
- ~ Roy,4. s y ~ , .Tr.
Los Angeles, Catifo,-.ia

Evolution

S
O B E R I N G IS T H E E X P E R I E N C E o f examining one's ancient
code. We often tend to think we have matured in our code
design and programming skills, and looking back at old

code reinforces this tendency. But the fact that it keeps happen-
ing--yesterday's code looks like trash compared to today's gems
--really belies the truth that we are always improving, and our
code is never quite so extraordinary as we might wish to think.

I recently was confronted with this disconcerting thought
while reading Eugene McDonnell's column "At Play withy ' in
the October, 1996 (Vol,13, No.2) issue of Vector, the excellent
sister publication of APL Quote Quad from the British APL
Association. This particular column was entitled "Volutes,"
which are spirals of numbers as illustrated below (don't worry
about the arguments yet, although the fight should be plain):

BIO~I o LeO 8 o R÷4 5
'Involutes' 'Evolutes',V~Lo.VOLU2E R

Involutes 1 2 3 4 1 2 3 q 5
12 13 14 5 16 17 18 19 6
11 16 15 6 15 24 25 20 7
10 9 8 7 14 23 22 21 8

13 12 11 10 9

Evolutes 16 15 14 13 25 24 23 22 21
5 4 3 12 10 g 8 7 20
6 1 2 11 11 2 1 6 l g
7 8 g 10 12 3 4 5 18

13 14 15 16 17

Involutes spiral in (increase) from a comer, and evolutes spiral
out from the center. One may also view evolutes as spiraling in
(decreasing) from a comer, and in fact subtracting either from
(R*2)-- i*DZO (here 17 or 26) produces the other.

V~(2 2017 26)-(¢L)°.VOLU2E R

Notice that only odd volutes have a distinct center item. Because
of this characteristic, let us describe involutes by where they start
(HI0) and evolutes by where they end (-i+BI0+R*2). Thus we
will call all of these top-left clockwise volutes.

Recalling that I had solved this problem some time ago (no
doubt tastefully) I rummaged about and found (to my chagrin)
the following, which I've edited only slightly for publication:

V R-A SPIBA5 B;C;D;BIO
[I] a NONNEGATIVE 17¢2EGEH SCALAR GIVES 2BE FING22H
[2] a 0F ~HE SPIBAE. CH/~a[JTER VECTOR <.4,> SPECIFIES
[3] , A SEQUENCE OF DIBEC2IONS (I=t=NOF~H, 2=~=EAST,
[4] a 3=~=SOUTB, 4=~-=WEST). 5 JUN 82 / f / f lY

[5] H~(BLi l)pBIO~O o ~iB_<I , ESCAPE IF TBIVIAL
[5] ~ DECODE DIREC2IONS:
[7] D~(12 2p-1 0 0 1 1 0 0 -l)['NESWt~1234'tA~,Ai]
[8] a COMHffE TIIE MOVES:
/9] C~F(4xR~B-1)*0.5 o D4h+~D[R~([-\l+tC)/Op~pA;]
[10] a FIEE /N TBE NUMBEBS:
[11] R~(x/C~l+r/m~P-(gD)pLMD)pO o R[C±eD]~tB o R~-CpR

'WSg~' ~PIP~ 25
24 23 22 21 20
9 8 7 6 19

10 1 0 5 18
11 2 3 4 17
12 13 14 15 15

top-left clockwise evolute

Well, at least the comments were spelled correctly. Actually,
the code wasn't too bad, although my design for the arguments
was dearly misguided. The leR argument does not provide for
involutes, and has arbitrary synonyms (which did not include
lowercase because this was written on a mainframe) for direc-
tions (whatever happened to leR, down, fight, and up?). Instead
of specifying the side length, the right argument is its square
(why I don't know), and the documentation is not explicit about
this. Also, the function only provides for origin-0 results (Eugene
and other J advocates would no doubt approve), again with the
comments silent. Furthermore, one can call SPIRM; with
arguments for it is clearly neither prepared nor demanding
enough to reject, generating spurious results:

'W-*2 ' SPIRAL 2 3

1 6 7 16 17 18 19 20 21 22

I now prefer that computational ~ncfions such as this have
more succinct arguments, relying on application cover functions
to decode whatever oddball method of specification the user may
choose. Also, an ~gument should be as restrictive as the code for
which it is intended. We'll look at VOLUTE's arguments later, but
first let's talk about the algorithm.

