
Advanced Network Programming
with APII9/W for Dyalog APL

--by Dr. Andrei K~ndrasA~
Chicago, Illinois

0 7 8 15 16

type - 8 [code - 0 checksum
m

identifier sequence number

optional data

Figure I: ICMP echo request message

31

This article is a continuation of the paper published in
the previous issue of APL Quote Quad, entitled

"Introduction to Network Programming with APL."

ICMP protocol: The PING program

M
OST TCP/ IP IMPLEMENTATIONS provide a "ping" pro-
gram as a diagnostic tool. This program sends an echo
request message to a specified host. The purpose of

such a message is to test whether the host is reachable or not.
T h e echo request message uses the Internet Control Message
Protocol (ICMP). Despite the fact that the ICMP protocol is on
the transport level of the TCP/ IP stack (see Figure 1 in the
previous article), it is not considered to be a transport protocol.
ICMP allows you to do many interesting things on a network.
Usually this protocol is not available to application programmers.
However, if your TCP/ IP implementation supports so-called
raw sockets, you can emulate ICMP and, therefore, write your
own ping program. (Note that the Microsoft TCP/IP implemen-
tation that is commonly used with Microsoft Windows does not
support raw sockets. Example shown below was run using
Super- TCP by Frontier Technologies Corp.)

Raw sockets provide access to the transport layer level (see
Figure 1 in the previous article). When we were using TCP, we
didn' t care about how the TCP/ IP stack packs and unpacks our
data to/from T C P messages. It was done automatically when we
used the SEND and RECV commands. With raw sockets, before
you can use the SEND command, you have to create a header
that corresponds to the transport protocol you want to use. The
data you send go directly to the network protocol level, without
processing at the transport level. When you receive data using
the RECV command, they come from the network protocol level.
As a result, they contain a transport protocol header in front.
You have to process this header and, if necessary, reply with an
appropriate message. The use of raw sockets is not recom-
mended.

The format of the ICMP message for an echo request is
shown in Figure 1.

In the simplest case, we need to send only 8 bytes to the IP
level to generate an echo request message. Here is a simple
program that does the job. Please refer to the previous article for
definitions of SHARE, SAY, and END functions.

q P/NG ADDR;S;A
[1] n PINGS AN INTERNES ADDRES FROM "ADDR"
[2] ~ RAW SOCKETS SUPPORt IS BEQUIRED!
[3] SHARE
[4] S~SAX 'SOCKET' 'RAW' 1
[5] SAY 'SENDT0' S 0 'N' 2 0 ADDB (8 0 247 255 0 0 0 0)
[63 ~(I=SAY 'SELEC2' S '' " 30)/OK
[7] ADDR,' is not responding.' o ~EX
[8] OK:AsSAY 'RECVFROM' S 0 'N'
[9] 'Beceived response from ',~3=2=A
[10] EX:SAY 'CLOSE' S
[11] END

q

The SOCKET command uses an additional argument that we
didn ' t use in our previous programs. The third parameter (that
normally can he omitted) specifies the transport protocol that
will be used in connection with the new socket. For stream and
datagram sockets the protocols are chosen by defaul t - -TCP and
UDP. Because we are going to use a raw socket, the system needs
to know what protocol number to put into the Internet datagram
header that will be formed on the network protocol level of the
TCP/ IP stack. ICMP has protocol number 1. T C P and UDP
have protocol numbers 6 and 17 respectively.

The PING function also uses two new commands for sending
and receiving data: SENDTO and RECVFROM. SENDTO

accepts a recipient's address as a parameter. RECVFROM

provides the address of the sender in its result.
PING sends 8 bytes (the minimal ICMP echo request

message) to an address in question (line 5) and waits for its
response (line 6). I f the address does not respond in 30 seconds,
it concludes that it is unreachable. This is an example:

PING '146.241.92.78'

Received response from 146.241.92.78

PING '146.241.92.99'

146,241.92.99 is not responding

You could send a sequence of pings storing the sequence
number in the appropriate field (see Figure 1). Tha t will allow
you to check whether all your messages returned back and
whether they are still in the sequence they were sent.

