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Sampling exactly from the normal distribution
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An algorithm for sampling exactly from the normal distribution is given. The algorithm reads some number of
uniformly distributed random digits in a given base and generates an initial portion of the representation of a
normal deviate in the same base. Thereafter, uniform randomdigits are copied directly into the representation
of the normal deviate. Thus, in contrast to existing methods, it is possible to generate normal deviates exactly
rounded to any precision with a mean cost that scales linearly in the precision. The method performs no extended
precision arithmetic, calls no transcendental functions,and, indeed, uses no floating point arithmetic whatsoever;
it uses only simple integer operations. It can easily be adapted to sample exactly from the discrete normal
distribution whose parameters are rational numbers.
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1. INTRODUCTION

Random variables with a normal density,

φ(x) =
exp(−x2/2)√

2π
,

are widely used in Monte Carlo simulations. Over the past
sixty years, scores of algorithms for generating such normal
deviates have been published (Thomaset al., 2007). In this
paper, I give another algorithm, Algorithm N, with the distin-
guishing feature that, given a source of uniformly distributed
random digits in some baseb, it generatesexactnormal de-
viates. In order to make the meaning of “exact” precise, con-
sider Table 1 which shows the operation of the algorithm using
b = 10.

The first column shows the random digits used by the
algorithm, which, in this example, are taken from succes-
sive lines of the table of random digits produced by the
RAND Corporation (1955), beginning at line 9077. Refer-
ring to the first line of this table, the algorithm completes af-
ter reading the 7 random decimal digits,9148686, from the
source and produces+1.6 as the initial portion of the deci-
mal representation of a normal deviate. At this point, random
digits can be copied directly from the input to the output, in-
dicated by the ellipses (. . .) in the table; thus+1.6 . . . repre-
sents a uniform random sample in the range(1.6, 1.7). The
next digits of the random sequence are685171 . . ., allowing
the normal deviate to be exactly rounded to 6 decimal digits
as1.668517. I call the intermediate result, e.g.,+1.6 . . ., a “u-
rand”. This can be thought of as a partially sampled uniform
deviate. However, in conjunction which a source of random
digits it is better to think of it as a compact representationof
an arbitrary precision random deviate. (The results in Table
1 are not “typical,” because the starting line in the table of
random digits was specifically chosen to limit the number of
random digits used.)

∗Electronic address: charles.karney@sri.com

TABLE 1 Sample input and output for Algorithm N withb = 10.
The input consists of uniformly distributed random decimaldigits.
The algorithm reads the random digits before the vertical bar and
produces a normal deviate as a u-rand (given in the second column),
which is an initial portion of the decimal representation ofthe normal
deviate. Thereafter random digits are copied directly fromthe input
(the digits after the vertical bar) into the decimal fraction of the u-
rand. The third column shows the result of adding enough digits to
allow the deviate to be rounded to 6 decimal digits; the parenthetical
sign indicates whether the magnitude of true deviate is greater (+)
or smaller(−) than the rounded result.

input u-rand rounded

9148686 | 685171 . . . +1.6 . . . +1.668517(+)

2708 | 5545979 . . . +0 . . . +0.554598(−)

501446297 | 43871 . . . +1.42 . . . +1.424387(+)

065130319777860 | 96289 . . . −0.76 . . . −0.769629(−)

2736 | 0659086 . . . +0 . . . +0.065909(−)

It’s clear from this example that the method can be used
to generate deviates that satisfy the conditions of “ideal ap-
proximation” (Monahan, 1985), namely that the algorithm is
equivalent to sampling a real number from the normal dis-
tribution and rounding it to the nearest representable floating
point number. Furthermore, for applications requiring high
precision normal deviates, the new algorithm offers perfect
scaling: there’s an amortized constant cost to producing the
initial portion of the normal deviate; but, thereafter, thedigits
can be added to the result at a rate limited only by the cost
of producing and copying the random digits. Other sampling
methods are frequently referred to as “exact,” for example the
polar method (Box and Muller, 1958) and the ratio method
(Kinderman and Monahan, 1977); but these are merely “ac-
curate to round off” which, in practice, means only that the
accuracy is commensurate with the precision of the floating
point number system. It’s possible to convert such algorithms
to obtain correctly rounded deviates; but this inevitably in-
volves the use of extended precision arithmetic. I will show,
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in Sec. 5, that Algorithm N performs substantially better.
It’s not immediately obvious that such an algorithm for

exact sampling is possible. However, in the early years of
the era of modern computing, von Neumann (1951) presented
a remarkably simple algorithm for sampling from the expo-
nential density, in which “the machine has in effect com-
puted a logarithm by performing only discriminations on the
relative magnitude of numbers in(0, 1).” Knuth and Yao
(1976) showed that the algorithm can easily be adapted to
generate exponential deviates which are exact; and the result-
ing method was extensively analyzed by Flajolet and Saheb
(1986). Several authors have generalized von Neumann’s
algorithm (Ahrens and Dieter, 1973; Brent, 1974; Forsythe,
1972; Monahan, 1979). However, these efforts entail using
ordinary floating point arithmetic and thus the methods do not
generate exact deviates.

