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Abstract

For mobile multimedia systems, advances in battery technology have been much slower than

those in memory, graphics, and processing power, making power consumption a major con-

cern in mobile systems. The computational complexity of video codecs, which consists of

CPU operations and memory accesses, is one of the main factors affecting power consump-

tion. In this thesis, we propose a method that achieves near-optimal video quality while

respecting user-defined bounds on the complexity needed to decode a video. We start by

formulating a scenario with a single receiver as a rate-distortion optimization problem and

we develop an efficient decoder-complexity-aware video encoding method to solve it. Then

we extend our approach to handle multiple heterogeneous receivers, each with a different

complexity requirement. Our experimental results show that our method can achieve up

to 97% and an average of 97% of the optimal solution value in single receiver and multiple

receiver scenarios, respectively.

Keywords: Decoder complexity modeling, H.264/AVC decoding, H.264/SVC decoding,

motion compensation
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Chapter 1

Introduction

Mobile phones have been undergoing a tremendous evolution over the last two decades, start-

ing from simple cell-phones with only call services towards smart devices offering modern

services such as mobile Internet, maps and geo location, multimedia streaming, health-care

services, and so on. There has been a booming growth in the area of video streaming in

Internet daily usage. Consumers have a great interest in watching movies on-demand and

viewing video content on every possible device: High definition TV, video players, PCs,

laptops, netbooks, and smartphones. People enjoy the convenience of online video and

the high-resolution features that are now available universally. It is estimated that video

streaming of Netflix and YouTube content is responsible for 50.31 percent of overall Internet

traffic in North America during the peak part of the day according to the Global Internet

Phenomena Report [3]. Companies such as Netflix, Comcast, Time Warner, Hulu, Amazon,

among others, are working toward satisfying this growing demand.

Video streaming is also taking another step beyond the entertainment area into educa-

tion [36, 15] and health-care [5, 45], among other areas. Educators can take advantage of

documentaries, movies, and instructional videos to facilitate the learning process. Students

have a growing tendency to learn through moving images rather than text alone which has

been expressed in mobile learning. Teachers are incorporating educational applications to

improve the interactivity with the course content, increase learner engagement, and help

learners remember and retain concepts more easily [15].

Health-care providers have made important advances in video usage as well. Physicians

adopt video conferencing to confer with patients remotely from medical offices. Many com-

panies such as VIDIZMO [1] and StreamingWell [2] incorporate video and digital content

1



CHAPTER 1. INTRODUCTION 2

into their health-care solutions. One of the applications of video streaming is to help pa-

tients through mobile remote monitoring of chronic diseases in order to record their own

health measures and send them electronically to physicians for health-care cost reduction.

It can also be a key to inform patients about their medical care which enables them to

maintain their health more efficiently [47].

Apart from the technical applications mentioned above for video usage, video conferenc-

ing and live broadcasting services can be generally used to bring people at different sites

together. This technology can be simply used for a conversation between people in private

places (point-to-point) or to connect several sites in large meeting rooms at multiple lo-

cations (multipoint). Besides remote video conferencing of meeting activities, allied video

conferencing technologies are becoming a tool to share documents and display information

on virtual whiteboards. Smart-phone customers can benefit from such services too. How-

ever, these services have a different requirement than video on demand services: they must

stream the same video simultaneously to multiple receivers with different bandwidth and re-

source requirements. To address the different requirements in these settings, solutions such

as Scalable Video Coding (SVC) [39, 49] have been proposed and deployed. SVC creates

one or more subset of bitstreams, known as layers, each of which has a lower bit-rate than

the original video stream, and SVC offers different types of scalability including temporal,

spatial, and SNR/quality scalabilities. Each receiver can select the video layer(s) that it

needs depending on its capabilities and network bandwidth.

1.1 Motivation

In the current state of the art, most smartphones are powered by lithium-ion batteries [52].

There is some new progress to produce more power-efficient batteries using nanotechnol-

ogy [4], hybrid electrochemical characteristics [50], and many more, however its technology

growth is generally limited and not keeping pace with the new features added to mobile

devices that are loaded with a huge set of capabilities and functionalities.

A crucial problem for hand-held devices such as netbooks and smartphones is sustaining

a trustworthy long battery life given the large amount of energy required for video decoding

and rendering. Furthermore, as video codecs become more advanced with higher compu-

tational complexity, their power consumption increases. This can be seen in the H.264

video coding standard [22] which requires more power than its predecessor, and the HEVC
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specification [9] which is more complex and power-hungry than H.264.

Among various factors that affect power consumption, computational complexity, which

consists of CPU operations and memory accesses, is one of the main factors. In other words,

primary low level hardware operations are the most important factors that contribute to

energy consumption of mobile devices. Such factors can be used to estimate actual power

expenditures of hand-held devices indirectly from time complexity. The term ‘time com-

plexity’ refers to the amount of time that it takes to decode the video sequence expressed

as milliseconds or clock cycles. As described in [11, 10, 41, 17], in CMOS circuit design the

power consumption of computational operations is proportional to the number of processor

cycles per second (processor clock frequency) using dynamic voltage scaling (DVS) tech-

nology. It can be concluded from [17] that power consumption can be indirectly estimated

from the time complexity of the device based on average power-dissipation per clock cycle.

It should be noted that for simplicity the computational complexity of H.264 decoding is

quantitatively represented based on the basic operations and time complexity in this thesis.

Despite the fact that a high quality video is desirable for mobile customers, power lim-

itations of portable devices will force them to adopt a method for encoding video streams

that optimizes the trade-off between the video quality of a stream and the decoding com-

plexity in the receiver. Such a method would be a vital contribution for video-on-demand

content providers, such as Netflix and YouTube, who could use our method to enable longer

playing times for their mobile customers. In a same way, for mobile receivers in a video

conferencing or live broadcasting session, we need a method that can encode a video in a

way that optimizes the trade-offs between video quality and multiple decoding complexity

limits based on the video layer(s) to which the different receivers subscribe.

1.2 Research Problem and Objective

In this thesis, we first address the video on demand scenario by developing a method for

video encoders to maximize the video quality of a single video stream while guaranteeing

that the complexity needed to decode the video does not exceed a specific user-defined

threshold. We formulate this single threshold scenario as a rate-distortion optimization

problem and present an efficient decoder-complexity-aware video encoding method to solve

it. Our experiments with the H.264/AVC video codec show that our method can achieve

up to 97% of the optimal solution value. A preliminary version of this part of our work was
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presented in [20].

Then we extend our approach from the single threshold scenario to the multiple receiver

scenario of video conferencing and live broadcasting, taking into account the different com-

plexity restrictions of mobile users. Our method for this scenario is a decoder-complexity-

aware video encoding method that satisfies the decoding complexity requirements of mul-

tiple users while maximizing the overall video quality of all layers. Our experiments with

H.264/SVC show that an average of 97% of the optimal solution value can be achieved.

In our work, we focus on the motion compensation process, including motion vector

prediction and interpolation, in which macroblocks coded with different inter prediction

modes have different decoding complexities. The motion compensation process accounts

for as much as 38% of the decoding complexity [19] and is the single largest component of

computation-based power consumption.

1.3 Research Contributions

This thesis presents a theoretical and offline approach for decoder complexity-aware encod-

ing that uses decoding configuration and parameters to ensure the complexity needed for

decoding the video on mobile device does not exceed the requested threshold.

The new contributions included in this thesis are as follows.

• Exploiting the trade-off between complexity, video quality, and bit-rate

• Formulation of the complexity-rate-distortion (C-R-D) problem for the decoder

• Proposing a memory-efficient method for solving the C-R-D problem in a feasible

amount of time

• Proposing a new and fast heuristic method to solve the C-R-D problem for a GOP

(group of pictures) with negligible time overhead on the encoding process

• Combining the last two methods to create a comprehensive hybrid method for ad-

dressing decoder complexity-aware encoding for the single receiver scenario

• Proposing a new recursive method to address decoder complexity-aware encoding for

the multiple receivers scenario with a feasible time overhead
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1.4 Research Publications

In addition to the above contributions this research has led to the scholastic achievements

and publications listed below.

Journal Paper:

• Mohsen Jamali Langroodi, Joseph Peters, and Shervin Shirmohammadi. Decoder-

Complexity-Aware Encoding of Motion Compensation for Multiple Heterogeneous

Receivers, in ACM Transactions on Multimedia Computing, Communications and Ap-

plications (TOMM), (revised version in review), 2015 [21].

Conference Publications:

• Mohsen Jamali Langroodi, Joseph Peters, and Shervin Shirmohammadi. Complexity

aware encoding of the motion compensation process of the H.264/AVC video coding

standard, in Proceedings of Network and Operating System Support on Digital Audio

and Video Workshop, NOSSDAV ’14, pages 103-108, ACM, New York, NY, USA, 2013

[20].

• Mehdi Semsarzadeh, Mohsen Jamali Langroodi, Mahmoud Reza Hashemi, and Shervin

Shirmohammadi. Complexity modeling of the motion compensation process of the

H.264/AVC video coding standard, in Int. Conf. on Multimedia and Expo (ICME),

pages 925-930, IEEE, 2012 [40].

1.5 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 - Related Work: discusses existing approaches to related research topics and

compares them to our approach

Chapter 3 - Background: essential multimedia and algorithmic background are reviewed

Chapter 4 - Methodology: our methodology and approaches are described in detail

Chapter 5 - Implementation: experimental setup and implementation details are ex-

plained

Chapter 6 - Experiments and Analysis: presents our experimental results and perfor-

mance evaluations
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Chapter 7 - Conclusions and Future Work: summarizes our work and discusses future

research possibilities



Chapter 2

Related Work

In the following sections, we will discuss the related work in each category of complexity

related video coding and decoding. Then, we explain the drawbacks associated with the

discussed related work and also compare them to our approach to clarify how our proposed

approach differs from them.

