arXiv:1303.6257v2 [physics.comp-ph] 10 Jun 2014

Sampling exactly from the normal distribution

Charles F. F. Karneyf]
SRI International, 201 Washington Rd, Princeton, NJ 08543-5300, USA

(Dated: March 25, 2013; revised June 10, 2014)

An algorithm for sampling exactly from the normal distritmutt is given. The algorithm reads some number of
uniformly distributed random digits in a given base and gates an initial portion of the representation of a

normal deviate in the same base. Thereafter, uniform ramdigits are copied directly into the representation

of the normal deviate. Thus, in contrast to existing methdds possible to generate normal deviates exactly
rounded to any precision with a mean cost that scales Iyéathe precision. The method performs no extended
precision arithmetic, calls no transcendental functiemsl, indeed, uses no floating point arithmetic whatsoever;
it uses only simple integer operations. It can easily be @dap sample exactly from the discrete normal

distribution whose parameters are rational numbers.

Keywords: Random deviates, normal distribution, exact sampling

1. INTRODUCTION TABLE 1 Sample input and output for Algorithm N with = 10.

The input consists of uniformly distributed random decirdiits.

Random variables with a normal density, The algorithm reads the random digits before the verticalaval

exp(—x2/2) prqduges a.n(.).rmal dgviate asa u-rand (given in thg secouchod)
o(x) = —————, which is an initial portion of the decimal representatiorta normal
V2m deviate. Thereafter random digits are copied directly ftheinput

are widely used in Monte Carlo simulations. Over the pasfine digits after the vertical bar) into the decimal frantiof the u-
y P rand. The third column shows the result of adding enoughddtgi

SIXtY years, scores of alg_orlthms for generatln_g such n.brmaallow the deviate to be rounded to 6 decimal digits; the phegital
deviates have been pUbI'S,th (Thor(_aaal., 200,‘7)' In th's_ sign indicates whether the magnitude of true deviate istgréa-)
paper, | give another algorithm, Algorithm N, with the disti ' smaller(—) than the rounded result.

guishing feature that, given a source of uniformly distréuli
random digits in some badg it generategxactnormal de- input u-rand rounded

viates. In order to make the meaning of “exact” precise, con-

: : . : ~ 70148686 | 685171 ... 1.6... 1.668517
sider Tabl&1L which shows the operation of the algorithmgisin | + + (+)
b—10. 2708 | 5545979 . .. +0... 40.554598(—)

The first column shows the random digits used by the 901446297 | 43871... +142... +1.424387(+)
algorithm, which, in this example, are taken from succes- 065130319777860 | 96289... —0.76... —0.769629(—)
sive lines of the table of random digits produced by the 2736 | 0659086 ... +0... +0.065909(—)

RAND Corporation [(1955), beginning at line 9077. Refer-
ring to the first line of this table, the algorithm completés a
ter reading the 7 random decimal digit§,48686, from the It's clear from this example that the method can be used
source and producesl.6 as the initial portion of the deci- to generate deviates that satisfy the conditions of “idgal a
mal representation of a normal deviate. At this point, rando proximation” (Monahan, 1985), namely that the algorithm is
digits can be copied directly from the input to the outpwi, in equivalent to sampling a real number from the normal dis-
dicated by the ellipses (.) in the table; thust+1.6. .. repre- tribution and rounding it to the nearest representableifigat
sents a uniform random sample in the raige, 1.7). The point number. Furthermore, for applications requiringhhig
next digits of the random sequence 685171 ..., allowing precision normal deviates, the new algorithm offers perfec
the normal deviate to be exactly rounded to 6 decimal digitscaling: there’s an amortized constant cost to producieg th
as1.668517. | call the intermediate result, e.g-1.6 ..., a“u- initial portion of the normal deviate; but, thereafter, thigits
rand”. This can be thought of as a partially sampled uniforncan be added to the result at a rate limited only by the cost
deviate. However, in conjunction which a source of randonof producing and copying the random digits. Other sampling
digits it is better to think of it as a compact representatibn methods are frequently referred to as “exact,” for exantpde t
an arbitrary precision random deviate. (The results indabl polar methodl(Box and Mullet, 1958) and the ratio method
are not “typical,” because the starting line in the table of(Kinderman and Monahan, 1977); but these are merely “ac-
random digits was specifically chosen to limit the number ofcurate to round off” which, in practice, means only that the
random digits used.) accuracy is commensurate with the precision of the floating

point number system. It's possible to convert such algorith

to obtain correctly rounded deviates; but this inevitally i

volves the use of extended precision arithmetic. | will show
*Electronic address: charles.karney@sri.com

http://arxiv.org/abs/1303.6257v2
http://www.sri.com
mailto:charles.karney@sri.com