In this paper, I show that von Neumann’s algorithm can
be extended to sample exactly from the unit normal and dis-
crete normal distributions. Although the resulting algorithms
are unlikely to displace existing methods for most applica-
tions, it provides a nearly optimal method for generating nor-
mal deviates at arbitrary precision. In addition, the ability to
sample exactly from the discrete normal has applications to
cryptography because the security of cryptographic systems
requires that any random sampling be very accurate. Finally,
the method is of theoretical interest as an example of an algo-
rithm where exact transcendental results can be achieved with
simple integer arithmetic.

Implementations of the algorithms given in this paper are
available in ExRandom, a small “header only” library for
C++11, available athttp://exrandom.sf.net/, and in
version 3.2.0 of MPFR (2014).

2. VON NEUMANN’S ALGORITHM

I begin by reviewing von Neummann’s algorithm, because
this is the basis of the method for sampling from the normal
distribution.

Algorithm V (von Neumann). SamplesE from the exponen-
tial distributione−x for x > 0.

V1. [Initialize rejection count.] Setl ← 0.

V2. [Sample fraction.] Setx ← U , whereU is a uniform
deviateU ∈ (0, 1).

V3. [Generate a run.] Sample uniform deviatesU1, U2, . . .
and determine the maximum valuen ≥ 0 such that
x > U1 > U2 > . . . > Un.

V4. [Test length of run.] Ifn is odd set,l ← l + 1 and go to
step V2.

V5. [Combine integer and fraction.] Otherwise (n is even),
sety ← l + x.

V6. [Return result.] SetE ← y.

(Because the algorithm generates continuous random devi-
ates, there’s no distinction between the inequalitiesx ≥ 0
andx > 0 or the intervals(0, 1) and [0, 1].) According to
von Neumann, this algorithm was suggested by the game of

Black Jack and this connection is made plain in the slightly
different formulation given in Abramowitz and Stegun (1964,
§26.8.6.c(2)).

The crucial step of the algorithm is V3, which is discussed
in some detail by Knuth (1998,§3.4.1.C(3)). The probabil-
ity that U1, . . . , Un are all less thanx is xn (provided that
x ∈ [0, 1]). The probability that, in addition, they are in de-
scending order (one of the possiblen! permutations) isxn/n!.
For the condition to hold for a sequence ofn + 1 numbers,
it must hold for the firstn of them; therefore the probabil-
ity that the length of the longest decreasing sequence isn is
xn/n!− xn+1/(n+ 1)!. For a givenx, the probability thatn
is even is

1− x+
x2

2!
− x3

3!
+ . . . = e−x,

while the probability thatn is odd (averaged overx) is 1 −
∫ 1

0
e−x dx = e−1. Thus the probability that the algorithm

terminates with a particular value ofl andx is exp
(

−(l+ x)
)

as required.
On average, this algorithm requirese2/(e− 1) ≈ 4.30 uni-

form deviates; in effect, the algorithm sums all the terms inthe
Taylor series fore−x in a finite mean time. Conventionally,U
would be sampled from the subset of reals which are repre-
sentable as double precision numbers; in this case, the results
would be only approximately equivalent to sampling exactly
from the exponential distribution and rounding the resultsto
the closest floating point number.

However, if we represent the uniform deviates by u-rands,
it is quite easy to make the algorithm exact in the sense dis-
cussed in connection with Table 1 in Sec. 1. A u-rand can be
represented in baseb as

s(n+ 0.d0d1 . . . dL−1 + . . .),

wheres = ±1,n andL are non-negative integers,dl are digits
in [0, b), and the fraction is written in ordinary positional nota-
tion. Only the firstL digits of the fraction have been sampled
and the final ellipsis represents the digits which are not yet
known, i.e., it represents a sample fromb−LU . Only a small
number of operations need to be implemented on u-rands to
realize Algorithm V. The assignmentx ← U in step V2 cor-
responds tos← 1, n← 0,L← 0. The operationl+x in step
V5 is justn ← l. This just leaves the comparisons between
u-rands in step V3. In this case, we haves = 1 andn = 0
for both u-rands, so only the fractions need to be compared.
The digits are compared starting at position0 and if they are
different, the comparison can be made; if not, the next digits
are compared. During this process, digits sampled uniformly
from [0, b) are added to the fractions andL is incremented as
necessary; typically, the comparisons can be made examining
only a few digits of each operand.

We shall need to add a few additional operations on u-
rands to implement the additional algorithms presented in
this paper: negation (x ← −x), comparisons with a rational
(x < u/v), incrementing by one half (x ← x + 1

2
); these are

easily accomplished (with the proviso thatb be even for the
last operation). We also need to be able to extract from a u-
rand the value rounded to the closest floating point number at

http://exrandom.sf.net/
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some precision, sampling, if necessary, additional digits. This
is straightforward ifb is a power of two; all rounding modes
can be supported (and the process provides a flag indicating
the direction of the rounding). Finally, it is easy to produce
printed representations of the u-rand itself (e.g., “+1.6 . . .”)
and of a correctly rounded fixed point representation in base
b (for examples, see Table 1). In this connection, note that by
usingb = 10 we are able to produce exactly rounding decimal
representations of normal deviates without any radix conver-
sions.

