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Abstract—Energy minimization of parallel applications is an
emerging challenge for current and future generations of many-
core computing systems. In this paper, we propose a novel and
scalable energy minimization approach that suitably applies DVFS
in the sequential part and jointly considers DVFS and dynamic
core allocations in the parallel part. Fundamental to this approach
is an iterative learning based control algorithm that adapt the
voltage/frequency scaling and core allocations dynamically based
on workload predictions and is guided by the CPU performance
counters at regular intervals. The adaptation is facilitated through
performance annotations in the application codes, defined in a
modified OpenMP runtime library. The proposed approach is
validated on an Intel Xeon E5-2630 platform with up to 24 CPUs
running NAS parallel benchmark applications. We show that our
proposed approach can effectively adapt to different architecture
and core allocations and minimize energy consumption by up to
17% compared to the existing approaches for a given performance
requirement.
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I. INTRODUCTION
Silicon technology scaling has enabled the fabrication of

many interconnected cores on a single chip for current and
future generations of computing systems. The emergence of
such systems has facilitated computing performance at unprece-
dented levels with application parallelization and architectural
support. However, higher device-level integration and operat-
ing frequency in these systems have rendered exponentially
increased power density and energy consumption [1]. Hence,
minimizing the energy consumption, while delivering the re-
quired performance is a key design challenge for many-core
applications [2], [5].

The continuing performance growth of many-core appli-
cations has been facilitated by parallel programming models.
OpenMP is one such programming model, considered as the
de facto standard of shared memory multiprocessing [3]. It
features compiler-enabled annotations that can achieve data- or
task-level parallelization. The parallelization is facilitated by
runtime libraries that can allocate the number of computing
nodes and suitably schedule the parallel tasks and threads
during runtime to achieve high performance [9].

Over the years, there has been growing interest in
OpenMP-based dynamic adaptation between energy and per-
formance trade-offs of parallel applications [4]. Dynamic volt-
age/frequency scaling (DVFS) is a major runtime control knob
to achieve such adaptation. The main principle of DVFS is to
suitably lower the operating voltage/frequency to exponentially
reduce the energy consumption at the cost of linear performance
degradation [5]. Shirako et al. [10] proposed a DVFS-based
energy minimization approach using a modified OpenMP com-
piler, named OSCAR. The compiler analyses the criticality of
various parallel tasks and sections and identifies suitable DVFS
for them. Cochran et al. [11] proposed another adaptive DVFS
approach to control the peak power budget of an application.
The approach benefits from restricting thread executions to a
given number of processing cores to maximize the performance

with a given power budget.
Another effective control knob for energy and performance

adaptation during runtime is software dynamic concurrency
throttling (DCT). DCT selects the number of concurrent pro-
cessing cores and the threads running on them during runtime
to manage application parallelism and trade-off performance
for energy consumption. Porterfield et al. [6] showed a DCT
control approach highlighting a study of the energy and perfor-
mance variations (from 20% to 2X) for various core allocations.
Based on the study an OpenMP-based adaptive runtime core
allocation method was shown using CPU performance counters
at regular intervals.

Researchers have also considered both DVFS and DCT
control knobs synergestically to achieve minimized energy
consumption, while maintaining a required performance target.
Matthew et al. [7] presented one such runtime control ap-
proach, which benefits from offline training to learn the system
architecture. The training is then followed by online perfor-
mance prediction as a function of the system configuration
and events to guide the runtime optimization and adaptation.
Among others, Hwang and Chung [8] showed another runtime
energy minimization approach considering joint DVFS and
DCT control. Their approach is facilitated through statistical
offline learning and implemented using runtime code insertion.

Existing OpenMP-based energy minimization approaches
for parallel applications have the following limitations. Firstly,
existing approaches [5]–[7] ignore energy minimization in the
sequential computation part, which constitutes a major perfor-
mance component in many-core applications. Secondly, these
approaches [7], [8] employ DVFS and/or DCT using offline
training processes to learn the system architecture and control
parameters. As a result, the scalability is poor for applications
with different many-core architectural allocations.

