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Evolution 

S 
O B E R I N G  IS  T H E  E X P E R I E N C E  o f  examining one's ancient 
code. We often tend to think we have matured in our code 
design and programming skills, and looking back at old 

code reinforces this tendency. But the fact that it keeps happen- 
ing--yesterday's code looks like trash compared to today's gems 
--really belies the truth that we are always improving, and our 
code is never quite so extraordinary as we might wish to think. 

I recently was confronted with this disconcerting thought 
while reading Eugene McDonnell's column "At Play withy '  in 
the October, 1996 (Vol,13, No.2) issue of Vector, the excellent 
sister publication of APL Quote Quad from the British APL 
Association. This particular column was entitled "Volutes," 
which are spirals of numbers as illustrated below (don't worry 
about the arguments yet, although the fight should be plain): 

BIO~I o LeO 8 o R÷4 5 
'Involutes' 'Evolutes',V~Lo.VOLU2E R 

Involutes 1 2 3 4 1 2 3 q 5 
12 13 14 5 16 17 18 19 6 
11 16 15 6 15 24 25 20 7 
10 9 8 7 14 23 22 21 8 

13 12 11 10 9 

Evolutes 16 15 14 13 25 24 23 22 21 
5 4 3 12 10 g 8 7 20 
6 1 2 11 11 2 1 6 l g  
7 8 g 10 12 3 4 5 18 

13 14 15 16 17 

Involutes spiral in (increase) from a comer, and evolutes spiral 
out from the center. One may also view evolutes as spiraling in 
(decreasing) from a comer, and in fact subtracting either from 
( R*2 )-- i*DZO (here 17 or 26) produces the other. 

V~(2 2017 26)-(¢L)°.VOLU2E R 

Notice that only odd volutes have a distinct center item. Because 
of this characteristic, let us describe involutes by where they start 
(HI0) and evolutes by where they end (-i+BI0+R*2). Thus we 
will call all of these top-left clockwise volutes. 

Recalling that I had solved this problem some time ago (no 
doubt tastefully) I rummaged about and found (to my chagrin) 
the following, which I've edited only slightly for publication: 

V R-A SPIBA5 B;C;D;BIO 
[I] a NONNEGATIVE 17¢2EGEH SCALAR <B> GIVES 2BE FING22H 
[2] a 0F ~HE SPIBAE. CH/~a[JTER VECTOR <.4,> SPECIFIES 
[3] , A SEQUENCE OF DIBEC2IONS (I=t=NOF~H, 2=~=EAST, 
[4] a 3=~=SOUTB, 4=~-=WEST). 5 JUN 82 / f / f lY 

[5] H~(BLi l)pBIO~O o ~iB_<I , ESCAPE IF TBIVIAL 
[5] ~ DECODE DIREC2IONS: 
[7] D~(12 2p-1 0 0 1 1 0 0 -l)['NESWt~1234'tA~,Ai] 
[8] a COMHffE TIIE MOVES: 
/9] C~F(4xR~B-1)*0.5 o D4h+~D[R~( [-\l+tC)/Op~pA;] 
[10] a FIEE /N TBE NUMBEBS: 
[11] R~(x/C~l+r/m~P-(gD)pLMD)pO o R[C±eD]~tB o R~-CpR 

'WSg~' ~PIP~ 25 
24 23 22 21 20 
9 8 7 6 19 

10 1 0 5 18 
11 2 3 4 17 
12 13 14 15 15 

top-left clockwise evolute 

Well, at least the comments were spelled correctly. Actually, 
the code wasn't too bad, although my design for the arguments 
was dearly misguided. The leR argument does not provide for 
involutes, and has arbitrary synonyms (which did not include 
lowercase because this was written on a mainframe) for direc- 
tions (whatever happened to leR, down, fight, and up?). Instead 
of specifying the side length, the right argument is its square 
(why I don't know), and the documentation is not explicit about 
this. Also, the function only provides for origin-0 results (Eugene 
and other J advocates would no doubt approve), again with the 
comments silent. Furthermore, one can call SPIRM; with 
arguments for it is clearly neither prepared nor demanding 
enough to reject, generating spurious results: 

'W-*2 ' SPIRAL 2 3  

1 6 7 16 17 18 19 20 21 22 

I now prefer that computational ~ncfions such as this have 
more succinct arguments, relying on application cover functions 
to decode whatever oddball method of specification the user may 
choose. Also, an ~gument should be as restrictive as the code for 
which it is intended. We'll look at VOLUTE's arguments later, but 
first let's talk about the algorithm. 