It’s possible to make von Neumann’s algorithm slightly
more efficient by using early rejection.

Algorithm E (improved von Neumann). Improved algorithm
for samplingE from a distribution with densitye−x for x > 0.

E1. [Initialize rejection count.] Setl← 0.

E2. [Sample fraction.] Setx ← U , whereU is a uniform
deviateU ∈ (0, 1).

E3. [Early rejection.] Ifx > 1

2
, setl ← l + 1 and go to step

E2.

E4. [von Neumann’s step V3.] Sample uniform deviates
U1, U2, . . . and determine the maximum valuen ≥ 0 such
thatx > U1 > U2 > . . . > Un.

E5. [Test length of run.] Ifn is odd, setl ← l + 1 and go to
step E2.

E6. [Combine integer and fraction.] Otherwise (n is even), set
y ← 1

2
l + x.

E7. [Return result.] SetE ← y.

The early rejection step results in lowering the mean number
of uniform deviates required toe/(

√
e− 1) ≈ 4.19.

Von Neumann’s algorithm can be adapted to generate a
Bernoulli random variable with probability1/

√
e, as follows.

Algorithm H (a half exponential Bernoulli trial). Generates
a Bernoulli random valueH which is true with probability
1/
√
e.

H1. [Generate a run.] Sample uniform deviatesU1, U2, . . .
and determine the maximum valuen ≥ 0 such that1

2
>

U1 > U2 > . . . > Un.

H2. [Test length of run.] SetH ← (n is even).

On average, the algorithm uses1

2
e/(
√
e − 1) (resp.1

2
e) uni-

form deviates if the result is false (resp. true); the overall
weighted average is

√
e. Both Algorithms E and H can be

implemented using u-rands and so can deliver exact results.
Algorithm H will be used for sampling from the normal dis-
tribution.

3. SAMPLING FROM THE NORMAL DISTRIBUTION

Here I tackle the problem of sampling normal deviates us-
ing u-rands. Although, I didn’t realize it at the time, the
method I developed is closely related to the algorithm givenby
Kahn (1956, p. 41); see also Abramowitz and Stegun (1964,
§26.8.6.a(4)). This is

Algorithm K (Kahn). SampleN from a unit normal distri-
butionφ(x) using Kahn’s method.

K1. [Sample absolute value of deviatey.] Sety ← E where
E is an exponential deviate.

K2. [Adjust relative probability ofy by rejection.] Sample
z ← E and accepty if z > 1

2
(y − 1)2; otherwise go

to step K1. (For a giveny, the probability of acceptance
exp

(

− 1

2
(y − 1)2

)

. Averaging overy, the probability of
acceptance is

√

π/(2e) ≈ 0.76.)

K3. [Assign a sign.] With equal probabilities, setx← ±y.

K4. [Return result.] SetN ← x.

A problematic step here is K2, which requires performing
arithmetic ony. In order to avoid this, I found it necessary
to sample separately the integer and factional parts ofy, lead-
ing to the following skeleton of an algorithm.

Algorithm N (normal sampling). SampleN from a unit nor-
mal distributionφ(x) using a rejection method.

N1. [Sample integer part of deviatek.] Select integerk ≥ 0
with probabilityexp(− 1

2
k)(1− 1/

√
e).

N2. [Adjust relative probability ofk by rejection.] Acceptk
with probabilityexp

(

− 1

2
k(k − 1)

)

; otherwise go to step
N1.

N3. [Sample fractional part of deviatex.] Setx ← U , where
U is a uniform deviateU ∈ (0, 1).

N4. [Adjust relative probability ofx by rejection.] Acceptx
with probabilityexp

(

− 1

2
x(2k+x)

)

; otherwise go to step
N1.

N5. [Combine integer and fraction.] Sety ← k + x.

N6. [Assign a sign.] With probability1
2
, sety ← −y.

N7. [Return result.] SetN ← y.

The analysis of this algorithm is similar to that for Kahn’s
method. After step N2, the relative probability density ofk
is exp(− 1

2
k) × exp

(

− 1

2
k(k − 1)

)

= exp(− 1

2
k2) for k ≥ 0;

after step N4, the relative probability of[k, x] is exp(− 1

2
k2)×

exp
(

− 1

2
x(2k + x)

)

= exp
(

− 1

2
(k + x)2

)

for k ≥ 0 andx ∈
(0, 1). From this, it follows that the returned value ofx has a
Gaussian distribution,φ(x). Step N2 always succeeds fork =
0 and1, the two most common cases. Overall, the probability
that step N2 succeeds is(1 − 1/

√
e)G ≈ 0.690 whereG =

∑

∞

k=0
exp(− 1

2
k2) ≈ 1.753. Similarly, step N4 succeeds with

probability
√

π/2/G ≈ 0.715. Thus, step N1 is executed
√

2/π/(1− 1/
√
e) ≈ 2.03 times on average.