Gene's article described six differentJ solutions, culminating
with a clever algorithm originally written in APL byJoey Tutfle,
which we present forJ aficionados (spaces have been introduced
for clarity):

evJKT =. ,- $ /: @ (+\/) @ evJKT2
evJKT2=. _l& I . @ (evJKT0 # evJKTl)
evJKTl=. <:@+: $ _I: ,] , i: , -
evJKT0=. } @(2: # >:@i.)

Here is the code recast in terms of APL (it assumes E3IO~-O):

[1]
V Z~evJKT R

Z~(2pR)p~+\evJKT2 R
?

[1]
Z~evJK22 R
Z~-l¢(evJK20 R)/evJETl R

MASCH *997 -- VOLUME ~7, NUMRER 3 ~ 7

http://crossmark.crossref.org/dialog/?doi=10.1145%2F270826.270831&domain=pdf&date_stamp=1997-03-01

[1]
V Z*evJKT1 R

Z ~ (- I + 2 x B) p - I , R , 1 , - R
V

V Z*evJKTO R
[1] Z*-l~2/l+iR

V

OIO~O o evJK.T 5
24 23 22 21 20

9 8 7 6 19
10 1 0 5 18
11 2 3 4 17
12 13 14 15 16

Our taste in programming is to avoid a proliferation of trivial
litde functions, many of which being once-used subroutines.
Rather, we prefer to have somewhat heftier programs, so let's
bulk up our translation of Gene's code into a one-liner, after
localizing DIO to reproduceJ's fixed origin-0 behavior:

Starting with SPIRAE, I eliminated the left argument and all
its ghastly code, essentially hardwiring the ' WSEN' value which
produces the same result as Gene's verbs. I also changed the
right argument to be the side length, the choice everyone else
had apparently settled on well before me, and I changed the local
names to those I now prefer.

[1]
[2]
[3]
[4]
[5]

Z*EVO R;A;B;C;D;[3IO
Z,-(RL1 1)pOlO~-0 o -+~/R_<I
B~-4 2pO -1 I 0 0 1 -1 0
C*07+NB[(-I+RxR)~(l-\l+12xR)/(2xR)p114;]
Z~-(x/At-l+ [MD*C-(pC)p LTzC)p0
Z[A_L~D]~iRxR o Z~-ApZ

EVO R÷4
9 8 7 6

10 1 0 5
11 2 3 4
12 13 14 15

[i]
[2]

V Z*evJK2loO R;OIO
010÷0
Z~(2pR)pA+\-i#(-li2/i+iR)/(-i+2xB)p-i,R,1,-R

V

That's not too bad, is it? Better yet, we can incorporate OIO into
the code to make it origin-sensitive; notice that only the right
argument of replicate (2/) changes:

ARer these essentially bookkeeping chores, I delved into the
algorithm. The rare subtraction scan (-k) on line [3] was
probably an old idiom held over from the days before replication
(compression extended to positive integers above 1), which
appeared only in the early 1980's in most versions of APL.
Incongruously, this vector formed the left argument to ...
replication.

V Z~EVJ/CT R
[1] Z~(2pR)pA+\ - IO(- I *2 / (~OIO)+~R) / (- i+2 .B)p - I ,R ,1 , -R

V
OIO~l o Ei~EVJKT 5 o OIO~O o EO~EVJKT 5 o EO El

24 23 22 21 20 25 24 23 22 21
9 8 7 6 19 10 9 8 7 20

10 1 0 5 18 11 2 1 6 19
11 2 3 ~ 17 12 3 4 5 18
12 1 3 1 4 1 5 16 13 l g 15 16 17

1+12xR
1 2 3 4 5 6 7 8

- \1+12=R
1 -1 2 -2 3 -3 4 -4

I - \ 1 + t 2 xH
1 1 2 2 3 3 4 4

2/1+~_R
1 1 2 2 3 3 4 4

n remember w@re using origin 0

n old habits

R new tricks

It turns out that my SPIRAL, sans its arcane arguments, was
similar to the first approach Gcnc described in his article, which
he found in the book Concrete MatkematicJ by Graham, Knuth,
and Patashnik as Exercise 3.40. Although the hook took a scalar
approach whereas SPIRAL naturally uses arrays, both methods
are basically geometrical. Two aspects piqued my curiosity:

(2 x R) p 1 4
0 1 2 3 0 1 2 3

(2 /1+ lR) / (2xR)p14
0 1 2 2 3 3 0 0 0 1 1 1 2 2 2 2 3 3 3 3

The truncation of the resulting row indices of small matrix B

could also be simplified from (-±+RxR) , . . . to (- 1 - B) ~,...:

SPIRAE has a lot of argument decoding nonsense which
masks its essence. Stripped to its essentials, how close would
it be to gVJK_T? Could one be derived from the other?