To address the above limitations and minimize energy
consumption of many-core parallel applications effectively, this
paper makes the following contributions:

• We propose a novel energy minimization approach that
considers DVFS control in the sequential part, and
joint DVFS and DCT control in the parallel part of the
applications, facilitated through OpenMP performance
annotations in these parts.

• Fundamental to this approach are scalable and adaptive
DVFS and DCT control algorithms that can iteratively
learn the optimized control knobs, guided by the feed-
back from the CPU performance counters.

• Our approach is implemented in a modified OpenMP
runtime library and is validated on a many-core plat-
form [13] running NAS benchmark applications [12].

The remainder of this paper is organized as follows. Sec-
tion II motivates the proposed approach, while Section III
details the performance annotation and energy minimizations in
the sequential and parallel parts of the application. Section IV
validates the effectiveness and scalability of the approach.
Finally, Section V concludes the paper.



II. MOTIVATION
Parallel applications usually consist of sequential and par-

allel parts with the performance contribution of the sequential
parts varying significantly between applications [5]. Existing
works [5]–[7] primarily focus on the performance and energy
trade-offs in the parallel parts using DVFS and/or DCT con-
trols. However, for effective energy minimization sequential
parts also need to be carefully controlled through DVFS, as it
can potentially create opportunities for further energy savings.
Moreover, the energy saved by the sequential parts can also be
used to increase the performance of the parallel part for a given
energy budget.

To demonstrate the importance of energy minimization in
both sequential and parallel parts, Fig. 1.(a) and (b) show the
execution times and energy consumptions of bt application
from NAS parallel benchmarks used as a case study [12] (with
an input of small solution set size of (24x24x24)) for differ-
ent number of parallel core allocations, showing comparative
contributions of parallel and sequential parts. The execution
times were recorded on an Intel Xeon E5-2630 platform [13]
in Linux OS environment. The energy consumptions were
measured using LIKWID [15], which is a performance and
energy profiling utility based on x86 generations of Intel
processors. The measurements were carried out at nominal
voltage/frequency levels (2.6 GHz at 1.35V) and at applied
voltage/frequency scaling (VFS) of 1.2 GHz (at 0.98V) for all
CPU cores. From the figures, the following two observations
can be made:
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Fig. 1: (a) Execution times (in seconds), and (b) energy consumptions
(in Joules) in sequential and parallel parts of bt application for varying
core allocations (with and without VFS)

Observation 1: Referring to Fig. 1.(a), the sequential part
of the parallel application bt cannot be ignored when overall
execution time is considered. As can be seen, the relative
contribution of the sequential part execution time increases as
the number of parallel cores increases for both VFS scaling
options (with VFS and without VFS). This is because the
execution time of the parallel part decreases as concurrency
increases with increased number of cores.

Observation 2: Referring to Fig. 1.(b), it can be seen that
uncontrolled parallelism can cause the energy consumption of
the parallel part to increase substantially without VFS. This is
because with increased core allocations, the total sum of core
energy consumptions (both dynamic and leakage) also increases
compared to the energy consumption of the sequential part,
which does not vary with core allocations. As can be seen,
with VFS scaling this energy can be drastically reduced at the
expense of reduced application performance in both sequential
and parallel parts (Fig. 1.(a)).

From the above observations, it is evident that to achieve
effective energy minimization, while maintaining a required

performance level, DVFS control must be applied for both
sequential and parallel parts of the application (Observation 1).
Moreover, to control the increase in the energy consumption in
the parallel part, concurrency must be managed dynamically by
limiting the number of active cores for the given performance
level (Observation 2). However, such energy minimization
approach must be scalable for arbitrary number of architec-
tural allocations and configurations. Underpinning the above
observations this paper proposes a novel and scalable energy
minimization approach for parallel applications, capable of
reducing energy consumptions for both sequential and parallel
parts under given performance requirements.