Power consumption restrictions have recently generated a major interest in complexity

reduction, modeling, and control in video coding applications. Some of the previous research

efforts are dedicated to low-complexity video encoding on the transmitter side of H.264/AVC

standard components [32, 53, 51, 12] while some others have focused on the same concept

on the receiver side [46, 13, 23].

2.1 Complexity Reduction on the Encoder Side

This first category is about decreasing the computational complexity of the encoding process

while maintaining the same video coding performance.

In [53], a weighted-window complexity model based on QP (quantization parameter)

decisions and a MAD (Mean Absolute Deviation) prediction model is proposed to decrease

the computational complexity of Macroblock-layer (MB-layer) rate control. The relationship

among QP, MAD, and the total number of coded bits is analyzed to decide the size of the

QP window. The final QP is computed using the MB-layer bits allocation and the previous

macroblock’s QP with consideration of the remaining available bits.

In [51], the conventional H.264 rate distortion optimization algorithm is modified for

error-prone video transmission environments. The rate-distortion (RD) cost function for

7
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motion estimation is improved by means of lost packet concealment to show better PSNR

(Peak signal-to-noise ratio) on video output. The authors have analyzed the complexity of

their proposed rate-distortion optimization and have shown that the actual computational

complexity is noticeably decreased.

A new fast and optimized algorithm to perform motion estimation and mode decision for

the encoding of depth sequences in free viewpoint video is proposed in [12]. Free viewpoint

video uses a high number of viewpoints of a video which are used to reconstruct a 3-D

scene. Each viewpoint is coded as a traditional sequence called texture together with a gray-

scale depth that shows the 3-D characteristic of the video. In this work, the authors have

analyzed the motion characteristics of video plus depth and exploited the redundancy that

exists among textures since they are representing the same scene captured by a traditional

camera. They took advantage of this redundant information to considerably reduce the

computational burden on the encoder.

2.2 Complexity Reduction on the Decoder Side

The second category of related research focuses on the decoder side complexity burden. In

fact, many heuristic ideas are proposed to facilitate receiver side computations. In [46], the

authors have proposed a low complexity deblocking filter algorithm for multi-view video

coding by investigating view correlations in the motion skip coding mode. They claimed

that if the boundary strength (BS) value, which is a one of criteria for smoothing the

edges in deblocking filter component can be directly copied from the associated reference

macroblock in a neighbor view, then a significant amount of deblocking filter computations

can be eliminated with negligible quality degradation.

Another deblocking filter heuristic idea is proposed in [13] to decrease the amount of un-

necessary BS decisions leading to a computational complexity reduction for this component.

The authors exploit the number of operations involved in each BS type in the deblocking

filter process and also apply a newly designed filter which is much simpler than the con-

ventional filter to each BS type. A fast prediction algorithm is also proposed to determine

the BS of successive Lines of Pixels (LOP) using the BS of the first LOP since they possess

similar characteristics and amounts of blocking artifacts.

In the same area but with a different platform, a fast smoothing decision algorithm is

proposed in [23] to reduce the computational complexity of intra prediction in an HEVC
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decoder hardware architecture. More precisely, the proposed architecture employs a fast

smoothing decision algorithm to reduce the complexity of intra prediction hardware. This

proposed piece of hardware is a shared operation unit that shares adders for computing

common operations of smoothing equations to eliminate computational redundancy and

reduce the number of the execution cycles of the component.

2.3 Complexity Modeling of Decoder

There have been numerous attempts to create comprehensive modeling schemes for decoders

to pave the way of establishing a decoder complexity controller infrastructure. In [29],

the authors modeled the whole H.264/AVC video decoding process by determining the

fundamental operation unit, called Complexity Unit (CU), in each decoding module. Each

module, based on its individual properties has its own CU such as bit parsing, macroblock

data structure initialization unit, half-pel interpolation, and so on. Such CUs are determined

empirically for a fixed implementation and then a product of the average number of cycles

required by each CU over a frame or a GOP times the number of CUs reported in a decoder

module as the time complexity. To validate, the proposed complexity model is tested on

both Intel and ARM hardware platforms to decode H.264/AVC bitstreams.

In a similar way, a complexity model of the motion compensation component of a video

decoder based on the number of cache misses, the number of y-direction interpolation filters,

the number of x-direction interpolation filters, and the number of MVs (Motion Vector) per

MB was presented in [25]. It is worth mentioning that this work is similar to the model

proposed in [40]; in both models, there is a weight associated with each number of complexity

units calculated in a training phase. Firstly, the number of each CU is extracted in a training

pool of video sequences during the encoding phase, and then each bitstream is decoded on

the encoder side to find the best fitting weights for each CU to establish an estimation

model.

The authors of [25] have also performed a complexity analysis of the entropy decoder

module for both context-based adaptive variable length coding (CAVLC) and universal

length coding (UVLC) which is supported in all profiles of the H.264/AVC codec. The

model has been proposed as a function of the number of CAVLC executions, the number of

trailing ones, the number of remaining non-zero quantized transformed coefficients, and the

number of run executions. The H.264/AVC encoder integrated with the proposed complexity
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control scheme can generate a bit stream that is suitable for a receiver platform with a

power/hardware constraint [26]. The main difference between the work in [26] and our

proposed method is the components that have been studied. In addition, in contrast with

the models proposed in [26] and [25], the model used in this thesis, based on [40], can be

utilized in any desired implementation, both hardware and software.

Recently, an analytical energy consumption and decoding performance model similar to

the model in [40] was presented in [7]. The model achieves a balance between the abstract

high level and detailed low level based on the video bit-rate and clock frequency. Parameters

are extracted and evaluated to determine their relationships to decoding speed and thereby

to energy consumption. Nevertheless, the authors in [7] have only focused on complexity

modelling of the H.264/AVC standard, whereas in this thesis a generic decoder complexity-

aware encoding has been developed based on the proposed complexity model in [40].

2.4 Power-Aware Video Encoding

The main concern in power-aware video encoding is the power shortage in encoding devices

such as portable cameras and sensors that capture and record long video sequences.

One of the most recent efforts concentrated on power-aware video encoding while max-

imizing video quality under specific encoder constraints. In [27], the authors tackled the

power consumption of surveillance cameras without power lines by proposing an optimal

video coding configuration to enhance video quality based on the remaining charge in the

battery. Stochastic event characteristics and the nonlinear discharge of the battery are con-

sidered to change the behavior of the power expenditure. To be more exact, whenever a

suspicious event occurs within the camera’s scope making the sum of the absolute differ-

ence (SAD) between the captured image and background image larger than a predefined

threshold value, the camera will capture the video with higher complexity encoding leading

to higher video quality. The proposed scheme also estimates the remaining event active du-

ration to set the IDR (Instantaneous Decoding Refresh) period to increase the video quality

as much as possible given the battery energy constraints.

In [14] and [28], the conventional rate-distortion model was extended to a new model for

controlling power while optimizing the bit rate and visual quality of a video. In [14], the

prediction stage was optimized for energy-constrained compression using a new framework

called RDE (Rate-Distortion-Energy) optimization by adding a new energy dimension. This
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dimension is derived from a wide range of encoding parameters, such as number of iterations,

and data size, which influence the demanded energy while some others do not. Simply put,

the central idea of this paper is that the demanded energy and encoder cost might be

differently affected by different parameters. The authors have investigated this issue by

measuring energy and encoder cost on comprehensive training data sets which cover all

possible parameters.

In [28], a new delay-power-rate-distortion model was proposed based on encoding pa-

rameters such as macroblock coding mode, search range, number of reference frames, and

quantization parameter. The purpose of this model is to exploit the relationships among

video encoding time, power, bit rate, and distortion. The authors have done so by deter-

mining encoding time of the above mentioned parameters independently with experimental

results, and then computing the correlated function theoretically. An encoding time and

power model is also provided in their formulation. At the end, the finalized model is empir-

ically verified and validated to show its accuracy. The main difference between this research

and ours is that we focus on the power consumption of the decoder instead of the encoder.

2.5 Power-Aware Video Decoding

Power-aware video decoding takes into account the computational complexity consumed

during the decoding phase in portable devices.

In this regard, a power-aware H.264 video decoding method to satisfy decoder real-

time requirements was recently proposed in [43]. This method selects appropriate temporal

and quality layers based on their computational complexities to satisfy decoder real-time

constraints. In contrast, the goal of our method is to satisfy real-time constraints on both

the encoder and decoder sides while ensuring that decoding complexities do not exceed

thresholds requested by user devices. In addition, instead of choosing layers, the method

that we propose for the scenario of multiple complexity constraints adapts the complexity

of each layer to its corresponding user request and ensures that the decoding complexities

do not exceed specified thresholds.

One of the most recent works, [16], has focused on complexity-aware adaptive scalable

video coding similar to our multiple receiver approach. The method in [16] uses a dynamic

transition for Region-of-Interest (ROI) that adaptively changes encoding and decoding com-

plexity using various preprocessing parameters such as standard deviation, kernel matrix
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size, and number of applied filters. The method presented in [16] is not as flexible as our

approach in adjusting the video complexity, since it only considers the Region-of-Interest

properties. As a matter of fact, the video encoder is forced to use the ROI feature during the

encoding phase to perform complexity-aware video coding, whereas in our approach there

is not such limitations.