Gene's article described six differentJ solutions, culminating 
with a clever algorithm originally written in APL byJoey Tutfle, 
which we present forJ aficionados (spaces have been introduced 
for clarity): 

evJKT =. ,- $ /: @ (+\/) @ evJKT2 
evJKT2=. _l& I . @ (evJKT0 # evJKTl) 
evJKTl=. <:@+: $ _I: , ] , i: , - 
evJKT0=. } @(2: # >:@i.) 

Here is the code recast in terms of APL (it assumes E3IO~-O): 

[1] 
V Z~evJKT R 

Z~(2pR)p~+\evJKT2 R 
? 

[1] 
Z~evJK22 R 
Z~-l¢(evJK20 R)/evJETl R 
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[ 1 ]  
V Z*evJKT1 R 

Z ~ ( - I + 2 x B ) p - I , R , 1 , - R  
V 

V Z*evJKTO R 
[1] Z*-l~2/l+iR 

V 

OIO~O o evJK.T 5 
24 23 22 21 20 

9 8 7 6 19 
10 1 0 5 18 
11 2 3 4 17 
12 13 14 15 16 

Our taste in programming is to avoid a proliferation of trivial 
litde functions, many of which being once-used subroutines. 
Rather, we prefer to have somewhat heftier programs, so let's 
bulk up our translation of Gene's code into a one-liner, after 
localizing DIO to reproduceJ's fixed origin-0 behavior: 

Starting with SPIRAE, I eliminated the left argument and all 
its ghastly code, essentially hardwiring the ' WSEN' value which 
produces the same result as Gene's verbs. I also changed the 
right argument to be the side length, the choice everyone else 
had apparently settled on well before me, and I changed the local 
names to those I now prefer. 

[ 1 ]  
[ 2 ]  
[ 3 ]  
[ 4 ]  
[ 5 ]  

Z*EVO R;A;B;C;D;[3IO 
Z,-(RL1 1)pOlO~-0 o -+~/R_<I 
B~-4 2pO -1 I 0 0 1 -1 0 
C*07+NB[(-I+RxR)~( l-\l+12xR)/(2xR)p114; ] 
Z~-( x/At-l+ [MD*C-( pC )p LTzC )p0 
Z[A_L~D]~iRxR o Z~-ApZ 

EVO R÷4 
9 8 7 6 

10 1 0 5 
11 2 3 4 
12 13 14 15 

[i] 
[2] 

V Z*evJK2loO R;OIO 
010÷0 
Z~(2pR)pA+\-i#(-li2/i+iR)/(-i+2xB)p-i,R,1,-R 

V 

That's not too bad, is it? Better yet, we can incorporate OIO into 
the code to make it origin-sensitive; notice that only the right 
argument of replicate (2/)  changes: 

ARer these essentially bookkeeping chores, I delved into the 
algorithm. The rare subtraction scan (-k) on line [3] was 
probably an old idiom held over from the days before replication 
(compression extended to positive integers above 1), which 
appeared only in the early 1980's in most versions of APL. 
Incongruously, this vector formed the left argument to ... 
replication. 