III. PROPOSED ENERGY MINIMIZATION APPROACH
Fig. 2 shows the proposed adaptive energy minimization

approach organized in three steps, highlighting the interactions
between application, runtime and hardware. In the first step,
performance annotations are incorporated in the sequential
and parallel parts of the application codes. These annotations,
defined within and compiled by the modified OpenMP library
(libgomp), communicate the approximate execution time re-
quirements to the runtime. The runtime, which consists of the
OpenMP library and OS routines, uses these times to guide the
energy minimization steps for both sequential and parallel parts
of the application through DVFS and DCT controls, guided by
the monitored performance counters at regular intervals. The
proposed energy minimization steps are further detailed in the
following.
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Fig. 2: Proposed energy minimization approach

A. Performance Annotation
Performance annotation in the application codes is carried

out to enable energy minimization with specified performance
requirements (Fig. 2). This is done through annotating both
sequential and parallel parts with approximate maximum execu-
tion times (AMETs) and required approximate execution times
(AETs) as a pair. To evaluate the AMETs the application codes
are instrumented using thread-safe OpenMP omp get wtime()
function and executed on a single-core running at the lowest
operating frequency (fmin). The required AETs (which is the
second part in the pair) can be specified by the application
developer arbitrarily using AMETs as a guiding principle (since
AET ≤ AMET) or systematically through evaluation of the
target parallel speedup using the Amdahl’s law [16] as

S =
1∑Aseq

i=1 T seq
AET i

+

∑Apar
j=1 Tpar

AETj

N

, (1)

where T seq
AET i

is the AET of the i-th sequential part, T par
AET i

is
the AET of the i-th parallel part, Aseq is the total number of
sequential parts in the application, Apar is the total number
of parallel parts in the application and N is the maximum



number of allocated cores. Optimizing the AET values for
the sequential and parallel parts to achieve the best possible
speedup of a parallel application is beyond scope of this paper
(interested readers are referred to [16] for further details).

With the given AETs, different parts of the application are
then exercised differently by the DVFS and DCT trade-offs
with an aim to minimize the overall energy consumption, while
maintaining the application performance target, given by the
total execution time (Treq), which can be expressed as

Treq =

Aseq∑
i=1

T seq
AET i

+

Apar∑
j=1

T par
AET j

. (2)

Following the evaluations of AMETs and AETs, the se-
quential and parallel parts are annotated as follows:
Sequential Part Annotation:

The sequential parts are enclosed by a newly incorporated
“#pragma omp sequential perf(AMET, AET)” annotation. The
“#pragma omp sequential” part of the annotation implies that
the sequential part of the application codes will now be exe-
cuted by the OpenMP runtime library, considering it as a special
case of existing “parallel” annotation with the number of cores
limited to 1 and affinity limited to thread 0 (i.e. master thread).
The “perf (AMET, AET)” part of the annotation communicates
the approximate maximum and required execution times (both
in milliseconds) to the runtime for energy minimization with a
specified performance requirement (see Section III-B).
Parallel Part Annotation:

The parallel parts are usually enclosed by “#pragma omp
parallel” or “#pragma omp task” annotations etc. These an-
notations are further extended by adding “perf (AMET, AET)”
with them. Similar to the sequential part, this annotation com-
municates the maximum and required execution times (both in
milliseconds) to the runtime.

1: #include "omp.h"
2: static long num_steps = 100000; 
3: double step;
4: int main (){
5:   int i; 
6:   double x, pi, sum = 0.0;
7:   step = 1.0/(double) num_steps;
8:   quantize_step();
9: #pragma omp parallel for ….. {
10:  for (i=0;i<= num_steps; i++){
11:    x = (i+0.5)*step;
12:    sum = sum + 4.0/(1.0+x*x);
13:  }
14:}
15:  pi = step * sum;
16:  return 0;
17:}
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1: #include "omp.h"
2: static long num_steps = 100000; double step;
3: int main (){
4:   int i; 
5:   double x, pi, sum = 0.0;
6: #pragma omp sequential perf(1800, 1000){
7:   step = 1.0/(double) num_steps;
8:   quantize_step();
9: }
10:#pragma omp parallel for ….. perf(9500, 4400){
11:  for (i=0;i<= num_steps; i++){
12:    x = (i+0.5)*step;
13:    sum = sum + 4.0/(1.0+x*x);
14:  }
15:}
16:#pragma omp sequential perf(100, 100){
17:  pi = step * sum;
18:}
19:  return 0;
20:}