in Sec[b, that Algorithm N performs substantially better. Black Jack and this connection is made plain in the slightly
It's not immediately obvious that such an algorithm for different formulation given in Abramowitz and Stegun (1964
exact sampling is possible. However, in the early years 0£26.8.6.c(2)).
the era of modern computing, von Neumiann (1951) presented The crucial step of the algorithm is V3, which is discussed
a remarkably simple algorithm for sampling from the expo-in some detail by Knuth (19983.4.1.C(3)). The probabil-
nential density, in which “the machine has in effect com-ity that Uy, ..., U, are all less tharx is 2™ (provided that
puted a logarithm by performing only discriminations on thex € [0, 1]). The probability that, in addition, they are in de-
relative magnitude of numbers if0,1).” Knuth andYao scending order (one of the possiblepermutations) is™ /n!.
(1976) showed that the algorithm can easily be adapted tBor the condition to hold for a sequenceroft 1 numbers,
generate exponential deviates which are exact; and thi-resuit must hold for the firstn of them; therefore the probabil-
ing method was extensively analyzed |by Flajolet and Sahelty that the length of the longest decreasing sequeneeiss
(1986). Several authors have generalized von Neumannis”/n! — z"*!/(n + 1)!. For a givenz, the probability that:
algorithm (Ahrens and Dieter, 1973; Brent, 1974; Forsythejs even is
1972;/Monahan, 1979). However, these efforts entail using 22 3
ordinary floating point arithmetic and thus the methods do no l—az4+———4+...=¢e "
generate exact deviates. :
In this paper, | show that von Neumann’s algorithm canwhile the probability that: is odd (averaged over) is 1 —
be extended to sample exactly from the unit normal and dierO1 e *dx = e~!. Thus the probability that the algorithm
crete normal distributions. Although the resulting alums terminates with a particular value béandz is exp(—(l+x))
are unlikely to displace existing methods for most applicas required.
tions, it provides a nearly optimal method for generatingno on average, this algorithm require¥/ (e — 1) ~ 4.30 uni-
mal deviates at arbitrary precision. In addition, the &0 form deviates; in effect, the algorithm sums all the terntsien
sample exactly from the discrete normal has applications tqay|or series foe 2 in a finite mean time. Conventionally,
cryptography because the security of cryptographic systemyoy|d be sampled from the subset of reals which are repre-
requires that any random sampling be very accurate. Finallentaple as double precision numbers; in this case, thésresu
the method is of theoretical interest as an example of ar algqQyoy|d be only approximately equivalent to sampling exactly
rithm where exact transcendental results can be achiewtd Wifrom the exponential distribution and rounding the restsits
simple integer arithmetic. _ L the closest floating point number.
Implementations of the algorithms given in this paper are However, if we represent the uniform deviates by u-rands,
available in ExRandom, a small *header only” library for it js quite easy to make the algorithm exact in the sense dis-

C++11, available dit t p: // exrandom st. net/,andin cyssed in connection with Tale 1 in SEE. 1. A u-rand can be
version 3.2.0 of MPER (2014). represented in bageas

S(?’L +0.dody ...dp—1+...),
2. VON NEUMANN'’S ALGORITHM L. .
wheres = +1, n andL are non-negative integerg,are digits

| begin by reviewing von Neummann’s algorithm, becausdn [0; b), and the fraction is written in ordinary positional nota-
this is the basis of the method for sampling from the normafion- Only the first, digits of the fraction have been sampled
distribution. and the final ellipsis represents the digits which are not yet

known, i.e., it represents a sample frém“U. Only a small
Algorithm V (von Neumann Samples? from the exponen- number of operations need to be implemented on u-rands to
tial distributione™* for z > 0. realize Algorithm V. The assignment+« U in step V2 cor-
V1. [Initialize rejection count.] Selt < 0. respondsta < 1,n < 0, L + 0. The operation+ x in step
V2. [Sample fraction.] Set « U, whereU is a uniform V5 is jus_tn + 1. This jus_t leaves the comparisons between
deviateU € (0,1). u-rands in step V3. In this case, we have= 1 andn = 0
’ . . for both u-rands, so only the fractions need to be compared.
V3. [Generate a run.] Sample uniform deviatgs, Us, . ..

d d . h X lue > hth The digits are compared starting at positiband if they are
and determine the maximum value > 0 such that igrerent, the comparison can be made; if not, the next gligit

z>U1>Uz>...> Un. are compared. During this process, digits sampled unifprml
V4. [Test length of run.] Ifn is odd set/ <~ I + 1 and goto from [0,) are added to the fractions ads incremented as

step V2. necessary; typically, the comparisons can be made exagninin
V5. [Combine integer and fraction.] Otherwise {s even), only a few digits of each operand.

sety « [+ . We shall need to add a few additional operations on u-

rands to implement the additional algorithms presented in
this paper: negationt(<— —x), comparisons with a rational
(Because the algorithm generates continuous random deviz < u/v), incrementing by one halfi(«+ = + 3); these are
ates, there’s no distinction between the inequalitie> 0 easily accomplished (with the proviso thabe even for the
andz > 0 or the intervals(0, 1) and[0,1].) According to last operation). We also need to be able to extract from a u-
von Neumann, this algorithm was suggested by the game afind the value rounded to the closest floating point number at

V6. [Returnresult.] Sety < y. 1

http://exrandom.sf.net/

some precision, sampling, if necessary, additional digitsés
is straightforward ifb is a power of two; all rounding modes

3

Algorithm K (Kahn). SampleN from a unit normal distri-
bution¢(x) using Kahn’s method.

can be supported (and the process provides a flag indicating1, [sample absolute value of deviajd Sety + E where

the direction of the rounding). Finally, it is easy to produc
printed representations of the u-rand itself (e.g=16...")

and of a correctly rounded fixed point representation in bas
b (for examples, see Tallé 1). In this connection, note that by
usingb = 10 we are able to produce exactly rounding decimal
representations of normal deviates without any radix cenve

sions.

FE is an exponential deviate.
léz. [Adjust relative probability ofy by rejection.] Sample
z + E and accepy if z > %(y —1)%; otherwise go
to step K1. (For a givep, the probability of acceptance
exp(—1(y — 1)%). Averaging overy, the probability of
acceptance ig/7/(2e) ~ 0.76.)

It's possible to make von Neumann’s algorithm slightly K3. [Assign a sign.] With equal probabilities, sek— +y.

more efficient by using early rejection.

Algorithm E (improved von Neumann Improved algorithm

for samplingFE from a distribution with density—* for x > 0.

E1. [Initialize rejection count.] Selt <+ 0.

E2. [Sample fraction.] Set <+ U, whereU is a uniform
deviateU € (0,1).

E3. [Early rejection.] Ifz > % setl «+ [+ 1 and go to step
E2.

