51 178 746 67 368 556 832 1,103 1,596 2,424 3,645
Resolution  224p  224p 224p  360p 360p 360p 720p 720p 720p 720p 20p 7

Sport Type
Representation 1 2 3 4 5 6 7 8 9 10 11 12

Rate gbps) 183 429 771 955 1,371 1,824 1,106 1,993 2,876 3,755 5,068 7,239
Resolution 224p 360p 360p 360p 360p  360p  720p  720p  720p  720p20p 7 720p

Table VII: Representations optimized féf = 40 andC' = 3 Mbps.
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Figure 4: Average QoE for various size of the representatsmt (a) and various CDN budget constraints (b and c). Shee t
sets recommended by Apple, Netflix, and Microsoft have fixachmeters, their performances are only given by a dot.
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Figure 5: Average serving time per user (ratio of the numibelownloaded chunks to the total number of chunks) for vagiou
numbers of representatiods (a) and for various CDN budget valug (b and c).

To give a better understanding of the optimal represematset and how this differs from the recommended ones, Talble V
shows the optimal solution (i.e., optimal representatisey of the ILP forK = 40 andC = 3 Mbps. By comparing the
optimized set with the recommended ones (Table V and TaBjev€lcan notice thati) the former does not have an equal
number of representations per video tyg&) the encoding range changes according to the video type. ifleeedt videos
have different content characteristics (e.g., differention levels) and they are better represented by a nonsumiédlocation
of the rate over a given encoding range. In the following ise¢twe study in more details the behavior of the optimized
representation sets.

In addition to the average QoE, we are interested in reduttingoutage experienced by users. [Fig. 5 shows the average
serving time, i.e., the average time during which a user rigesk This serving time is normalized by the time duratioritef
session. Note that each users is served if it is able to requepresentation at an encoding rate lower than its owradlai
bandwidth. An average service time dfmeans no outage, in other words, for each user there is alwagpresentation
that can be downloaded, i.e., there is always a represemtaticoded at a rate lower than the link capacity of that user.
Intuitively, since the ILP takes into account all the pobsilink capacities experienced by users over time, it teiodsfter
a representations set well suited to channel dynamics. &hgts shown in Fig.l5 confirm this intuition. For every numbe
of representation&” and every value of the CDN budgét, the ILP can determine a representations set that covetdiveel
range of user capacities. It is worth noting that, in termse¥ing rate, the optimized set outperforms the repreientasets
recommended by Apple, Netflix, and Microsoft. This meang tha ILP formulation, which takes into account the channel
dynamics, provides a representations set more robust iowerthan recommended sets, leading to an average serviegofim
about0.9.

By combining the results of Fi§]l 4 and Fid. 5, we conclude thatrecommended sets perform well in terms of average QoE,
but at a price{i) a high number of representatioris;,) a high CDN budget, an¢iii) a low tolerance to variable downloading
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Figure 6: CDF of the total number of chunks vs. the downlogdmte overshooting. The number of representations of the
ILP is equal to the number of representations for both Micfiband Apple (a) and for Netflix (b) recommended sets.

rates. The above results, however, consider a simplistitralter in which a user cannot be served when the requested r
exceeds the available bandwidth, i.e., when the encoditggisagreater than the link capacity. To provide a fair corrgmar
with the existing recommendation sets, we analyze the padnce of the proposed set also for the no-outage controller

B. No-Outage Controller

We now analyze the optimized representations set when tlem\glayers implement the no-outage controller. This cilietr
is probably closer to the typical behavior of real clientartthe ILP controller, but it does not exactly corresponchrhodel
considered in the optimization problem in Ef] (1). We analyz this case thedownloading rate overshootingvhich is
experienced any time a user requests a representatioreat tret overshoots the channel link (i.e.< r). The downloading
rate overshooting metric measures how much the link capacibvershoot and it is evaluated asx (0, T;C). Note that we
consider only the case in which the representation ovetshhe channel bandwidth and not viceversa, so we do not td&e i
account negative values of the downloading rate overshgatietric. Ideally, we would like to constantly experiencatdl
downloading rate overshooting, i.e., we always would like tequested representation to be supported by the chankel |
In more realistic settings, in which the downloading ratersthooting is not null, we would like it to be as low as possibl
Indeed, a small downloading rate overshooting can be eabi#prbed by the buffer that is usually available at the tfien
player. On the contrary, a high downloading rate oversingatnight provoke video freeze for re-buffering.