Performance Annotated 
OpenMP Application

Fig. 3: Example of performance annotated OpenMP application code
(in C), showing the original OpenMP application code on the left

Fig. 3 shows example application codes (in C) showing such
performance annotation in both sequential and parallel parts.
The original OpenMP application code is shown on the left,
while the performance annotated application code is shown on
the right. As can be seen, the original sequential statements
in lines 7-8 (left) are grouped as the first sequential part
and enclosed using “#pragma omp sequential” annotation in
lines 6-9 in the annotated application (right). The annotation is
followed by “perf(1800, 1000)”, which indicates the sequential
part is expected to have the maximum execution time of about
1800 ms and required execution time is 1000 ms. Similar
sequential performance annotation is also carried out in lines
16-18 (right), which has equal AMET and AET of 100 ms.

The parallel part, enclosed by “#pragma omp parallel for”, is
annotated using additional “perf ” annotation, with AMET of
9500 ms, followed by the required AET of 4400 ms. With the
given performance annotations, the application is expected to
incur approximate execution time (1000+4400+100) = 5500
ms (given by (2)).

B. Energy Minimization in the Sequential Parts
With the specified AETs in the sequential parts, the energy

minimization in the sequential parts is carried out through
DVFS based on the predicted workloads at regular intervals
(Fig. 2). To effectively predict the time-varying workload at
each interval, exponentially weighted moving average (EWMA)
is used as the prediction scheme, similar to [18]. Using this
scheme, the predicted workload at the tth interval, Ĉt (in CPU
cycles), is given by [18] as

Ĉt = ωCt−1 +

D∑
i=1

(1− ω)
i Ct−i , (3)

where Ct and Ci are the previous observed workloads (in CPU
cycles) at the tth and ith decision epochs, 1 ≤ i ≤ D, ω is the
moving average coefficient and D is the window size (ω and D
are evaluated empirically for higher prediction accuracy). Based
on the predicted workload Ĉt in (3) the operating frequency at
the t-th interval (fseq

t ) is determined by the iterative learning
control (ILC) function as

fseq
t = fmin + ∆fktK1; if Eseqt−1 ≈ 0 (4)
fseq
t = fseq

t−1 −∆fK2Eseqt−1, otherwise (5)
where fseq

t−1 is the previous operating frequency, ∆f is the
frequency differential, K1, K2 are constants defining scaling
steps, fmin is the minimum operating frequency of the system,
Eseqt−1 is the performance error incurred due to previous control
actions and kt is workload dependent variable, given by

kt = exp [K2(
Ĉt

fmax ×∆t
− 1)], (6)

where ∆t is the time interval and fmax is the maximum
processor core frequency in the system. The performance error
(Eseqt−1) in (4) is evaluated as

Eseqt−1 =

t−1∑
i=1

(
Ci
fseq
ref

− Ci
fseq
i

)
, (7)

where Ci is the actual workload and fseq
i is the chosen operating

frequency at the i-th interval, fseq
ref is the static reference

frequency for the sequential execution determined using the
performance annotations provided as

fseq
ref = fmin ×

T seq
AMET

T seq
AET

. (8)

The ∆f, fmax and fmin values can be obtained from the OS
(in the case of Linux, from sysfs variable). The ILC functions
in (4) and (5) achieve the following:
• in the case of over-performance (positive Eseqt−1) or

under-performance (negative Eseqt−1), it decreases or
increases the frequency in steps; however, if Eseqt−1 ≈ 0,
the clock frequency does not change, thus reducing the
energy consumption,

• Due to predicted workload based kt formulation, it
suitably scales and decreases or increases the operating
frequency to optimize for the CPU utilization for
positive or negative Eseqt−1 values, respectively, and

• Eseqt−1, given by (7), accounts for the performance errors
caused by the workload mispredictions.

Energy minimization through ILC is implemented as an addi-
tional timer-based thread in the OpenMP runtime library with a
period of ∆t. This thread is statically assigned the same affinity
as the main master thread (i.e. thread 0).