E4.[von Neumann’s step V3.]
Uy, Us, ... and determine the maximum value> 0 such
thate > Uy > Uy > ... > U,.

ES5. [Test length of run.] Ifn is odd, sef < [+ 1 and go to
step E2.

E6. [Combine integer and fraction.] Otherwisei6 even), set
Y+ 3+

E7.[Returnresult.] SeE «+ y. 1

The early rejection step results in lowering the mean number

of uniform deviates required t/ (/e — 1) ~ 4.19.
Von Neumann’s algorithm can be adapted to generate
Bernoulli random variable with probability/+/e, as follows.

Algorithm H (a half exponential Bernoulli trigl Generates
a Bernoulli random valud{f which is true with probability

1/V/e.

H1.[Generate a run.] Sample uniform deviaiés, Us, . ..
and determine the maximum value> 0 such thaty >
U >U; >...>U,.

H2. [Test length of run.] Setl < (nisever). |
On average, the algorithm usgs/(,/e — 1) (resp.3e) uni-

form deviates if the result is false (resp. true); the overal

weighted average ig/e. Both Algorithms E and H can be

implemented using u-rands and so can deliver exact result

Algorithm H will be used for sampling from the normal dis-
tribution.

3. SAMPLING FROM THE NORMAL DISTRIBUTION

Here | tackle the problem of sampling normal deviates us-

ing u-rands. Although, | didn't realize it at the time, the

Sample uniform deviates

K4.[Return result.] Setv < x. 1

A problematic step here is K2, which requires performing
arithmetic ony. In order to avoid this, | found it necessary
to sample separately the integer and factional parts lefad-
ing to the following skeleton of an algorithm.

Algorithm N (normal samplin} SampleN from a unit nor-

mal distributiong(x) using a rejection method.

N1. [Sample integer part of deviate] Select integek > 0
with probabilityexp(—1k)(1 — 1/1/e).

N2. [Adjust relative probability oft by rejection.] Accept
with probabilityexp(—1k(k — 1)); otherwise go to step
N1.

N3. [Sample fractional part of deviate] Setx < U, where
U is a uniform deviaté/ € (0, 1).

N4. [Adjust relative probability ofc by rejection.] Accept:
with probabilityexp (—4x(2k +z)); otherwise go to step

N5. [Combine integer and fraction.] Sgt«— k + .
Bl6. [Assign a sign.] With probabilit)é, sety «+ —y.
N7.[Return result.] Setv «+— y. 1

The analysis of this algorithm is similar to that for Kahn'’s
method. After step N2, the relative probability densitykof
is exp(—3k) x exp(—3k(k — 1)) = exp(—3k?) for k > 0;
after step N4, the relative probability Bf, 2] is exp(—$£2) x
exp(—32(2k + z)) = exp(—3(k +2)?) fork > 0 andz €
(0,1). From this, it follows that the returned value.ohas a
Gaussian distributiorj(z). Step N2 always succeeds for=
0 and1, the two most common cases. Overall, the probability
that step N2 succeeds ([— 1/+/¢)G ~ 0.690 whereG =
> re o exp(—2k?) ~ 1.753. Similarly, step N4 succeeds with
probability \/7/2/G ~ 0.715. Thus, step N1 is executed
V2/m/(1 —1/\/e) ~ 2.03 times on average.

Steps N1 and N2 can be expressed in terms of half expo-
nential Bernoulli trialsH with

Steps N1 and N2 in terms #f.

N1. [Test H until failure.] Generate a sequence of Bernoulli
deviatesH, Hs, ... and determine the largelst> 0 such
thatH,, Ho, ..., Hy are alltrue.

method | developedis closely related to the algorithm giwen N2. [Make k(k — 1) tests ofH.] Setk’ + k(k—1) and gener-
Kahn (1955, p. 41); see also Abramowitz and Stegun (1964, ate up tok’ Bernoulli deviatesd, Hs, . .., Hy:. Accept
§26.8.6.a(4)). Thisis kif H;istrue forall i € [1, k’]; otherwise go to step N1.

Of the remaining steps only step N4 presents a challengéinally, C(m) can be computed with

This is changed to Algorithm C (the 3-way selectgr The choiceC(m),

(—1,0,1) with probabilities (1/m,1/m,1—2/m), imple-
mented as the test < n/m wherew is a uniform deviate
in (0,1) andn = 1 orn = 2. For each successive digit
of w, substitutew = (d + w’)/b so that the test becomes
w' < n'/m, wheren’ = bn — dm, and exit as soon as theé

This transformation of N4 is motivated by the requirement in's outside the rang@,).)

the proof of von Neumann’s method that [0, 1]. Repeating C1.[Set the numerators of the fractions.] Sat < 1 and
the trialk+1 times means that the argument to the exponential 72 < 2.

in the original step N4 is divided b+ 1; the maximum value C2. [Sample the next digit ofv, d.] Sampled + D whereD
of x(2k+x)/(2k+2) (asx is varied) is(2k+1)/(2k+2) < 1. is a uniformly distributed integer ift), b).

In order to carry out a Bernoulli triaB, | generalize von -3 [Multiply inequalities bybm.] Setn; < bn; — dm and
Neumann’s procedure. No < bng — dm.

CA4. [Test the new numerators.] #f; > m, setC(m) < —1
and return; else ihy < 0, setC(m) < 1 and return;
else ifny < 0 andny > m, setC(m) < 0 and return;
otherwise, go to step C2.1

Rewriting step N4.

N4. [Break N4 intok + 1 steps.] Perform up td + 1
Bernoulli trials, By, Bs, ..., Bxt+1, €ach with probabil-
ity exp(—xz(2k + x)/(2k + 2)). Acceptz if B; is true
forall; € [1, k + 1]; otherwise go to step N1.