Fig.[d shows the CDF of the event of downloading rate overshgdor both default numbers of representatidtis= 40 and
K =132, which are used by the recommendations under consideiiatibis paper. Note that in the ILP formulation, the CDN
budget is not constrained. In all cases, the recommendegeegbrm badly in comparison to what is obtained by the ogitim
representations set (although reducing the downloaditegongershooting isot the objective of the ILP formulation). In more
details, whenK = 40, the ILP finds representations sets with’% of chunks having a null downloading rate overshooting,
while it is less thar80% for Apple and70% for Microsoft. Furthermore, a high number of chunks are doaded with a
high downloading rate overshooting. For example, a dowdit@arate overshooting of 0.5 means that the video playedsee
a one-second buffer to compensate a two-second video dadinkp. For both Microsoft and Apple recommended sets, more
than 15% of chunks lead to such an annoying event. This result demaiestthat the optimal representations set takes into
account the channel variations without sacrificing the aV&oE.

VI. GUIDELINES

In this section, we perform a comprehensive set of experisngith the objective of providing songuidelinesfor selecting
the representation sets. To obtain general guidelines, eee to consider multiple parameters in the users’ populadiad
CDN characteristics in order to identify the main trendsisTiexibility cannot be achieved with the population delsed in
Section[1V since it is extracted from a specific data setremponding to only one population. We thus use the same Elea a
in [23], which is to generate a synthetic user populatiorrati@rized by a certain number of parameters. In this way ave c
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Network Minimum Maximum Attachment

Type Bandwidth Bandwidth Probability
(in Mbps)  (in Mbps)

WiFi (high load) 0.15 0.8 0.3

3G 0.4 4 0.2

ADSL-slow / WiFi (normal load) 0.3 3 0.1

ADSL-fast 0.7 10 0.3

FTTH 1.5 25 0.1

Table VIII: Different network types and corresponding paeders.
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nr of representations
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224p 360p 720p 1080p 224p 360p 720p 1080p

Resolution Resolution

(a) Resolution switching (b) No resolution switching

Figure 7: Number of representations per resolution, fohdgpe of videos, fork = 100.

explore different scenarios in a systematic manner by dhgnifpe values of these parameters consistently. In theviatlg,
we first describe how we generate the synthatier populations setd'hen, we describe the guidelines.

A. Synthetic User Population Generation

A useru € U is characterized by three parameters: requested videanstrg, requested resolutios, and local network
capacityc,. These three parameters are assigned as follows:

« vy, Users are randomly assigned to one of the four video typesidn Tabldl. Each video type has the same probability
(1 out of 4) of being selected.

e s,: users are randomly assigned to one of four device typesrtghtme, tablet, laptop and HDTV. Each device is
associated to a resolution: 224p, 360p, 720p and 1080p fartphone, tablet, laptop and HDTV, respectively. Again,
each device type has the same probability(t of 4).

e ¢, users are randomly assigned to one of the five network typ&alble[VIIl, using the probability given in the last
column of the table. Once a user is associated to a given fypetoork, ¢, is selected as a uniformly distributed random
value between minimum and maximum capacity (second and dulumn in Tablé_VTII).

In comparison with the population described in Sectiod. hd aimulated in Sectiof.]V, the link capacity of a users
not characterized by a cumulative probability distribatidt rather assumes a constant vatye The rationale behind that is
to avoid generating complex populations with arbitraryrofel variations, which challenges our original objecti¥édhaving a
common framework where population parameters can be easitlified. Thus, we run in the following the simplified version
of the system model that is actually equivalent to the ILF28]] and introduced in Sectioh. 1I}B.

B. Results
Studying the optimal representations sets evaluated adifferent populations, we derive foguidelines

Guideline 1: How many representation do we allocate per video type? The number of representations per video type
should be content-aware: a larger number of representatioeeds to be dedicated to more complex video sequences.

A weakness of the recommended representations sets ishéhatutmber of available representations is the same for any
video type, despite the different content characteristag.[4 shows the average number of representations deditatany
video type as a function of the video resolution for the oplimepresentations sets. Results are depicted for two :céses
when users can play representations encoded at a resatliffierent from their display resolution (resolution swiing), (i7)
when users are forced to only play videos encoded at thgitagigesolution (no resolution switching).
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A first important observation is that using resolution shiitg can drastically affect the optimal representatiorts & it
can be observed by comparing Hig. T(a) to IFig.]7(b). Givenuser satisfaction curves in Figl 2, when resolution switghi
is allowed (Fig[7(3)), high resolution videos (i.e., 108@gquire higher rates yet the user satisfaction is almaesttidal to
the one obtained using up-sampled 720p videos, which reguiower rate. This means that, in our setting, 1080p rasalut
videos are redundant in terms of quality offered to userd,valmen the total number of representatidfiss limited, redundant
representations are not included in the optimal set. If rsoltgion switching is allowed (Fig. 7(b)), videos at 1080p aot
redundant anymore, since they are the only resolution @atserve HD users. This comparison highlights the impoetaric
taking into account a QoE metric in the optimization aldarit A second consideration is that some videos clearly requi
more representations than others: ab®8ibn average for sport videos while only abdit— 14 representations on average
for cartoon, for the case of switching resolution. This istiied by the fact that sport videos have more complexityhia t
scene, leading to a wider range of QoE values than for the@ast Hence the need to have more representation for the spor
video type rather than for the cartoon type.

