
An Innovat ive I m p l e m e n t a t i o n for Direc tory -based
Cache Coherence in Shared M e m o r y Mult iprocessors*

Weisong Shi Weiwu Hu and Ming Zhu
Center of High Performance Computing, Institute of Computing Technology
Chinese Academy of Sciences, P.O.Box 2704-35, Beijing 100080, P.R.China

e-mail: {wsshi,hww,znl} @water.chpc.ict.ac.cn

Abstract

Directory-based cache coherence protocol is accepted as the common technique ill large scale shared
memory multiprocessors because of its scalability. Although it was extensively studied in the past, how-
ever, the memory overhead mad long miss penalty entailed by this protocol axe the major obstacles to
scale for large scale multiprocessors. On the other hand, the ever-increasing cache line size makes the
false sharing problem more serious than before, which will lead to high miss rate. Based on the scope

consistency, we propose a lock-specific home-based/cache coherence protocol- In this new cache coherence

protocol, all directory memory overhea~l axe eleminated completely and false shaxing problem mad high
miss rate will be sloved greatly at the cost of small write notice buffer in each processor.

K e y w o r d s : Directory-based Cache Coherence Protocol, False Shaxing, Scope Consistency, Memory
Overhead.

1 I n t r o d u c t i o n

Dist r ibuted Shared. Memory(DSM) sys tems have gained popular acceptance by combing the scalabil i ty mad
low cost of d i s t r ibu ted sys tem with the ease of use of single address space. Many research and commerciM par-
~llel sys tems are bui l t out of this architecture. In order to tolerate the long remote access la tency mad exploit

the advantage of prefetching, cache coherence is an accepted requirement in large scale multiprocessors[14].
Bus-based snoopy coherence protocol and directory-based coherence protocol are widely used in shared mem-
ory mult iprocessors. Unfor tuna te ly , ~.he bus can only accommoda te a small number of lJrocessors and such
machines are not scMable. For large-scMe mult iprocessors, we need a scalable in terconnect ion network such

as mesh, torus, which makes snoopying impossible.
Directory-based cache coherence was first proposed by Tang[17] and f 'ensier and Feautrier[4] . The basic

idea is keeping track of the in fo rmat ion of each m e m o r y block in a directory, and all requests to the cache

block will be sent to i t ' s corresponding directory controller first, which will de termine the re la ted actions.
The general archi tecture of d i s t r ibu ted shared m e m o r y mult iprocessors is shown in Fig 1.

For directory schemes to be successful for scalable mult iprocessors, they mus t sat isfy two requirements [7].
The first is tha t the b a n d w i d t h to access directory in format ion mus t scale well with the number of processors.
This requirement can be achieved by d is t r ibut ing the physical memory and the corresponding nodes, and by
using a scalable in terconnect ion network. The second requirement is tha t the hardware overhead of using a
directory scheme mus t scale l inearly wi th the number of processors. The mos t i m p o r t a n t compon&nt of the
haxdware overhead is the a m o u n t of m e m o r y storing the directory informant ion . Up to date , this requirement
are gained extensively s tudy and m a n y innovat ive ideas are proposed. The details are l isted in the following
section. However, the m e m o r y overhead remains a ma jo r obstacle for the scalabil i ty of the directory-based

coherence protocol .

*The work of this paper is supported by the CLIMBING Program and the President Young Investigator Foundation of the
Chinese Academy of Sciences.

~ 2 - -

http://crossmark.crossref.org/dialog/?doi=10.1145%2F271014.271017&domain=pdf&date_stamp=1997-12-01

Scalable Interoonnecfion Network

Presence bits Dixt r bit

]
Figure 1: Basic multiprocessor organization and directory scheme.

Furthermore, from the state transition diagram of directory-based coherence protocol as shown in [14], we
find that 3-hop communication is required frequently when write miss occurs, even when a write operation
hits on read-only cache blocks. Thus, it will result in long miss penalty. Under release consistency, this miss
penalty can be tolerated by overlaping the invalidation procedure with computat ion procedure, however, the
processor on which write miss occurs must wait for the acknowledgement from the directory controller[15],
thus the long miss penalty remains a problem to be solved.