Chapter 3

Background

In this chapter, we explain some necessary background about the H.264 video codec, includ-

ing the scalable video coding standard, and also essential algorithmic background needed in

our proposed method.

3.1 H.264 Advanced Video Coding

The content of this chapter is derived from [34] therefore for more information the reader

is referred to this book. In general, multimedia data, including video, do not follow a

uniform pattern. Level of activity, detail, motion speed, and direction are factors that

impact the encoding process, hence each frame in the video is partitioned into smaller

pieces called macroblocks. In the motion estimation process, using smaller blocks leads to

more compression and higher detail. H.264 allows the encoder to do motion estimation on

16 × 16, 16 × 8, 8 × 16, and 8 × 8 blocks and these blocks can be further partitioned into

blocks as small as 4× 4 for even better effectiveness if necessary as shown in Figure 3.1. A

motion vector is associated with each block to transfer the motion data of the picture to the

decoder. The error in motion prediction is called residual and it is defined as the difference

between the reconstructed picture and the original one. Motion vectors accompanied by

residuals are compressed and sent to the decoder so that it would be able to recover the

exact video block information on the receiver side.

The improved flexibility in H.264/AVC in comparison to former video coding standards

is one of the strong points of this newly proposed codec. This flexibility has been well

studied at the macroblock level, and is supported by various intra prediction modes as

13
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Figure 3.1: Different macroblock sizes in H.264 video coding standard

well as fine-grain macroblock partitioning options for motion-compensated prediction which

did not exist in older video coding standards. However, a significant amount of progress

has been made in H.264/AVC for flexible prediction methods at a picture/sequence level.

In contrast to older video coding standards, for the sake of coding efficiency, the coding

technique and display order of pictures is completely changed. Furthermore, a picture can

use any arbitrary preceding pictures as a reference frame for motion-compensated prediction

independent of the coding type of the corresponding slices.

When sub-pel mode is enabled in the motion estimation process, motion vectors are

reported at quarter precision of the distance between luminance samples of the picture. In

a case where the motion vector points to an integer-sample position, the prediction signal

will be retrieved from the reference picture directly; otherwise the corresponding sample is

computed using a specific interpolation method to generate non-integer positions. Luma

and chroma components are interpolated separately. The prediction values at half-sample

positions are calculated by applying a one-dimensional 6-tap FIR filter horizontally and

vertically using the formula

b = round((E − 5F + 20G+ 20H − 5I + J)/32)) (3.1)
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Figure 3.2: Interpolation of luma half-pel positions

where b is the half-pel interpolated pixels, and, F , G, H, I and J are the neighboring

integer pixels as demonstrated in Figure 3.2. The same calculation occurs for h, m, and s

half-pel pixels, however h and m use vertical neighbor integer pixels. Eventually, pixel j is

interpolated from neighbor half-pel pixels (cc, dd, h, m, ee, and ff). The quad-pel pixels

located at positions that are a quarter of unit, are generated by averaging samples at integer

and half-pel positions. For chrominance interpolation, there is no difference between quad

and half pixels. In fact, each interpolated sample is generated by engaging a 4-tap filter on

four neighboring chrominance pixels with integer precision, using the following formula.

a = round([(8− dx) · (8− dy)A+ dx · (8− dy)B + (8− dx).dyC + dx.dyD]/64) (3.2)

Here A, B, C and D are the neighboring chrominance pixels in integer precision, a is the

interpolated sample, and dx and dy are the distance between a and A, in pixels.

Figure 3.3 illustrates an example of fractional sample luma interpolation when the x-

and y-components of the motion vector are in quad and half precision respectively. Black

pixels represent integer pixels, and for other pixels their resolution in the horizontal and

vertical direction are shown with I, H and Q symbols which represent Integer, Half and

Quad precision, respectively. Pixel symbols in Figure 3.3 are interpreted in Table 3.1.
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Precision in X-axis Precision in Y -axis

HI Half Integer
QH Quad Half
HH Half Half
IH Integer Half

Table 3.1: Different type of sub-pel used in the example of Figure 3.3

According to Figure 3.3, in order to obtain a QH sub-pixel, an IH and an HH pixel

are required. Each IH pixel is generated by using the 6-tap filter of Equation (3.1) on

its 6 vertical surrounding integer pixels. In the same way, each HH pixel is produced by

using the 6-tap filter on its 6 vertical surrounding HI pixels. In the same way but in a

different direction, each HI pixel is extracted by applying the 6-tap filter to its 6 horizontal

surrounding integer pixels [34].

3.2 H.264 Scalable Video Coding

The Scalable Video Coding amendment (SVC) of the H.264/AVC standard provides network-

friendly scalability at a bit stream level with a modest increase in decoder complexity relative

to single-layer H.264/AVC. The output of the video encoding process is a bit-stream con-

sisting of the concatenation of bit-streams for several layers; the goals are to adapt the video

stream according to bandwidth constraints and to be a solution for congested networks. In

addition to bit rate adaptation, SVC can fit the video stream into a specific format, perform

power adaptation, provide graceful video degradation in error-prone environments, and per-

form lossless conversion of quality-scalable SVC bit streams to single-layer H.264/AVC bit

streams. These functionalities have created a tremendous improvement in transmission and

storage applications. SVC has achieved these improvements in coding efficiency with a wider

range of supported scalabilities than the ones introduced in prior video coding standards.

This section is based on the content of an invited paper [39].

The motivation for scalable video coding originates from the increasing capabilities of

electronic devices and the expanding usage of networks and distributing systems that have

unreliable connection quality. In particular, the most important applications of video en-

coding and decoding are in the Internet and wireless networks. Video transmission in such
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Figure 3.3: half and quad interpolations for a 4× 4 block with quad MVx and half MVy
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Figure 3.4: Scalable video coding scheme in a heterogeneous environment

systems, which are not error-free environments, can be dealt with using scalability features.

Furthermore, in some applications video content is sent to a variety of decoding receivers

with heterogeneous display and computational capacities (see Figure 3.4). One of the pri-

mary goals of such systems in these diverse environments is flexible adaptation of the content

that only has to be encoded once, while enabling the integration of the encoder and decoder

products from different sources.

SVC standardizes the encoding of a high-quality video bitstream that consists of one or

more subset bitstreams. Each subset can be decoded hierarchically with a reconstruction

quality similar to the original version encoded by the existing H.264/MPEG-4 AVC design

with the minimum data usage overhead. The subset bitstream is derived by dropping packets

from the larger bitstream. A subset bitstream can represent the following types of lower

resolution and perceptual visual quality.

• Temporal scalability (frame rate): in this scalability, the frame rate of the video will

change depending on the layer that the user chooses. It can be done by dropping a

complete frame from the bitstream.

• Spatial scalability (picture size): the video is coded at multiple picture sizes. Mac-

roblocks for pictures in higher resolutions can be predicted from previous reference

frames of the same resolution and can also use lower resolution frames in the same

temporal layer in order to reduce the bit rate and improve coding efficiency.

• SNR/Fidelity scalability (Quality): the video is coded at a certain spatial resolution
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Figure 3.5: The basic types of scalability in video coding

but with different qualities. SNR scalability can be considered to be a special type of

spatial scalability with identical picture sizes. In this modality, different qualities can

be achieve by requantizing the residual texture signal in the enhancement layer and

modifying the quantization step size.

• Combined scalability: a combination of the 3 modalities described above.

All type of scalabilities are depicted in Figure 3.5.

A hierarchical prediction structure with four layers is depicted in Figure 3.6. The first

picture of a video sequence is intra-coded as the IDR picture shown as a black bar in

Figure 3.6. A picture is referred to as a key picture when all previously coded pictures

antecede this picture in display order. As illustrated in Figure 3.6, all pictures that are

temporally located between the two consecutive key pictures are considered to be a group of
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Figure 3.6: hierarchical prediction structure in SVC

pictures. The key pictures are not necessarily intra-coded; they can be coded dependently

using previous (key) pictures as references for motion-compensated prediction (inter-coded).

The remaining pictures of a GOP are recursively predicted as illustrated in Figure 3.6. One

of the innovative ideas in SVC is the hierarchical B or P picture structure that will enable

us to efficiently implement temporal scalability with dyadic temporal enhancement layers.

In order to create a temporal scalability feature, a set of corresponding temporal access

units should be partitioned into a base layer and one or more enhancement layers with the

following property. In Figure 3.6, the frames labelled T0 represents temporal frames for the

base layer, and Tn, n ≥ 1 shows the nth enhancement layer. Then the bit stream that is

achieved by removing all the access units of Tk, k > m, will create temporal layer m for the

decoder.

Spatial and quality scalable coding are also supported in SVC through the conventional

approach of multi-layer coding which has been utilized before in previous standards. In

each spatial layer, in addition to motion-compensation prediction and intra prediction as it

is employed for single-layer coding, SVC provides another prediction method called inter-

layer prediction (see Figure 3.7). In this method, statistical dependencies and redundancy

between the layers is taken into account to improve the efficiency of the motion compensation

process in enhancement layers.

Basically inter-layer prediction targets the reconstructed samples of the lower layer signal
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Figure 3.7: inter-layer prediction structure in SVC

with an appropriate resolution to use for upper layers. There are two options for obtaining

prediction signals; either they are formed by applying motion estimation to the up-sampled

version of the reconstructed lower layer signal which could be the base layer or an enhance-

ment layer, or by averaging such an up-sampled signal with the signal predicted from the

same spatial layer. It seems that the reconstructed lower layer signals represent a perfect

sample of lower layer data, but in fact they are not necessarily the most suitable reference

for prediction. Usually, the inter-layer predictor should consider both temporal and inter-

layer prediction to make a logical decision in terms of bit rate and coding effectiveness.

