
A Method for Modifying Dynamically Classes in the Object-Oriented Dynamic
Programming Environment

Lu Pei Yu Dachuan Lu Jian

Institute of Computer Software, Nanjing University
State Key Laboratory for Novel Software Technology

Nanjing 210093, P.R.China
lj@nju.edu.cn

Abstract In the object-oriented dynamic programming
environment, dynamic modification of a class, which

permits change of it at run-time and without
recompilation, is the key point to exploit flexibility and

support rapid prototyping. However, it causes a problem
that the existing objects of the modified class are

difficult to handle. In this paper, the concept of "cloned
class" is introduced, and a method based on it for

modifying dynamically classes is proposed.
Keywords Rapid prototyping, object-oriented dynamic
programming environment, dynamic modification,

cloned class, source class.

1. Introduction

An obj ect-oriented dynamic programming

environment is a software developing environment
which supports dynamic programming based on an
object-oriented language. In this kind of environments,

programmers can interactively input and execute some
testing cases for certain classes, such as creating
instances of them, and sending messages to objects of
them. Meanwhile, if certain problems are found,

programmers can modify any class and existing object as
they will. After the modification, programmers can
continue to execute programs interactively. Smalltalk-80

programming environment [Goldberg 83] is a classic

object-oriented dynamic programming environment.
A significant advantage of the object-oriented

dynamic programming environment is its flexibility,

which is very useful for rapid prototyping. Obviously,

dynamic modification of classes is the key point of this
kind of programming environments. By dynamic

modification, we mean the modification of classes at
run-time, when programmers are testing these classes
interactively . Since dynamic modification in a sense
permits rapid change of classes, programmers can use it

in prototyping classes [Krief 96] as they will rapidly and
flexibly.

However, a big problem occurs when a class is
dynamically modified. If the class to be modified has
already had some objects, then after it is changed, how

to deal with those objects? Two major parts of a class
can be modified: member variables and member
functions(methods). Modifications of member functions
change the behavior of objects pertaining to that class
while do not affect the storage structures of those objects
in memory directly. But modifications of member
variables will cause the storage structures of those

objects in memory to be inconsistent with the modified
class immediately. Therefore, The programs which are

executed after the modification and involve the existing

objects of the modified class, will be logically
unreasonable in a sense.

There lie two major solutions to this problem. One
is to discard all ol~jects whose class's description of
member variables is modified. Obviously it is a
conservative approach. Although in this way, each
existing object is confirmed to be consistent with the

class of it, there is some serious loss of dynamicity. In
fact, this kind of modification is not "dynamic" at all,
because it is similar to clearing up all objects and

restarting a new program after modification. The other
method is to convert all those objects to make their
storage structures in accordance with the description of

the modified class. It is an optimistic approach.

VisualAge [OTU 95], a dynamic programming
environment based on Smalltalk language, uses this
method. Although for Smalltalk, a highly dynamic

programming language without type, it is not difficult to
implement object conversion, the method still slows
down the speed of dynamic modification greatly. The
situation wilt be worse if the programming language is a

kCM SIGPLAN Notices 57 V. 32(9) Seigtember 1997

http://crossmark.crossref.org/dialog/?doi=10.1145%2F270507.270520&domain=pdf&date_stamp=1997-09-01

typed object-oriented one. Since we can not only add or

remove member variables, but also change their types

when modifying classes, the conversion of objects is

much more complex and time-consuming than that of

Smalltalk.

According to above analysis, a new method of using

cloned class to dynamically modify classes is proposed

in this paper. It is based on MagicFrame, an object-

oriented software developing environment still under

construction of Motorola Inc. and us. The main idea is

that, once a class needs to be modified dynamically, a

cloned class of it is created automatically. Then, it is the

cloned class rather than the original one that is actually

modified, such that the original class is only modified

logically. By this way, the problem mentioned above

could be solved more reasonably and clearly.

2. The cloned-class method

2.1 Source class & cloned class

To introduce our method, first we present two new

concepts: cloned class and source class.