On the other hand, the ever-increasing size of cache line makes false sharing problem become more serious
than before. False sharing is the sharing of cache blocks without actual sharing of data. It occurs because
cache blocks contain more than one da ta item. Whenever in write-invalidate or write-update protocols,
more traffic and miss rates are caused by false sharing so that the whole system performance degrade
significantly[18].

However, in software DSM systems, such as WreadMarks[1], Munin[3] etc, the false sharing problem are
sloved greatly because of using lazy release consistency and multiple writer protocol[i][3]. Therefore, in this
paper, we propose a new cache coherence protocol which is based on the scope consistencyand is easy to
implement in hardware.

The rest of this paper is orgnized as follows. The background and prior related work are listed in
section 2. Our new innovative cache coherence protocol is presented in section 3. Some important issues of
implementation are described in seciton 4. In the last section, concluding remarks are provided.

2 B a c k g r o u n d and R e l a t e d W o r k

2 . 1 D i r e c t o r y - b a s e d C a c h e C o h e r e n c e P r o t o c o l

In directory-based cache coherence protocol, the most straightforward way to store, directory information is
as a bit-vector associated with each memory block. Each directory entry has one presence bit per processing
node(thus named ful l bit vector scheme), and one dirty bit indicating ownership by a given processor(the one
whose presence bit is also on), as shown in Fig 1. A good measure of the memory overhead of a directory
scheme is the amount of storage used for directory information divided by the storage used for the memory
blocks themselves. Assuming a 64-byte line, the directory overhead for 64-node is approximately 12.7%, for
a 1024-node multiprocessors, it is approximately 200%. Therefore, the directory storage overhead clearly
does not scMe well to a lurge number of processing nodes in this scheme.

There are two ways in which the overhead of ful l bit vector scheme can be reduced. The first is to increase
the cache line (block)size. However, as discussed in section 1, this will lead to false sharing problem. The
second technique to reduce the directory overhead is ~.o use clustering, such as DASH[13] and SGI Origin
2000 [12] . Nevertheless, both the optimizations reduce the overhead by a little factor. The total amour of

- - 3 - -

directory memory overhead is still propor t ional to P x M, where P is the number of processoring nodes and
M is the number of totM m e m o r y blocks in the machine.

For larger-scale multiprocessors, there are two or thogonal ways to reduce the overhead of directory
schemes. The first is to reduce the width of the each directory entry by not le t t ing it grow propor t ional ly
to P . The representat ive schemes include: Dir~B, Dir~NB, Dir~CVr, Dir~GW , Dir~DP [5][1.6] and caz2ae-
based directory coherence scheme(such as SCI[8]). The second is to reduce the to ta l number of directory
entries by not having an ent ry per m e m o r y block, such as sparse directories.

Although m a n y new directory vrgnizat ion schemes are proposed, however, the memory overhead remains
a ma jo r obstacle for its scalability. On the other hand, the s ta te t ransi t ion remains compl ica ted mad false
sharing problem are of great necessary to be solved. Therefore, some researchers proposed new consistency
models for shared m e m o r y multiprocensors.

2.2 D e l a y e d Consistency
Delayed Consistency was proposed by Dubois et .al in 199116], which means the effect of out-going mad in-
coming inval idat ions or upda tes are delayed. They int roduced two delayed protocols derived f rom Censier and
Feautr ier 's directory scheme. One is receive delayed protocol, the other is send and receive delayed protocol.
Both these two protocols are delayed implemen ta t ion under a weakly ordered memeory istency model , called
release consistency. The basic idea of receive delayed protocol is tha t when an invalidation signal is received
by a cache, the inval idat ion does not need to reach the cache unt i l the next acquire opera t ion is executed by
the local processor. The behaviour is still correct because the p rog ramming model in weakly-ordered systems
forbids accesses to a shared wri table d a t a outside a critical section. In send and receive delay protocol, the
processor can delay sending the inval idat ion to other sharers unti l next release synchroniza t ion operat ion.

Delayed consistency solves the false sharing problem, and significant reductions in the miss rate can be ob-
ta ined with the axtdition of a stale bit, and fur ther reduct ion was observed by adding a small ISB(inval idat ion
send buffer).

In received delayed protocol, each processor executing write operat ion send the inval idat ion immediate ly ,
and waits for the acknowledgement f rom the directory controller. The addt ional hardware is a stale bit with
each cache line. Al though false sharing problem is reduced considerably, the direcotory overhead remains a
bottleneck. Furhtermore , the compl ica ted s ta te t ranst ion m~kes this protocol difficult to implement .