Such dependency on temporal layers will be exacerbated for sequences with slow motion

and high spatial detail structure; the temporal prediction signal generally exhibits a better

approximation of the original data than the upsampled lower layer reconstruction. A few

more spatial scalable coding techniques exist in the standard which are more advanced in

this regard such as prediction of macroblock modes with associated motion parameters, and

prediction of the residual signal. The reader is referred to [39] for more detailed information.
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3.3 Review of Complexity Modeling of Motion Compensa-

tion

In this section, we describe the complexity modeling scheme that we have utilized in this

thesis to predict decoder processing time accurately. In the motion compensation process, in

addition to the reconstruction process of pixels, the interpolation accounts for a significant

share of the computational complexity of the motion compensation process. Macroblock size

and sub-pel precision are the factors that make the bit stream more complicated to decode

on the receiver side. The computational complexity is directly related to the amount of

interpolation performed on the decoder side. In our previous work presented in [40], a

generic complexity model based on an algorithmic analysis of the motion compensation

process is proposed which considers the influence of mode decisions and interpolation on

the computational complexity of the decoder.

The motion compensation process of the H.264/AVC standard is performed for each

inter coded macroblock. The MC module gets residual data and its corresponding motion

vector as input. For each motion vector value, the corresponding reference block is read

from the frame memory. An interpolation operation may be performed on this block if the

motion vector has half or quad precision. Finally, the residuals are added to the interpolated

block to reconstruct the corresponding block.

For the luma pixels, the interpolation is applied by engaging a specific Finite Impulse

Response filter on neighboring pixels as shown in Equation (3.1). If the motion vectors have

quad precision, then the quad interpolation will be computed after half-pel interpolation

from the resulting half pixels using a linear interpolation operation showed in Equation (3.2).

Essentially, the basic operations in motion compensation such as addition, multiplica-

tion, shift, and memory access contribute to the complexity of the hardware and software

implementation. In each filter operation, the number of basic operations involved depends

on the type of interpolation and the size of the macroblock. The Computational Com-

plexity (CC) is therefore equal to the total numbers of basic operations multiplied by their

corresponding weights:

CC =

n∑
i=1

Pi ·Wi (3.3)

where Pi represents the number of ith basic operation and Wi is its corresponding weight.

Pi parameters can be defined according to the algorithm and Wi is adjusted based on the
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implementation and platform specification. Total Computational Complexity of a video

sequence (TCC) can be divided into time complexity and space complexity categories as

follows.

TCC = TimeComplexity + SpaceComplexity

T imeComplexity = α ·NSum + β ·NMul + γ ·NShift

SpaceComplexity = µ ·NMem

(3.4)

Here α, β, γ, and µ are the weight parameters, while NSum, NMul, NShift, and NMem

are total numbers of additions, multiplications, shifts, and memory accesses, respectively.

These weights are not pre-defined values, rather they are trained with a set of pre-encoded

bit streams which will be explained later. The numbers of basic operations (i.e. NSum, NMul,

NShift, and NMem) are determined based on macroblock mode, size and the precision of its

motion vectors. According to the MC algorithm of H.264/AVC, the interpolation operation

for each macroblock is applied on its m × n blocks of size 16 × 16, 16 × 8, 8 × 16, 8 × 8,

8× 4, 4× 8, and 4× 4 separately. By analyzing (3.1), (3.2) and the MC algorithm, we can

find the number of each basic operation shown in Table 3.2.

TimeComplexity NSum NMul NShift

Luminance
Half-pel Interpolation Complexity 5 4 1
Quad-pel Interpolation Complexity 1 0 1

Chrominance Interpolation Complexity 7 8 1

Table 3.2: Number of basic operations for interpolation of a single pixel

It should be noted that the total number of memory accesses (NMem) is computed based

on the block size and the precision of its motion vectors, hence a pixel level formula cannot

be defined for this operation. In order to find the time complexity at block level for NMem

as well, we need to determine the required number of interpolations for a block based on

its size and motion vector precision. For an m × n block, the number of half and quad

interpolation operations as well as the number of required memory accesses for luminance

and chrominance are presented in Table 3.3.

Using the information of Tables 3.2 and 3.3, the number of basic operations for time and
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MVx MVy NL
Half NL

Quad NL
Mem NCh NCh

Mem

I I 0 0 m · n

m.n/4

I H m · n 0 m · (n+ 5)
I Q m · n m · n m · (n+ 5)
H I m · n 0 n · (m+ 5)
H H (2n+ 5) ·m 0 (m+ 5) · (n+ 5)
H Q (3n+ 5) ·m m · n (m+ 5) · (n+ 5)
Q I m · n m · n n · (m+ 5)
Q H (3m+ 5) · n m · n (m+ 5) · (n+ 5)
Q Q 2m · n m · n m · n+ 5(m+ n)

Table 3.3: Number of half and quad interpolations and number of memory accesses for a
m× n block

space complexity can be computed:

NSum = 5 ·NL
Half +NL

Quad + 7 ·NCh

NMul = 4 ·NL
Half + 8 ·NCh

NShift = NL
Half +NL

Quad +NCh

NMem = NL
Mem +NCh

Mem

(3.5)

In order to obtain the total complexity of a sequence on a specific platform and imple-

mentation, we need to adjust the weight parameters. An initial encoding is necessary to

extract the number of each basic operation using (3.5) on a training set of sequences. The

encoded streams will be sent to the decoder and the empirical TCC (TCCempirical) will be

extracted to help us tune the weight coefficients. When the number of each basic operation

and the TCC values are found, we can determine the model weight parameters denoted

as α, β, γ, and µ in (3.4) by using the constrained-least-squared method for curve fitting.

Once the weights are initialized and tuned, the model is established and can be used to

estimate the TCC of motion compensation for sequences outside of the training set which

is called TCCestimate. The whole complexity modeling process stated above is summarized

in a flowchart shown in Figure 3.8. For evaluating the simulation results and more detailed

information, we refer readers to [40].

In this thesis, our goal is to control the computational complexity involved in motion

compensation at the decoder. Thus, a generic complexity model is needed to monitor motion

compensation and ensure that it does not exceed pre-defined complexity thresholds for both
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Figure 3.8: Complexity modeling of H.264 motion compensation process
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Figure 3.9: The graph used in sequence alignment algorithm

the single and multiple receiver scenarios. We have used [40] as our generic model, and our

proposed solution, described in Chapter 4, depends on it.

3.4 Algorithmic Background

In this section, we describe the sequence alignment algorithm from [24] which is based on

the shortest path in an edge-weighted matrix graph as shown in Figure 3.9. This method

is very efficient in terms of memory and running time. Given a directed graph G = (V,E),

V (i, j) ∈ V is a vertex in row i and column j, and E1(i, j), E2(i, j), E3(i, j) are the weights on

the edges entering to V (i, j) horizontally, diagonally, and vertically (if available) respectively

(see Figure 3.10).

The goal is to find the shortest path from V (0, 0) to V (m,n). Let f(i, j) be the length of

the shortest path from V (0, 0) to V (i, j) which can be computed using dynamic programming

in O(mn) running time. The recurrence relation for the dynamic programming formulation

of finding the shortest path is shown in Equation (3.6)(also see Figure 3.10).

f(i, j) = min(f(i, j − 1) + E1(i, j), f(i− 1, j − 1) + E2(i, j), f(i− 1, j) + E3(i, j))

f(0, 0) = 0
(3.6)

Similarly, let g(i, j) be the length of the shortest path from V (m,n) to V (i, j) which
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Figure 3.10: Dynamic programming approach in computing f(i, j)

can be computed by reversing the edge orientations and inverting the roles of V (0, 0) and

V (m,n) (see Figure 3.11). Both f(i, j) and g(i, j) can be solved by the following divide and

conquer method.

• Divide: find f(i, n/2) and g(i, n/2) for all 0 ≤ i ≤ m

• Conquer: find index 0 ≤ q ≤ m that minimizes f(q, n/2) + g(q, n/2)

Once index q has been found, V (q, n/2) will be a part of shortest path (see Figure 3.12).

Thie method is then applied recursively to two smaller instances to find other vertices of

shortest path (see Figure 3.13).

In terms of implementation, two rows of the matrix need to be stored for each instance

of problem which implies O(m) space complexity. Let T (m,n) be the running time of this

algorithm on a graph with size of m rows and n columns. Then we have

T (m,n) ≤ 2T (m,n/2) +O(mn)⇒ T (m,n) = O(m · n · logn). (3.7)
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Figure 3.11: Dynamic programming approach in computing g(i, j)

Figure 3.12: Shortest path from V (0, 0) to V (m,n)
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Figure 3.13: Recursive approach in sequence alignment algorithm



Chapter 4

Methodology

In this section, we define the optimization problems of complexity-aware encoding for both

the single and multiple receiver scenarios, and we develop the methods that we will use to

solve the problems. Our approach for the single receiver scenario is based on the H.264/AVC

standard and our approach for the multiple receiver scenario is based on the SVC extension

of H.264. But First, the system model that we used is introduced.

4.1 System Model

Our model is based on a client-server system shown in Figure 4.1. The encoder is located

in the server side and the decoder receives the video data and is able to send information

about its resource requirements. Client information is translated into complexity demands

once it is received by the encoder. The encoder processes the video sequence to extract the

encoding configuration and customize it according to the complexity bound specified by the

client. Then, the video is encoded with the new encoding configuration that will satisfy the

input complexity bound and sent to the user(s).