V Z~EVJ/CT R 
[ 1 ]  Z~(2pR)pA+\ - IO( - I *2 / (~OIO)+~R) / ( - i+2 .B)p - I ,R ,1 , -R  

V 
OIO~l o Ei~EVJKT 5 o OIO~O o EO~EVJKT 5 o EO El 

24 23 22 21 20 25 24 23 22 21 
9 8 7 6 19 10 9 8 7 20 

10 1 0 5 18 11 2 1 6 19 
11 2 3 ~ 17 12 3 4 5 18 
12 1 3 1 4 1 5  16 13 l g  15 16 17 

1+12xR 
1 2 3 4 5 6 7 8  

- \1+12=R 
1 -1  2 -2 3 -3 4 -4  

I - \ 1 +  t 2 xH 
1 1 2 2 3 3 4 4  

2/1+~_R 
1 1 2 2 3 3 4 4  

n remember w@re using origin 0 

n old habits 

R new tricks 

It turns out that my SPIRAL, sans its arcane arguments, was 
similar to the first approach Gcnc described in his article, which 
he found in the book Concrete MatkematicJ by Graham, Knuth, 
and Patashnik as Exercise 3.40. Although the hook took a scalar 
approach whereas SPIRAL naturally uses arrays, both methods 
are basically geometrical. Two aspects piqued my curiosity: 

( 2 x R ) p 1 4  
0 1 2 3 0 1 2 3  

(2 /1+ lR ) / (2xR)p14  
0 1 2 2 3 3 0 0 0 1 1 1 2 2 2 2 3 3 3 3  

The truncation of the resulting row indices of small matrix B 

could also be simplified from ( -±+RxR ) , . . .  to ( - 1 - B  ) ~,...: 

SPIRAE has a lot of argument decoding nonsense which 
masks its essence. Stripped to its essentials, how close would 
it be to gVJK_T? Could one be derived from the other? 

EVJK~P has a grade up (A) but SPIRAL does not. I thought 
the big-O nature of the problem to be N-squared (the size of 
the result) rather than N-squared times log N-squared (the 
nature of sorting). Could a stripped down SPIRAL improve 
upon EVJKT by avoiding a cosily grade up? 

I also wondered ff I could succinctly describe and efficiently 
code one function which would produce all square involutes and 

involutes. 

0*B~4 2p0 - 1 1 0  0 1 - 1 0  
0-1 
i 0 
0 1 

-1 0 
pC~O~+~B [ (-l+RxR) ~ ( I -\1+ 12-1R)/( 2 xR ) p i q; ] 

16 2 
C---O-d-\B[ ( -l-R)* ( 2/I+iR)/( 2×R)p 14; ] 

1 
~C 

0 0 1 1 1 0 - 1  - 1  - 1  - 1  0 1 2 2 2 2 
0 - 1  - 1  0 1 1 1 0 - 1  - 2  - 2  - 2  - 2  - 1  0 1 

n old 

m new 

Next I examined how the two columns of C were adjusted 

and combined on the last two lines. Line [4] simply normalized 
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them to 0 as D, computed the radix A for evaluating D as a first 
order polynomial (ax+b) to calculate indices on line [ 5 ],  and 
used its product to create Z. But we already know (by definition) 
that pZ will be 2pR and thus p, Z is x/2pR; therefore A must be 
2pR. 

~D*C-(pC)pL/C 
1 1 2 2 2 1 0 0 0 0 1 2 3 3 3 3  
2 1 1 2 3 3 3 2 1 0 0 0 0 1 2 3  

(O~2pR)~A~I+F/D 
4 4  
1 

The first item of A in Aa_~D is ignored by base value (±) except 
for length cortformability checking, so we can use R instead: 

( [3~-RJ-~D )~AJ-~D 
5 5 9 1 0 1 1 7 3 2 1 0 4 8  : / 2 1 3 1 4 1 5  
1 

This was getting mighty interesting. BiRD is a permutation 
vector (all indices unduplicated). We can test this by knowing 
that ~ inverts a permutation, and so Ads should (by inverting the 
inverse) return the original permutation. 

&R.L~D 
9 8 7 6 1 0 1 0 5 1 1 2 3 4 1 2 1 3 1 4 1 5  

$~R_t~D 
6 5 9 10 11 7 3 2 1 0 4 8 12 13 14 15 

Whoa! Look at the result we w a n t :  

EVO R 
9 8 7 6 

10 1 0 5 
11 2 3 4 
1 2 1 3 1 4 1 5  

Now look above at AR.I-~D. Notice anything? Grade's got it! 