EVJK~P has a grade up (A) but SPIRAL does not. I thought
the big-O nature of the problem to be N-squared (the size of
the result) rather than N-squared times log N-squared (the
nature of sorting). Could a stripped down SPIRAL improve
upon EVJKT by avoiding a cosily grade up?

I also wondered ff I could succinctly describe and efficiently
code one function which would produce all square involutes and

involutes.

0*B~4 2p0 - 1 1 0 0 1 - 1 0
0-1
i 0
0 1

-1 0
pC~O~+~B [(-l+RxR) ~ (I -\1+ 12-1R)/(2 xR) p i q;]

16 2
C---O-d-\B[(-l-R)* (2/I+iR)/(2×R)p 14;]

1
~C

0 0 1 1 1 0 - 1 - 1 - 1 - 1 0 1 2 2 2 2
0 - 1 - 1 0 1 1 1 0 - 1 - 2 - 2 - 2 - 2 - 1 0 1

n old

m new

Next I examined how the two columns of C were adjusted

and combined on the last two lines. Line [4] simply normalized

2 8 APL

them to 0 as D, computed the radix A for evaluating D as a first
order polynomial (ax+b) to calculate indices on line [5], and
used its product to create Z. But we already know (by definition)
that pZ will be 2pR and thus p, Z is x/2pR; therefore A must be
2pR.

~D*C-(pC)pL/C
1 1 2 2 2 1 0 0 0 0 1 2 3 3 3 3
2 1 1 2 3 3 3 2 1 0 0 0 0 1 2 3

(O~2pR)~A~I+F/D
4 4
1

The first item of A in Aa_~D is ignored by base value (±) except
for length cortformability checking, so we can use R instead:

([3~-RJ-~D)~AJ-~D
5 5 9 1 0 1 1 7 3 2 1 0 4 8 : / 2 1 3 1 4 1 5
1

This was getting mighty interesting. BiRD is a permutation
vector (all indices unduplicated). We can test this by knowing
that ~ inverts a permutation, and so Ads should (by inverting the
inverse) return the original permutation.

&R.L~D
9 8 7 6 1 0 1 0 5 1 1 2 3 4 1 2 1 3 1 4 1 5

$~R_t~D
6 5 9 10 11 7 3 2 1 0 4 8 12 13 14 15

Whoa! Look at the result we w a n t :

EVO R
9 8 7 6

10 1 0 5
11 2 3 4
1 2 1 3 1 4 1 5

Now look above at AR.I-~D. Notice anything? Grade's got it!

V Z~EVOL R;B;C;D;DIO
[i] Z~-(RL1 1)pDIO÷O o -~tR_<l
[2] B~-4 2pO - i i 0 0 1 - i 0
[3] C÷07+NB[(-1-R)*(2/I+iR)/(2xR)p~4;]
[43 De-C-(pC)p L~C
[5] Z~-(2pR)p~R±~D

v

Flushed with success, I also noticed that R.L~D seemed to
have a pattern of ups and downs, which upon examination,

[3~-P~-R±~D
65910117 3210 4812131415

-2-/P , same as (laP)--laP
-1411 -4 -4 -1 -1 -1444111

+\6.-2-/P n same as +\P--I~0,P
6 5 9 10 11 7 3 2 1 0 4 8 12 13 14 15

looked like increasing repetitions of cycling - 1 , R, 1, -R with a
prefix. Experimentation with other even arguments convinced
me that the prefixing 6 was actually +/ l /~ (or better (RxR-1)+2
or better yet 2 ! R) [but see below for odd arguments]. The repeat
sequence i 1 2 2 3 3 3is easy except for that annoyingfinal
3. A venerable method in APL is to generate too much data and
then truncate, so we'll use a familiar replication sequence,
1 1 2 2 3 3 4 4, and then eliminate the final five replicated
items, this time by taking (*) the first RxR items rather than
dropping (*) the last - 1 - R items:

'Re~at''Value',=(2/l+iR)((2.R)p-l,R,l,-R)
Re.at 112 2 3 3 4 4
Value -141-4-141-4

(2 1 R) , (2 / l + t R) / (2 x R) p - l , R , 1 , - R

6-1411-4-4-1-1-14441111-4-4-4-4

~D~+\(R~R)~(2!R).(2/I+~R)/(2~R)p-I.R.1.-R
6581011732104812131415
1

Essentially, rather than manipulating row indices of matrix B
and then evaluating the polynomial as we did above, we have
precomputed all values of the polynomial,

R±~B
-141-4

and then manipulated these items directly. The values actually
represent the increments necessary to move left one column (-1),
down one row (4 for a four-column matrix), right one column
(1), and up one row (-4)-- the maligned '~-#-~ *' or ' WSEN'
argument of SPIRAL.

Let's see where we are compared toJoey's algorithm:

[i]
[2]

V Z÷EVOLU R;[3IO
Z~-(R[I 1)pDIO~-0 o ~iR_<1
Z~(2pB)p$+\(RxR)¢(2 !R),(2/I+tR)/(2.R)p-I,R.I,-R

V

[1]
Y Z*EVJILT R; [310

Z*(2pR)p$+\-I0(-i $ 2/(~DIO)+ t R)/(-1+2 xR)p-1, R. i, -R
Y

We're pretty close it seems, except for [310 and that annoying
branch. A vestige from SPIRAL, the test seems a bit of false
optirrfizafon (every caller pays but few callers benefit), but
removing it from SPIRAL causes multiple problems when the
right argument is 0 (the escape on 1 is a flee benefit), the first of
which is

VSPIRAL [5] O/O~OV

'WSEN' SPIRAZ 0
DOMAIN ERROR
SPIRAE[93 C~-F(qxR~-B-I)*0.5 o /NO~-~D[R~(I-\I+IC)/CplpA;]

A

-4

M ~ c . 1997 - - VOLU.R 27, Nu.RER S 2 9

In fact, EVJK2 suffers from the same defect: Experimentat ion leads us to the correct value:

EVJIC~' 0
DOMAIN ERROR
EVJ.EI'[1] o Z*(2pR)O$+\-I¢(-1 ,~ 2/(-,43/0)+ tR) / (-1+2 ~.R) p - l , R, 1, -R

A

-l+2zR o
-1

Pleasantly and fortuitously EVOLU2 executes gracefully. T h e
reason is that EVOLU2 truncates to the p roper length at the end
(the venerable method), whereas EVJK2 tries to calculate the
p roper lengths intermediately but fails to account for the limit.

VEVOLU [1] [3IO*-OV

oEVOLU 0
0 0

T h e origin handling can be accommodated in the same way we
moved from e v J K T i o O to EVJ/tT:

[I]
V Z~EVOY.,Ui/' B

Z~-(2OR)O$,+\(.R*_B)'~(2 !.R), (2/(-.4310)+tR) / (2xR)o-1,R, 1 , -R
V

Now we have essentially demonstrated the first content ion--
that EVJKT could be derived from SPIRAL. T h e only differences
are slight variations in how the movements are constructed, and
the initial item, whichJoey neatly brings from the rear. Nonethe-
less, I have good reason to use 2 ! R!

Remember that the + \ in EVOL is a permutat ion vector, and
that gP inverts a permutat ion vector? A much faster method is
Z*-ipP o Z[P]~-Z (or just P[P] <--LOP) because it involves no
sorting. So instead o f computing Z~-(2pR) 9 1 + \ . . . , we can set
Z ~- l Rx R and then perform Z [+\...] ~- Z followed by Z ÷ (2 P R) P Z.
Fur thermore , on APL systems which employ so-called "pass-
through localization" for system variables (applause for no [310
I M P L I C I T ERROR's), we can compute Z~-iR×R in the user's
global origin, then switch conveniendy to origin 1 to compute its
permutat ion, thus simplifying 2 / (~DIO)+ ~ R to 2 / l R.