Steps N1 and N2 can be expressed in terms of half expo-
nential Bernoulli trialsH with

Steps N1 and N2 in terms ofH .

N1. [TestH until failure.] Generate a sequence of Bernoulli
deviatesH1, H2, . . . and determine the largestk ≥ 0 such
thatH1, H2, . . . , Hk are alltrue.

N2. [Makek(k−1) tests ofH .] Setk′ ← k(k−1) and gener-
ate up tok′ Bernoulli deviatesH1, H2, . . . , Hk′ . Accept
k if Hi is true for all i ∈ [1, k′]; otherwise go to step N1.
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Of the remaining steps only step N4 presents a challenge.
This is changed to

Rewriting step N4.

N4. [Break N4 into k + 1 steps.] Perform up tok + 1
Bernoulli trials,B1, B2, . . . , Bk+1, each with probabil-
ity exp

(

−x(2k + x)/(2k + 2)
)

. Acceptx if Bi is true
for all i ∈ [1, k + 1]; otherwise go to step N1.

This transformation of N4 is motivated by the requirement in
the proof of von Neumann’s method thatx ∈ [0, 1]. Repeating
the trialk+1 times means that the argument to the exponential
in the original step N4 is divided byk+1; the maximum value
of x(2k+x)/(2k+2) (asx is varied) is(2k+1)/(2k+2) < 1.

In order to carry out a Bernoulli trialB, I generalize von
Neumann’s procedure.

Algorithm B (generalizing von Neumann’s step V3). A
Bernoulli trial with probabilityexp

(

−x(2k + x)/(2k + 2)
)

.
Sample two sets of uniform deviatesU1, U2, . . . and V1,
V2, . . . and determine the maximum valuen ≥ 0 such that
x > U1 > U2 > . . . > Un andVi < (2k + x)/(2k + 2) for
all i ∈ [1, n].
B1. [Initialize loop.] Sety ← x, n← 0.
B2. [Generate and test next samples.]

(i) Samplez ← U ; go to step B4, unlessz < y.
(ii) Sample r ← U ; go to step B4, unlessr <
(2k + x)/(2k + 2).

B3. [Increment loop counter and repeat.] Sety ← z, n ←
n+ 1; go to step B2.

B4. [Test length of runs.] SetB ← (n is even).

Without step B2(ii), steps B1 to B3 are just step V3 of von
Neumann’s algorithm. Because of the additional test B2(ii),
the probability that thenth trip through the loop succeeds is
xn/n! ×

(

(2k + x)/(2k + 2)
)n

. The requirement thatn be
even means thatB succeeds with probability

1− x
2k + x

2k + 2
+

x2

2!

(

2k + x

2k + 2

)2

− x3

3!

(

2k + x

2k + 2

)3

+ . . .

= exp

(

−x2k + x

2k + 2

)

.

In order to avoid performing arithmetic on uniform deviates
in step B2(ii), we remark that asx varies in(0, 1) the right side
of the inequality varies from2k/(2k + 2) to (2k + 1)/(2k +
2). Thus, regardless of the values ofx and r, the test will
succeed with probability2k/(2k+2) and fail with probability
1/(2k+2). The remaining probability,1/(2k+2), is divided
between success and failure according tor < x. Thus the test
r < (2k + x)/(2k + 2) can be replaced with

Algorithm T (the test in B2(ii)). Perform testT =
(

r <

(2k+x)/(2k+2)
)

without doing arithmetic on real numbers.
T1. [Sample a selectorf .] Setf ← C(2k + 2) whereC(m)

is−1 with probability1/m, 0 with probability1/m, and
1 with probability1− 2/m.

T2. [Act on the value off .] If f < 0, setT ← false; else
if f > 0, setT ← true; otherwise (f = 0), setT ←
(r < x).

Finally,C(m) can be computed with

Algorithm C (the 3-way selector). The choiceC(m),
(−1, 0, 1) with probabilities (1/m, 1/m, 1− 2/m), imple-
mented as the testw < n/m wherew is a uniform deviate
in (0, 1) andn = 1 or n = 2. For each successive digitd
of w, substitutew = (d + w′)/b so that the test becomes
w′ < n′/m, wheren′ = bn− dm, and exit as soon as then′

is outside the range(0,m).

C1. [Set the numerators of the fractions.] Setn1 ← 1 and
n2 ← 2.

C2. [Sample the next digit ofw, d.] Sampled← D whereD
is a uniformly distributed integer in[0, b).

C3. [Multiply inequalities bybm.] Setn1 ← bn1 − dm and
n2 ← bn2 − dm.

C4. [Test the new numerators.] Ifn1 ≥ m, setC(m) ← −1
and return; else ifn2 ≤ 0, setC(m) ← 1 and return;
else ifn1 ≤ 0 andn2 ≥ m, setC(m) ← 0 and return;
otherwise, go to step C2.