In send and receive delayed protocol, more t h a n two processors cma write the same cache block simul-
taneously (i.e., mul t ip le writers protocol) . There axe only one owner allowed to exist in the sys tem at any
t ime. So when other keeper want to remove its ISBs, it mus t obta in the ownership first, which will result
in communica t ing with others. Therefore, the frequency of comunnica t ion is similar to tha t of t radi t ional
protocol. At the same t ime, the directory overhead and complicated s ta te t ranst ion remain serious problems.

2.3 L a z y R e l e a s e Consistency
In [11], Konto thanass i s et .al proposed to implement lazy release consistency 1 in haredware multiprocessors.
In fact, the basic idea of their scheme is similar to delayed consistency discussed above. The difference
between these two protocols exists in which level to implement . Lazy release consistency is implemented in
directory level(i.e., each directory has 4 states, as shown in Fig 2(b).), while the Dubois ' implemented it in
cache line level(i.e., each cache line has 4 states, as shown in Fig 2(c)). The lazy release consistency adopted
in [/1] combines the mul t ip le writer protocol and receive delayed protocol. The home is keep up to date, so
no ISB is needed. Al though this hardware implementa t ion scheme reduces the miss rate and false sharing
t ransi t ions greatly, it need more directory overhead than t radi t ional protocol.

3 N e w C a c h e C o h e r e n c e P r o t o c o l

From above discussion, we find t h a t some improvements in reducing the directory overhead do not help
sieve the false sharing problem and reduce the high miss rate, and some improvments in reducing miss rate

1Here, l~zy release consistency is defined by authors in [11], which is a little bit different from the definitin of Keleher et.al
in [10]. Therefore, we named the definition of Keleher etc standard Ip.zy release consistency.

- - 4 - -

do not help reduce the directory overhead, even to the contrary. In this section, we will introduce a new
consistency model, then propose an innovative coherence implemented scheme which will solve above two
problems efficiently.

In standard lazy release consistency, the requesting processor will invalidate all the pages which were
written by another processors before this acquire operation according to happen-before-1 order. However,
different locks are not discriminated to treat with, which results in many useless invMidations and high
miss rate on shared data. This disadvantage of lazy release consistency is overcomed by discriminating the
different locks in .scope consistenc~/[9], which means the acquiring processor invalidates the pages associated
with this lock only, other pages which is protected by another synchronization objects are kept valid. With
these two relaxed consistency models, the false sharing problem will be avoided greatly.

Furthermore, multiple writer protocol is very helpful to reduce the miss rate, especially when write hit
on read-only occurs. Therefore, our new cache coherence protocol combines the advantages of these two
techniques, adopts write-invalidate based multiple writer protocol under the scope consistency.

In our new cache coherence protocol, we assume that synchronization variables must be stored in spe-
cialized regions of shared memory since it has been implemented in many new generation machines, such as
SGI Origin2000[12], each lock has a manager. This manager has the responsbility to keep the write notices
modifed in the critical section protected by this lock, which is similar to the s tandard lazy release consistency.
The home node does not need to mainta in a directory for each block. The home is usually kept up to date.
The cache line state transit ion graph is shown in Fig 2(a). Only three states are required, which is simpler
than that of prior works.

~ " Kt: Read from local processor

(a)

Rj,WJ. I ~ R I, W~
I~Bi(R~qU), S~m UBj WlOM I~BI), ~ ISBJ

(c) ~ I~o~v)

b lqt~do,~ > 0

~Vlltc

~ L ~ (b) ~ ~
~W~It~m > 0

Figure 2: The state t ransi t ion graph of cache coherence" protocol(a) our new scheme, (b) Kontothaa-aassis's
lazy release consistency scheme, (c) Dubois's send and receive delayed consistency scheme.

C a c h e B l o c k S t a t e s

- - 5 - -

lqLW ~ the cache b l o c k is reaxtable a n d w r i t a b l e ;

R O ~ the cache b l o c k is r e a d a b l e ;

I N V - - t he cache b lock is inva l id .

N o d i r e c t o r y is needed , so no s y s t e m d i r e c t o r y s t a t e s a re r equ i r ed .
M e m o r y C o m m a n d s

(a) I s sued by a cache l ine to the h o m e m e m e o r y control ler .