V Z~EVOL R;B;C;D;DIO 
[i] Z~-(RL1 1)pDIO÷O o -~tR_<l 
[2] B~-4 2pO - i  i 0 0 1 - i  0 
[3] C÷07+NB[(-1-R)*(2/I+iR)/(2xR)p~4;] 
[43 De-C-( pC )p L~C 
[5] Z~-( 2pR)p~R±~D 

v 

Flushed with success, I also noticed that R.L~D seemed to 
have a pattern of ups and downs, which upon examination, 

[3~-P~-R±~D 
65910117 3210 4812131415 

-2-/P , same as (laP)--laP 
-1411 -4 -4 -1 -1 -1444111 

+\6.-2-/P n same as +\P--I~0,P 
6 5 9 10 11 7 3 2 1 0 4 8 12 13 14 15 

looked like increasing repetitions of cycling - 1 ,  R, 1,  -R with a 
prefix. Experimentation with other even arguments convinced 
me that the prefixing 6 was actually +/ l /~  (or better ( RxR-1 )+2 
or better yet 2 ! R) [but see below for odd arguments]. The repeat 
sequence i 1 2 2 3 3 3is easy except for that annoyingfinal 
3. A venerable method in APL is to generate too much data and 
then truncate, so we'll use a familiar replication sequence, 
1 1 2 2 3 3 4 4, and then eliminate the final five replicated 
items, this time by taking (*) the first RxR items rather than 
dropping (*) the last - 1 - R  items: 

'Re~at''Value',=(2/l+iR)((2.R)p-l,R,l,-R) 
Re.at 112 2 3 3 4  4 
Value -141-4-141-4 

( 2 1 R ) , ( 2 / l + t R ) / ( 2 x R ) p - l , R , 1 , - R  

6-1411-4-4-1-1-14441111-4-4-4-4 

~D~+\(R~R)~(2!R).(2/I+~R)/(2~R)p-I.R.1.-R 
6581011732104812131415 
1 

Essentially, rather than manipulating row indices of matrix B 
and then evaluating the polynomial as we did above, we have 
precomputed all values of the polynomial, 

R±~B 
-141-4 

and then manipulated these items directly. The values actually 
represent the increments necessary to move left one column (-1), 
down one row (4 for a four-column matrix), right one column 
(1), and up one row (-4)-- the maligned '~-#-~ *' or ' WSEN' 
argument of SPIRAL. 

Let's see where we are compared toJoey's algorithm: 

[i] 
[2] 

V Z÷EVOLU R;[3IO 
Z~-(R[I 1)pDIO~-0 o ~iR_<1 
Z~( 2pB)p$+\(RxR)¢( 2 !R),( 2/I+tR)/( 2.R)p-I,R.I,-R 

V 

[1] 
Y Z*EVJILT R; [310 

Z*( 2pR )p$+\-I0( -i $ 2/( ~DIO)+ t R)/( -1+2 xR)p-1, R. i, -R 
Y 

We're pretty close it seems, except for [310 and that annoying 
branch. A vestige from SPIRAL, the test seems a bit of false 
optirrfizafon (every caller pays but few callers benefit), but 
removing it from SPIRAL causes multiple problems when the 
right argument is 0 (the escape on 1 is a flee benefit), the first of 
which is 

VSPIRAL [ 5 ] O/O~OV 

'WSEN' SPIRAZ 0 
DOMAIN ERROR 
SPIRAE[93 C~-F(qxR~-B-I)*0.5 o /NO~-~D[R~( I-\I+IC)/CplpA;] 

A 

-4 
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In fact, EVJK2 suffers from the same defect: Experimentat ion leads us to the correct  value: 

EVJIC~' 0 
DOMAIN ERROR 
EVJ.EI'[ 1 ] o Z*( 2pR)O$+\-I¢( -1  ,~ 2/(  -,43/0 )+ tR ) / (  -1+2 ~.R ) p - l ,  R, 1, -R 

A 

-l+2zR o 
-1 

Pleasantly and fortuitously EVOLU2 executes gracefully. T h e  
reason is that EVOLU2 truncates to the p roper  length at the end 
(the venerable method),  whereas EVJK2 tries to calculate the 
p roper  lengths intermediately but  fails to account  for the limit. 