Algorithm B (generalizing von Neumann’s step V3 A

Bernoulli trial with probabilityexp (—z(2k + x)/(2k + 2)).

Sample two sets of uniform deviatd$,, Us,... and V7,

V5, ... and determine the maximum valuwe > 0 such that
x>U; > U > ...>U,andV; < (2k + z)/(2k + 2) for

alli € [1,n].

B1. [Initialize loop.] Sety < z, n < 0.

B2. [Generate and test next samples.]
(i) Samplez < U; go to step B4, unless < y.
(i) Sampler <« U; go to step B4, unless <
2k + z)/(2k + 2).

B3. [Increment loop counter and repeat.] et z, n +
n + 1; go to step B2.

B4. [Test length of runs.] SeB « (nis ever). 1

Without step B2(ii), steps B1 to B3 are just step V3 of von The three steps here can be carried out in any order and | find

Neumann'’s algorithm. Because of the additional test B2(ii) that the number of random digits needed can be reduced by
the probability that thexth trip through the loop succeeds is reversing the order of B2(a) and B2(b) wheneker 0.

Algorithm C shows how the comparison of a u-rand with a
rationalz < u/v can be implemented. Step B2 can now be
written as

Step B2 incorporating Algorithm T.

B2. [Generate and test next samples.]
(a) Sample: + U; go to step B4, unless < y.
(b) Setf + C(2k +2);if f < 0, goto step B4.
(c) If f = 0, sampler < U and go to step B4, unless
r<a.

z"/n! x ((2k +2)/(2k +2))". The requirement that be
even means thd® succeeds with probability

2%k+z 2?2 /(2k+=x 248 2k +x 3+
St A W (et I [t
2k +2 21\ 2k + 2 3\ 2k+2
2k +x
= exp —x2k+2 .

In order to avoid performing arithmetic on uniform deviates

in step B2(ii), we remark that asvaries in(0, 1) the right side

of the inequality varies frorek/(2k + 2) to (2k + 1)/(2k +

2). Thus, regardless of the valuesofandr, the test will
succeed with probabilitgk/(2k + 2) and fail with probability
1/(2k +2). The remaining probability, / (2k + 2), is divided
between success and failure according to z. Thus the test

r < (2k + z)/(2k + 2) can be replaced with

Algorithm T (the test in B2(ii). Perform testl’ = (r <
(2k+1)/(2k+2)) without doing arithmetic on real numbers.

T1. [Sample a selectof.] Setf « C(2k + 2) whereC(m)
is —1 with probability1/m, 0 with probability1/m, and
1 with probabilityl — 2/m.

T2.[Act on the value off.] If f < 0, setT <« false; else
if f > 0, setT « true; otherwise { = 0), setT <«
(r<z). 1

Now step N4 has been broken down into steps that can all
be carried out in terms of u-rands. In the final step, N7, the
normal deviate can be returned either as a u-rand or an gxactl
rounded floating point number.

4. SAMPLING FROM THE DISCRETE NORMAL
DISTRIBUTION

In some applications, we wish to sample integérgrom
the discrete normal distribution,
()]

which is characterized by parameterando. In the limit

o > 1, the mean and variance of this distribution is well ap-
proximated by ando?. Considering the class of integer dis-
tributions, this distribution maximizes the entropy foriaem
mean and variance (Keimp, 1997). Because Algorithm N is a
simple rejection scheme, it is rather easy to adapt it to &
from the discrete distribution as follows:

1

2

L= p
g

o0 | 1,0) exp[

Algorithm D (discrete normal sampling SampleD from
a discrete normal distribution(¢ | u,o) using a rejection
method.

D1. [Same as step N1.] Select inteder 0 with probability
exp(—Lk)(1 — 1/+/e).

D2.[Same as step N2.] Accepk with probability
exp(—3k(k — 1)); otherwise go to step D1.

D3. [Assign a sign.] With equal probabilities, set— +1.

D4. [Sample fractional part of deviate] Setz < x¢ + j/o,
wherezy = (io — (ok + sp)) /o, io = [ok + su], and;
is a random integer uniformly sampled froi [o7]).

D5. [Ensure thatr is in the allowed range.] I£ > 1, goto
step D1. (This cannot happervifis an integer.)

D6. [Avoid double counting 0.] Ifc = 0, x = 0, ands < 0,
goto step D1. (This cannot happen unlgss an integer.)

D7.[Same as step N4.] Accept with probability
exp(—3z(2k + z)); otherwise go to step D1.

D8. [Combine parts of the integer deviate.] $et- s(ig + 7).
D9. [Return result.] SeD < i. 1

5

Bernoulli distribution with rational probability = «/v. Con-
ventionally, this is implemented by testing< j with ;7 sam-
pled uniformly in [0, v) which for v large requires at least
log, v random bits. However ifj is partially sampled, the
mean cost is a constant in the limit of largeSimilar perfor-
mance is obtained with u-rands, sampling— U and testing
x < u/v (and, with u-rands, this test is exact).