For the multiple receiver scenario, the same client-server system is considered with a

wide range of receivers that can select appropriate layers according to their bandwidth and

power limitations as shown in Figure 4.2. In this scenario, the solution includes the encoding

configuration for each layer.

30
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Figure 4.1: Our system model in single receiver scenario [21] (re-used in accordance with
ACM publishing agreement)

Figure 4.2: Our system model in multiple receiver scenario [21] (re-used in accordance with
ACM publishing agreement)
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4.2 Formulation of Problem

In H.264/AVC, the default decision for the encoding process is to choose the result that

yields the highest quality output image. However, the choices that the encoder makes

during the motion estimation process might require more bits to deliver a relatively high

quality benefit. Therefore, it cannot necessarily be claimed that the more complexity a

mode has, the better bit-rate and quality it can provide for the bit-stream. The motion

estimation process solves this issue by “rate-distortion” optimization of the aforementioned

problem based on the following two metrics.

• Distortion: The deviation from the source material is usually measured as the mean

squared error to maximize the peak signal-to-noise ratio (PSNR) video quality metric.

• Bit-rate: The is the bit cost for a particular decision outcome.

There is a trade-off among the bit-rate of the video (Rtot), quality of the video (Dtot),

and the computational complexity of decoding the motion compensation (Ctot). Motion

vector precision (MVP) and mode decisions are the source coding parameters that have a

direct influence on this trade-off. In our proposed optimization problem, the computational

complexity of the decoding process acts as a constraint on conventional rate-distortion

optimization. So we formulate the problems as functions of source coding parameters plus

the computational complexity constraint(s). The formulation for H.264/AVC is

minimize Dtot(MV P,mode) given Rtot(MV P,mode)

subject to Ctot(MV P,mode) ≤ β
(4.1)

where β is a complexity threshold received from the user’s device.

A combination of MVP and intra or inter modes is called a state in this thesis. Each

macroblock is in one possible state that includes a specific precision and a particular mode

after the motion compensation process in the encoder. We formulate Problem (4.1) as an
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optimization problem.

minimize

n∑
i=1

m∑
j=1

RDCij ·Xij

subject to



∑
i,j CCij ·Xij ≤ β

CCij =
∑

k PijkWk∑
j Xij = 1; ∀1 ≤ i ≤ n

Xij ∈ {0, 1}; 1 ≤ i ≤ n; 1 ≤ j ≤ m

(4.2)

RDCij and CCij are the rate-distortion cost and computational complexity, respectively,

when state j is chosen for macroblock i. Wk is the weight corresponding to the kth type of

basic operation and Pijk is the number of type k basic operations when macroblock i is in

state j. The numbers of macroblocks and states are n and m respectively [40].

Problem (4.2) is a multiple-choice knapsack problem. Each (macroblock,state) pair (i, j)

is an object that can be placed into the knapsack, and the total computational complexity

of the objects in the knapsack cannot exceed the threshold β. Furthermore, exactly one

state j must be chosen for each macroblock i, so exactly one pair from each macroblock

group Gi = {(i, j)|1 ≤ j ≤ m} is placed into the knapsack.

In the SVC extension of H.264, there can be multiple layers. There is a base layer (which

we call layer 0) that is similar to the baseline profile of the H.264/AVC standard, and there

can be one or more optional enhancement layers (layers 1, 2, . . .), each of which depends on

the base layer and the enhancement layers below it. Thus, the layers must be decoded in

order starting with the base layer, and the formulation becomes

minimize Rtot(MV P,mode) and Dtot(MV P,mode)

subject to


C0,tot(MV P,mode) ≤ β0
C0,tot(MV P,mode) + C1,tot(MV P,mode) ≤ β1

...

C0,tot(MV P,mode) + C1,tot(MV P,mode) + · · ·+ Cl,tot(MV P,mode) ≤ βl
(4.3)

where l is the maximum number of enhancement layers that any user device will use,

Ch,tot is the computational complexity of decoding the motion compensation in layer h, and

β0, β1, . . . , βl are complexity thresholds received from user devices that will use 0, 1, . . . , l
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enhancement layers, respectively. The extension of Problem (4.2) to SVC is

minimize

l∑
h=0

nh∑
i=1

m∑
j=1

RDChij ·Xhij

subject to



∑
i,j CC0ij ·X0ij ≤ β0∑
i,j CC0ij ·X0ij +

∑
i,j CC1ij ·X1ij ≤ β1

...∑
h,i,j CChij ·Xhij ≤ βl

CChij =
∑

k PhijkWk∑
j Xhij = 1; ∀ 0 ≤ h ≤ l; 1 ≤ i ≤ nh

Xhij ∈ {0, 1}; 0 ≤ h ≤ l; 1 ≤ i ≤ nh; 1 ≤ j ≤ m

(4.4)

In (4.4), nh is the number of macroblocks in layer h, and the first subscript of other

variables refers to layers; CChij is the computational complexity when state j is chosen for

macroblock i in layer h, and so on. As for Problem (4.2), each (macroblock,state) pair (i, j)

is an object that can be placed into the knapsack and exactly one pair from each macroblock

group Gi = {(i, j)|1 ≤ j ≤ m} is placed into the knapsack. Similar to (4.2), the total

computational complexity of the objects (from all layers) in the knapsack cannot exceed the

threshold βl. The main difference is that Problem (4.4) has l + 1 complexity constraints

instead of one, so Problem (4.4) is a multi-dimensional multiple-choice knapsack problem.

Our approaches to solving Problems (4.2) and (4.4) are both based on dynamic pro-

gramming with greedy heuristics. Our dynamic programming method has been designed

for a single constraint and is common to both approaches; the greedy heuristics and the

organizations of the two approaches are different. We start by describing our dynamic pro-

gramming method in the context of H.264/AVC which has a single constraint. Then we use

the method, together with (different) greedy heuristics to solve Problems (4.2) and (4.4).
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4.3 Dynamic Programming Method

The recurrence relations for a dynamic programming formulation of (4.2) are [6]:

f(0, 0) = 0; f(0, b) = 0; f(i, 0) =∞

f(i, b) = min{f(i, b− 1),

min
j
{f(i− 1, b− CCij) +RDCij |CCij ≤ b}}

1 ≤ i ≤ n; 1 ≤ b ≤ β; 1 ≤ j ≤ m

(4.5)

A conventional dynamic programming approach to solving (4.5) uses an (n+1)× (β+1)

table and results in a pseudo-polynomial time algorithm with O(nβ) space complexity and

O(mnβ) time complexity. In our context, this algorithm is both CPU- and memory-bound

because β is very large (over one million nanoseconds), so it is only practical for solving small

instances of the problem. To reduce the resource requirements, we apply two techniques.

The first technique is to scale the CCij values by a factor S and then round to the nearest

integer (denoted b e) to reduce the problem size. The resulting optimization problem is

minimize
n∑
i=1

m∑
j=1

RDCij ·Xij

subject to



∑
i,jb

CCij

S e ·Xij ≤ bβS e
CCij =

∑
k PijkWk∑

j Xij = 1; ∀ 1 ≤ i ≤ n
Xij ∈ {0, 1}; 1 ≤ i ≤ n; 1 ≤ j ≤ m

(4.6)

and the space and time complexities of the table-driven pseudo-polynomial algorithm are

reduced to O(nbβS e) and O(mnbβS e) respectively. Note that this approximation technique

is different from the usual scaling approaches for pseudo-polynomial time algorithms which

scale the objective function. Instead, we are scaling the constraints. This is possible because

the CCij values are sparsely distributed in a large range, so the errors introduced by careful

scaling are small.

The second technique that we apply to our dynamic programming algorithm is a space

reduction technique explained in Section 3.4. We have redefined this method for our own

purpose. To do so, the dynamic programming table is modelled as a graph in which each

node(i, b) corresponds to table entry (i,b), 0 ≤ i ≤ n, 0 ≤ b ≤ β, and the weighted edges are

as follows: there is an edge(i,b,j) connecting node(i,b) and node(i− 1,b−CCij) with weight
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RDCij if b ≥ CCij for 1 ≤ i ≤ n, 1 ≤ b ≤ β, 1 ≤ j ≤ m, and an edge(i,b,0) connecting

node(i,b) and node(i,b− 1) with weight 0 for 0 ≤ i ≤ n, 1 ≤ b ≤ β.

The shortest path between node(0,0) and node(n,β) corresponds to an optimal solution.

Such a path must pass through a node(n2 ,b) for some 1 ≤ b ≤ β. The idea is to apply divide-

and-conquer to recursively solve two sub-problems: find the shortest paths from node(0,0)

to each node(n2 ,b), 1 ≤ b ≤ β; find the shortest paths from each node(n2 ,b) to node(n,β);

and then merge the sub-problem solutions. This technique reduces the space complexity by

a factor of O(n) at the expense of an O(log2 n) increase in the time complexity. Combin-

ing the two technique results in space and time complexities O(bβS e) and O(mn log2 nb
β
S e)

respectively [18].

4.4 Solution Method for a Single Threshold

Our method to solve Problem (4.2) takes advantage of similarities among consecutive frames

by considering solutions for previous frames as potential solutions for the current frame. Our

method consists of three steps; first we search through all potential solutions to find the

best initial solution for the current frame. The second and third steps iteratively improve

the initial solution by local exchanges. We discuss the three steps in detail.