1. R e q u e s t D a t a : s e n d t h e r eques t a b o u t a cache l ine to c o r r e s p o n d i n g h o m e node .

(b) I s sued by a h o m e m e m o r y con t ro l l e r to the cache l ine.

1. R e t u r n D a t a : s e n d t h e c o r r e s p o n d i n g m e m o r y b lock to r e q u e s t i n g p rocesso r .

(c) I s sued bu a cache l ine to the lock m e m o r y con t ro l l er (lock m a n a g e r) .

1. P~equestLock: ask for the o w n e r s h i p of t h e lock.

(d) I s sued by a lock m e m o r y con t ro l l er (lock m a n a g e r) to the cache line.

1. W a i t : ask t h e r e q u e s t i n g p r o c e s s o r to wa i t for a n o t h e r p r o c e s s o r ' s r e l ea s ing th i s lock.

2. R e t u r n L o c k : s e n d the o w n e r s h i p of t he lock to t he r e q u e s t i n g p r o c e s s o r a n d a s s o c i a t e d wr i t e
no tices.

C a c h e a l g o r i t h m
For the va r i ous t y p e s o f c ache accesses, t he cache con t ro l l e r takes t h e fo l lowing ac t ions .

1. Ftead hi t : no a c t i o n is t a k e n .

2. W r i t e h i t : no a c t i o n is t a k e n (i n c l u d i n g wr i t e h i t on r e a d on ly cache l ine .) .

3. R e a d miss : s end a r e q u e s t to h o m e n o d e to o b t a i n a copy.

4. W r i t e miss : s end a r e q u e s t t o h o m e n o d e to o b t a i b a copy.

5. R e p l a c m e n t : w r i t e t h e co~che b lock b a c k to i ts h o m e node , a n d i n f o r m the lock m a n a g e r if the s t a t e of
th i s cache l ine is KW.

6. A c q u i r e (l o c k l) : s end the r e q u e s t to l o c k l ' s m a n a g e r .

7. R e l e a s e (l o c k l) : s e n d t h e addres ses o f t h o s e cache b locks t h a t m o d i f i e d w i t h i n a b o v e c r i t i ca l s ec t ion to

l o c k l ' s m a n a g e r a n d all t h e m o d i f i e d va lues to the i r c o r r e s p o n d i n g h o m e nodes .

C o m p a r e o u r n e w cache c o h e r e n c e p r o t o c o l w i t h p r io r r e l a t e d works , our s c h e m e will h a s fo l lowing
a d v a n t a g e s :

1. Solve t he d i r e c t o r y o v e r h e a d s u b s t a n t i a l l y , wh ich m a k e s th is s c h e m e o v e r c o m e t h e s c a l a b i l i t y l imi t .

2. T h e d i f ferent s y n c h r o n i z a t i o n o b j e c t s axe d i s c r i m i n a t e d to t r e a t w i th , wh ich m a k e the n u m b e r of
i n v a l i d a t i o n r e d u c e g rea t ly , so the m i s s r~.te avo ided grea t ly .

3. T h e cache s t a t e t r a n s i t i o n d i a g r a m b e c o m e s s i m p l e r t h a n p r i o r works .

4. T h e l a t e n c y of each m i s s is 2 - h o p c o m m u n i c a t i o n s u b s t a n t i a l l y , no 3 -hop c o m m u n i c a t i o n s is r equ i r ed .

5_ False s h a r i n g p r o b l e m is a v o i d e d by us ing m u l t i p l e wr i t e r p r o t o c o l .

Howeve r , o u r new will i ncu r fo l l owing d i s a d v a n t a g e s :

1. A t re lease o p e r a t i o n , the p r o c e s s o r will w a i t l onger t h a n before_

6

2. Each lock m a n a g e r require s o m e m e m o r y overhead to hold the wr i te notices for t h a t lock.

Cer ta in ly , in order to reduce the m e m o r y overhead asscocia ted wi th each lock m a n a g e r , we will fix the
size of wri te not ice buffer in each lock m a n a g e r . I f this wr i te not ice buffer is overflowed, the lock m a n a g e r
will s t a r t a g lobal inva l ida t ion ope ra t ion . T h e o rgan iza t ion of those wr i te not ice buffers is shown in nex t
section. W h e t h e r the a d v a n t a g e s of our new scheme can t radeof f the d i s advan tages en ta i led f r o m it, we will

d e m o n s t r a t e it by s i m u l a t i o n in the near fu ture .