6 APL Quote ~ad

http://crossmark.crossref.org/dialog/?doi=10.1145%2F270826.270827&domain=pdf&date_stamp=1997-03-01

Figure 2: AP I I 9/vV notification mechanism

Event-driven programming with APII9/W
The foUowing commands will block your system, if an appropri-
ate network event does not have place:

AP119/W Command

ACCEPT
CONNECT
RECV
RECVwith COB flag
RECVFROM

SEND

SENDTO

GETHOSTNAME

GETHOSTID

Network Event Event Name

Incoming connection request ACCEPT
Connection established CONNECT
Data available for reading READ
Out-of-band data available for reading COB
Data available for reading READ
TCPflP kernel ready to transfer data WRITE
TCP/IP keind ready to transfer data WRITE
DNS requeat completed DNS
DNS request completed DNS

You can use the SELECT command to examine the status of
a socket and see whether an AP119 call will block or not. Note,
that the C O N N E C T and DNS events cannot be examined before
the corresponding command is executed. For many appficafions
the use of SELECT (or blocking operations) is good enough.
However, if you need to write a TCP/ IP server that has to
effectively process requests from many clients simultaneously, or
you want to write something as a T d n e t program, the use of
SELECT becomes unsatisfactory. T o have good response time,
such a program should interrupt itself very ofien to check the
status of active sockets. In most cases it will be just a waste of
time. A better approach is to make the TCP/ IP kernel interrupt
the applicafon when an event ofinterest occurs on the network.

The NOTIFY command is used to speci~ a Dyalog APL
window (form) that should receive notification messages when
selected events occur on a particular socket. Before we can use
this command we have to create an invisible top-level window.
The call-hack function that should be called when a network
event occurs, must be attached to Dyalog APL event 5
(MouseDblClick):

'APii9F'[3WC'FORM'('COOED' 'PIXEL') ('CAIJZION '

We do not care about the size and position of this window; it
is invisible. However, you must set up the coordinate system in
F IXEL mode. The generic form of a call-back function is shown
below (it has the name ~CP_CB, but you may use any name you
like):

q ~_CB b~;EJ/EI'tI;ERDOR;S
[I] . GENEB/C CASEK4C~ FUNCTION FOR A A/~IIS/W NOTTFICATIOIV M~SS~E
[2] S EVEAr2~O 256T3=t4,.~ o EI~OI~44=MSG
[3] ~ E v ~ £ = I 2 g B 3.6 32 128)/.~AD,WE_TTE,OOB..~'CEP2',CO~',CrD~,DIq5
[~.] -,0
[5] /~',~D: U:~.AD EV~t I ON E K E 2 ' ,(vS).(*E/~EON)/'..E-,I.a~0.R CODE: ' ,TEt~OR
[6] -,.0
[7] WB/TE:'WR/r/E EV~2 ON SOt/R/ '.(*S),(*EF~0R)/'. EFhgDB CODE: ',T~R
[83 -~0
[9] 00B:'OOB EVE~I ON SOCKKff '.(vS),(xEBBOE)/'. EI~90R CODE: ',*ERFOR
[lO3 -.o
[11] ACCEF/:'ACCKP/ EVEM/ ON SOCKET ',(vS),C*ERBOR)/'. E-I~0R CODE: ',TEI~gDI~
[12]
[13] C~I: 'CONNECI ~ ON SOCI~II ' ,(*S),(~EIgI~OR)/' . EI~gR CODE: ' ,vF, RROR
[14] -.o
[15] C~OSE:'CLOSE EVEMI 01~ 50CRET '.(vS).(*EP~OI~)/'. E-~S CODE: ',vEI~gDB
[16] -.(3
[17] II~S: ' DNS F~JESTI COI~LI~ID. '.(-EBROR)/'. ER~90R CODE: ' .vERI~OR

V

T h e first argument of the NOTIFY command specifies the
handle or the caption of the window that should receive notifica-
tion messages. If you use window's caption (version 6.3 of
Dyalog APL/W didn't have the HANDLE property), you have
to use a unique caption for this window (something very
unusual). The second argument is the socket number, and the
third argument is an event mask. In our case, we want to receive
notifications about all network events that occur on socket S.
Figure 2 explains how the AP119fiV notification mechanism
w o r k s .

When the N O T I F Y command is executed, A P l l 9 / W finds
the window that has the specified handle. The events of interest
are defined by the third argument of the command. Number 1
corresponds to the READ event, number 2 to the W R I T E event,
and so on (see Chapter 6 for more details). When an event of
interest occurs, AP119/W posts the MouseDblClick (event 5)
message to the specified window. Parameter 3 of this message
shows the network event number and the socket number
pertaining to the network event. Line 2 of the TCP_CB function
above decodes this information. Parameter 4 of the message is
the error number. Error number 0 indicate successful operation.
Each network event generates a separate message. Line 3 of the
TCP_CB function re-directs execution according to the network
event (in our case we only display an appropriate message).