Unfortunately, using 2 ! R as the leading item preserves the
permutat ion only for even values of B. Notice that the leading
item is also the index into which 1 ~ Z ([310) will be assigned--the
center of the evolute--which varies in a non-obvious way for odd
and even arguments (involutes are easier in this regard):

1
010~-1 o 5pE~-EVOLU2"N~-llO

2 1 9 8 7 10 9 8 7 25 21..I. 23 22 21
3 14 2 1 5 11 2 1 6 10 9 8 7 20

3 14 5 12 3 q 5 11 2 1 6 19
13 114 15 16 12 3 q 5 18

13 lq- 15 16 17

2!N
0 I 3 6 :10 15 21 28 36 145

(, " E) C ' I
$ 2 5 7 13 16 25 29 LI-1 q6

I+(2!N)+(21N)~LN+2 . add I. and tN42 Jf odd
3. 2 5 7 13 15 25 29 41 146

i+(2[N)+xM0 2TN . an unusual use of encode
I 2 5 7 13 15 25 29 141 46

V Z~EVOLUTE R;A;B;[3IO
Z÷iA~BxR o [310~-I o B~-I+(2!R)+~,h0 2TR
Z[+\AeB,(2/tR)/(2~R)p-i 0 I 0+0 I 0 -i*R]~-Z

Z÷(2pR)OZ

[I]
[2]
[3]

Note the faster way of calculating - 1 , R, l , -R on line [2] using
only two primitives rather than four. I f your APL system does
not suppor t pass-through localization, use the following:

V Z~EVOLUTe B;A;B
[I] Z~tA*RxR o B*43/0+(2!R)+~/0 2TR
[2] Z[+XA*B,(2/(.-4310)+~B)/(2xB)p-I 0 I 0+0 2 0 1×RITZ
[3] Z-(2pR)oZ

V

Timings confirm that we have indeed evolved to a bette,
solution (all are ratios to EVOLUTE on APL+DOS):

R= 5 21 55 89 377 378

'WSEN'SPIRAL R~R 2.1 3.7 4.5 4.7 5.1 5.1

EVO R 1.9 3.6 4.5 4.7 4.9 4.9
EVOL R . u s e s $ 1.7 4.0 5.8 6.2 7.3 7.2
EVJK~ R ~ uses $ 1.3 4.8 6.4 6.8 7..~ 7.2

EVOLUT R ~ uses $ 1.3 4.2 6.2 6.5 7.1 4.4

EVOLUTE R 1 l] l 1 I

Observe that as R increases, the merits of avoiding $ become
more apparent. Note particularly the anomalous ratio at EVOLUI
378. Th is is because when R is even, the argument to grade i~
EVOLUT is a permutat ion vector, which is processed faster i~
APL+DOS. H a d we changed (2 !R) to the more precise
(DIO+(2 ! R) + x / O 2TR), then ~ O L U T ' s ratios would have
improved for odd as well as even arguments. However , A P t
systems vary widely in the optimizations they perform, so you
might check this particular one on yours.

Gene's article also had a table of timing rafos , and we shoulc
point out that all o f the solutions we've presented are vast])
superior to scalar, iterative, and recursive strategies. His ratio~,
were all relative to verb e v J K T , which we translated ant
consolidated as function EVJK~. Extrapolating the 55 and 8 c .
columns above to his other verbs wc derive the following ra fos

3 0 APt L~,ou

Verb or
Function Method R= 5 5 R=8 9

GKPa scalar 1434 1659
GKPb scalar 602 721
KS recursive 1069 WSFUl i

EEM iterative 83 109
HUI array 13 9.5

E V J K T array 6.4 6.8
S P I R A L " array no & 4.5 4.7

E V O L U 2 E array no & 1 l

Could you be persuaded by these magnitudes to avoid certain
scalar and recursive solutions?

Finally, we present the grand unification, which uses tables,
rather than calculations, to speed processing of the three options
(type of volute, starting comer, and rotation). The fully-com-
mented code is at the end of this article. We reintroduced the
leading test not to speed the trivial cases, but so that the mainline
code need not deal with them. A yet-faster version has distinct
code for odd R evolutes, even R evolutes, and all involutes.

V Z*L VOLUTE R ; A ; B ; C ; D ; E ; O I O
[1] nVConpute square volute of slze R (nonnegative
[2] RVinteger scalar) and type,start,rotate=2 4 2TL.
[3] Z~tA~R~R o DIO~O o ~ (R < 2) / L 0 1
[4] B*(R~2 0 1 0 -1 0 1 -1 0)+1 1 0 -1 0 0 -1,A-O 1
[5] C~8 4p 1 2 3 4 2 1 4 3 2 3 4 1 3 2 1 4

4 1 2 3 1 4 3 2 3 4 1 2 4 3 2 1
[63 E~-((D~-81L)=5 5 5 6 7 7 8 8)=B
[7] Z[+\E,((5aB),2/¢~R)/(#B)pB[C[D;]]]~Z
[8] LOI:Z~(2pR)pZ o ~t8>161L o Z*(-I+A)-Z

V

V O L U 2 E can generate all 16 kinds of square volutes. The left
argument is (8xTypeVolute)+(2×StartCor~r)+Rotate~irection
--a concise encoding somewhat akin to that used for the circular
functions.