4 I m p o r t a n t I s s u e s o f I m p l e m e n t a t i o n

The m o s t i m p o r t a n t i m p l e m e n t a t i o n issues in our new cache coherence is how to m e m o r i z e the wri te notices.
In fact , our wri te no t ice is s imple r t h a n t ha t of T readMarks . W h e n one processor wr i te to a cache block, i t
does not need to c rea te a twin and diff. An a l t e rna t ive i m p l e m e n t scheme is as follows.

1. Acqui re a lock.

2.

.

.

.

Wr i t e to a cache block, a l locate a i t em in wri te not ice buf fe r (add i t ion
ha rdware) and fill the address and content of this cache b lock into
th is i t em.

I f possible , send the address and d a t a of above cache block to lock
m a n a g e r and h o m e respectively, which over lap the c o m m u n i c a t i o n
and c o m p u t i o n ~.

Release the lock, and wri te all the d a t a in wri te not ice buffers to
thei r co r respond ing h o m e nodes, and sending addresses of these cache
blocks to the i r lock 's m a n a g e r s . (T h i s processor m u s t wai t unt i l the
acknowledgemen t s f r o m the cor responding coun te rpa r t s) .

I nva l i da t e all the i t ems in wri te not ice buffer, which m a k e t h e m
reusable in the fu ture .

~This ope ra t ion is opt ional if the re is protocol processor in the systeln.

In each lock m a n a g e r , i t will have a special ized wri te not ice buffer which m e m o r i z e the address of cache
block only. Th i s wri te not ice buffer should con ta in no m o r e t h a n a few entr ies in order to reduce ff.s m e m o r y

overhead. Fig 3 shows the m e m o r y o rgan iza t ion of two kinds of wri te not ice buffers. F ig 3(a) shows the wri te
not ice buffer used by general processor dur ing i t ' s execut ion in cri t ical sect ion. F ig 3(b) shows the wri te

not ice buffer used by lock m a n a g e r . In fact , the wri te not ice buffer in general processor can be i m p l e m e n t e d
by wri te buffer in m o d e r n microprocessors . For example , before the wri te ope ra t i on re t i red f r o m active list
or instruction window, i t m u s t be sent to its h o m e node.

Address 1 da ta

Addres s 2 da ta

A d d r e ~ n da ta

Addre s s 1

Addres s 2
= = •

= = .

Addres s n

(a) (b)

Figure 3: T h e organiza. t ion of wri te not ice buffer(a) in general m e m o r y control ler ; (b) in lock m a n a g e r .

W h e n a processor acquires a lock, i t send a message to lock ' s m a n a g e r . T h e lock m a n a g e r re turns all
those addresses assoc ia ted wi th this lock to this acquir ing processor . Af te r receiving these addresses, the

- - 7 - -

acquiring processor invalidates it 's corresponding cache blocks. When there is no free space l~ft in wri te
notice buffer, the lock manager mus t execute a global opera t ion to invalidate all the addresses memor ized in
it 's wri te notice buffer. This opera t ion will take a long t ime so tha t it can not occur f requent ly in real life.
Forturnately, some stat is t ics show tha t 8 0 ~ applicat ions adopt read-wri te sharing pa t te rn . Therefore, this
opera t ion will not occur so frequently. Certainly, whether this new scheme be t te r t han t rad i t iona l coherence
protocol or not is a t radeoff be tween t ime and space . If the t ime is acceptable, we belive tha t our new scheme
is be t t e r than others. T h a t is our fu ture work.

5 S u m m a r y

In this paper , we analyze the d isadvantages of direcory-based cache coherence protocol first. We also point
tha t the high miss ra te and false sharing prob lem are of great impor t ance in fu ture generat ion computers .
Based on the analysis of prior works, we propose a new cache coherence implementa t ion scheme which is based
on scope consis tency and mul t ip le wri ter protocol . Our new scheme requires only three s ta tes to implement
mult iple wri ter p ro tocol s which is a great improvemen t to prior works. Our new scheme solves the directory
m e m o r y overhead substant ia l ly . The second effect is reducing the miss pena l ty to 2-hop communicagion. We
will compare our new scheme wi th prior works by s imula t ion in the future.