A cloned class is a duplicate of a class for direct

modification. The class which is duplicated is called a

source class. The duplication process from source class

to cloned class is called cloning.

source class A ~] ~ cloned class A" [
I

modal"'. ~l~M~b. S o d i f y
l o g i c a ~ t u r a l l y

Figure 1 Modifying cloned classes
In an object-oriented dynamic programming

environment, once a class A needs to be modified

dynamically, a cloned class A* of it is automatically

created. Then, A* is ready for direct modification, while

A does not change at all. This process is shown as Figure

1. When modification is finished, programs can run with

all existing objects of class A that already exist still

pertaining to A, since there is no change on A. But, if

statements of '°creating A's objects" are encountered,

A *'s new objects are really created rather that A's (note

that class A* is the logically modified version of A). To

sum up, it is the system that automatically and implicitly

operates two kinds of objects differently: objects of the

source class, which already existed before dynamic

modification, and objects of the cloned class, which are

created after dynamic modification.

2.2 The cloned-class tree

Since a class can be modified in many aspects, there

could be more than one cloned class derived from a

single original class. What's more, since further

modification may be done to the modified classes , a

cloned class could have its own cloned classes. So,

modifying a class A may generate a tree, which is shown

as Figure 2. The root of that tree is class A, and each of

other nodes is a cloned class of its parent node. Each

branch represents a single process of modification. We

call this tree the cloned-class tree (or dynamic

modification tree) of class A.

Figure 2 "Ihe cloned class tree of A

The modifying process of class A is in fact the

expanding process of the cloned-class tree of class A.

The lately created node Ac in the tree is called the

current cloned class, which is the newly modified class.

If the program running after modifation needs to create

A's objects, the system will automatically create Ac's

objects instead, and operate those objects as Ac's objects

rather than A's. Creating an object of the current cloned

class is called validation of it.

Before the current cloned class B is validated, all

modification on B is directly done to B, and there is no

need to create B's cloned class. The new modification

and the old modification on B are incorporated into one

as a single branch of the cloned-class tree. The reason to

introduce this rule is obvious. Since class B is changed

before validation, it is impossible for any objects of the

old class B to be created, and there is no need to

maintain it as a node of the cloned-class tree.

When programmers think some permanent change

on class A is really needed, they can take an operation

called updating confirmation, which updates the source

class A with one of its cloned classes and releases the

whole cloned-class tree of A. When updating

confirmation finishes, the corresponding dynamic

modification process finishes as well. Generally,

updating confirmation will be done at the time that

programmer stop inputting programs interactively to test

classes.
It is necessary to point out that, If class A has

subclasses, when A is dynamically modified, subclasses

of A do not clone as A, and all objects of them do not

change at all (that is, the semantics of modification of a

class can not be passed to its subclasses immediately).

Since in an object-oriented dynamic programming

environment, most dynamic classes are classes still

under construction and have no subclasses(i.e. they are

leaf nodes in the class hierarchy tree), this rule affect

little on the clone-class method. When programmers

really want to change a class and all its subclasses

simultaneously, they can modify it statically rather than

dynamically.

2.3 Advantages

Compared with the two traditional methods

mentioned above, the cloned-class method has the

following advantages:
(1) Modifications of cloned classes do not affect

source classes. So all objects of source classes are

consistently in accordance with their classes, and there is

no need to delete or convert the existing objects of

source classes. The whole developing process of classes

is logically clear and reasonable.

(2) In dynamic programming environments,

modifying classes is often a tentative action. One

modification of a class may be undone by the next one.

If we use methods that directly modify classes, there will

be a lot of undo processes in certain situations. But if we

use the cloned-class method, there is no need to undo the

modification that do not satisfy us. The only thing we

should do is to restore the original class at the time of

updating confirmation.
(3) Another important advantage of cloned-class

method is that, since objects of the original class and

objects of the cloned class can coexist, we can compare

their behavior and observe the result of dynamic

modification interactively and intuitively. For example,

there is a window class W and one of its instance w/.

When we are not satisfied with one of W's display styles,

we can modify class W dynamically even when wl is

active in memory. Then, according to our cloned-class

method, a cloned class W* is created automatically.

Programmers can create a new object w2 of class W*,

compare these two windows wx and w2 in a What-You-

See-Is-What-You-Get manner, and decide whether the

modification is really wanted. Obviously, this advantage

can not be obtained by those two traditional methods

mentioned above. It greatly exploits the flexibility of

dynamic modification and facilitates the prototyping

process of classes.

In fact, the cloned-class method can be considered

an application of buffering technique on dynamic

modification. And in a sense, it extends the traditional

idea of buffering, because a class can have a "buffer

tree" rather than a "buffer class". To sum up, the method

not only improves the type safety of dynamic

modification, but also makes it more flexible for

prototyping.