Algorithm 1 DCT and initial DVFS control algorithm for energy
minimization in the parallel part

Require: T par
AMET and T par

AET

1: Reference parallel clock frequency fpar
ref = fmin × T

par
AMET

T
par
AET

2: for each new thread joining or forking do
3: for n (number of cores): 2 to Nmax do
4: for f (clock frequency): fmin to fmax do in ∆f steps
5: Evaluate approximate parallel speedup, Ŝ
6: Evaluate expected parallel clock frequency fpar

exp

7: if fpar
exp is closest to fpar

ref then
8: Current fpar

t = f , core allocation, N̂=n
9: end if

10: end for
11: end for
12: end for

C. Energy Minimization in the Parallel Parts
Energy minimization in the parallel parts is carried out

using both DCT and DVFS controls (Fig. 2). These controls are
established in two stages. In the first stage, the DCT and DVFS
control decisions are taken at the beginning of the parallel
part, which is further updated every time threads join or leave.
Algorithm 1 shows the DCT and DVFS control algorithm used
in the parallel part. As can be seen, initially the total reference
parallel frequency (fpar

ref ) is determined (line 1) using the given
performance annotations as

fpar
ref = fmin ×

T par
AMET

T par
AET

. (9)

Then, to evaluate the equivalent core allocation with per core
operating frequencies, the algorithm iterates from the minimum
number of cores 2 to Nmax (lines 3–11). Also, for each
core allocation the operating frequency (f ) is iterated in ∆f
steps starting from the lowest operating frequency, fmin, to
the maximum operating frequency, fmax (lines 4–10). For a
given core allocation and operating frequency, the approximate
parallel speedup (Ŝ) is evaluated using (1) as

Ŝ = min

(
d

d + 1−d
n

,
d

d + 1−d
M

)
, (10)

where d is a constant related to data dependency among parallel
threads arising from shared memory multiprocessing, and M
is the number of currently participating threads (the maximum
number of threads is limited by OMP NUM THREADS envi-
ronment variable). In this work, d is empirically evaluated as
0.1 as it was found to model parallelism well for most NAS
benchmark applications. The evaluated Ŝ is then multiplied
with the current f to calculate the expected parallel frequency,
i.e. fpar

exp =Ŝf . The minimum n and f , for which the fpar
exp is

found to be the closest to fpar
ref , are chosen as the current

concurrent core allocation (N̂ ) and operating frequency (fpar
t ).

In the second stage, the DVFS controls are further refined at
every time interval based on the predicted workloads at regular
intervals (Fig. 2). The workload prediction guided DVFS con-
trols in the parallel part is carried out using the ILC function,
similar to (3), (4) and (5). However, as the target platform
supports common operating voltage and frequency per socket,
the control is simplified through determination of a single
operating frequency for all parallel cores. Such control of the
operating frequencies is guided by the performance counters,
which monitor the actual workloads after each interval. Using
the actual workloads per core, the performance error in the
parallel execution (Epart−1) is evaluated as

Epart−1 =

N∑
n=1

t−1∑
i=1

(
Ci,n
fpar
ref

− Ci,n
fpar
i,n

)
, (11)

where Ci,n is the actual workload and fpar
i,n is the chosen

operating frequency at the i-th interval of the n-th core.
Similar to the sequential part, energy minimization through

ILC principles is implemented as a parallel thread, which is
executed in the same core as the master thread through thread
affinity control.

IV. EXPERIMENTAL RESULTS
To validate the effectiveness of the proposed approach, a

number of experiments are carried out. The experimental setup
is further detailed below, followed by the results highlighting
comparative evaluations and scalability of the proposed ap-
proach.

A. Experimental Setup
The proposed approach is experimented on Intel Xeon E5-

2630 [13] platform, which has a total of 24 cores, organized
in two sockets with 12 cores each. Each pair of cores within
the platform shares 1536kB of L2 cache, six pairs within each
socket share a 15MB L3 cache, and all cores have a shared
memory of 32 GB. Each core operates at a minimum frequency
of 1.2 GHz (at Vdd = 0.98V ) and a maximum frequency
of 2.6 GHz (at Vdd = 1.35V ); there are also thirteen other
intermediate frequencies increasing in 0.1 GHz steps. NAS
application benchmarks of class B (medium) and C (large)
are executed on Linux kernel version 2.6.32. These bench-
marks feature wide variations in several execution properties,
including parallelization annotations, varying sequential parts
and compute- and memory-boundedness of threads [14]. The
applications were initially profiled and performance annotated
with execution times (Section III-A). The performance counters
at 100 ms regular intervals and and energy measurements of
these applications were carried out using the LIKWID [15]
library. For the ILC functions in (4) and (5) K=15 and K=3
were used for sequential and parallel parts. All measurements
are averaged over three executions.