'119')('EVENZ'5'ZCP_CB')('VISIBLE' O)

MAaCH 1997 - - VOLUm/E ~7, NUMBER 3 7

T h e following is a summary of how to use event-driven
programming with AP119/W:

1. Create a socket with required characteristics,

2. Create a h idden window and attach a call-back function to
event 5.

3. Issue the N O T I F Y command to specify a window that will
receive messages for events in interest for the socket.

4. Establish a T C P connection (for stream sockets only).

5. Do background processing (processing messages from
other application windows).

6. Respond with AP119]W commands on notification of
network messages.

The re is an important difference between the C O N N E C T
and DNS events and other networks events. C O N N E C T and
DNS events are posted to the application after the execution of
the CONNECT, GETHOSTNAME, Or GETHOSTID commands.
C O N N E C T event informs that the connection is established or
failed. DNS event informs that asynchronous DNS requested is
completed. If the C O N N E C T event is enabled (the correspond-
ing socket is in non-blocking mode) the CONNECT command
will return immediately with the result 0. T h e application can
wait until the C O N N E C T event is posted, or it can cancel the
connection attempt using the CANCEL command (this is how
Web browsers work). If the application uses asynchronous
version of GETHOSTID or GETHOSTNAME commands the
A P l l 9 / W will return immediately with the result 0. T h e
application can wait until the DNS event is posted, or it can
cancel the connection attempt using the CANCEL command.
When DNS request is posted, the application can use FETCH
command to get the results of the DNS request. All other
network events are posted to the application before the corre-
sponding AP119/W command is used. T h e y inform the applica-
tion that T C P / I P stack is ready for the corresponding operation
and it can be completed without blocking.

You might choose to use a mixed strategy that uses N O T I F Y
and S E L E C T commands together. However , it is not recom-
mended for the same socket, because in this case you may receive
notification messages that incorrectly reflects the real situation on
the socket.

Example of event-driven application:
Datagram sockets
Datagram sockets are much easier to understand than stream
sockets. T h e y are very easy to use, but in most cases they require
more sophisticated application protocols in comparison to
stream sockets. Datagram sockets use UDP transport and handle
the data flow in the form of user datagrarns. In fact, everything
that we said earlier about IP datagrams can be applied to user
datagrams.

Datagram sockets should be used in cases where reliability is
not essential. T h e y consume much less network resources than
stream sockets, because the UDP transport does not use ac-
knowledgments or time-outs. An application protocol can take
care of these features, i fnecessa~. Stream sockets provide one-
to-one connectivity, while datagram sockets support one-to-
many service. A datagram socket acts as a post office and it is
ready to use immediately after it is created:

SHARE
D~SA_Y 'SOCKET' IDGRAM'
SAY 'SENDTO' D 0 'A' 2 1 0 0 0 '146.249.92.76' 'MY MESSAGE'

We just have created a datagram socket D, and have sent a
message to the addressee with por t number 1000 on the com-
puter with IP address 146.240.92.76. Because the socket D is
not connected to any particular recipient on the network, we had
to specify the delivery address explicitly using the SENDTO
command. Because UDP is a connecfionless protocol , the
CONNECT command is not needed. I f you use the CONNECT
command with a datagram socket, it simply sets a default address
for the SEND command.

The re is no way to know whether our message was received,
unless our partner confirms this somehow. If there was an
opened datagram socket with the specified parameters on the
network, and if it was expecting to receive something from us,
and flit sent something to us as a confirmation (too many "iP's!),
we can retrieve its message:

1=SAY 'SELECt' D '' '' 5
i

[]~SAY 'RECVFROM' D 0 'A'
I RECEIVED YOUR MESSAGE 2 1000 146 .2q0 .92 .75

First we check whether the socket is ready to read, in order
to avoid blocking. Again, because we don ' t know where the
message comes from, we use the RECVFROM command to
retrieve the message. This command returns not only the
message itself, as RECV does, but the sender's parameters also
(in the second item of a two-item result). You can use the RECV
command instead if you don ' t care about the source of the
message.

T h e following is an example of a simple event-driven network
application that uses the Dyalog APL interface to Windows. T h e
ECHO program creates an application window with two buttons
(see Figure 3). We will "ping" a standard echo server using a
datagram socket. (If your T C P / I P stack supports raw sockets,
you can easily modify this program into another version of the
P I N G program.) T h e r e is a timer object in the system. It
generates an event every second. When the call-back function
ECHAH is fired, as the result of the timer event, it sends a data-
gram to the echo server. We will trap only the READ event from
the created socket. When this event occurs, the program receives
a message. T h e "S top" but ton stops the timer and disables the
datagram sending. T h e program displays the current number of

APL Q~otE

sends and receives. If the standard echo service is not available
to you, you can write your own echo server in APL.

The main program ECHO does only initial setup, leaving the
processing on the call-back function.