Algorithm C shows how the comparison of a u-rand with a
rationalx < u/v can be implemented. Step B2 can now be
written as

Step B2 incorporating Algorithm T.

B2. [Generate and test next samples.]
(a) Samplez ← U ; go to step B4, unlessz < y.
(b) Setf ← C(2k + 2); if f < 0, go to step B4.
(c) If f = 0, sampler ← U and go to step B4, unless
r < x.

The three steps here can be carried out in any order and I find
that the number of random digits needed can be reduced by
reversing the order of B2(a) and B2(b) wheneverk = 0.

Now step N4 has been broken down into steps that can all
be carried out in terms of u-rands. In the final step, N7, the
normal deviate can be returned either as a u-rand or an exactly
rounded floating point number.

4. SAMPLING FROM THE DISCRETE NORMAL
DISTRIBUTION

In some applications, we wish to sample integers,i, from
the discrete normal distribution,

φ(i | µ, σ) ∝ exp

[

−1

2

(

i− µ

σ

)2]

,

which is characterized by parametersµ andσ. In the limit
σ ≫ 1, the mean and variance of this distribution is well ap-
proximated byµ andσ2. Considering the class of integer dis-
tributions, this distribution maximizes the entropy for a given
mean and variance (Kemp, 1997). Because Algorithm N is a
simple rejection scheme, it is rather easy to adapt it to sample
from the discrete distribution as follows:

Algorithm D (discrete normal sampling). SampleD from
a discrete normal distributionφ(i | µ, σ) using a rejection
method.
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D1. [Same as step N1.] Select integerk ≥ 0 with probability
exp(− 1

2
k)(1− 1/

√
e).

D2. [Same as step N2.] Acceptk with probability
exp

(

− 1

2
k(k − 1)

)

; otherwise go to step D1.

D3. [Assign a sign.] With equal probabilities, sets← ±1.

D4. [Sample fractional part of deviatex.] Setx← x0 + j/σ,
wherex0 =

(

i0 − (σk + sµ)
)

/σ, i0 = ⌈σk + sµ⌉, andj
is a random integer uniformly sampled from

[

0, ⌈σ⌉
)

.

D5. [Ensure thatx is in the allowed range.] Ifx ≥ 1, go to
step D1. (This cannot happen ifσ is an integer.)

D6. [Avoid double counting 0.] Ifk = 0, x = 0, ands < 0,
go to step D1. (This cannot happen unlessµ is an integer.)

D7. [Same as step N4.] Acceptx with probability
exp

(

− 1

2
x(2k + x)

)

; otherwise go to step D1.

D8. [Combine parts of the integer deviate.] Seti← s(i0+ j).

D9. [Return result.] SetD ← i.

This is nearly the same as Algorithm N, except that step
N3 has been replaced by steps D4–D6. These steps can be
understood by matchingφ(x) and φ(i | µ, σ), identifying
s(k + x) =

(

s(i0 + j) − µ
)

/σ, and determiningi0 and j
such thatx ∈ [0, 1). Whenj = 0, x takes on the valuex0

andi0 is that integer which minimizesx0 while maintaining
the conditionx0 ≥ 0. Similarly the requirement thatx < 1,
imposes the conditionj < ⌈σ⌉. If σ is not an integer, then for
some values ofk ands, there are only⌊σ⌋ allowed values of
j, so, in step D5, we enforce the conditionx ∈ [0, 1). Finally,
in step D6, we avoid double counting the origin of the normal
distribution by additionally requiring thatx ∈ (0, 1) if k = 0
ands < 0.

Algorithm D is a straightforward modification of Algorithm
N and all the steps can be carried out exactly if the parame-
tersµ andσ are rational. One additional function needs to be
added to the machinery to handle u-rands, namely a compari-
son with a rational (this is needed in implementing Algorithm
B because nowx is a rational number). See Algorithm C for
how this can be implemented.

Because the probability that step D7 (i.e., step N4) succeeds
is 0.715, then forσ large (andb = 2), this method requires
at least(1/0.715) log2 σ bits of randomness on average. We
would like to reduce the multiplier oflog2 σ from 1/0.715 to
1 to match the perfect scaling of Algorithm N. We can achieve
this goal by adapting the algorithm given by Lumbroso (2013)
for sampling an integer in[0,m). Sufficient of his algorithm is
carried out to allow the result to be returned as range of sizebl.
For example, ifb = 2, sampling from[0, 9) returns the ranges
{[0, 8), [0, 2), [2, 6), [6, 8), [8, 9)} with probabilities{ 32

63
, 2

21
,

4

21
, 2

21
, 1

9
}. Thereafter the range can be narrowed, if neces-

sary, by factors ofb to allow the inequality in step D7 to be
evaluated. This method of sampling integers generalizes the
concepts of a u-rand to apply to discrete sampling and, if Al-
gorithm D is implemented using this technique, it exhibits per-
fect scaling in the limit of largeσ.