2.4 Implementation

Advantages of the cloned-class method are obtained

from its relatively complex implementation.

Since a cloned class is not a common class but a

new class with little difference from the source class, its

storage structure is definitely different from common

classes. There are two kinds of members in its storage

structure: (1) Duplicated members, which are members

duplicated directly from the source class. (2) Changed
members, which are originally in the source class and

then modified (obviously, the new members added are

also in this catalogue). All members in a cloned class

are implemented by pointers. If a member is a duplicated

one, it is exactly a pointer to that member of the source

class in memory. If a member is a changed one, it is a

pointer to the newly allocated memory area of that

member.

When we begin to dynamically modify a class A in

our program, the system creates a cloned-class tree T for

A automatically. Each node in the tree is a cloned-class

structure. At first, there is only one root node, which is

exactly the source class A. When we modify class A for

the first time, the system creates a cloned class A1 of

source class A , and remark A1 as the current cloned
class. Then, Ai is modified directly by us. When we

finish modifying Ai, The system attaches class Aj to the

cloned-class tree T. When the program resumes, all

59

existing objects of A are still A's objects. The system

interprets their operations according to A's behavior. But,

if there is a statement of creating a new object aj of class

A in the following program, the system will create a

instance aj of the current cloned class A j, which is the

lately modified version of A. Then, a/ is remarked as

A / s objects, and all operations on a~ is interpreted

according to class Ai.
When further modifications are needed, the system

prompts the cloned-class tree T to programmers in a

visual way. Programmers can select any class node of T

to pursue further modification. If the selected class A is

not validated, then class A' is directly changed, and no

new cloned classes are created from A'. IfA' is validated,

then a new class A" is cloned from class A' and remarked

as the new current cloned class. In this way, the cloned-

class tree T expands as the program runs, and there are

more and more objects of cloned classes in the cloned-

class tree.
When the program finishes, the system prompts the

cloned-class tree T of class A to the programmer in a

visual way, and requires the programmer to select a class

in that tree to substitute the original class A. This is the

process of updating confirmation.

In practical situations, the depth of the cloned-class

tree of a class is often less than 3, and the number of all

nodes in the tree is less than 5. Usually, only a small part

of a class is dynamically modified, and all duplicated

members are shared by the source class and cloned

classes. Therefore, it costs little time and memory to

maintain a cloned-class tree. During the execution of a

program, our system needs to do only two extra things:

remarking objects as different classes' instances and

remarking a class "validated" when its new instance is

created. Thus, the cloned-class method have little side

effect on performance of the whole system.

2.5 Dynamic modification of object structures

We can modify dynamically not only classes but

also existing objects in our dynamic programming

environment. There are two kinds of modifications to an

object: (1) Modifications of its value, which changes

values of data members in that object. (2) Modifications

of its structure, which changes types of data members,

including adding or deleting some data members in that

object. Obviously, modifying the structure of an object

is actually modifying the class of that object indirectly.

Also, we can use the cloned-class method to support

dynamic modification on object structures. Once the

structure of an object needs to be modified, a cloned

class of that object's class is created implicitly for direct

modification. The modified object is operated as an

instance of the cloned class, and all other objects which

belong to the original class are not affected at all. This

process is shown as Figure 3.

source - ~ s o u r c e

object class

, 1
destination L I cloned

object]" I class

Figure 3 Dynamic modification of object structure

3. Conclusions

The method for dynamically modifying classes by

cloned classes discussed above is proposed by us when

we studied object-oriented dynamic programming

environments. Compared with the two traditional

methods, It is a fairly satisfactory solution to the

problem that how to handle existing objects whose

classes are dynamically modified.

Acknowledgment This research is supported by

National Science Foundation for Excellent Young

Scientists, Foundation of Trans-Century Talented

Persons Fostering Program and PanDeng Program of

China. The first author is the recipient of a Motorola

Partnership in Research Grant. We also thank all the

members in MagicFrame group, which is directed by

Prof. Xu Yongsen.

References

[Goldberg 83] Adele Goldberg, SmatlTalk-80 : The

Interactive Programming Environment. Addison-esley ,

1983.
[Krief 96] Philippe Krief, Prototyping with objects,

Prentice-Hall, 1996.

[OTU 95] School One: Smalltalk Developer/Tester

Training Student Notebook. IBM Corp, 1995.

60