V ECHO ADDR;S;PS;PR
[1] n ST~NDARD ECHO SE~CICE (7). CEiq.N'/ PNOGRAM
[~] -~SWA~E~ o

[14] PS~PB~-0
[5] 'TF'[J¢C'F0/~.4'('CAFIION'('Echo/rig ',ADDR))('C00RD' 'PIXEL')
[fi] 'TE'[J¢S'SIZE' 120 280
[7] 'TF,ST'[]CC'~ITION'('CAFIION' 'Stop')('SIZ~' 30 S0)('POSN' i0 55)
[8] 'TF.LT/'[]CS'EVENT' 30 'ECBAII' 0
[9] 'TF.EX'[ICC'~ITION'('CAFIION' 'Exit')('SIZE' 30 80)('POSN' 10 145)
[I0] 'TF.EX'[~TS('EVENI' 30 'ECBAH' I)('DEFAUET' 1)
[11] 'TF.Ti 'U~C'~XT'('RglYIS' 60 65)('TE/fr' 'Packets sent:')
[12] 'TF.T2'[~C'TEXT'('PO/M/S' 50 195)('TE~' ' 0 ')
[13] 'TF.T3'[~C'TE~'('POi/~/S' 80 65)('TEd' 'Packets received:')
[14] 'TF.T4'[]WC'TE~'('FO/Y/S' 80 195)('TEXT' '0')
[15] 'ECBF'[3CC'FORM'('CAFIION' 'ECHO_CB')('C~X)RD' 'PIXEL')('VISIBLE' O)
[16] 'ECHF'[J4S'EVEW/' 5 'ECBAH' 3
[17] SAY 'N(EIIFZ'('ECHF'[~4G'HAND~E')S 1
[18] 'TF.TIMER'[]4C'~IMER'('!NIEH~AL' 1000)(IEVE~ ' 140 'ECH~H' 2)
[19] [3D~ '.'
[20] S&Y 'CEOSE'S
[21] END

V

The callback function that processes all (not only network)
events for this application is:

7 B ECHAH MSG
[1] ~(B=I 2 3)/L1,LT,L3
[2] ~ START~STOP BUTTON
[3] 'TF.TIMER'OWS'ACTIVE'(B#-'TF.TIMER'OWG'ACTIVE')
[4] 'TF,ST'[3WS'CAPTION'((I+B)='Start' 'Stop')

[5] ~0
[6] ~ EXIT BUTTON
[7] ~I:DEX '.'
[8] ~0
[9] n TIMER EVENT: SENDING PACKET
[i0] L2:SAY 'SENDTO' S 0 'N' 2 7 ADDR 'A MESSAGE'
[ii] 'TF.T2'OWS'TEXT'(B~TPS~PS+I)
[12] ~0
[13] n TCP/IP EVENT: BECEIVING ECHO
[14] L3:SAY 'BECV' S 0 'N'
[153 'TE.Tq'OWS'TEXT'(TPR~PR+I)

V

Run it:

ECHO '146.240.92.26'

Figure 3

.Dr. Andrei Kondraslz¢o can be reached at Lingo Allegro USA, Inc.,
113 McHenry Rd, $uite 161, Buffalo Grove, IL 60089 USA; or via
e-mail at "71303.3224~ CompuServe. co m "

An interview with

of Health Economics Group, Inc.

As INTERVIEWED BY RAY POLIVKA

W
E HAVE OFTEN SPOKEN TO AND INTER.VIEWED PEOPLE

from large corporations. We are all pleased that APL
finds a plat© 'm such the large corporations; however

we must not overlook the importance of APL to the small entre-
preneurial company, Jeffrey Zweibert represents just such a small
company. Let's seo what he has to day.

QQ: Jeffrey, thank you for letting me interview you. I would like
to ask you who you are and what you do corporately.

|effrey: The company name is Health Economics Group, Inc.,
in Rochester, New York. It is a third-part/admim'strator known
in the industry as a "TPA." What that means is that we design
and manage employee ben©fit pla,~.

QQ: You manage health benefit plans?

le f t .y : In general, we manage employee benefit plans. That in-
dudes medical plans, dental plans, prescription drug plans, cafe-
teria plans, flexible benefit plans.

QQ: For whom?

]earey: We do it for employers or employee groups. For exam-
pie, industrial companies, city and county municipalities, and
any group that is large enough to self-insure. Wc do not take
financial risk. Our customers take the financial risk, and if their
actuarial numbers work out correctly, they can save money--and
they usually do, compared to buying an insured plan. If the num-
bers do not work out, we suggest that they remain insured. The
difference between insurance and serf-insurance is, in the insur-
ance plan you pay a premium to the insurance company and they
take all the financial risk and the customer or individual takes no
financial risk. With self-insurance,you take a//the financial risk.
There are combinations of insurance and self-insurance. For
example, your own car insurance with a deductible of say $500
is one. For the first $500, you are self-insuring and above $500
you are insured. So typically, with medical plans, companies buy
what is called stop-loss insurance to insure 'against catastrophic
risk and they self-insure all the bottom risk, or the non-catastro-

phic risk.

MAaCH 1997 - - VOLUME a7, NUMBER 3 9