5. IMPLEMENTATION

An implementation of Algorithm N in C++11 is avail-
able in the library ExRandom. This allows the user
to select the basé and to access the random devi-
ate as a u-rand or as a floating point number. The
algorithm has also been wrapped into a C++11 “ran-
dom number distribution” | (Stroustrup, 2013§40.7.3),
unit_normal _distribution, which can be used as
a replacement for the standandr mal _di stri buti on

This is nearly the same as Algorithm N, except that steqwith zero mean and unit variance). Several test programs ar
N3 has been replaced by steps D4-D6. These steps can BRo provided, one of which performs tiy@ test on the out-

understood by matching(z) and ¢(i | p,o), identifying
s(k +x) = (s(io +4) — p)/o, and determining, and j
such thatr € [0,1). Whenj = 0, x takes on the value,
andig is that integer which minimizes, while maintaining
the conditionzy > 0. Similarly the requirement that < 1,
imposes the conditiofn < [o]. If o is not an integer, then for
some values ok ands, there are only o | allowed values of
j, S0, in step D5, we enforce the conditiore [0,1). Finally,

put of Algorithm N, which is an essential step in validatitey i
correctness. This test passes with® samples and 50 bins of
equal width in the intervdl-4, 4] when the Mersenne Twister
random number generator (Matsumoto and Nishimura,/1998),
nt 19937, is used as the source of random digits. (On the
other hand, the test fails badly with® samples using the lin-
ear congruential generatari nst d_r and0.) Algorithm N
retains no state from one invocation to the next. So it is not

in step D6, we avoid double counting the origin of the normalnecessary to verify the independence of the normal deviates

distribution by additionally requiring that € (0,1) if £ =0
ands < 0.

Algorithm D is a straightforward modification of Algorithm

(any lack of independence would be due to defects in the un-
derlying random generator).
In addition, Algorithm N has also been incorporated

N and all the steps can be carried out exactly if the paramein [MPFR [(2014), version 3.2.0, a library for arbitrary
tersp ando are rational. One additional function needs to beprecision arithmetic | (Fouss# all, [2007) as the function

added to the machinery to handle u-rands, namely a compafipf r _nrandom MPFR, version 3.1.0, already provided

son with a rational (this is needed in implementing Algarith

a functionnpf r _gr andom for sampling normal deviates

B because now is a rational number). See Algorithm C for based on the polar methad (Box and Muller, 1958).

how this can be implemented.

Tabld2 shows some comparative timings for producing nor-

Because the probability that step D7 (i.e., step N4) succeednal deviates with a precision pfbits. The tests were run on

is 0.715, then foro large (andb = 2), this method requires

a Fedora Linux system with &2 GHz Intel processor using

at least(1/0.715) log, o bits of randomness on average. We the g++ compiler version 4.8.2. In all cases, the Mersenne

would like to reduce the multiplier dbg, o from 1/0.715 to

Twister algorithm was used to generate the random digits and

1 to match the perfect scaling of Algorithm N. We can achievethe implementations of Algorithm N timed here use 232 to
this goal by adapting the algorithm giveniby Lumbraso (2013)match the output of this generator. Comparing columns A and

for sampling an integer ifd, m). Sufficient of his algorithm is

B, we see that Algorithm N is an order of magnitude slower

carried out to allow the result to be returned as range oftéize than the polar method at producing double precision results
For example, ib = 2, sampling from0, 9) returns the ranges On the other hand (comparing columns C and D), Algorithm

{[0,8),10,2),[2,6),[6,8), [8,9)} with probabilities{22, =,

N is dramatically faster thanpf r _gr andomat producing

4 2 11 Thereafter the range can be narrowed, if necesarbitrary precision results in the MPFR format. As expegcted

21721’ 9

sary, by factors ob to allow the inequality in step D7 to be the scaling of the time for Algorithm N in column C is offset
evaluated. This method of sampling integers generalizes thinear, approximately1 + 240 p/22°) us.

concepts of a u-rand to apply to discrete sampling and, if Al-

gorithm D is implemented using this technique, it exhibés-p
fect scaling in the limit of large.

It is instructive to compare the two MFPR routines
nmpf r_grandomand npfr_nrandom The former pro-
vides a good illustration of how a conventional method for

As an aside, this technique of partially sampling a discretesampling random deviates can be implemented with guaran-

uniform distribution allows optimization of sampling frattme

tees on the accuracy; the working precision needs to be pro-
gressively increased; and, of course, heavy use is made of

TABLE 2 Times (inus) for sampling from the normal distribution.
The quantityp is the number of bits in the fraction of the rounded
floating point samples. Columns A and D use the polar method,
while columns B and C use Algorithm N. Columns A and B time
the C++11 random number distributiomer mal _di st ri buti on
anduni t _nor mal _di stri buti on delivering results in the form +0.0...
of IEEE floating point numbers. Columns C and D time the ragin = @)
npf r _.nr andomandnpf r _gr andomwhich produce MPFR float-

ing point numbers. Columns A and B are the results of avegagin

over 50 million samples; the entries in Columns C and D are each

the result of averaging over aboli seconds.

type |EEE MPFR +0...
method polar Algorithm N polar
P A B C D +1.0...
24 0034 030 059 2.3 0 1
32 0.64 2.4 X
53 0.054 0.31 0.64 2.6 FIG. 1 Algorithm N's decomposition of the normal distribariinto
64 0.057 0.37 0.64 2.8 a set of uniform distributions with = 2 (shown forz > 0). For
128 0.65 3.8 example, the frequency with which0.0... is returned is equal
256 0.68 6.2 to the relative area of the rectangle spanninge (0, %) which is
910 0.86 20 %,/2/7 ~ 10%. This frequencies used in this figure are averaged
912 1.6 130 overlO_10 samples; the minimum range of the uniform distributions
“ shown is278.
2 4.3 1300
216 15 13000
218 59 120000 largep (butp > 10 suffices in practice). Th& here accounts
920 240 910000 for the additional bit needed for rounding the result (arel th

rounding operation, in turn, provides an extra bit of infarm
tion, namely whether the true deviate is larger or smallenth

the formidable infrastructure provided by MPFR for carry- the rounded result). Producing rounded floating point nérma
ing out arbitrary precision arithmetic. The final resultailst ~ deviates with precisiop requires”’ — Q +p + 1 bits on aver-
computing a logarithm and extracting a square root which ing€ (thel again accounts for the need for a rounding bit); here
cur a reasonably heavy penalty as the precision is increaséd = ([108; |#|]) +1 ~ —0.417 is the mean floating point ex-
(the time increases roughly ag). On the other hand, ponent for normal deviates. Thus producing IEEE double pre-
npf r _nrandomrelies on MPFR only to provide the data Cision floating point numberg (= 53) requires abous2.861

type to hold the result and the penalty for high precision isPits per rounded deviate, on average. _
minimal. When comparing Algorithm N with algorithms father