B. Case Study
To illustrate how the energy minimization is carried out

in the proposed approach, Fig. 4 shows the different runtime
scenarios in the sequential (on the left) and parallel (on the
right) computation parts of the mg application as a case study.
The application was executed with 12 cores (maximum core
allocation N=12, maximum concurrent threads=N ). Fig. 4.(a)
shows the predicted and actual CPU workloads, while Fig. 4.(b)
and (c) show the correponding operating frequencies (fseq

t ) and
performance errors (Eseqt−1) incurred during energy minimization
in the sequential part. As can be seen, for the given predicted
workloads the operating frequencies are chosen by the iterative
learning control function with an aim to minimize the energy
consumption (Fig. 4.(b)), while also reducing the performance
error given by (4) and (5).

Fig. 4.(d) shows the result of DCT control decisions in
the parallel part as a result of Algorithm 1, while Fig. 4.(e)
and (f) show the correponding operating frequencies (fpar

t ) and
performance errors (Epart−1). As can be seen, when two threads
finish within the parallel part at the 39-th interval the algorithm
dynamically chooses the throttle concurrency by reducing the
core allocations from 7 cores to 5 cores. This is because with
such allocation, the best speedup versus energy trade-off is
achieved (see Section III-C). However, when a thread is forked
out at the 93-rd interval, the DCT algorithm increases the
core allocations to 6. It is to be noted that during such DCT
controls, the DVFS controls are perturbed. As a result, the
ILC starts to react by changing the operating frequency. For
example, after the 39-th interval, due to reduced concurrency
initially the parallel section starts to under-perform. However,
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as the operating frequencies are scaled up, the performance
error decreases. On the other hand, when a thread joins in at
the 93-rd interval, the parallel part starts to over-perform. At
this time, the ILC decreases the operating frequency (Fig. 5.(b)
and (e)).

C. Performance and Energy Trade-offs
Fig. 5 shows the performance and energy consumption

trade-offs using the proposed energy minimization approach
for various benchmark applications with the maximum number
of threads N=24. Fig. 5.(a) and (b) show the execution times
and energy consumptions for AET

AMET ratios of 0.75 and 0.3
(on average) for the sequential and parallel parts, respectively.
Fig. 5.(c) and (d) show the same when energy minimization is
carried out for AET

AMET ratios of 0.75 and 0.45 for the sequential
and parallel parts. These two cases demonstrate the impact
of varying the performances of the parallel parts. As can be
seen, due to 15% increase in the execution time of the parallel
parts energy consumption is reduced by up to 11% in the case
of sp (class C) (Fig. 5.(c) and (d)). However, such decrease
in the performance of the parallel parts reduces the number
of cores allocated in the DCT control (Algorithm 1), which
in turn, also reduces the thread synchronization and interrupt
times [17]. As a result, the overall execution time does not
increase substantially; up to 8% increase is noticed in the case
of is (class B and C).

Fig. 5.(e) and (f) compares the execution times and energy
consumptions for AET

AMET ratios of 0.1 and 0.45 for the sequen-
tial and parallel parts. Together with Fig. 5.(c) and (d) the two
cases demonstrate the impact of increasing the performances
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Fig. 5: Performance and energy trade-offs using the proposed approach

of the sequential parts by 65%. Such increase in the sequential
performance requires using higher DVFS (see Section III-B),
which is reflected by increased energy consumption by up to
15% in the case of dc (class B) and sp (class C). It is to be
noted that the increased performance in sequential part in these
applications is observed through 9% and 10% higher execution
times in these applications.
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Fig. 6: Comparative evaluation of approaches in terms of (a) perfor-
mance (execution times, in seconds) and (b) energy consumptions