O:

4:

8:

12:

DIO*O
L~-16 1p'L16
4 8p(=[1](tL), ': '),L VOLU~E"3

0 1 2 1: 0 7 6 2: 6 7 0 3: 2 1 0
7 8 3 1 8 5 5 8 1 3 8 7
6 5 4 2 3 4 4 3 2 4 5 6

2 3 4 5: 6 5 4 6: 4 5 5 7: 4 3 2
1 8 5 7 8 3 3 8 7 5 8 1
0 7 6 0 1 2 2 1 0 6 7 0

8 7 5 9; 8 1 2 10: 2 1 8 11: 5 7 8
1 0 5 7 0 3 3 0 7 5 0 1
2 3 4 6 5 4 4 5 5 4 3 2

6 5 4 13: 2 3 4 14: 4 3 2 15: 4 5 6
7 0 3 1 0 5 5 0 1 3 0 7
8 1 2 8 7 6 6 7 8 2 1 8

As is usual in APL, the documentation vastly overwhelms the
code. Isn't evolution great? •

[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
[35]
[36]
[37]

[3 8]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]
[47]
[48]
[49]

V Z~L VOLUTESRC H;A;B;C;D;E;[iTO
nVConpute square volute of size R (nonnegative
AVinteger scalar) and type,start,rotate=2 4 2TL.
A IAug97/ROY
R 15]/~ (/nteger scalar) controls the volute.

Given (t s r)~2 4 2TL, then
n t is type (L ls 0-7 or 8-15):
, O=involute (spiraling inward from [3/0),
n l=evolute (spiraling outward from []IO).
n s is startin~ corner of DIO if involute,
A of -i+DIO+R*2 if evolute:
n O= top left, 1= top right,
A 2=bottom left, 3=bottom right.

r is rotation from []10 if involute,
n from-i+13/0+R,2 if evolute:
n O=clockwlse (E ls even) ,
n 1=counterclockwise (L is odd).
, 81L (s and r):

R 0 II 1 2 i i ~ 3 h > A A < II

° II II II II II II II II
n v li > < q v 4 5 q U G 7

n ('WSEN'SPIRAL R*2)=-(14-6~21R)VOLU~E R
R (see Vector 1 3 . 2 , p . 1 4 4 b y EEM).

Z~tA~H×R
OIO~O
~(R<2)/L01

n Z ls origin-sensitive, ...
n but local orlgin is O.
n Done if trlvial.

n COMPUTE INVOLUTE:

n reshape [--moves I [-start I
~ B [0 1 2 3 4 5 6 7 8]
n B ÷ (I + 2 x R) 1 R - 1 (- R) 0 (R - l) (RxR-1)(- l+RxI" t)
B*-(Rx2 0 1 0 - 1 0 1 - 1 0)+1 1 0 - 1 0 0 - 1 , A - 0 1

n C is indices of moves Jn B:
n I=i moves right I col, 3=-1 moves left 1 col,
R 2=R moves down I row, 4=-R moves up 1 row.
C~-8 4p 1 2 3 4 2 1 4 3 2 3 4 1 3 2 1 4

4123 1432 3412 4321

E is position of DIO (involute start corner):
m 5=0 is top left, 6=R-i is top right,

7=R~R-I bottom left, 8=-l+RxRbottom right.
E~((D+81E)=5 5 6 6 7 7 8 8)=B

n Cun~late the moves and rearrange the indices:
Z[+\E,((6=B),2/¢tR)/(~B)pB[C[D;]]]~Z

LOl:Z~(2pH)pZ n Form matrix.
~18>161L n Done if involute.
Z~(-I+A)-Z n Subtract if evolute.

l ~ y A. Syk¢,,, y r . is a ,-egntar eotumnis t f o r A e L f ~ t e Quad, and is

the President o f Syl~es Syst~ns, Inc., an A P L eonsul t ing f i rm. He can

be reached a t "roysylke~@netcom.com".

MASCH 1997 -- VOLUME 27, NUMSER 3 3 1