As an aside, this technique of partially sampling a discrete
uniform distribution allows optimization of sampling fromthe

Bernoulli distribution with rational probabilityp = u/v. Con-
ventionally, this is implemented by testingu < j with j sam-
pled uniformly in [0, v) which for v large requires at least
log2 v random bits. However ifj is partially sampled, the
mean cost is a constant in the limit of largev. Similar perfor-
mance is obtained with u-rands, samplingx← U and testing
x < u/v (and, with u-rands, this test is exact).

5. IMPLEMENTATION

An implementation of Algorithm N in C++11 is avail-
able in the library ExRandom. This allows the user
to select the baseb and to access the random devi-
ate as a u-rand or as a floating point number. The
algorithm has also been wrapped into a C++11 “ran-
dom number distribution” (Stroustrup, 2013,§40.7.3),
unit_normal_distribution, which can be used as
a replacement for the standardnormal_distribution
(with zero mean and unit variance). Several test programs are
also provided, one of which performs theχ2 test on the out-
put of Algorithm N, which is an essential step in validating its
correctness. This test passes with1010 samples and 50 bins of
equal width in the interval[−4, 4] when the Mersenne Twister
random number generator (Matsumoto and Nishimura, 1998),
mt19937, is used as the source of random digits. (On the
other hand, the test fails badly with109 samples using the lin-
ear congruential generator,minstd_rand0.) Algorithm N
retains no state from one invocation to the next. So it is not
necessary to verify the independence of the normal deviates
(any lack of independence would be due to defects in the un-
derlying random generator).

In addition, Algorithm N has also been incorporated
in MPFR (2014), version 3.2.0, a library for arbitrary
precision arithmetic (Fousseet al., 2007) as the function
mpfr_nrandom. MPFR, version 3.1.0, already provided
a functionmpfr_grandom for sampling normal deviates
based on the polar method (Box and Muller, 1958).

Table 2 shows some comparative timings for producing nor-
mal deviates with a precision ofp bits. The tests were run on
a Fedora Linux system with a3.2GHz Intel processor using
the g++ compiler version 4.8.2. In all cases, the Mersenne
Twister algorithm was used to generate the random digits and
the implementations of Algorithm N timed here useb = 232 to
match the output of this generator. Comparing columns A and
B, we see that Algorithm N is an order of magnitude slower
than the polar method at producing double precision results.
On the other hand (comparing columns C and D), Algorithm
N is dramatically faster thanmpfr_grandom at producing
arbitrary precision results in the MPFR format. As expected,
the scaling of the time for Algorithm N in column C is offset
linear, approximately(1 + 240 p/220)µs.

It is instructive to compare the two MFPR routines
mpfr_grandom and mpfr_nrandom. The former pro-
vides a good illustration of how a conventional method for
sampling random deviates can be implemented with guaran-
tees on the accuracy; the working precision needs to be pro-
gressively increased; and, of course, heavy use is made of



6

TABLE 2 Times (inµs) for sampling from the normal distribution.
The quantityp is the number of bits in the fraction of the rounded
floating point samples. Columns A and D use the polar method,
while columns B and C use Algorithm N. Columns A and B time
the C++11 random number distributionsnormal distribution
andunit normal distribution delivering results in the form
of IEEE floating point numbers. Columns C and D time the routines
mpfr nrandom andmpfr grandom which produce MPFR float-
ing point numbers. Columns A and B are the results of averaging
over 50 million samples; the entries in Columns C and D are each
the result of averaging over about10 seconds.

type IEEE MPFR

method polar Algorithm N polar

p A B C D

24 0.034 0.30 0.59 2.3

32 0.64 2.4

53 0.054 0.31 0.64 2.6

64 0.057 0.37 0.64 2.8

128 0.65 3.8

256 0.68 6.2

210 0.86 20

212 1.6 130

214 4.3 1300

216 15 13000

218 59 120000

220 240 910000

the formidable infrastructure provided by MPFR for carry-
ing out arbitrary precision arithmetic. The final result entails
computing a logarithm and extracting a square root which in-
cur a reasonably heavy penalty as the precision is increased
(the time increases roughly asp1.6). On the other hand,
mpfr_nrandom relies on MPFR only to provide the data
type to hold the result and the penalty for high precision is
minimal.

Table 2 times the production of normal deviates in a stan-
dard computational environment in which uniform pseudo
random numbers can be produced rather rapidly. In some se-
curity applications, it may be necessary to use a slow hardware
random number generator. In this case, Algorithm N can be
used withb = 2 to conserve random bits. LetB be the num-
ber of bits consumed by Algorithm N andL be the number of
bits in the fraction of resulting u-rand. Empirically, I findthat
〈B〉 ≈ 30.000 and〈L〉 ≈ 1.556. The distribution ofL decays
with an e-folding constant of1/ log 2, while that ofB de-
cays more slowly with ae-folding constant of about29.9 bits.
To put these results in perspective, if1030 normal deviates
were generated, then the largest result would be|x| ∼ 12, the
longest fraction would haveL ∼ 100 and at mostB ∼ 2000
bits would be needed to generate a single normal deviate.