VEVOLU [ 1 ] [3IO*-OV 

oEVOLU 0 
0 0 

T h e  origin handling can be accommodated  in the same way we 
moved from e v J K T i o O  to EVJ/tT: 

[I] 
V Z~EVOY.,Ui/' B 

Z~-( 2OR)O$,+\(.R*_B )'~( 2 !.R), ( 2/(-.4310)+tR ) / (  2xR)o-1,R,  1 , -R 
V 

Now we have essentially demonstrated the first content ion--  
that EVJKT could be derived from SPIRAL.  T h e  only differences 
are slight variations in how the movements are constructed,  and 
the initial item, whichJoey  neatly brings from the rear. Nonethe-  
less, I have good reason to use 2 ! R! 

Remember  that the + \  in EVOL is a permutat ion vector,  and 
that gP inverts a permutat ion vector? A much faster method  is 
Z*-ipP o Z[P]~-Z (or just  P[P] <--LOP) because it involves no 
sorting. So instead o f  computing Z~-( 2pR ) 9 1 + \ . . . ,  we can set 
Z ~- l Rx R and then perform Z [ +\... ] ~- Z followed by  Z ÷ ( 2 P R ) P Z. 
Fur thermore ,  on APL systems which employ so-called "pass- 
through localization" for system variables (applause for no [310 
I M P L I C I T  ERROR's), we can compute  Z~-iR×R in the user's 
global origin, then switch conveniendy to origin 1 to compute its 
permutat ion,  thus simplifying 2 / (  ~DIO )+ ~ R to 2 / l  R. 

Unfortunately,  using 2 ! R as the leading item preserves the 
permutat ion only for even values of  B. Notice that the leading 
item is also the index into which 1 ~ Z ([310) will be assigned--the 
center of  the evolute--which varies in a non-obvious way for odd 
and even arguments (involutes are easier in this regard): 

1 
010~-1 o 5pE~-EVOLU2"N~-llO 

2 1 9 8 7 10 9 8 7 25 21..I. 23 22 21 
3 14 2 1 5 11 2 1 6 10 9 8 7 20 

3 14 5 12 3 q 5 11 2 1 6 19 
13 114 15 16 12 3 q 5 18 

13 lq- 15 16 17 

2!N 
0 I 3 6 :10 15 21 28 36 145 

( , " E ) C ' I  
$ 2 5 7 13 16 25 29 LI-1 q6 

I+(2!N)+(21N)~LN+2 . add I. and tN42 Jf odd 
3. 2 5 7 13 15 25 29 41 146 

i+(2[N)+xM0 2TN . an unusual use of encode 
I 2 5 7 13 15 25 29 141 46 

V Z~EVOLUTE R;A;B;[3IO 
Z÷iA~BxR o [310~-I o B~-I+(2!R)+~,h0 2TR 
Z[+\AeB,(2/tR)/(2~R)p-i 0 I 0+0 I 0 -i*R]~-Z 

Z÷( 2pR )OZ 

[I] 
[2] 
[3] 

Note the faster way of  calculating - 1 ,  R, l ,  -R  on line [ 2 ] using 
only two primitives rather than four. I f  your  APL system does 
not  suppor t  pass-through localization, use the following: 

V Z~EVOLUTe B;A;B 
[I] Z~tA*RxR o B*43/0+(2!R)+~/0 2TR 
[2] Z[+XA*B,(2/(.-4310)+~B)/(2xB)p-I 0 I 0+0 2 0 1×RITZ 
[3] Z-(2pR)oZ 

V 

Timings confirm that we have indeed evolved to a bette,  
solution (all are ratios to EVOLUTE on APL+DOS):  

R= 5 21 55 89 377 378 

'WSEN'SPIRAL R~R 2.1 3.7 4.5 4.7 5.1 5.1 

EVO R 1.9 3.6 4.5 4.7 4.9 4.9 
EVOL R . u s e s  $ 1.7 4.0 5.8 6.2 7.3 7.2 
EVJK~ R ~ uses $ 1.3 4.8 6.4 6.8 7..~ 7.2 