Table[2 times the production of normal deviates in a standistributions, we use the toll of the algorithm defined/as-
dard computational environment in which uniform pseudoC — H =~ 26.397 where H = log, v2me ~ 2.047 is the
random numbers can be produced rather rapidly. In some s€ntropy of the normal distribution and the baségarithm
curity applications, it may be necessary to use a slow harelwa 1S used so thatl is measured in bits. Aperfectsampling
random number generator. In this case, Algorithm N can bé&lgorithm would have” = 0; so the toll is a measure of how
used withb = 2 to conserve random bits. L& be the num- Many random bits are potentially “wasted” by the algorithm.
ber of bits consumed by Algorithm N arfdbe the number of ~(Note that the entropy of the discrete distribution obtelibg
bits in the fraction of resulting u-rand. Empirically, | fitdat ~ rounding normal deviates to the closest multipleof is H +
(B) ~ 30.000 and(L) ~ 1.556. The distribution ofL decays » forplarge.) _
with an e-folding constant ofl/ log 2, while that of B de- A histogram of the u-rands that Algorithm N produces can
cays more slowly with a-folding constant of abo9.9 bits. ~ P€ displayed in a way that illustrates how they add up to the
To put these results in perspective,1i>° normal deviates normal distribution as shown in Figl 1. The area assigned to
were generated, then the largest result wouléizbe- 12, the each u-rand is proportional to its frequency while its base c

longest fraction would havé ~ 100 and at mosB ~ 2000 ©rs its range (her = 2). This figure is reminiscent of illus-
bits would be needed to generate a single normal deviate. trations of the ziggurat method (Marsaglia and Tsang. 2000)

The quantityC' = (B) — (L) ~ 28.444 represents the which provides a fast way of sampling normal deviatespy
“cost” of producing random deviates. Producing roundedProximatingthe normal distribution by atatic set of rectan-

fixed point normal deviates withbits in the fraction requires 9l€s enabling it to return a uniform deviateriostcases. In
C + p + 1 random bits on average; this formula applies forcontrast, Algorithm l\uyngmlpallygenerates a set r.ectangles
which cover the normal distributiogxactly allowing it to re-

turn a uniform deviate imll cases. large precomputed tables” is directly contradicted by Algo
The ExRandom library includes implementations of Al- rithm D; it uses no floating point arithmetic and requires no
gorithms V and E for sampling from the unit exponential stored constants. The potential drawbacks of Algorithm D in
distribution with interfaces that parallel those for theitun this context are: (1) The toll is large compared to implemen-
normal distribution. The C++ random number distribution tations of the method discrete distribution generating @D
unit _exponenti al _di stributionusesAlgorithmV trees of Knuth and Yao (1976) for which the tolldsbut that
because it is slightly faster than Algorithm E with= 232, method is impractical for large because it involves storing
This produces double precision deviate®9i09 us under the large precomputed tables of probabilities. (2) The timesio-g
same conditions as in Tadlé 2. (Algorithm V has also beererate a deviate is variable (potentially leaking inforroatio
added to MPFR, version 3.2.0, apf r _erandom) With an attacker); this can be mitigated by generating the dewviat
b = 2, Algorithm E results i B) ~ 7.232 and(L) ~ 1.743, in batches of a thousand, say. (3) The time and memory re-
so the cost ig” ~ 5.489. For the exponential distribution, we quirements of the algorithm are unbounded; but, with a sligh
haveH = log, e ~ 1.443 and@ ~ —0.333. Thus the tollis reduction in accuracy, it is easy to put bounds on these. For
T = C — H = 4.047 (considerably better than Algorithm example, if the number of digits in the fraction of u-rands is
N) and producing IEEE double precision numbers requiredimited to log N/log2 and if the number of random digits
C — @ + 54 ~ 59.822 bits on average. In contrast, von Neu- allowed for a single deviate to limited &0 log IV, then the

mann'’s original method, Algorithm V, has a cdst~ 7.262 limits are hit about once everdy invocations. Even ifV is
and a tollT ~ 5.819; i.e., it is less efficient than Algorithm E large, sayl03°, the resulting limits are modest; in the the rare
by aboutl.772 bits. cases when the limits are hit, an integer uniformly sampted i