Rather than a uniform distribution of video types acrosgsjsee now study the optimal representations set for nofermi
popularity of video types. This should confirm that thesailtssare not biased by our default configuration.

Four video types are still considered, i.e., documentargyiey sport and cartoon, but onlj0% of users watch the
documentary, anothdi0% watch the movie, and the remaining watch either the cartdaheosport video. More precisely,
is the percentage of users watching the sport video,la®d z is the percentage of users watching the cartoon. In[Fig] 8(a)
the parameter: ranges from0 (no sport videos) td).8 (no cartoon videos). We measure the distribution of the remub
representations over the different videos whén= 100. In other words, Fig. 8(f) shows, out of the0 representations, how
many are dedicated to each type of video. For example, whéndpmrts and cartoon are requestedib¥ of the population,
representations are unequally distributed among vidag% for sport while29% for the cartoon). Similar observations can
be derived from Fig9, where we have considered the same video requests fradiabave (.1 for documentaryf.1 for
movie, z for sport, and).8 — z for cartoon) but for the case in which resolution switchisglilowed. Also in this case, when
both sports and cartoon are requestedib¥ of the population, representations are unequally digiithamong videosi{ %
for sport while18% for the cartoon). Figl_8(h) and Fig(a) confirm our previous observations. Some videos, likéooars,
are under represented irrespective of their popularitytd@a videos are th85.8% of the total of representations even when
they are requested 0% of the population. This shows that the the content inforamatieflected in our case by the QoE
user satisfaction function, is a critical input for selagtirepresentation sets.

Guideline 2: For each video, how do we allocate the available representations across resolution? The distribution of
the representation across resolutions should follow thstritiution of user population across resolutions, puttanrg emphasis
on the largest distributions.

For a first analysis of the representation distribution pesotution, we can refer again to Fig. 7(b). For a given video,
the number of representations increases with the resolubiat the increase is not substantial. Although the numlfer o
representations for sport videos is higher than for cartean find here that there are on averageepresentations at 224p
and7.4 at 1080p. This is however not a major trend.

To dig deeper in the trend of representations distributiacr®ss resolutions, we change the ratio of users’ devicéisein
population. Similarly to the ratio of users’ videos in thepptation in Fig[8(d), we consider an unequal allocation sdra
to devices:10% of the population is identified as tablet user8% as laptop users, and the remain@ is shared between
smartphone and HDTV users. We denotegbthe portion of HDTV users and.8 — y portion of smartphone users. Fjg. §(b)
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Figure 10: Relative popularity of representations (nundfersers requesting a given representation with respebietaverage
number of users requesting any representation in the tésolof said representation) vs. bit rate. No resolutiontsiwing.

and Fig.9(b) show the ratio of representations for every resolutionthe no switching and switching case, respectively. The
impact of the heterogeneity of users on the distributionesbtutions is less significant than for the popularity ofedd. The
evolution of the ratio of representations per resolutidiofes the evolution of the distribution of devices in the upepulation.
We also observe a slight over-representation of highedutisns independently of the ratio of HDTV users.

Guideline 3: For each video at a given resolution, how do we allocate the available representations acr oss the encoding
rates? The higher is the resolution, the wider should be the rangermfoding rates. Moreover, regardless the resolution, at
least one representation encoded at lowest allowed ratelldhalways be included.

With the proposed ILP formulation, we obtain an optimal &ett imaximizes the average user satisfaction. Howevegmsyst
engineers are also interested in maintaining consistenttyeir systems, trying to avoid for example that one repriegon is
accessed by a lot of users although another representatieessonly a few users. In Fig.]10, not only we get some vakiabl
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insights about the range of bit rates in the optimal repragiem sets, but we can also analyze the “popularity” of each
representation.