EVOLUT R ~ uses $ 1.3 4.2 6.2 6.5 7.1 4.4 

EVOLUTE R 1 l ] l 1 I 

Observe that as R increases, the merits of  avoiding $ become 
more apparent. Note particularly the anomalous ratio at EVOLUI 
378.  Th is  is because when  R is even, the argument to grade i~ 
EVOLUT is a permutat ion vector,  which is processed  faster i~ 
APL+DOS.  H a d  we changed (2  !R)  to the more  precise 
( DIO+( 2 ! R ) + x / O  2TR ), then ~ O L U T ' s  ratios would  have 
improved  for odd  as well as even arguments. However ,  A P t  
systems vary widely in the optimizations they perform,  so you 
might check this particular one on yours.  

Gene's article also had a table of  timing rafos ,  and we shoulc 
point  out  that all o f  the solutions we've presented are vast]) 
superior to scalar, iterative, and recursive strategies. His ratio~, 
were all relative to verb e v J K T ,  which we translated ant 
consolidated as function EVJK~. Extrapolating the 55 and 8 c . 
columns above to his other  verbs wc derive the following ra fos  

3 0  APt L~,ou 



Verb or 
Function Method R= 5 5 R=8 9 

GKPa scalar 1434 1659 
GKPb scalar 602  721 
KS recursive 1069 WSFUl i 

EEM iterative 83 109 
HUI array 13 9.5  

E V J K T  array 6.4 6.8 
S P I R A L  " array no & 4.5 4.7  

E V O L U 2 E  array no & 1 l 

Could you be persuaded by these magnitudes to avoid certain 
scalar and recursive solutions? 

Finally, we present the grand unification, which uses tables, 
rather than calculations, to speed processing of the three options 
(type of volute, starting comer, and rotation). The fully-com- 
mented code is at the end of this article. We reintroduced the 
leading test not to speed the trivial cases, but so that the mainline 
code need not deal with them. A yet-faster version has distinct 
code for odd R evolutes, even R evolutes, and all involutes. 

V Z*L VOLUTE R ; A ; B ; C ; D ; E ; O I O  
[1] nVConpute square volute of slze R (nonnegative 
[2] RVinteger scalar) and type,start,rotate=2 4 2TL. 
[ 3 ]  Z~tA~R~R o DIO~O o ~ ( R < 2 ) / L 0 1  
[4] B*(R~2 0 1 0 -1 0 1 -1 0)+1 1 0 -1 0 0 -1,A-O 1 
[5] C~8 4p 1 2 3 4 2 1 4 3 2 3 4 1 3 2 1 4 

4 1 2 3  1 4 3 2  3 4 1 2  4 3 2 1  
[63 E~-((D~-81L)=5 5 5 6 7 7 8 8)=B 
[7] Z[+\E,((5aB),2/¢~R)/(#B)pB[C[D;]]]~Z 
[8] LOI:Z~(2pR)pZ o ~t8>161L o Z*(-I+A)-Z 

V 

V O L U 2 E  can generate all 16 kinds of square volutes. The left 
argument is ( 8xTypeVolute )+( 2×StartCor~r )+Rotate~irection 
--a concise encoding somewhat akin to that used for the circular 
functions. 

O: 

4: 

8: 

12: 

DIO*O 
L~-16 1p'L16 
4 8p(=[1](tL), ': ' ),L VOLU~E"3 

0 1 2  1: 0 7 6  2: 6 7 0 3: 2 1 0 
7 8 3  1 8 5  5 8 1  3 8 7  
6 5 4  2 3 4  4 3 2  4 5 6  

2 3 4 5: 6 5 4 6: 4 5 5 7: 4 3 2 
1 8 5  7 8 3  3 8 7  5 8 1  
0 7 6  0 1 2  2 1 0  6 7 0  

8 7 5 9; 8 1 2 10: 2 1 8 11: 5 7 8 
1 0 5  7 0 3  3 0 7  5 0 1  
2 3 4  6 5 4  4 5 5  4 3 2  