Finally, the ExRandom includes implementations of Algo-[|x — o], [+ o] can be returned.
rithm D for sampling from the discrete normal distribution.
The parameterg ando are given as the ratio of two 32-bit in-
tegers. However some internal calculations use 64-bigeree 6. CONCLUSIONS
in an effort to avoid overflow. The constructors for the class
implementing this algorithm throw an exception if the param | have presented an algorithm for sampling normal deviates
eters are such that overflow is possible. The most stringent ovith an astonishing combination of properties: it is exéct,
the checks is thatkaxonum fits in a 64-bit word wheré is can be implemented in a few dozen lines of code using only
the basek,.x = 50 is how many standard deviations onto the Simple integer operations, and it is fast. The definitionené-*
tail of the normal distribution we want to be able to sample,act” is rigorous and this property depends only on the avail-
ando,.m is the numerator of when it andy: are expressed ability of a source of uniform random numbers. Although the
with a common denominator. algorithm is an order of magnitude slower at producing dou-
The C++11 random number distribution implementing Al- ble precision results compared to conventional (less ate)r
gorithm D use$ = 26, The time to generate discrete normal methods, this is partly due to the hardware support provided
deviates depends weakly enover the rangél.6, 1.6 x 109] for floating point operations on modern computers. If there
varying betweer.4 s and0.5 us under the same conditions iS no such support, as is the case for higher precision float
as in TabldR. Withh = 2, the toll, defined now merely as point formats, Algorithm N becomes competitive; indeed in
the difference between the mean number of bits to obtain #he limit of high precision, the only cost is that to producd a
discrete normal deviate and the entropy of the distribuion ~ copy the random bits into the result.
bits), is, in the limit of larger, approximately a periodic func- ~ Algorithm N probably won't be useful in most routine
tion of log, o with period1, attaining its minimum value of Monte Carlo simulations where the accuracy of conventional
about27.9 whene is a power of two and its maximum value double precision methods suffices. However, in some special
of 31.9 wheno slightly exceeds a power of two. ized applications, the need for accuracy is paramount. th pa
An important potential use for Algorithm D is in cryptogra- ticular, the discrete version of the algorithm, Algorithmtas
phy, where exact sampling is often required. One such applidirect applications to some areas of cryptography and here t
cation is the “learning with errors” (LWE) problem (Regev, fact that the algorithm entails only integer instructionsubd
2009), which depends on the difficulty of solving a systemalso allow it to be implemented for embedded devices.
of over-determined linear equations over the field of intege Internally, these algorithms represent real random desiat
when the equations have been perturbed by noise sampl#g terms of u-rands and the floating point result is extracted
from a discrete normal distribution. The security of thegery from these at the end of the algorithm. This extraction pro-
tographic methods based on the LWE problem depends, igess takes time, consumes memory, and involves a round off
part, on being able to sample discrete normal deviates accgfror. So, it might be advantageous to leave the result as a
rately. In some such applications, there is also the rempéirg u-rand; this occupie®(1) storage and is still exact. Further-
that the sampling algorithm run on devices without hardwarenore, certain operations can be performed on u-ran@s Bt
support for floating point operations. Methods for samplingcost. For example, when implementing Algorithm K, the ex-
from the discrete normal distribution have recently been reponential deviateg andz should be sampled as u-rands using
viewed by Dwarakanath and Galbraith (2014). However, onéAlgorithm E. The comparison in step K2 requires arbitrary
of starting points of this paper that “sampling algorithras r precision arithmetic; however, it can be completed with the
quire either high precision floating point arithmetic or wer addition of only a few extra digits tp andz, on average. This

8

means that it shares with Algorithm N the perfect scaling of ACM-SIAM Symposium on Discrete Algorithmgp. 172—
cost with precision. As another example, consider the epera 183 (SIAM, Philadelphia), http://www.siam.org/proceegt/
tiony < x + % wherez is the (base) u-rand+0.0.. ., i.e., soda/2011/SODALDI1S flajoletp.pdf. .

a random deviate in the rang@ 1]. Carrying this out with P Flajoletand N. Saheb, 198Bhe complexity of generating an ex-
floating point arithmetic entails three rounding errorg (fo ponentla}lly distributed variate). Algorithms,7(4), 463-488, doi:
%, and the sum) and involves thrégp) operations. Alterna- 10.1016/0196-6774(86)90014-3.

3 . . E. Forsythe, 1972,Von Neumann's comparison method
tively, we could repeatedly sampje— U until the conditions for random sampling from the normal and other distri-

3 <y < g are satisfied, yielding an exact resultiil) oper- butions Math. Comp., 26(120), 817-826, doi:10.1090/

ations. Thus, it would be of interest to explore the algelfra 0 50025-5718-1972-0315863-9.

operations on u-rands. The resulting “lazy evaluationiffea L. Fousse, G. Hanrot, V. Lefévre, P. Pélissier, and P. Z&mmann,

work would, in principle, require less storage, be fastad a 2007, MPFR: A multiple-precision binary floating-point library

be exact. with correct roundingACM TOMS, 33(2), 13:1-15, d0i:10.1145/
Algorithms E and N constitute a new class of algorithms 1236463.1236468.

for sampling from continuous distributions offering thevad- H- Kahn, 1956Applications of Monte CarloTechnical Report RM-

tages of exactness and perfect scaling. Algorithm N buifds o0 1237-AEC, RAND Corp., Santa Monica, CA, http://www.rand.

, ; ; . _org/pubs/researclnemoranda/RM1237.html.
von Neumann's work adding two new techniques. (1) breakA. W. Kemp, 1997 Characterizations of a discrete normal distribu-

Ing step N4 intdv + 1 te_sts, to reduce the argume_nt of the ex: tion, J. Stat. Planning and Inferen&3(2), 223-229, doi:10.1016/

ponential; and (2) adding a second set of tests, in step)B2(ii S0378-3758(97)00020-7.

to compute a more complex exponential probability. Presuma_ 3. kinderman and J. F. Monahan, 19%omputer generation

any similar algorithms can be found for other distribugon of random variables using the ratio of uniform deviatéCM

although, as yet, there is no systematic approach to finding TOMS, 3(3), 257—260, doi:10.1145/355744.355750.

such algorithms. Related work by Flajottall (2011) dis- D. E. Knuth, 1998,The Art of Computer Programmingolume 2

cusses several interesting methods for sampling discigte d (Addison-Wesley), 3rd edition.

tributions and considers ways in which they can be combined?- E. Knuth and A. C. Yao, 1976The complexity of nonuniform

It's probable that some of their techniques will be useful in random number generatiom J. F. Traub, editor\gorithms and

finding algorithms for sampling from other continuous distr ffmgigy gglgg;ﬁj Eﬁscgifgtcnii;?éséssg;g?from coin

butions; they m|ght also lead to improvements to Algorithm flips, and applications Technical report, LIP6, E-print arXiv:

N for normal deviates. 1304.1916.