Finding a good initial solution is the most important step of our method. We consider

all previous frames with computational complexity no more than 1.2β to be candidates for

the initial solution. We have set the complexity threshold in this step to be higher than

the actual threshold β to increase the number of candidates. The constant 1.2 has been

tuned experimentally to give a good trade-off between efficiency and accuracy. We choose

the most recent of the candidate frames as the basis for our initial solution because the

frames closest to the current frame are usually the most similar. If the chosen basis frame

E is the frame F that immediately precedes the current frame, then the initial solution is

I = E = F . Referring to (4.2), we set XI
ij = XE

ij , 1 ≤ i ≤ n, 1 ≤ j ≤ m. If E and F are

different, then we integrate them into a single initial solution I by resolving the differences

between the states of their macroblocks. We initialize I = E and then apply the following

pseudo-code for each macroblock i, 1 ≤ i ≤ n.

if

m∑
j=1

RDCij ·XF
ij >

m∑
j=1

RDCij ·XE
ij then XI

ij = XF
ij for each 1 ≤ j ≤ m

The idea behind these substitutions is to modify the basis solution E to get an initial solution
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Figure 4.3: An example of an initial solution for our heuristic method shown in a table.
The red entries show the state chosen for the corresponding macroblock

that is closer to frame F . However, we do not perform substitutions for Macroblocks that

would decrease the total RDC while potentially increasing the solution weight.

The second step is to improve the initial solution. This step is quite similar to solving

a dynamic programming problem with an initial solution. First we place the items (i, j) in

each macroblock group Gi into a table sorted by RDC value. Figure 4.3 presents an example

of a solution in a dynamic programming table in which the macroblocks correspond to rows

and the states correspond to columns. We sort the states in each row (MB) based on the

rate-distortion value in a way that the minimum values are located on the right side of the

table. Then, the initial solution consists of the states indicated in red. Our ultimate goal is
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to push the initial solution to the right side of the table as far as the complexity threshold

allows. We achieve this by incrementally reducing the rate-distortion using a local search

around the initial solution. To be more exact, we repeatedly exchange one of the items in

the current solution with another one in the same macroblock group to decrease the sum

of the RDCs according to the following policy. Let vci and wci be the solution value (sum

of the RDCs) and weight (computational complexity) of a candidate item in Gi, and let

vsi and wsi be the value and weight of the current solution in Gi. We define the Resource

Requirement (RR) of the candidate item to be RRi = wci − wsi and its Value Update to be

V Ui =
vci−vsi
wc

i−ws
i
.

Given two candidate items (i, j1) and (i, j2) in Gi with RR values RR1, RR2 and V U

values V U1, V U2, we use the following rules for the exchange:

• If RR1 ≤ 0 or RR2 ≤ 0, the item that minimizes the solution value the most without

increasing the weight is chosen.

• If both RR1 > 0 and RR2 > 0, the item with the largest negative V U value (if one exists)

is chosen.

The goal of these exchanges is to find the best exchange that does not increase the total

weight of the current solution. If the first rule does not apply, then we choose the exchange

that gives the largest decrease in RDC per unit of increase in computational complexity.

In this second step, we redefine feasibility from 1.2β that we used in the first step to

max(
∑

i,j CCij ·Xij , β) so that the solution converges towards the target feasibility value of

β. We continue exchanging items until no eligible item exists for exchange.

In the third step, we consider pairs of groups looking for a pair of exchanges, one in

each group, which when done together will decrease the total RDC value while maintaining

feasibility which in this step means that the total computational complexity does not exceed

β.

Concerning the time complexity of the algorithm, we first sort all items in each group in

time O(nm log2m). We then perform at most n(m− 1) exchanges to find the best solution

and each exchange searches through all groups for a total of O(n2m). The third step checks

O(n2) possible pairs of exchanges. The total time complexity of our polynomial algorithm

is O(n2m+ nm log2m).

The dynamic programming method in Section 4.3 provides good solutions, but even

with our modifications that permit the solution of large instances, the CPU and memory
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requirements are large. The greedy method that we have developed in this section is much

more efficient, but it requires an initial solution that is reasonably close to the optimal

solution, and errors propagate if it is used to find solutions for a sequence of consecutive

frames. Our proposed method for controlling computation-based power consumption is a

combination of the dynamic programming and greedy methods that attempts to minimize

these shortcomings. We partition the sequence of frames into hybrid groups of pictures

(HGOPs). The dynamic programming method is used to find an accurate solution for the

first frame of each HGOP and to provide a good initial solution for the greedy solutions

of the remaining frames. Our results in Section 6 show that this method provides a good

trade-off between efficiency and accuracy.

4.5 Solution Method for Multiple Complexity Thresholds

Our method for the SVC extension of H.264/AVC is also based on the dynamic programming

method of Section 4.3. The primary goal is to minimize the total rate-distortion for all layers

while satisfying multiple user complexity constraints. The dynamic programming method

is designed for a single constraint, but we can use it recursively to handle the multiple

complexity constraints in Problem (4.4).

The general idea of our approach is to solve a relaxation of Problem (4.4) to obtain an

initial solution, which provides a lower bound on the optimal solution, and then converge

the initial solution towards the optimal solution by reinforcing the original constraints.

The relaxed problem is obtained by removing all constraints except the last one to obtain

Problem (4.7) below. The solution for (4.7) provides a lower bound on the optimal solution

for Problem (4.4), but it is not necessarily a feasible solution for (4.4) because some of the

omitted complexity constraints might not be satisfied.

minimize
l∑

h=0

nh∑
i=1

m∑
j=1

RDChij ·Xhij

subject to



∑
h,i,j CChij ·Xhij ≤ βl

CChij =
∑

k PhijkWk∑
j Xhij = 1; ∀ 0 ≤ h ≤ l; 1 ≤ i ≤ nh

Xhij ∈ {0, 1}; 0 ≤ h ≤ l; 1 ≤ i ≤ nh; 1 ≤ j ≤ m

(4.7)

If the initial solution for (4.7) is a feasible solution for Problem (4.4), then it is the
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final and optimal solution. Otherwise, one or more constraints are not satisfied, and we

converge the initial solution for (4.7) towards a solution for (4.4). First, we calculate a fair

distribution of the available complexity budget βl among the macroblocks of all layers. In

particular, each layer h will be given a fraction of the complexity budget proportional to the

ratio nh
nf

of the number of macroblocks in layer h to the number of macroblocks in the first

layer. The reason is due to the fact that the complexity of each macroblock for a specific

state follows a unique and constant pattern, so it is realistic to allocate a fixed amount of

budget to each macroblock. Let αf denote the amount of the budget that will be allocated

to layer f . We solve for αf as follows.

αf ≤ βf

αf +

(
nf+1

nf

)
αf ≤ βf+1 (4.8)

...

αf +

(
nf+1

nf

)
αf + · · ·+

(
nl
nf

)
αf ≤ βl

Rearranging (4.8), we obtain

αf ≤ βf(
nf + nf+1

nf

)
αf ≤ βf+1

... (4.9)(∑l
h=f nh

nf

)
αf ≤ βl

The solution of (4.8) gives the value of αf :

αf = min

(
βf ,

βf+1nf∑f+1
h=f nh

, . . . ,
βlnf∑l
h=f nh

)
(4.10)

Next, we allocate budget αf to the first layer and solve it independent of the enhancement
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layers using the dynamic programming method shown in (4.11).

minimize

nf∑
i=1

m∑
j=1

RDCfij ·Xfij

subject to



∑
i,j CCfij ·Xfij ≤ αf

CCfij =
∑

k PfijkWk∑
j Xfij = 1; 1 ≤ i ≤ nf

Xfij ∈ {0, 1}; 1 ≤ i ≤ nf ; 1 ≤ j ≤ m

(4.11)

f is initialized to zero for the first iteration so that the problem can start from the base

layer. The base layer and its budget are then removed from (4.4) to obtain the following

problem which we solve recursively for each enhancement layer.

minimize
l∑

h=1

nh∑
i=1

m∑
j=1

RDChij ·Xhij

subject to



∑
i,j CC1ij ·X1ij ≤ β1 − α0∑
i,j CC1ij ·X1ij +

∑
i,j CC2ij ·X2ij ≤ β2 − α0

...∑
h,i,j CChij ·Xhij ≤ βl − α0

CChij =
∑

k PhijkWk∑
j Xhij = 1; ∀ 1 ≤ h ≤ l; 1 ≤ i ≤ nh

Xhij ∈ {0, 1}; 1 ≤ h ≤ l; 1 ≤ i ≤ nh; 1 ≤ j ≤ m

(4.12)

This algorithm uses the same space complexity described in Section 4.3 for the repetitive

execution of the dynamic programming algorithm. In the worst-case scenario for running

time, l − 1 instances of the single constraint problem (4.11) have to be solved and l lower

bounds have to be computed. As mentioned in Section 4.3, it takes O(βn log2 n) running

time to solve problem (4.11) when the number of states and scaling factor are constant.

Since β ≤ βl and n ≤
∑l

h=0 nh in each iteration, the running time of our approximation

algorithm is O(βl
∑l

h=0 nh log2
∑l

h=0 nh).