6 5 4 13: 2 3 4 14: 4 3 2 15: 4 5 6 
7 0 3  1 0 5  5 0 1  3 0 7  
8 1 2  8 7 6  6 7 8  2 1 8  

As is usual in APL, the documentation vastly overwhelms the 
code. Isn't evolution great? • 

[1] 
[2] 
[3] 
[4] 
[5] 
[6] 
[7] 
[8] 
[9] 
[10] 
[11] 
[12] 
[13] 
[ 14 ]  
[15] 
[16] 
[17] 
[18] 
[19] 
[20] 
[21] 
[22] 
[ 23 ]  
[ 24 ]  
[ 25 ]  
[26] 
[27] 
[28] 
[ 29 ]  
[30 ]  
[31 ]  
[ 32 ]  
[ 33 ]  
[ 34 ]  
[ 35 ]  
[ 36 ]  
[ 37 ]  

[ 3 8 ]  
[ 39 ]  
[40 ]  
[41 ]  
[ 42 ]  
[ 43 ]  
[ 44 ]  
[ 45 ]  
[ 46 ]  
[ 47 ]  
[48] 
[49] 

V Z~L VOLUTESRC H;A;B;C;D;E;[iTO 
nVConpute square volute of size R (nonnegative 
AVinteger scalar) and type,start,rotate=2 4 2TL. 
A IAug97/ROY 
R 15]/~ (/nteger scalar) controls the volute. 

Given (t s r)~2 4 2TL, then 
n t is type (L ls 0-7 or 8-15): 
, O=involute (spiraling inward from [3/0), 
n l=evolute (spiraling outward from []IO). 
n s is startin~ corner of DIO if involute, 
A of -i+DIO+R*2 if evolute: 
n O= top left, 1= top right, 
A 2=bottom left, 3=bottom right. 

r is rotation from []10 if involute, 
n from-i+13/0+R,2 if evolute: 
n O=clockwlse (E ls even) ,  
n 1=counterclockwise (L is odd). 
, 81L (s and r): 

R 0 II 1 2 i i ~ 3  h > A A < II 

° II II II II II II II II 
n v li > < q v 4 5 q U G 7 

n ( 'WSEN'SPIRAL R*2)=-(14-6~21R)VOLU~E R 
R (see Vector 1 3 . 2 ,  p . 1 4 4  b y  EEM). 

Z~tA~H×R 
OIO~O 
~(R<2)/L01 

n Z ls origin-sensitive, ... 
n but local orlgin is O. 
n Done if trlvial. 

n COMPUTE INVOLUTE: 

n reshape [--moves I [ -start I 
~ B [  0 1 2  3 4 5 6 7 8 ] 
n B ÷ ( I + 2 x R )  1 R - 1  ( - R )  0 ( R - l )  (RxR-1)( - l+RxI" t )  
B*-(Rx2 0 1 0 - 1  0 1 - 1  0 )+1  1 0 - 1  0 0 - 1 , A - 0  1 

n C is indices of moves Jn B: 
n I=i moves right I col, 3=-1 moves left 1 col, 
R 2=R moves down I row, 4=-R moves up 1 row. 
C~-8 4p 1 2 3 4 2 1 4 3 2 3 4 1 3 2 1 4 

4123 1432 3412 4321 

E is position of DIO (involute start corner): 
m 5=0 is top left, 6=R-i is top right, 

7=R~R-I bottom left, 8=-l+RxRbottom right. 
E~((D+81E)=5 5 6 6 7 7 8 8)=B 

n Cun~late the moves and rearrange the indices: 
Z[+\E,((6=B),2/¢tR)/(~B)pB[C[D;]]]~Z 

LOl:Z~(2pH)pZ n Form matrix. 
~18>161L n Done if involute. 
Z~(-I+A)-Z n Subtract if evolute. 

l ~ y  A.  Syk¢,,, y r .  is a ,-egntar eotumnis t  f o r  A e L  f ~ t e  Quad, and  is 

the President  o f  Syl~es Syst~ns, Inc., an  A P L  eonsul t ing f i rm.  He  can 

be reached a t  "roysylke~@netcom.com". 
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