The quantityC = 〈B〉 − 〈L〉 ≈ 28.444 represents the
“cost” of producing random deviates. Producing rounded
fixed point normal deviates withp bits in the fraction requires
C + p + 1 random bits on average; this formula applies for

x

φ(x)

+0...

+0.0...

+1.0...

0 1 2 3

FIG. 1 Algorithm N’s decomposition of the normal distribution into
a set of uniform distributions withb = 2 (shown forx > 0). For
example, the frequency with which+0.0 . . . is returned is equal
to the relative area of the rectangle spanningx ∈ (0, 1

2
) which is

1

8

√

2/π ≈ 10%. This frequencies used in this figure are averaged
over1010 samples; the minimum range of the uniform distributions
shown is2−8.

largep (butp ≥ 10 suffices in practice). The1 here accounts
for the additional bit needed for rounding the result (and the
rounding operation, in turn, provides an extra bit of informa-
tion, namely whether the true deviate is larger or smaller than
the rounded result). Producing rounded floating point normal
deviates with precisionp requiresC−Q+ p+1 bits on aver-
age (the1 again accounts for the need for a rounding bit); here
Q = 〈⌊log2 |x|⌋〉+1 ≈ −0.417 is the mean floating point ex-
ponent for normal deviates. Thus producing IEEE double pre-
cision floating point numbers (p = 53) requires about82.861
bits per rounded deviate, on average.

When comparing Algorithm N with algorithms forother
distributions, we use the toll of the algorithm defined asT =
C − H ≈ 26.397 whereH = log2

√
2πe ≈ 2.047 is the

entropy of the normal distribution and the base-2 logarithm
is used so thatH is measured in bits. Aperfectsampling
algorithm would haveT = 0; so the toll is a measure of how
many random bits are potentially “wasted” by the algorithm.
(Note that the entropy of the discrete distribution obtained by
rounding normal deviates to the closest multiple of2−p isH+
p, for p large.)

A histogram of the u-rands that Algorithm N produces can
be displayed in a way that illustrates how they add up to the
normal distribution as shown in Fig. 1. The area assigned to
each u-rand is proportional to its frequency while its base cov-
ers its range (hereb = 2). This figure is reminiscent of illus-
trations of the ziggurat method (Marsaglia and Tsang, 2000),
which provides a fast way of sampling normal deviates byap-
proximatingthe normal distribution by astatic set of rectan-
gles enabling it to return a uniform deviate inmostcases. In
contrast, Algorithm Ndynamicallygenerates a set rectangles
which cover the normal distributionexactly, allowing it to re-
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turn a uniform deviate inall cases.
The ExRandom library includes implementations of Al-

gorithms V and E for sampling from the unit exponential
distribution with interfaces that parallel those for the unit
normal distribution. The C++ random number distribution
unit_exponential_distributionuses Algorithm V
because it is slightly faster than Algorithm E withb = 232.
This produces double precision deviates in0.09µs under the
same conditions as in Table 2. (Algorithm V has also been
added to MPFR, version 3.2.0, asmpfr_erandom.) With
b = 2, Algorithm E results in〈B〉 ≈ 7.232 and〈L〉 ≈ 1.743,
so the cost isC ≈ 5.489. For the exponential distribution, we
haveH = log2 e ≈ 1.443 andQ ≈ −0.333. Thus the toll is
T = C − H ≈ 4.047 (considerably better than Algorithm
N) and producing IEEE double precision numbers requires
C −Q + 54 ≈ 59.822 bits on average. In contrast, von Neu-
mann’s original method, Algorithm V, has a costC ≈ 7.262
and a tollT ≈ 5.819; i.e., it is less efficient than Algorithm E
by about1.772 bits.

Finally, the ExRandom includes implementations of Algo-
rithm D for sampling from the discrete normal distribution.
The parametersµ andσ are given as the ratio of two 32-bit in-
tegers. However some internal calculations use 64-bit integers
in an effort to avoid overflow. The constructors for the class
implementing this algorithm throw an exception if the param-
eters are such that overflow is possible. The most stringent of
the checks is thatbkmaxσnum fits in a 64-bit word whereb is
the base,kmax = 50 is how many standard deviations onto the
tail of the normal distribution we want to be able to sample,
andσnum is the numerator ofσ when it andµ are expressed
with a common denominator.

The C++11 random number distribution implementing Al-
gorithm D usesb = 216. The time to generate discrete normal
deviates depends weakly onσ over the range[1.6, 1.6× 106]
varying between0.4µs and0.5µs under the same conditions
as in Table 2. Withb = 2, the toll, defined now merely as
the difference between the mean number of bits to obtain a
discrete normal deviate and the entropy of the distribution(in
bits), is, in the limit of largeσ, approximately a periodic func-
tion of log2 σ with period1, attaining its minimum value of
about27.9 whenσ is a power of two and its maximum value
of 31.9 whenσ slightly exceeds a power of two.