We define theelative popularityas a value that indicates whether a representation is ‘@ss&igned” (relative popularity
greater than one) or “under-assigned” (relative popuyldeisser than one). In particular, 1&tbe a set of representations for a
given video and a given resolution. Lebe one representation ib. Let n; be the number of users who watch said video at
said resolution. The average number of users per repréisentevhich is hereafter noted hy;", is given by%. Letn; be
the number of users assigned to representdtiorl. The relative popularity of the representatiba L is simply:

ny
avg

nr
In Fig.[10, we gather the results of several realization$iefuser population. No resolution switching is allowed iis figure.
We denote each realization as one run and we provide resultstbtal of five runs. One mark shows that one representation
has been created in one of the five runs for one of the videosed&ah mark, we show the bit rate and the relative popularity
of the representation.

Our first observation is that the higher the resolution, th@alter the range of bit rates for the representations. &jlpitor
the 1080p resolution, the bit rates ranges fro00 kbps to almost8,000 kbps. Such range is much larger than the one for
the 224p resolution, fror00 kbps to 2,300 kbps.

Our second observation is that there exists a dense arearekentations in the “south west” of every figure, meanirag th
there exist representations with the lowest possible ratéise optimal representations set, and that these refdsdigeTs are
overall not accessed much. There are two reasons for suditydém the low rates. First, the system has to ensure service
for users connected by low capacity links (i.e., small valoéc,). It is thus necessary to have a representation at one of the
lowest possible rates. Second, the gains in terms of QoEsarally large for low rates, so the encoding of a large numlber o
representations at low rates is valuable because a smedhise of the link capacity at the client side can result irgaicant
QoE gain. In other words, at a given resolution, the distdretereen two consecutive representations in terms of engduit
rate should be smaller for those representations with loats and higher for those ones with higher rates.

Our third observation is that no representation has a ‘fvelgiopularity” larger than three. Thus, a constraint onrtfaximum
number of users assigned to a representation is not negeathough it would be trivial to add it to the ILP formulatio
Similar considerations can be derived from Figl 11, wheselgion switching is allowed.
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Figure 12: Range of representations bit-rate whkeis limited. Bars are bounded, at the bottom (top), by theayeminimum
(maximum) value. The number over the bars indicates theageenumber of representations for the resolution. No ré&solu
switching.

Guideline 4: How can we save CDN bandwidth still guaranteeing a good representations set? To achieve low CDN
budgets, the range of encoding rates used at each resolstionld be narrow, the number of representations per resmiut
should be limited, mainly for large resolutions, and at lkease representation at the minimum possible bit rate shdad
included in the optimal set for each resolution.

One of the major concerns of content providers is to redueetsts of delivering video streams. Within this aim, we gtud
the influence of the parametér, the CDN capacityfor each user The analysis of the optimal representations sets aims at
identifying ways to maintain a good average user satigfadth under-provisioned configurations.

In Fig.[12, we focus on three critical CDN capaciti€s:= 1,000 kbps, C = 1,500 kbps, and C = 3,000 kbps. An average
CDN budgetC = 1,000 kbps represents a threshold value below which poor QoE (bélé)walues are experienced on average
for the requested representations. A budget'et 3,000 kbps is rather a threshold value above which an improvement of QoE
is no more experienced. This means that in our settings 3,000 kbps leads the system to be not constrained by the CDN
budget in Eq.[(1i), achieving good QoE scores (ab6yy. Finally, we considered an intermediate valtie= 1,500 kbps,
which should be enough to deliver a good quality of serviceders (abové.75). For each of these capacities, we provide
the maximum and minimum bit rates (averaged over 5 runs) efojhtimal representations sets. The number above the bar
is the average number of representations per resolutiorpandideo. The total number of representatidiisis 100 to be
distributed among all videos and resolutions.

For a low capacity ¢ = 1,000 kbps), there are very few representations, oy representations on average (evaluated
by summing the number above the bar for all resolutions addos in thel,000 kbps subplots) despite the maximum being
100. The ranges of bit rates are very small as well. An efficientase@epresentations in such an under-provisioned context
contains a few representations per resolution, at leastapriee minimum possible bit rate. A similar trend is visiblter f
C = 1,500 kbps. The number of representations increases, but the rangeis @ftes are still small. Note that similar trends
are observed in Fig.13, where resolution switching is allowed at the decoder.

Finally, the scenario wher€' = 3,000 kbps confirms our three first guidelines. The ranges of bit rateslamger for high
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resolutions, the number of representations depends oridkesrand the number of representations is slightly highehigher
resolutions.

