
Towards Efficient Collaborations with Trust-Seeking
Adaptive Robots

Anqi Xu
McGill University
Montreal, Canada

anqixu@cim.mcgill.ca

Gregory Dudek
McGill University
Montreal, Canada

dudek@cim.mcgill.ca

ABSTRACT
We are interested in asymmetric human-robot teams, where
a human supervisor occasionally takes over control to aid
an autonomous robot in a given task. Our research aims to
optimize team efficiency by improving the robot’s task per-
formance, decreasing the human’s workload, and building
trust in the team. We envision synergistic collaborations
where the robot adapts its behaviors dynamically to opti-
mize efficacy, reduce manual interventions, and actively seek
for greater trust. We describe recent works that study two
facets of this trust-seeking adaptive methodology: model-
ing human-robot trust dynamics, and developing interactive
behavior adaptation techniques. We also highlight ongo-
ing efforts to combine these works, which will enable future
human-robot teams to be maximally trusting and efficient.

1. INTRODUCTION
Trust – one’s belief in another’s competence and reliability

– is the cornerstone of all long-lasting collaborations, both
among human teammates, as well as between humans and
robots. In the latter context, the degree of trust that a hu-
man operator has in an autonomous robot is strongly corre-
lated to the team’s performance, and also greatly influences
the operator’s behaviors [5, 3, 7]. Teams harboring high
levels of trust often demonstrate efficiency and synergies,
where the human and robot work together to complement
each other’s skills and weaknesses. In contrast, low trust
can degenerate into disuse of automation, where the human
stops delegating tasks to the robot, or disables it altogether.
In extreme cases, such distrust has led to fatal accidents,
for instance in train derailments where the automated alert
systems were disabled due to prior false alerts [6].

The objective of our research is to improve the efficiency
of human-robot teams. We quantify team efficiency as a
combination of performance metrics, such as task error and
automation failures, as well as human factors, including
workload, satisfaction, and trust. We assume that the au-
tonomous robot is always motivated and obedient; thus the
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Figure 1: Our interactive, adaptive vehicle tracking
a road. Inset: camera view overlaid with tracked
boundary (blue line), robot’s steering (blue arrow),
and human’s intervening command (green arrow).

human’s trust in the robot arises due to performance-based
causes only, as opposed to concerns of deception or defiance.

Our studies focus on navigation tasks where the human
supervises a mobile robot as it visually tracks terrain bound-
aries. Concretely, we built aerial robots that can follow high-
ways and shorelines, and wheeled robots that learn to drive
along roads and trails (Fig. 1). The human operator in these
teams occasionally intervenes and assumes control, either to
teach the robot to track a new target, or to correct misbe-
haviors. Visual navigation tasks are appealing since humans
innately excel at them, whereas the required complexity in
autonomous solutions [3, 7] warrants the need for trust.

Towards our goal of efficient human-robot teams, we pro-
pose to develop trust-seeking adaptive robots. These robots
will be able to sense when the human has low trust, and re-
actively adapt their behaviors to improve performance and
seek greater trust. We present two recent research achieve-
ments: a dynamic human-robot trust model, and an online
behavior adaptation technique. We also discuss ongoing ef-
forts to combine these works and reach our objective of long-
lasting and high-trusting human-robot teams.

2. HUMAN-ROBOT TRUST MODEL
Before the robot can elicit greater trust, it must first be

able to reason about the human’s trust state. We developed
a near real-time model that can accurately predict the oper-
ator’s moment-to-moment trust states, ranged between dis-
trust and full trust [8]. This is achieved by inferring beliefs
about trust during interactions through experience factors
that are known to correlate strongly to trust [5, 3, 7].

Our model is captured by a Dynamic Bayesian Network,
and updates the trust belief as a linear function of the robot’s



current and recent task performance (i.e. causal attribution
for trustworthiness), as well as a bias term (i.e. propensity
to award trust). These probabilistic trust estimates are then
calibrated to match the human’s latest intervention states,
where the likelihood of a user taking manual control is mod-
eled as a linear logistic expression dependent on a constant
bias (i.e. predisposition to micromanage), low trust and loss
of trust (i.e. trust-related causes), and extraneous causes to
intervene (e.g. training to follow a new boundary target).