For illustration, the proposed method is depicted as a flowchart for solving the multiple

receivers scenario with three layers in Figure 4.4. To increase the readability, only the

constraints of the problem are shown in each phase and a new parameter is defined:

Zh =
∑
i,j

CChij ·Xhij .
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Figure 4.4: Multiple receivers scenario summarized in a flowchart with a base layer and
two enhancement layers. There is an objective function in each rectangle and lower bound
solution that corresponds to the constraints. Such constraints of the optimization problem
for each iteration is shown in a rectangle shape
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Implementation

In this chapter the experimental setup and implementation details are explained. Our frame-

work is designed to be platform-independent as mentioned in Section 3.3. For simplicity, we

implemented our approaches in only one platform. We evaluated our decoder-complexity-

aware encoding methods on a PC platform with an 8-core Intel 3.40 GHz Core i7 CPU

and 8 GB of RAM, running the 64-bit Windows 7 Enterprise operating system. Four video

sequences, each with 45 frames, were used for testing purposes: “Parkrun”, “Stockholm”,

“Shields”, and “Bluesky”. The motion compensation component of H.264 consists of inter-

polation and mode decisions. The 12 possible states considered in our general testbed for

each macroblock are five inter modes with interpolation, five inter modes without interpo-

lation, and two intra modes which have zero complexity.

5.1 Single Stream Scenario

We tested our single stream method using the JM implementation of the H.264/AVC codec

[42]. The experiments were performed using an H.264 baseline profile, which has only I and

P frames, and the configuration shown in Table 5.1. It should be noted that the quantization

parameter has been fixed to a constant value because changes to this parameter do not affect

the performance of our algorithms.

The implementation procedure consisted of two phases. In the first phase, we initialized

the weights Wk using pre-encoded bit streams in a training pool for our specific platform

according to the method explained in Section 3.3. The sequences were then fed into the JM

reference software to determine RDC and CC values, and a lower bound for β.

43
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Parameter Setting Parameter Setting

Level 4 Number of encoded frames 45
Frame rate 30 GOP size 25
Intra period 25 Number of reference frames 1
Search Mode Full search Search range 32
Size HD Quantization parameter 36

Table 5.1: AVC Encoder Configuration

In the second phase, CC values are scaled with an appropriate scaling factor S shown in

equation (4.6) which is measured in an empirical way. Then our hybrid method including

dynamic programming and greedy heuristic technique is applied to decrease the complexity

of the decoder to the user-defined threshold β.

We used the dynamic programming method without the approximation and space re-

duction techniques to find the solution of equation (4.2) for each frame. This produced an

optimal solution that we used as a benchmark to evaluate the performance of our hybrid

method. We used the following three performance metrics to evaluate our methods.

• The optimality ratio (OR) measures the quality of a solution X relative to a benchmark

solution XB:

OR =

(
1−

∑
i,j RDCij ·Xij −

∑
i,j RDCij ·XB

ij∑
i,j RDCij ·XB

ij

)

• The computation running time (CRT) is the average execution time of the algorithm

per frame.

• The complexity error (CE) is the relative difference between the complexity of a solu-

tion X and β:

CE =

(∑
i,j CCij ·Xij − β

β

)

5.2 Multiple Stream Scenario

We tested our method for multiple complexity thresholds using the conventional SVC ref-

erence software JSVM 9.19.15 [44] and the same four test sequences that we used in the
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previous section for H.264/AVC. We used three layers and the configuration show in Ta-

ble 5.2 for our experiments. The profile has frames of types I, B, and P in contrast to the

profile for H.264/AVC which had only types I and P. We tested several different temporal

and spatial scalabilities. Since SNR scalability does not affect our experiments, we fixed the

value of the quantization parameter to 36. We tested two GOP sizes (5 and 9) for layer 2;

the size of the GOP for layer 2 determines the sizes for layers 0 and 1.

Quantization Parameter 36

Search Mode Block search

Intra period 8

Fast search OFF

Inter-layer prediction ON

Search range
Base layer 16
Enhancement Layers 8

GOP size
Base layer (Layer 0) 2 3
Enhancement Layer 1 3 5
Enhancement Layer 2 5 9

Spatial Resolution
Base layer (Layer 0) CIF
Enhancement Layer 1 4CIF
Enhancement Layer 2 HD

Frame rate
Base layer (Layer 0) 15
Enhancement Layer 1 30
Enhancement Layer 2 60

Table 5.2: SVC Encoder Configuration

Similar to the single stream scenario, the JSVM software is customized to report RDC

and CC values independently for the base and each enhancement layer with the encoder

configuration mentioned in Table 5.2. Then, our heuristic method for multiple streams

is adopted to produce the solutions for each layer considering the complexity thresholds

applied to each one of them. In this phase, the single stream method will be called if there

is a single constraint as in Problem (4.7).

Moreover, we used a lower bound on the optimal solution for Problem (4.4) (obtained by

solving Problem (4.7)) as the benchmark for evaluating our heuristic algorithm. This lower

bound solution for Problem (4.4) is not necessarily feasible and the real optimal solution for

Problem (4.4) might have a higher RDC. Thus, the actual performance of our algorithm

might be better than the values reported here. The optimality ratio is calculated using the
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following formula.

OR =

(
1−

∑l
h=1

∑nh
i=1

∑m
j=1RDChij ·Xhij −

∑l
h=1

∑nh
i=1

∑m
j=1RDChij ·XB

hij∑l
h=1

∑nh
i=1

∑m
j=1RDChij ·XB

hij

)
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Experiments and Analysis

In this chapter the experimental results and evaluation are presented. First we evaluate

the dynamic programming method which is used in both the single and multiple streams

scenarios. Then the experimental results for both methods are presented.

We tested the dynamic programming method (with the approximation and space reduc-

tion techniques) for a wide range of scaling factors to determine the best one to use in the

hybrid method. Figure 6.1 shows the trade-offs between complexity error (CE) and compu-

tation running time (CRT) for four video sequences. The CEs for the Parkrun, Stockholm,

Shields, and Bluesky sequences are only 0.9%, 0.7%, 1%, and 1%, respectively, using scaling

factor S = 213. Furthermore, with S = 213 the running time overheads are trivial compared

to the encoding time and the optimality ratios are close to 1 indicating that the solutions

are close to optimal. Therefore, we used S = 213 when testing the hybrid method.

The reason that S = 215 is not chosen as the optimal solution is due to the error

cancellation that occurs in this scale. As a matter of fact, the error that is reported in

graph 6.1 is the absolute total deviation error in complexity. The rounded computational

complexity values introduce negative and positive errors which can cancel each other when

presented as “absolute error”. The amount of negative and positive error is depicted in

Figure 6.2 for all sequences. When S = 215 is used, total positive and negative errors cancel

each other which results in an artificial zero total error.

Figure 6.3 the distribution of states chosen in the solution for each approximation scale.

The graph shows that the solution follows a unique pattern up to point S = 213 and starts

deviating from S = 214 as the number of intra modes is reduced from 1953 to 1719 in the

16 × 16 size and from 802 to 686 in the 4 × 4 size. The same deviation occurs for S = 215

47



CHAPTER 6. EXPERIMENTS AND ANALYSIS 48

Figure 6.1: Trade-offs between CE and CRT for dynamic programming method. The dashed
lines show CRTs and bars show CEs.

compared to S = 213 which emphasizes the fact that the solutions produced by S = 214 and

S = 215 are not reliable.

6.1 Experimental Results for H.264/AVC

To evaluate our hybrid method, the frequency of utilizing the greedy heuristic method is

analyzed and its effect on algorithm performance and timing overhead is tested. Figure 6.4

shows the trade-offs among OR, CRT, and the length of the HGOPs for the hybrid method

for the four 45-frame sequences. We varied the length of the HGOPs between 2 and 30

and used β = 2 for all experiments. In the figure, CRTS is the average time per frame

taken by the hybrid method to solve all 45 frames sequentially. CRTP refers to a parallel

implementation that will be discussed later.

We can conclude from Figure 6.4 that the accuracy achieved by our hybrid method

increases with decreasing HGOP length. When the HGOP length is 2, the OR (expressed

as a percentage) is greater than 92% and it decreases gradually to the 82%-91% range as

the HGOP length increases. The CRTS decreases gradually with increasing HGOP length

and is between 0.34 and 3 seconds per frame for most HGOP lengths.

Even better real-time encoding times can be achieved for H.264 using fine- and coarse-

grain parallelism [38, 35, 54]. Our method can be easily adapted to take advantage of
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Figure 6.2: Error cancellation phenomenon that occurs in complexity value rounding
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Figure 6.3: State distribution over different modes and interpolation for the Parkrun se-
quence which shows the number of times that each state has been chosen in the solution.
Different bars show different log2 S in each state which starts from 10 at the left and ends
with 17 at the right.

additional hardware resources because it can take advantage of GOP level parallelism to

process the HGOPs independently in parallel. In Figure 6.4, CRTP is the maximum of the

CRTs for the HGOPs in contrast to CRTS which is the average of the CRTs. Both CRTP

and OR improve when the HGOP length decreases, but more hardware is needed to achieve

these gains.