D. Comparative Evaluations
To comparatively evaluate the proposed approach with

the existing approaches, Fig. 6 shows the performances and
energy consumptions of different benchmark applications using
four different energy minimization approaches: the proposed
approach, Linux’s ondemand governor [19] running on all
processor cores (as an example of energy minimization in
both sequential and parallel), and approaches proposed in [7]
and [11] (as examples of energy minimization in parallel parts
only). Fig. 6.(a) shows the performances in terms of execution
times (in seconds), while Fig. 6.(b) shows the energy consump-
tions (in Joules). The energy minimization approaches proposed
in [7] and [11] were implemented using similar performance
requirements in the parallel parts as the proposed approach
(equivalent to AETpar

AMETpar
= 0.5) with given parameter values.

In the case of Pack & Cap approach [11] the performance
requirements were adjusted with power budget control. The
energy minimization approach using the ondemand governor
could not be performance constrained, as it does not allow such



provisions. As can be seen, the proposed approach outperforms
the existing approaches in terms of energy minimization, re-
ducing the energy by up to 17% (on average) when compared
with the ondemand governor running on the processor cores,
and by up to 10% and 7% when compared with the approach
proposed in [7] and [11]. The reduction in energy minimization
is achieved due to the following two reasons. Firstly, with
higher required execution times the proposed approach can
effectively relax the processor clock frequencies using ILC at
regular time intervals, thus reducing the energy and meeting
the required performance. Secondly, the proposed approach
benefits from energy minimization in both sequential and and
parallel parts, effectively reducing the overall energy consump-
tion. The energy minimization approaches [7] and [11] do not
have such capabilities.
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Fig. 7: Energy and performance trade-offs with different architectures
and core allocations

E. Architectural Scalability
To validate the scalability of our proposed approach, we

further experimented running sp application (class C) on two
different architectures: a 4 cores system with Intel W3520
processors and a 12 cores system with Intel E5-2630 pro-
cessors for similar performance requirements in the parallel
parts for the approaches: [7], [11] and the proposed one.
Both approaches [7] and [11] required extensive architecture-
specific offline training using multinomial logistic regression
based classification to establish the relationships between re-
quired performance and performance counters. The energy
minimization in the proposed approach was carried out without
any extensive training (only initial performance profiling was
carried out to enable the performance annotations, Fig. 2).
Fig. 7(a) and (b) show the energy versus performance trade-
offs of the approaches showing normalized energy consumption
and execution times. The energy consumption and execution
times are normalized with respect to the same by the proposed
approach. With such normalization, the execution time of lower
than 1 means over-performance and higher than 1 means
under-performance, while the energy of lower than 1 means
less energy consumption, higher than 1 means more energy
consumption compared to the reference; close to 1 for both
means effective energy minimization, provided the performance
is also on par.

As can be seen, the proposed approach continues to mini-
mize energy for change of architecture and also with increased
number of maximum core allocations. The approaches [7], [11],
however, does not minimize energy effectively with such
change of architecture allocation. This is because, as the
number of cores increase the offline training based relationships
in these approaches become harder to adapt due to runtime
variations of the performance counters. The proposed approach
continues to minimize energy effectively as the DVFS control
considers higher CPU utilization with reduction of the perfor-
mance errors. Moreover, based on the system architectures fre-
quency controls, appropriate concurrent allocations are carried
out at each thread creation and exit (See Section III).

V. CONCLUSIONS
An adaptive energy minimization approach for OpenMP

parallel applications is proposed. The adaptation is facilitated
through performance annotations in sequential and parallel
parts of the applications, defined in the modified OpenMP run-
time library. Using these performance annotations, the proposed
approach suitably applies iterative learning control based DVFS
using predicted workloads and feedback from the CPU perfor-
mance counters. Moreover, dynamic concurrency is controlled
by a DCT control algoroithm to limit the number of active
cores and achieve energy minimization. The proposed approach
is validated on a many-core platform running various NAS
parallel benchmark applications, showing up to 17% reduced
energy compared to the existing approaches. Energy-delay
product based adaptive optimization and impact of overheads
are currently being considered for future research.
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