G. Marsaglia and W. W. Tsang, 200he ziggurat method for gener-
ating random variablesJ. Stat. Softwarey(8), 1-7, http://www.

Acknowledgment jstatsoft.org/v05/i08.

M. Matsumoto and T. Nishimura, 1998Jlersenne twister: A
| would like to thank Damien Stehlé for pointing out the 623-dimensionally equidistributed uniform pseudo-ramdoum-
applications to cryptography and for drawing my attentiont ber generator ACM TOMACS, 8(1), 3-30, doi:10.1145/272991.

Kahn's algorithm for sampling from the normal distribution 272995.

J. F. Monahan, 197&xtensions of von Neumann’s method for gener-
ating random variablesMath. Comp. 33(147), 1065-1069, doi:
10.1090/S0025-5718-1979-0528058-7.

—, 1985, Accuracy in random number generatjoNlath. Comp.,
45(172), 559-568, doi:10.1090/S0025-5718-1985-0804945-X

MPFR, 2014 A multiple-precision binary floating-point library with
correct rounding, version 3.2, 0ittp://www.mpfr.org.

RAND Corporation, 1955A Million Random Digits with 100,000

Forsythe’s method for random sampling from the normal Normal DeviategThe Free Press, Glencoe, IL), http://www.rand.

distribution, Math. Comp., 27(124), 927-937, doi:10.1090/ _ ©rd/pubs/monographeports/MR1418.html. .
S0025-5718-1973-0329190-8.. O. Regev, 2009,0n lattices, learning with errors, random lin-

G. E. P. Box and M. E. Muller, 1958\ note on the generation of ear codes, and cryptographyl. ACM, 56(6), 34, doi:10.1145/

. . 1568318.1568324.
random normal deviatesAnn. Math. Stat.29(2), 610-611, doi: . .
10.1214/a0ms/1177706645. B. Stroustrup, 2013The C++ Programming Languag@Addison-

R. P. Brent, 1974 Algorithm 488: A Gaussian pseudo-random Wesley), 4th edition.

= D. B. Thomas, W. Luk, P. H. W. Leong, and J. D. Villasenor
number generatogrComm. ACM,17(12), 704-706, doi:10.1145/ N ! ! !
361604.361629.0 (12) 2007,Gaussian random number generatof&M Comput. Surv.,

N. C. Dwarakanath and S. D. Galbraith, 20B8mpling from dis- 3 39(4;\’1 11:1-38, 382;0'1145/12?]7520'1287%2.2' . ith
crete Gaussians for lattice-based cryptography on a caiirséd - von Neumann, farious techniques used in connection wit

device Applicable Algebra in Engineering, Communication and random digits in A. S. Householder, G. E. Forsythe, and H. H.

References

M. Abramowitz and |. A. Stegun, 1964jandbook of Mathemat-
ical Functions(NBS, Washington, DC), http://www.cs.bham.ac.
uk/~aps/research/projects/as.

J. H. L. Ahrens and U. O. Dieter, 1973Extensions of

; s , . Germond, editorsMonte Carlo Methodnumber 12 in Applied
Computing, doi:10.1007/s00200-014-0218-3, https://wwath. . - X
auckland.ac.nz/sgal018/gen-gaussians.pdf. Mathematlcs Ser_les, pp. 36-38 (NBS, Washlngto_n, DC), pbce

P. Flajolet, M. Pelletier, and M. Soria, 201Dn Buffon ma- ings of a symposium held June 29-July 1, 1949, in Los Angeles.

chines and numbersin D. Randall, editor, Proc. 22nd

http://www.cs.bham.ac.uk/~aps/research/projects/as
http://www.cs.bham.ac.uk/~aps/research/projects/as
http://dx.doi.org/10.1090/S0025-5718-1973-0329190-8
http://dx.doi.org/10.1090/S0025-5718-1973-0329190-8
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1214/aoms/1177706645
http://dx.doi.org/10.1145/361604.361629
http://dx.doi.org/10.1145/361604.361629
http://dx.doi.org/10.1007/s00200-014-0218-3
https://www.math.auckland.ac.nz/~sgal018/gen-gaussians.pdf
https://www.math.auckland.ac.nz/~sgal018/gen-gaussians.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_015_flajoletp.pdf
http://www.siam.org/proceedings/soda/2011/SODA11_015_flajoletp.pdf
http://dx.doi.org/10.1016/0196-6774(86)90014-3
http://dx.doi.org/10.1016/0196-6774(86)90014-3
http://dx.doi.org/10.1090/S0025-5718-1972-0315863-9
http://dx.doi.org/10.1090/S0025-5718-1972-0315863-9
http://dx.doi.org/10.1145/1236463.1236468
http://dx.doi.org/10.1145/1236463.1236468
http://www.rand.org/pubs/research_memoranda/RM1237.html
http://www.rand.org/pubs/research_memoranda/RM1237.html
http://dx.doi.org/10.1016/S0378-3758(97)00020-7
http://dx.doi.org/10.1016/S0378-3758(97)00020-7
http://dx.doi.org/10.1145/355744.355750
http://arxiv.org/abs/1304.1916
http://arxiv.org/abs/1304.1916
http://www.jstatsoft.org/v05/i08
http://www.jstatsoft.org/v05/i08
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1145/272991.272995
http://dx.doi.org/10.1090/S0025-5718-1979-0528058-7
http://dx.doi.org/10.1090/S0025-5718-1979-0528058-7
http://dx.doi.org/10.1090/S0025-5718-1985-0804945-X
http://www.mpfr.org
http://www.rand.org/pubs/monograph_reports/MR1418.html
http://www.rand.org/pubs/monograph_reports/MR1418.html
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/1287620.1287622