Figure 6.5 shows the impact of the user-defined threshold β on the performance of our

algorithms. We tested our hybrid method for all video sequences for HGOP size 2 and

HGOP size 15 with S = 213 and β ranging from 2 to 10. Values of β > 10 do not result

in significant performance improvements for any of the sequences. Variations in β have

no impact on our dynamic programming method but it has a large influence on the initial

solution chosen by the greedy method. The greedy method examines all previous frames

with computational complexity less than 1.2β for initial solution candidacy. If β is increased,

then more of the recent frames will be examined. This increases the chance of choosing an

initial solution with a high rate-distortion value and improves the convergence of our hybrid

method to an optimal solution. The improvements when β is increased from 2 to 10 for

different sequences are shown in Table 6.1

In a media streaming context, the term real-time means delivering frames at the same
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Figure 6.4: Trade-offs between CRT and OR for different HGOP lengths.
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Sequence
HGOP size
2 15

Parkrun 3% 6.7%
Shields 5.5% 12.3%

Stockholm 8.2% 16.5%
Bluesky 7.2% 16.5%

Table 6.1: OR improvements with β changing from 2 to 10 seconds in two different HGOP
sizes

rate that the client decodes them. In [30], a parallel hardware architecture for the 0/1

knapsack problem is presented. The proposed architecture uses θ(n+p(β+Wmax)) memory

and the running time is θ(nβ/p + n log(n/p)), where n is the number of objects, β is the

knapsack capacity, p is the number of processors for parallel execution, and Wmax is the

maximum weight. Utilizing such a hardware implementation to solve knapsack problems in

our approach without any parallelism will result in θ(n+β) memory usage and θ(nβ) running

time (Wmax is relatively small value in our application). By increasing the memory usage

by an additive factor corresponding to the number of objects (n), they managed to reduce

the running time by a logarithmic factor (log n) compared to our approach. With parallel

processing, even more time can be saved at the expense of allocating more memory space

and processing units to the algorithm. According to the experimental results of [30] which

evaluate the running time of the algorithm based on knapsack capacity (β) and the number

of objects (n), it takes approximately 50 seconds using 32 processors when n = 250000 and

β = 50000. In our case, n = 3600 and β varies from 1 second to 10 seconds which translates

to 12000 to 120000 in our formulation when the approximation scale is set to 213. Since the

proposed algorithm in [30] is proportional to the number of objects, the running time can

be normalized to n = 3600 with a resulting time of 720 ms.

A hardware implementation of dynamic programming for the multi-dimensional knap-

sack problem is presented in [8]. The authors implemented the dynamic programming by

parallelizing the for loops in the algorithm on Graphics Processing Units (GPU). Their

experimental results show that the multi-dimensional knapsack problem can be solved in

900 ms with 10000 objects (n) and knapsack capacity of 4989314 (β). The results in [8]

cannot be directly compared to our scenario with n = 3600 and and β ranging from 12000

to 120000, but application of this method to our scenario would certainly result in a running
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Figure 6.5: Impact of β on the performance of the hybrid algorithm. The dashed lines are
for HGOP size 15 and the solid lines are for HGOP size 2.

time less than 900 ms.

In summary, the two implementations in [30] and [8] are promising hardware approaches

that we might be able to use to make our methods real-time.

6.2 Experimental Results for SVC Extension

We conducted extensive tests of our method with different combinations of complexity

thresholds (β0, β1, and β2) for the three layers for GOP sizes 5 and 9. Each of the graphs

in Figures 6.7-6.10 shows 150 data points. The values chosen for each β range between 0

and the saturation point for the corresponding layer. The saturation point for a layer is the

complexity consumption of the layer in the lower bound solution. Allocating complexity to a

layer beyond its saturation point will not deliver any performance improvements whatsoever.

Each curve in Figures 6.7-6.10 corresponds to a value of β2 as indicated in the legend

at the top of each graph. There are five columns of curves in each graph corresponding

to different values of β1 according to the legend at the bottom of each graph. Each curve

contains five points corresponding to different values of β0 ranging from 0.1 to 0.02 as
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Figure 6.6: Average OR reduction with β1 changing from 3 to 0.6 in two different GOP
sizes.

indicated near the bottom of each graph above the legend for β1.

Generally, decreasing β1 with a fixed value of β2 will result in OR loss. Figure 6.6 shows

the average OR loss when β1 changes from 3 to 0.6. The values reported in this figure are

averaged over the β0 and β2 values for a specific β1.

It is mentioned in Section 4.5 that if the lower bound solution produced by the first

iteration is feasible, then OR = 100%. The total OR value will be reduced in each iteration

if the lower bound solution is recognized as an infeasible one thanks to the trade-off that

exists between RDC and CC values. Therefore RDC values should be sacrificed in order to

reduce the complexity and satisfy the violated constraint. The OR decrement is dependent

on the extent to which the lower bound solution is infeasible.

Similarly, decreasing β2 has a positive effect on OR when β1 is fixed. Allocating less

budget to layer 2 enhances the chance of satisfying the constraints of the other layers int

the initial solution obtained in the first step. Table 6.2 shows the changes in the average

OR values when β2 is reduced from 20 to 8 in the four video sequences. The values reported

in this Table are averaged over the β0 and β1 for a specific β2.

It should be noted that β0 variation has negligible effect on OR due to the relatively

small size of the base layer compared to other layers, but it is still clear in Figures 6.7-6.10

that the changes are measurable.

In summary, the OR achieved by our heuristic method is at least 84% in all tested cases

with an average optimality ratio of at least 97%.
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Figure 6.7: Optimality Ratio for different β0, β1, and β2 for GOP size 5.
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Figure 6.8: Optimality Ratio for different β0, β1, and β2 for GOP size 5.
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Figure 6.9: Optimality Ratio for different β0, β1, and β2 for GOP size 9.
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Figure 6.10: Optimality Ratio for different β0, β1, and β2 for GOP size 9.
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Sequence
GOP5 GOP9

β2 = 20 β2 = 8 β2 = 20 β2 = 8

Parkrun 98.8% 100% 98.3% 99.9%
Shields 96.4% 98.3% 96.3% 98.4%

Stockholm 97.4% 99.8% 96.4% 99.6%
Bluesky 95.2% 99% 94.3% 98.8%

Table 6.2: Average OR values over β0 and β1 with fixed β2.



Chapter 7

Conclusions and Future Work

7.1 Conclusion

Mobile multimedia systems are becoming increasingly power-hungry while battery technol-

ogy is not keeping pace. This increases the importance of power-aware video codecs. The

computational complexity of video codecs, which consists of CPU operations and memory

accesses, is one of the main factors affecting power consumption. The trade-off between

the computational complexity of the decoding process and the rate-distortion of the output

stream is one the main features that can be tailored according to user preferences.

In this thesis, we formulated the rate-distortion optimization problems and presented

efficient methods for encoder to monitor the resource requirement of the decoder for both

single and multiple receiver scenarios, and we used experiments with the H.264/AVC video

codec and the SVC extension of H.264 to evaluate our methods.

Our formulation of the rate-distortion optimization problem for the single receiver sce-

nario is a multiple-choice knapsack problem. Our hybrid method is a combination of dy-

namic programming, scaling techniques, and greedy heuristics which attempts to find an

optimal balance between the execution time and the optimality ratio for a consecutive series

of video frames. Our experiments with H.264/AVC show that our method achieves up to

97% of the optimal video quality while at the same time guaranteeing that the computa-

tional complexity needed to decode the video does not exceed a specific threshold defined

by a user.

The generalization of our formulation to the multiple receiver scenario is a multi-dimensional

61
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multiple-choice knapsack problem in which the number of dimensions (complexity con-

straints) corresponds to the number of layers. We assume that each layer has its own

computational complexity threshold and rate-distortion values which are reflected in the

constraints and the objective function. Our method is a combination of dynamic program-

ming and greedy heuristics which first determines a lower bound solution and then converges

towards an optimal solution by removing constraints recursively. Our experiments with the

SVC extension of H.264 show that our method achieves an average of more than 97% of the

optimal video quality.

7.2 Future Work

Our future work will mainly focus on expanding the current work to a heterogeneous en-

vironment with a large number of users in which each user can subscribe to a group with

a complexity demand. To achieve such a system, we will create m group of users with ni

subscribers and βi demand (0 ≤ i ≤ m). The goal is to optimize the total rate-distortion

of all m · ni users while satisfying the complexity demand of each single user. It is not

possible to allocate a group for each costumer because of the large impact of the number

of layers on the running time mentioned in Section 4.5. The number of groups (layers) and

the complexity threshold (βi) should be chosen to minimize the objective function as much

as possible while satisfying the complexity constraints and solving the problem in a feasible

time frame.

Another future aspect of this thesis is to achieve real-time performance. In live-stream

broadcasting and video conference application, time plays a crucial factor for both trans-

mitter and receiver. If the timing overhead of the software or hardware exceeds a particular

threshold, it will cause undesirable effects on the video streaming experience such as lagging

and jitter. Therefore, designing a real-time decoder complexity-aware encoding system be-

comes a vital contribution in such applications. It should be noted that the network packet

loss or congestion is not part of our concern. Rather, we focus on reliable real-time perfor-

mance of the video codec. One method that can potentially tackle this is to adopt parallel

processing of a group of frames or macroblocks. Parallel encoding has the advantage of ef-

ficient CPU utilization, however it can increase the processing time by creating extra locks

on the shared resources and thread switching overhead. Therefore, proper consideration

must be taken to optimize this trade-off in such systems so that they can process a group of
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frames or macroblocks simultaneously for real-time performance. In addition, a hardware

implementation of the proposed algorithm can be explored to deliver higher efficiency by

removing unnecessary software code lines and customizing to algorithm’s structure.

Moreover, as another avenue of future work, the battery usage in different decoder com-

plexity aware methods can be measured precisely to study the exact amount of energy saving

achieved by our proposed methods. One possible approach is to translate the time com-

plexity to power consumption per second in the decoding device when clock frequency and

circuit voltage are controlled. The following two bit-streams can be decoded and compared

to observe how much power saving can be achieved.

1. Bit-stream encoded with optimum visual quality and bit-rate.

2. Bit-stream encoded with best visual quality and bit-rate while considering decoder

complexity constraints with our method.

Another possible way to measure power consumption is to use a device that can report

instantaneous power usage. This method can be adopted to roughly measure the power

needed for decoding and rendering. Nevertheless, it suffers from the noise created by the

power consumption of the operating system and other processes running in the background.
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