An important potential use for Algorithm D is in cryptogra-
phy, where exact sampling is often required. One such appli-
cation is the “learning with errors” (LWE) problem (Regev,
2009), which depends on the difficulty of solving a system
of over-determined linear equations over the field of integers
when the equations have been perturbed by noise sampled
from a discrete normal distribution. The security of the cryp-
tographic methods based on the LWE problem depends, in
part, on being able to sample discrete normal deviates accu-
rately. In some such applications, there is also the requirement
that the sampling algorithm run on devices without hardware
support for floating point operations. Methods for sampling
from the discrete normal distribution have recently been re-
viewed by Dwarakanath and Galbraith (2014). However, one
of starting points of this paper that “sampling algorithms re-
quire either high precision floating point arithmetic or very

large precomputed tables” is directly contradicted by Algo-
rithm D; it uses no floating point arithmetic and requires no
stored constants. The potential drawbacks of Algorithm D in
this context are: (1) The toll is large compared to implemen-
tations of the method discrete distribution generating (DDG)
trees of Knuth and Yao (1976) for which the toll is2; but that
method is impractical for largeσ because it involves storing
large precomputed tables of probabilities. (2) The time to gen-
erate a deviate is variable (potentially leaking information to
an attacker); this can be mitigated by generating the deviates
in batches of a thousand, say. (3) The time and memory re-
quirements of the algorithm are unbounded; but, with a slight
reduction in accuracy, it is easy to put bounds on these. For
example, if the number of digits in the fraction of u-rands is
limited to logN/ log 2 and if the number of random digits
allowed for a single deviate to limited to30 logN , then the
limits are hit about once everyN invocations. Even ifN is
large, say1030, the resulting limits are modest; in the the rare
cases when the limits are hit, an integer uniformly sampled in
[⌊µ− σ⌋, ⌈µ+ σ⌉] can be returned.

6. CONCLUSIONS

I have presented an algorithm for sampling normal deviates
with an astonishing combination of properties: it is exact,it
can be implemented in a few dozen lines of code using only
simple integer operations, and it is fast. The definition of “ex-
act” is rigorous and this property depends only on the avail-
ability of a source of uniform random numbers. Although the
algorithm is an order of magnitude slower at producing dou-
ble precision results compared to conventional (less accurate)
methods, this is partly due to the hardware support provided
for floating point operations on modern computers. If there
is no such support, as is the case for higher precision float
point formats, Algorithm N becomes competitive; indeed in
the limit of high precision, the only cost is that to produce and
copy the random bits into the result.

Algorithm N probably won’t be useful in most routine
Monte Carlo simulations where the accuracy of conventional
double precision methods suffices. However, in some special-
ized applications, the need for accuracy is paramount. In par-
ticular, the discrete version of the algorithm, Algorithm D, has
direct applications to some areas of cryptography and here the
fact that the algorithm entails only integer instructions would
also allow it to be implemented for embedded devices.

Internally, these algorithms represent real random deviates
in terms of u-rands and the floating point result is extracted
from these at the end of the algorithm. This extraction pro-
cess takes time, consumes memory, and involves a round off
error. So, it might be advantageous to leave the result as a
u-rand; this occupiesO(1) storage and is still exact. Further-
more, certain operations can be performed on u-rands atO(1)
cost. For example, when implementing Algorithm K, the ex-
ponential deviatesy andz should be sampled as u-rands using
Algorithm E. The comparison in step K2 requires arbitrary
precision arithmetic; however, it can be completed with the
addition of only a few extra digits toy andz, on average. This
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means that it shares with Algorithm N the perfect scaling of
cost with precision. As another example, consider the opera-
tion y ← x + 1

3
wherex is the (base2) u-rand+0.0 . . ., i.e.,

a random deviate in the range[0, 1

2
]. Carrying this out with

floating point arithmetic entails three rounding errors (for x,
1

3
, and the sum) and involves threeO(p) operations. Alterna-

tively, we could repeatedly sampley ← U until the conditions
1

3
< y < 5

6
are satisfied, yielding an exact result inO(1) oper-

ations. Thus, it would be of interest to explore the algebra of
operations on u-rands. The resulting “lazy evaluation” frame-
work would, in principle, require less storage, be faster, and
be exact.

Algorithms E and N constitute a new class of algorithms
for sampling from continuous distributions offering the advan-
tages of exactness and perfect scaling. Algorithm N builds on
von Neumann’s work adding two new techniques: (1) break-
ing step N4 intok+ 1 tests, to reduce the argument of the ex-
ponential; and (2) adding a second set of tests, in step B2(ii),
to compute a more complex exponential probability. Presum-
ably similar algorithms can be found for other distributions
although, as yet, there is no systematic approach to finding
such algorithms. Related work by Flajoletet al. (2011) dis-
cusses several interesting methods for sampling discrete dis-
tributions and considers ways in which they can be combined.
It’s probable that some of their techniques will be useful in
finding algorithms for sampling from other continuous distri-
butions; they might also lead to improvements to Algorithm
N for normal deviates.
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