VII. CONCLUSIONS

In this paper, we have proposed a new optimization problenthi® selection of the representations set that maximizes th
average satisfaction of users in adaptive streaming sgstéva modeled this problem as an integer linear program, &hos
optimal solution can be computed by a generic solver. Thangtset of representations is defined as the one that masémiz
the users’ satisfaction, given information about usersufaifwn, network dynamics, and video content. We have cotadi
a detailed numerical analysis of the performance of thentgdtrepresentations sets and the ones based on recomnoaisdati
from system manufacturers and content providers. We haeedsrived practical guidelines for system engineers imgehaf
the encoding process in adaptive streaming delivery systdfost of our study have considered dynamic network profdes
a given audience. As future works, we envision to extend tugysto dynamic clients requests.

This paper opens a large number of perspectives. It revealgap between existing recommendations and solutions that
maximize the average user satisfaction. Although the ssmtations sets can severely impact the average QoOE of msers
adaptive streaming, this topic is still overlooked in thierture. We therefore outline the importance of optingzthe
representations sets in today’s video delivery systemsgéatieer information from various engineers and stakehsltebuild
a reasonable model in both theoretical and practical ctsté&he large number of parameters to take into account when
addressing optimization problems in this area however pogertant challenges. This paper is a first step toward sebett
understanding of the interaction and correlation betwbeemumerous system parameters and the different blockofideo
delivery chain. It opens new perspectives toward the desfgprocesses that automatically set encoding parametetseat
ingest server of content delivery architectures.
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Video: Rush Field Cuts Video: Big Buck Bunny

Display Res. m n o) Display Res. m n o
Size Size
224 224 -0.10 188.63 196.92 224 224 -0.02 35.60 31.63
224 360 -0.04 167.48 62.29 224 360 0.11 2.045 -87.70
360 224 0.04 219.79 235.89 360 224 0.05 14.46 -60.65
360 360 -0.12 445.59 422.25 360 360 -0.02 49.20 116.24
360 720 -0.06 339.13 -164.01 360 720 0.04 23.97 -800.08
720 360 0.06 447.38 426.25 720 360 0.09 23.37 22.26
720 720 -0.10 1348.64  1574.48 720 720 -0.03  166.45 -65.56
720 1080 -0.03 852.28 262.06 720 1080 -0.01 80.94 -1156.78
1080 720 -0.03 1137.04 1025.20 1080 720 -0.07 511.04 1834.94
1080 1080 -0.07 1548.17  1286.62 1080 1080 -0.01 127.78  0623.

Video: Snow Mountain Video: Old Town Cross

Display  Res. m n o Display  Res. m n o
Size Size
224 224 -0.014 19.50 -68.49 224 224 -0.04  77.867 150.03
224 360 0.001 21.32 -120.68 224 360 0.02 65.49 86.00
360 224 0.09 25.49 -55.62 360 224 0.07 112.80 243.34
360 360 -0.02 52.52 -105.32 360 360 -0.04 136.26 259.10
360 720 0.01 74.37 -371.80 360 720 -0.04  462.16  4214.38
720 360 0.038 106.18 89.47 720 360 0.09  226.49 477.13
720 720 -0.018 187.43 -74.22 720 720 -0.01 119.49 -543.77
720 1080 0.01 204.12 -636.24 720 1080 0.04 148.76 -288.90
1080 720 -0.04 414.67 704.83 1080 720 -0.04 270.34 -61.45
1080 1080 -0.03 372.06 -165.76 1080 1080  0.02 148.38  -1898.7

to be displayed at size,.

Table IX: Parameters of the satisfaction function model.

APPENDIX
In this section, we provide further details on the user fattion function of Eq.[(2), which is given by

fu'urs =1- (muvs +

nuvs

br + Ouvs) .
In Table[TX we show the parametens,, s, n..s, ando,,s used in the curve fitting process for each videand resolutions

In Fig.[2, we have already compared the experienced QoE suwvith the one from the satisfaction curves evaluated from
Eqg. (2), for the sport video. In the following, we provide theer satisfaction curves for movie, cartoon, and documgnta

channel, respectively, in Fig. 114, in Fig.]15, and in [Fig. 16.

It can be noticed that, for low display sizes (224p or 360m3, ¢ase with no up/down sampling (i.e., the case in which the
display size is the same as the resolution size) is the oriewaiet) the highest satisfaction. This is expected sincedubtimnal
artifacts are introduced due to spatial filtering. Howe¥er,larger display sizes it might be more convenient to eecatlan
encoding resolution of 360p and then perform the up-sampiather than directly encode at 720p resolution. This can be
observed in the sport and documentary channels. Similarfatsthe display size of 1080p.
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Figure 14: Curve fitting for all the considered display resioins for cartoon video. Lines are real measures taken firem
video while circles represent the model.
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