We conducted a controlled study with 20 roboticists to col-
lect interaction datasets for boundary patrol tasks, within
a simulated environment. In addition to logging task per-
formance and intervention states, we occasionally queried
the users’ absolute trust feedback, through an interval scale.
We also asked users during interactions to periodically re-
port trust changes, by pressing gamepad buttons indicating
trust lost, gained, or unchanged. Our Bayesian model in-
corporates these variable-rate trust assessments to further
ground beliefs about the human’s latent trust state.

We trained instances of this dynamic trust model on half
of each user’s dataset using Expectation-Maximization. Trust
predictions made by these personalized models for the hold-
out portion of each dataset consistently outperformed those
of several existing works [4, 3, 7], both in terms of numerical
error and Pearson’s r correlation. This improvement arises
from our model’s use of a temporal probabilistic represen-
tation, which captures the uncertainty in trust inferences
across time. Another uniqueness of our model is the ability
to infer trust states rapidly and every few seconds, whereas
prior models operated at coarser time scales of minutes or
longer, due to their regression formulation. The high accu-
racy and near real-time contributions of this model will em-
power next-generation, responsive, and trust-aware robots.

3. ONLINE BEHAVIOR ADAPTATION
Our research also investigates methods to adapt and im-

prove the robot’s behaviors online, both in autonomous and
manual control states. Focusing on the latter, we developed
an interactive adaptation technique that learns from human
interventions to improve team efficiency [9]. This is based
on policy gradient reinforcement learning [2] and resembles
Learning from Demonstration methods [1]. We generalized
the framework to handle changing task goals, and realized
an online, anytime, and concurrent solution.

The robot’s policy yr = A(x, θ) computes control out-
puts yr (e.g. steering commands) given sensor states x (e.g.
camera frames), and configurable parameters θ. Human
commands yh can be used to compare intervening behaviors
against simulated policy outputs for arbitrary θ values. Our
adaptation method uses gradient-based optimization to up-
date parameters θ over time, to be more consistent with the
human’s actions and intentions. This system allows users
to teach robots to follow a new terrain boundary simply by
driving along it. The robot’s task performance also improves
incrementally whenever the human corrects its mistakes.

We carried out boundary patrol experiments to compare
our interactive adaptive system against both a non-adaptive
expert-tuned variant, and plain teleoperation. In each exper-
iment run, we collected various efficiency metrics, including
automation failure rates, task durations, deviations from
designated paths, manual intervention rates, and satisfac-
tion ratings. Aggregated rankings of the 3 team configura-
tions were then computed using the Kemeny-Young method.

In the first experiment, 15 users partnered up with a sim-
ulated aerial robot to track a straight highway stretch, a
smooth forest path, and a curvy coastline segment. Aggre-
gated rankings showed that our interactive adaptive robot
performed comparably to the tediously expert-tuned setup,
and both significantly outperformed plain teleoperation. In
particular, the adaptive variant yielded greater efficiency
during the coastline section, where the unpredictable curves
in the terrain necessitated frequent updates to the tracker’s
parameters. In the second experiment, 7 users collaborated
with a wheeled robot to patrol along footpaths, grass sides,
and curbs on a university campus. The resulting aggre-
gated efficiency rankings showed a consistent ordering, with
users preferring our adaptive system, then the expert-tuned
variant, and then plain teleoperation. These empirical re-
sults quantitatively substantiate the ability of our interactive
adaptation strategy for increasing team efficiency, without
requiring expert knowledge from the human collaborator.

4. TOWARDS TRUST-SEEKING ROBOTS
We are currently working to integrate our dynamic trust

model into our online adaptation strategy, towards the end-
goal of trust-aware adaptive robots that can actively seek
out greater trust and efficiency. Specifically, during manual
control, the amount of trust lost can be tied to the learn-
ing rate for our gradient-based adaptation method. This
enables the robot to adapt more aggressively in response to
severe cases of trust loss. In addition, when trust is low dur-
ing autonomous control, the robot can initiate preemptive
parameter optimization, to search for better settings in dire
distrusting states. We will demonstrate this general method-
ology through multiple instances of trust-seeking adaptive
robots. We expect our research to avert distrust and its
fatal consequences [6], and enable high-efficiency and long-
lasting collaborations for future human-robot teams.
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