R e f e r e n c e s

[1] Cr is t iana Amza,S. Dwarka~-ias,Pete Keleher ,Alan L.Cox and Wil ly Zwaenepoel . Trea~iMarks: Shared
M e m o r y C o m p u t i n g on Networks of Workstations.IEEE Computer,29(2):lS-28,February 1996.

[2] B .N.Bershad ,M.J .Zekauskas , and W.A.Sawdon . The Midway Dis t r ibu ted Shared M e m o r y System, In
Proe.of the 38th IEEE Int'l Computer Cong. (C O M P C O N Spring'93), pp.528-537,Februaxy 1993.

[3] J . B . C a r t e r , J . K . B e n n e t , a n d W.Zwaenepoe l . Implenen ta t ion and Per formance of Munin. In Prac.of tile
13th A C M Syrup.on Operating Systems Principles (SOSP'91), pp.152-164,October 1991.

[4] M.Censier and P.Feaut ier . A New Solut ion to Coherence Prob lems in Multica~he Systems. IEEE Trans-
actions on Computers, C-27(12):1112-1118, December 1978.

[5] David E.Culler, J .P .Singh with Anoop Gupta . Parallel Computer Architecture (alpha version), available
in http://www.cs.berke~ey.edu/..~culler/book-alpha.html.

[6] Michel Dubios. J in Chin Wang, Luiz A.Barroso, Kangwoo Lee and Yung-Syau Chen. Delayed Consis-
tency and Its Effects on the Miss Ra t e of Parallel Programs . In SupercomputingPl. pp.197-206.

[7] Anoop Gup ta , Wolf-Dietr ich Weber , and Todd Mowry. Keducing M e m o r y and Traffic Kequi rements for
Scalable Di rec tory-Based Cache Coherence Schemes. In ICPP'90, pp.I-312-I321.

[8] David Gus tavson . The Scalable Coherence Interface and Kelated S tandards Projec ts . IEEE micro. 12(1),
pp:10-22, February 1992.

[9] L . I f tode , J .P .S ingh ,and K.Li. Scope Cons is tency:a Bridge be tween Release Consis tency and Ent ry Con-
sistency. Technique R e p o p t T1~-509-96, Pr inceton, N J, February 1996.

[10] Pete Keleher, Alan L.Cox, and Wil ly Zwaenepoel . Lazy Release Consis tency for software Dis t r ibu ted
Shared Memory. In the 19th ISCA'92~ pp.13-21.

[11] Leonidas I. Konto thanass i s , Michael L.Scot t and Ricaxdo Bianchini, Lazy Release Consis tency for
Hardware -Coheren t Mult iprocessor . In ,.qupercomputing'95.

[12] James Laudon and Daniel Lenoski. The SGI Origin: A ccNUMA Highly Scalable Server. In Proceedings
of the 24th Annua l In terna t ionM S y m p o s i u m on C o m p u t e r Archi te r ture(ISCA'97) . Denver, CO, USA.
pp.241-251.

[13] Daniel Lenoski, J a m e s Laudon , Kourosh Gharachor loo, Anoop G u p t a and John L- Hennessy. The
Direc tory-Based (;ache Coherence Pro toco l for the DASH Mult iprocessor. In Proceedings of the 17th
International Symposium on Computer Architecture, 1990, pp.148-159.

- - S i n

[14] D.Patterson and John Hennessy. Computer Architecture: A Quantitative Approach. Second Edition.
1996.

[15] Weisong Shi, Weiwu Hu and Zhimin Tang. An Interaction of Coherence Protocols and Memory Con-
sistency Models in DSM Systems. To appear in ACM Operatillg Systems Review, pp.48-61, October
1997.

[16] Richard Thomas Simoni, Jr. Cache Coherence Directories for Scalable Multiprocessor. Ph.D thesis.
Stanford University, March 1995.

[17] C.K.Tang. Cache Design in the Tightly Coupled Multiprocessor System. In AFIPS Conference Proceed-
ings, National Computer Conference, NY, pages 749-753, June 1976_

[18] J.Torrellas, Monica S.Lam and John Hennessy. Shared Data Placement Optimization to Reduce Multi-
processor Cache Miss Rates. In 1990 International Conference on Parallel Processing. pp.II-266-II-270.

- - 9 m

